
HAL Id: hal-02156122
https://hal.science/hal-02156122

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Quality Objectives for embedded software
development with MATLAB and Simulink

Jérôme Bouquet, Stéphane Faure, Florent Fève, Matthieu Foucault, Ursula
Garcia, François Guérin, Thierry Hubert, Florian Levy, Stéphane Louvet,

Patrick Munier, et al.

To cite this version:
Jérôme Bouquet, Stéphane Faure, Florent Fève, Matthieu Foucault, Ursula Garcia, et al.. Model
Quality Objectives for embedded software development with MATLAB and Simulink. 9th European
Congress on Embedded Real Time Software and Systems (ERTS 2018), Jan 2018, Toulouse, France.
�hal-02156122�

https://hal.science/hal-02156122
https://hal.archives-ouvertes.fr

1

Model Quality Objectives for Embedded Software Development with MATLAB

and Simulink

Jérôme Bouquet (Renault), Stéphane Faure (Valeo), Florent Fève (Valeo), Matthieu Foucault (PSA Peugeot Citroën), Ursula Garcia

(Robert Bosch), François Guérin (MathWorks), Thierry Hubert (PSA Peugeot Citroën), Florian Levy (Renault), Stéphane Louvet

(Robert Bosch), Patrick Munier (MathWorks), Pierre-Nicolas Paton (Delphi Technologies), Alain Spiewek (Delphi Technologies)

Abstract: This paper presents standard quality objectives for

models developed with Simulink® at different phases of the

software development lifecycle. This standard, named Model

Quality Objectives (MQO), has been defined by a group of leading

actors from the automotive industry and MathWorks, the company

that develops the MATLAB®, Simulink, and Polyspace® products.

The purpose of this standard is to clarify and ease the collaboration

between OEM and suppliers when sharing Simulink models in the

context of embedded software development to drive the production

of higher quality and integrity software.

This paper first defines a software development approach based on

four types of design models used at four different phases of the

software development lifecycle. Then, a specific quality objective,

named MQO, is proposed for each type of model. Each objective

is defined as a set of quality characteristics with some measurable

criteria named Model Quality Requirement (MQR). Some

additional guidelines are provided to manage the planning and

quality assessment activities related to MQO and MQR. This paper

concludes with some expected impact on the adoption of MQO by

the automotive industry.

1 Background and Motivation

Design models developed with the Simulink software are widely

used in the industry to accelerate the development of embedded

software. Those models enable engineers to accomplish various

engineering tasks such as frequency-domain analysis, desktop

simulation, formally-based verification, and automatic code

generation. This development process is known as Model-Based

Design.

Design models can be developed at a very early stage to validate

requirements and quickly explore design solutions. Such models

can also be incrementally refined until they reach a level of

maturity that is sufficient to generate code that complies with

international software safety standards. To incrementally increase

the maturity of the design models, different engineering disciplines

need to be involved such as system engineering, control

engineering and software engineering. Collaborating with the

same language, tools, and models is a great way to improve

communication between engineers and reduce the project cost and

development time. However, with different disciplines using

design models at different project phases, confusion may arise

about the contribution of models and what they represent.

An incorrect interpretation of what the models represent can lead

to an incorrect use of those models and ultimately impact the

quality of the software produced.

OEM and tier-one suppliers that participate in the definition of

MQO have shared many concrete use cases when underspecified

models or models with insufficient maturity have been

prematurely promoted as “ready for coding”.

Consequently, higher development effort than planned, bugs, and

difficult conversations related to responsibilities would then take

place. In order to avoid this situation, this document proposes to

clarify the role of design models for the development of embedded

software and standardize measurable criteria to verify their quality.

