Jérôme Bouquet

Stéphane Faure

Florent Fève

PSA Matthieu Foucault

Peugeot Citroën

Robert Bosch

MathWorks François Guérin

PSA Thierry Hubert

Florian Levy

Stéphane Louvet

MathWorks Patrick Munier

Pierre-Nicolas Paton

Model Quality Objectives for Embedded Software Development with MATLAB and Simulink

This paper presents standard quality objectives for models developed with Simulink ® at different phases of the software development lifecycle. This standard, named Model Quality Objectives (MQO), has been defined by a group of leading actors from the automotive industry and MathWorks, the company that develops the MATLAB ® , Simulink, and Polyspace ® products. The purpose of this standard is to clarify and ease the collaboration between OEM and suppliers when sharing Simulink models in the context of embedded software development to drive the production of higher quality and integrity software.

This paper first defines a software development approach based on four types of design models used at four different phases of the software development lifecycle. Then, a specific quality objective, named MQO, is proposed for each type of model. Each objective is defined as a set of quality characteristics with some measurable criteria named Model Quality Requirement (MQR). Some additional guidelines are provided to manage the planning and quality assessment activities related to MQO and MQR. This paper concludes with some expected impact on the adoption of MQO by the automotive industry.

Background and Motivation

Design models developed with the Simulink software are widely used in the industry to accelerate the development of embedded software. Those models enable engineers to accomplish various engineering tasks such as frequency-domain analysis, desktop simulation, formally-based verification, and automatic code generation. This development process is known as Model-Based Design.

Design models can be developed at a very early stage to validate requirements and quickly explore design solutions. Such models can also