This approach has been inspired by the Software Quality

Objectives (SQO) [1] defined by a group of automotive actors and

MathWorks in 2010, at a time when most exchanges between car

manufacturers and suppliers were based on textual specification

and manual code. This approach also aims to go one step further

in the formalization of model sharing, as defined by Bosch [2] in

2014, and in the implementation of techniques and measures

proposed by software safety standards such as ISO26262-6. [3]

2 Purpose and Scope

The purpose of this paper is a) to define the main use cases of

design models for software development and b) to define a

standard and generic approach to assess the quality of models

depending on their use cases.

3 Software Development with Design Models

This document defines a development approach based on four

types of design models supporting the left-hand side of the V-

cycle.

Figure 1. Model-Based Design/MQO software lifecycle.

2

The Model-Based Design/MQO software development lifecycle

involves five specific phases marked as 1 to 5 in Figure 1. Sections

3.1 to 3.5 will provide greater details on the phases.

Figure 2 shows how the Model-Based Design/MQO software

development lifecycle maps to other software development

lifecycles from the industry. The phases supported by design

models are highlighted with a dark background, and Model-Based

Design is referred to as MBD.

Figure 2. Model-Based Design / MQO software phases versus

other industry standards [3], [4], [5], [6].

3.1 Software Planning Phase

This section defines the planning activities that must be carried out

to prepare the use of design models. This is recommended for the

use of functional models and mandatory for the use of architecture,

component design, and component implementation models. Most

of these concepts are already imposed by safety standards such as

DO-331 [5].

Scope definition: All design models may not be applicable to all

projects. For instance, the scope of Model-Based Design can be

reduced to the development of a single software component or only

used to support the software architectural design specification. The

project shall define the software development phases that will be

supported by design models. Each design model shall be managed

independently as a work product of the software development

phase it belongs to.

Tools definition: The tools that support the development and

verification of design models shall be identified and classified at

the beginning of the project. Those tools shall be qualified, if

required by the project.

Standards definition: The modeling standard used to support the

development of design models shall be defined prior to entering

the software architecture phase. The coding standard used to

support the development of design models shall be defined prior

to entering the software component implementation phase, or

ideally, prior to entering the software component design phase.

MQR identification and allocation: The MQR shall be identified

and agreed to by the project stakeholders at the beginning of the

project. Some MQR shall be adapted to the project requirements

(e.g. model and code coverage criteria). Each MQR shall be

allocated to a project stakeholder.

Strategy to achieve MQR: Once the MQR has been defined for the

project, a strategy shall be defined to achieve the objective. Such a

strategy can include intermediate steps corresponding to project

milestones, specific training, or a tools migration process. For

instance, it is recommended to gradually increase the coverage

criteria and not wait for the final version of the software to perform

most of the test development effort.

MQR conformance demonstration: The conformance with the

project MQR shall be planned and demonstrated at the end of the

project. The verification of each MQR shall lead to the production

of a report produced by the project stakeholder responsible of the

MQR. Sufficient justifications must be provided when MQR are

not met (e.g. missing coverage should be justified). The person in

charge of assessing the compliance shall have the necessary skills

to understand the justifications.

3.2 Software Requirements Phase

This section focuses on the functional model developed during the

software requirement phase. The role of the functional model is to

clarify and refine complex dynamic behaviors that need to be

translated into software requirements.

In most cases, the functional model and the software requirements

are concurrently developed by the person in charge of the software

requirements. This functional model engineer supports the

stabilization of the software requirements (the “what”) while

identifying good design solutions (the “how”) that could be further

elaborated during the design and implementation phases. The

functional model is often referred to as an executable specification

because it provides a functional behavior that satisfies the

functional requirements. However, the functional model does not

replace the software functional requirements. The functional

model contributes to the validation activities of the software

requirements.

The functional model focuses on the correctness of algorithms and

equations. It does not have to consider design constraints related

to embedded software development. However, when developing

the functional model, it should anticipate the main characteristics

of the hardware platform and their impact on the software

requirements.

The functional model may not be needed if the software functional

requirements are simple to implement, nor does it have to be

representative of all the software functional requirements. Figure

3 shows an example of a functional model using continuous time

and is limited to a small function of a larger software.

Figure 3. Example of a functional model (anti-lock braking

system).

3

3.3 Software Architectural Design Phase

This section focuses on the architecture model developed during

the software architectural design phase. The role of the architecture

model is to contribute to the specification of the software

architectural design.

Graphical notation is naturally well-suited to defining an

organization of components, representing interfaces and

connections, and specifying component scheduling. For a complex

architecture, it is not conceivable to develop such a diagram

without a proper modeling language and a computer-aided design

tool such as Simulink.

The architecture model fully specifies the static software

architectural design (e.g. component models, interfaces) and

provides links/references to the component design models that will

be built or are already built. The architecture design model is

associated with a data dictionary that defines the data and

interfaces of the software and its components.

The architecture model directly contributes to the design activities

and is therefore subject to conformance with industry quality

standards, safety standards, and/or architecture standards (e.g.

traceability to requirements, compatibility with architecture

standard).
Figure 4. Example of architecture model.

3.4 Software Component Design and Testing Phase

This section focuses on the component design model developed

during the software component design and testing phase. The role

of the component design model is to provide a complete

specification of the software component design and support its

verification with dynamic and static analysis.

The use of a high-level modeling and programming language

enables better management of the complexity of algorithms and

reduces the probability of design errors. The support of simulation

and static analysis contributes to elimination of design errors.

The component design model fully specifies the algorithms and

equations that will be part of the embedded software and excludes

any elements used for debugging or prototyping such as

measurement points or override mechanisms. Each component

design model is associated with a data dictionary that defines its

interface, parameters, and monitored signals.

The component model directly contributes to the development

activities and is therefore subject to conformance with industry

quality standards, safety standards, and/or design standards (e.g.

conformance to modeling standard, traceability to requirements).

Figure 5 shows an example of a component design model with

fully defined interfaces and sub-functions implemented with state

machines.

Figure 5. Example of component design model.

3.5 Software Component Implementation and Testing Phase

This section focuses on the component implementation model

developed during the software component design and testing

phase. The role of the component implementation model is to

enable the generation of production code for a specific embedded

target and basic software.

The component implementation model fully specifies the software

component implementation. Implementation details are added to

the data dictionary to refine how to represent parameters and

signals in the target memory. Code configuration options and

customization are defined to integrate the generated code with

specific basic software functions, so they match the target

characteristics (e.g. byte ordering) and satisfy the component code

memory footprint and execution performance requirements

allocated to the software component.

The generated code of the component implementation model

directly contributes to the development activities and is therefore

subject to conformance with the industry quality standard, safety

standard, and/or coding standard (e.g. MISRA C®). Each

component implementation model is associated with a data

dictionary that defines its interface parameters and monitored

signals.

Figure 6. Example of code generation configuration for the

component implementation model.

4

3.6 Relationship Between Design Models

Each design model shall be independently managed as a work

product of the software development phase in which it belongs. At

the same time, design models can share design information and

shall be consistent. For instance, the component design model in

Figure 5 shares its interface definition with the architecture model

of Figure 4. Whenever consistency is required, reuse is

encouraged.

Figure 7 indicates which aspects can be reused between design

models (“reuse” arrow). It also provides guidance on which

aspects of design models can be partially reused to accelerate

development (“refine” arrow). The arrows on Figure 7 can apply

to the following modeling aspects of design models:

• Architectural aspect: interface, scheduling, partitioning,

intercomponent control and data flow, etc.

• Algorithmic aspect: mathematical calculation,

component control and data flow, state machine, truth

table, etc.

• Code generation aspect: memory management, data

access, function prototype, code optimization, etc.

The design models differ from each other by the level of maturity

and importance of the different modeling aspects described above.

Figure 7 indicates the levels of maturity and importance based on

the following definitions and representations:

• Maturity level: high (Production) / low (Prototyping)

• Importance level: mandatory (solid line) / recommended

(dotted line)

Figure 7. Design model relationships and contribution to

prototyping and production development.

The functional model shall have structured algorithms that can

contribute to the validation of the software requirements with

modeling and simulation. A model’s code generation

configuration for rapid-prototyping can be useful to validate the

software requirements with a real-time environment. The

development focus shall be on the software requirement (not

represented on the figure). The entire model shall be considered a

prototype.

The architecture model shall define the component interface and

scheduling of the software architectural design. The architectural

design aspect of the functional model can serve as a baseline to

initiate the development of the software architecture for production

(1a). The prototype algorithms of the functional model can

populate the architecture model to enable early dynamic

verification of the model in simulation to evaluate the impact of

the architecture on the functional behavior (2a).

A prototype code generation configuration representative of the

software architecture standard (e.g. AUTOSAR) can be created to

achieve early verification of the impact of the functional behavior

in real time and its integration with software and hardware (e.g.

AUTOSAR RTE).

The component design model shall fully define the software

component design with its structure, scheduling, and algorithms.

The interface of the model shall be consistent with, and can be

reused from, the architecture model (1b). The prototype algorithms

developed for the functional model can serve as a baseline to

define the production algorithms (2b). A prototype code

generation configuration can be used for early verification of the

non-trivial impacts of the design model on the generated code (e.g.

compliance with the coding standard, level of code coverage

versus model coverage, code expansion).

The component implementation model shall define both the

software component design and implementation. The structure,

scheduling, and algorithms shall be reused from the software

component design model (1c, 2c). The way algorithms are

implemented can be adapted to address non-functional

requirements (e.g. optimization, safety). The code generation

configuration shall be used for production code generation and

shall then be compatible with the software coding standard and the

target hardware.

4 Design Model Quality

4.1 Overview

As design models are critical for software development using

Model-Based Design, their quality must be carefully assessed.

Design models can automatically transform into other design

artifacts such as documentation, source code, or executables.

Therefore, the quality objectives defined on the design models

shall impact the models themselves as well as their derived

products. A specific quality objective is defined for each type of

design model to account for their specific role.

Table 1. Model Quality Objectives of design models.

Software development

phase

Type of design

model

Model

Quality

Objective

Software requirements

phase
Functional model MQO-1

Software architectural

design phase
Architecture model MQO-2

Software component

design and testing phase

Component design

model
MQO-3

Software component

implementation and testing

phase

Component

implementation

model

MQO-4

Table 2 provides the list of Model Quality Requirements

applicable to achieve the quality objective of each type of design

model.

5

Table 2. Overview of Model Quality Requirements of MQOs.

MQR ID MQR Title MQO-1 MQO-2 MQO-3 MQO-4

MQR-01 Model layout M M M M

MQR-02 Model comments M M M M

MQR-03 Model links to requirements M M M M

MQR-04 Model testing against requirements M R M M

MQR-05 Model compliance with modeling standard M M M

MQR-06 Model data M M M

MQR-07 Model size M M

MQR-08 Model complexity M M

MQR-09 Model coverage M M

MQR-10 Model robustness M M

MQR-11 Generated code testing against requirements R M

MQR-12 Generated code compliance with coding standard R M

MQR-13 Generated code coverage R M

MQR-14 Generated code robustness R M

MQR-15 Generated code execution time M

MQR-16 Generated code memory footprint M
M: Mandatory

R: Recommended for early verification

Note: An additional MQR to verify the generated source code against the model can be required in the context of DO-331.

4.2 Model Quality Requirements

This section provides further details on the MQR introduced in Table 2.

MQR-01 Model layout

Description The model shall define Simulink and Stateflow® diagrams that are completely visible on A4 paper size.

Recommendation

level
MQO-1 MQO-2 MQO-3 MQO-4

Mandatory Mandatory Mandatory Mandatory

Notes Fit to view with a zoom ratio smaller than 80% is harder to read on screen and likely not to be readable on

A4 paper size.

The model zoom ratio is visible at the center of the model status bar below the diagram.

References /

Examples of

techniques

- Simulink subsystems

- Stateflow sub-charts

- Simulink bus

Rationale Printing a Simulink model can be necessary to archive or share models as documents.

A model diagram that can be completely displayed on screen improves readability and eases model

review.

Reducing the size of the diagrams forces the model developer to better organize large model and data into

hierarchical structures of buses and model references or subsystems.

MQR-02 Model comments

Description The model comments shall provide a description of the model itself and the following types of elements:

- Simulink subsystem

- Simulink function and S-function mask

- Stateflow chart, sub-chart, truth table, state transition table, and flowchart

- Simulink and MATLAB function blocks and sub-functions

Recommendation

level
MQO-1 MQO-2 MQO-3 MQO-4

Mandatory Mandatory Mandatory Mandatory

Notes A comment can include a mix of text, equations, diagrams, and pictures.

A comment can be embedded in the model or a link can be established from the model to a separate and

accessible document.

The quality of the comments is not in the scope of this requirement and shall be assessed by peers during

the model review.

References /

Examples of

techniques

- Insertion of blocks for documentation

- Description in Simulink subsystems masks

- Stateflow diagrams annotations

- Comments in Simulink and MATLAB function codes

6

Rationale Like code, a model without comments is harder to understand by peers. Lack of description can negatively

impact the efficiency of the peer review activity and maintenance activities.

MQR-03 Model links to requirements

Description The model elements that specify algorithms and calculations shall trace to the model higher level

requirements.

The design model elements that specify interface shall trace to the software interface requirements or

software component interface requirements.

Recommendation

level
MQO-1 MQO-2 MQO-3 MQO-4

Mandatory Mandatory Mandatory Mandatory

Notes A model element is implicitly traced to a model higher level requirements if one of its parents is traced

(e.g. its parent subsystem).

The model shall trace to the right level of requirements:

- Functional model and architecture model shall trace to software requirements

- Component design model and component implementation model shall trace to software

component requirements

The correctness of the links to model higher level requirements is not in the scope of this requirement and

shall be assessed by peers during the model review.

When model references are used inside component design and implementation models, each referenced

model shall trace to its own model higher level requirements.

References /

Examples of

techniques

- Bidirectional links between model and requirement tool

Rationale Traceability to requirements eases static model verification against requirements. It facilitates:

- Requirement coverage analysis

- Impact analysis on design following changes on requirements

- Identification of unintended or useless design to be present in the model

MQR-04 Model testing against requirements

Description The model shall produce the expected outputs when exercised by tests derived from and traced to the

model higher level requirements.

Recommendation

level
MQO-1 MQO-2 MQO-3 MQO-4

Mandatory Recommended Mandatory Mandatory

Notes The model tests shall be derived from and traced to all model higher level requirements which verification

strategy is testing.

Each test shall have a defined procedure, stimuli, and expected outputs.

The model test environment shall not impact the behavior of the model under test.

The correctness of the tests and links to model higher level requirements are not in the scope of this

requirement and shall be assessed by peers during the tests review.

References /

Examples of

techniques

- Stimuli and expected outputs time series

- Test sequences and test oracles

- Automation of test procedure, execution, and reporting

Rationale The simulation of the design model enables the discovery of design errors at design time.It can also

contribute to refining model higher level requirements or correcting and validating requirement-based

tests.

MQR-05 Model compliance with modeling standard

Description The model shall be compliant with the modeling standard.

Recommendation

level
MQO-1 MQO-2 MQO-3 MQO-4

 Mandatory Mandatory Mandatory

Notes The modeling standard shall be defined during the project software planning phase and shall be

compatible with the software safety standard, software design standard, coding standard, and targeted

hardware (e.g. floating-point support).

Model compilation warnings and errors reported by Simulink diagnostics are considered modeling

standard violations.

The modeling standard could be adapted to software architectural design modeling and software

component design modeling.

References /

Examples of
- MathWorks modeling guidelines for high-integrity systems

(Include compatibility with MISRA C® compliance)

7

techniques - MathWorks Automotive Advisory Board Control Algorithm Modeling Guidelines Using

MATLAB, Simulink, and Stateflow

Rationale The model standard can enforce best practices and define a subset of the modeling language that limits the

possibility of incorrect use of the language.

MQR-06 Model data

Description The model I/O signals, calibrations, and observable signals shall be fully defined with the following

properties:

• Name

• Description

• Design min/max

• Initial value (output only)

• Data type (e.g. base type, fixed-point type, enumerated type, structured type)

• Size

• Physical unit

• Safety integrity level

• Memory storage

Recommendation

level
MQO-1 MQO-2 MQO-3 MQO-4

 Mandatory Mandatory Mandatory

Notes The compute method is necessary for data coming from external software, driver, or communication

network.

An initial value or safe value can be added for output and safety critical data.

Memory storage only needs to be defined in the component implementation model.

Display format for measured signal and calibration for floating point is recommended.

Examples of

techniques
- Simulink data objects

- Simulink data dictionary

Rationale Model data are part of the design and need to be fully defined. For instance, incorrect or unknown data

integrity level or data design min/max can impact the model and software reliability and robustness.

MQR-07 Model size

Description The model shall have less than 500 elements including:

- The number of Simulink blocks

- The number of MATLAB executable lines of codes

- The number of Stateflow transition, states, and connections

- The number of truth tables decision

Recommendation

level
MQO-1 MQO-2 MQO-3 MQO-4

 Mandatory Mandatory

Notes The model reference block only counts as one element.

The company standard utility function (e.g. Simulink library block, MATLAB function file) only counts

as one element.

Please refer to MathWorks guidance on large-scale modeling in Simulink documentation.

References /

Examples of

techniques

Rationale Very large models are more difficult to merge and are more likely to be modified by several users at the

same time.

Smaller models are more likely to be reusable and easily configurable.

Generated code of very large models cannot be incrementally tested.

MQR-08 Model complexity

Description The model and its subsystems, Stateflow charts, and MATLAB functions shall have a local cyclomatic

complexity lower or equal to "30".

Recommendation

level
MQO-1 MQO-2 MQO-3 MQO-4

 Mandatory Mandatory

Notes Local complexity is the cyclomatic complexity for objects at their hierarchical level.

Aggregated cyclomatic complexity is the cyclomatic complexity of an object and its descendants.

8

The threshold of 30 for local cyclomatic complexity is a recommendation and can be adapted on a project

basis. The number 30 for cyclomatic complexity has been derived from the HIS (Hersteller Initiative

Software) code metric and adapted to Model-Based Design.

References /

Examples of

techniques

Cyclomatic complexity is a measure of the structural complexity of a model. It approximates the McCabe

complexity measure for code generated from the model. The McCabe complexity measure is slightly

higher on the generated code due to error checks that the model coverage analysis does not consider.

To compute the cyclomatic complexity of an object, such as a block, chart, or state, model coverage uses

the following formula:

N is the number of decision points that the object represents and on is the number of outcomes for the nth

decision point. The tool adds one to the complexity number for atomic subsystems and Stateflow charts.

Rationale Cyclomatic complexity is a leading testability metric. Test harness can be created for simulation at model,

subsystem, chart, and MATLAB function level.

MQR-09 Model coverage

Description The model structure shall be fully covered by the test suite that is derived from and traced to the model

higher level requirements.

Recommendation

level

MQO-1 MQO-2 MQO-3 MQO-4

 Mandatory Mandatory

Notes The structural coverage criteria chosen shall be at least conformant to the structural coverage criteria

imposed by the software safety integrity level.

References /

Examples of

techniques

Types of coverage analysis available on Simulink model:

- Execution Coverage (EC)

- Decision Coverage (DC)

- Condition Coverage (CC)

- Modified Condition/Decision Coverage (MCDC)

EC, DC, CC, MCDC, saturation on integer overflow coverage, and relational boundary coverage can be

used to measure the model structural coverage.

Rationale Model coverage enables to identify untested design, untestable design, or unintended design.

MQR-10 Model robustness

Description The model shall be robust in normal and abnormal operating conditions.

Recommendation

level
MQO-1 MQO-2 MQO-3 MQO-4

 Mandatory Mandatory

Notes In normal operating condition, inputs and tunable parameters values are within their design ranges.

In abnormal operating condition, inputs, and tunable parameters values are outside their design ranges.

Robustness shall prevent errors such as:

- Divisions by zero

- Integer overflows

- Out of design range

- Out of bound array

The level of robustness shall be compliant with the software safety integrity level.

References /

Examples of

techniques

- Test generation based on relational boundary coverage

- Formally-based verification technique with abstract interpretation

- Defensive programming

Rationale Model robustness verification prevents edge case or incorrect use of model, which can cause unexpected

results or simulation errors.

MQR-11 Generated code testing against requirements

Description The model generated code shall produce the expected outputs when exercised by tests derived from and

traced to the model higher level requirements

Recommendation

level
MQO-1 MQO-2 MQO-3 MQO-4

 Recommended Mandatory

9

Notes For MQO-03, tests can be run in software-in-the-loop.

For MQO-04, tests shall be run in processor-in-the-loop. A representative hardware or an emulator can be

used in place of the actual processor.

References /

Examples of

Techniques

- Test reuse from component design model testing

- Test generation for back-to-back testing

Rationale Code testing is required to verify the output of the code generator and compiler or cross-compiler, linker,

load, and flash utilities.

For MQO-3, code testing in software-in-the-loop increases confidence in the code generator.

MQR-12 Generated code standard compliance

Description The generated code shall be compliant with the coding standard.

Recommendation

level
MQO-1 MQO-2 MQO-3 MQO-4

 Recommended Mandatory

Notes The coding standard shall be defined during the project software planning phase and shall be compatible

with the software safety standard, software architecture standard, and targeted hardware (e.g. floating-

point support).

The modeling standard shall anticipate the compliance with the coding standard.

The project coding standard can be tailored for generated code.

References /

Examples of

techniques

- MISRA C 2012 for safety

- CERT C for cyber security

Rationale Coding standard verification is required to verify the output of the code generator.

MQR-13 Generated code coverage

Description The model generated code structure shall be fully covered by all the tests that are derived from and traced

to the model higher level requirements.

Recommendation

level
MQO-1 MQO-2 MQO-3 MQO-4

 Recommended Mandatory

Notes The structural coverage criteria shall be at least conformant to the structure coverage criteria imposed by

the software safety integrity level.

The model tests shall be reused to cover the structure of the generated code.

The code coverage can be different than the model coverage depending on the blocks used (e.g. look-up

table interpolation algorithm) or code generation optimization options (e.g. for loop unrolling).

References /

Examples of

techniques

Types of coverage analysis available on the generated code:

- Statement Coverage for Code Coverage

- Condition Coverage for Code Coverage

- Decision Coverage for Code Coverage

- Modified Condition/Decision Coverage (MCDC) for Code Coverage

Rationale Code coverage is required in addition to model coverage to verify that the code generator do not add

unintended functionalities.

MQR-14 Generated code robustness

Description The model generated code shall be robust in normal and abnormal operating conditions.

Recommendation

level
MQO-1 MQO-2 MQO-3 MQO-4

 Recommended Mandatory

Notes In normal operating condition, inputs and tunable parameter values are within their design ranges.

In abnormal operating condition, inputs and tunable parameter values are outside their design ranges.

Robustness shall prevent errors such as:

- Divisions by zero

- Integer overflows

- Out of design range

- Out of bound array

The level of robustness shall be compliant with the software safety integrity level.

References /

Examples of

techniques

- Test generation based on relational boundary coverage

- Formally-based verification technique with abstract interpretation

- Defensive programming

Rationale Code robustness verification is required to verify the output of the code generator

10

MQR-15 Generated code execution time

Description The model generated code running on the production target shall be instrumented to measure and verify

the execution time.

Recommendation

level
MQO-1 MQO-2 MQO-3 MQO-4

 Mandatory

Notes Worst case execution time shall be specified during software architectural design phase.

The execution time shall include the generated code and its calling functions (e.g. basic software services).

The production target can be an emulator or a representative hardware.

The model tests can be reused on the generated code running on the production target (aka processor-in-

the-loop) and the expected outputs shall still be obtained.

References /

Examples of

techniques

- Profiling in processor-in-the-loop from Simulink

Rationale The component software execution time shall be measured prior the component integration to verify

compatibility with architecture requirements, avoid shortage of hardware resource, and enable reuse of

component on different architecture.

MQR-16 Generated code memory footprint

Description The model generated code memory footprint shall be measured and verified.

Recommendation

level
MQO-1 MQO-2 MQO-3 MQO-4

 Mandatory

Notes Memory footprint, such as RAM, ROM, and stack, shall be specified during software architectural design

phase. The memory footprint shall include the generated code and its calling functions.

References /

Examples of

techniques

- Stack estimation tool

Rationale The component software memory footprint shall be measured prior the component integration to verify

compatibility with architecture requirements, avoid shortage of hardware resource, and enable reuse of

component on different architecture.

5 Conclusion

This paper clarifies how Simulink design models contribute to

accelerate development and verification activities from software

requirements specification to software implementation. Four types

of design models with specific purposes have been introduced,

each with a specific quality objective to control their proper usage.

Each quality objective is a set of measurable metrics with

quantified satisfaction criteria in order to facilitate and standardize

model quality assessment.

The organizations that apply the concepts presented in this paper

should experience the following benefits:

a) Shared understanding of Model-Based Design within the

organization

b) Application of a quality model adapted to Model-Based

Design projects and compatible with industry software

quality and safety standards

c) Assessment of model quality at different phases of

projects

The organizations that also collaborate with partners to execute

Model-Based Design projects should experience the following

benefits when applying the concepts presented in this paper:

a) Clear split of responsibility between parties at the

beginning of projects

b) Common understanding of model quality

c) Common expectation on model quality when sharing

models

6 References

[1] Patrick Briand (Valeo), Martin Brochet (MathWorks), Thierry

Cambois (PSA Peugeot Citroën), Emmanuel Coutenceau (Valeo),

Olivier Guetta (Renault SAS), Daniel Mainberte (PSA Peugeot

Citroën), Frederic Mondot (Renault SAS), Patrick Munier

(MathWorks), Loic Noury (MathWorks), Philippe Spozio

(Renault SAS), Frederic Retailleau (Delphi Diesel System),

Software Quality Objectives for Source Code, ERTS 2010-

Conference, 2010.

[2] S. Louvet, Robert Bosch (France) SAS, Dr. U. Niebling, Dr.

M. Tanimou, Robert Bosch GmbH Model Sharing to leverage

customer cooperation in the ECU software development;

Toulouse, ERTS 2014-Conference, 2014.

[3] ISO - International Organization for Standardization. ISO

26262 Road vehicles Functional Safety Part 1-10, 2011.

[4] RTCA/Eurocae, Software Considerations in Airborne Systems

and Equipment Certification, RTCA DO-331 / Eurocae ED-218,

December 13, 2011.

[5] Automotive SPICE Process Assessment 3.0 / Reference Model

from VDA QMC Working Group 13 / Automotive SIG

[6] Railway applications - Communication, signalling and

processing systems - Software for railway control and protection

systems, EN 50128:2011

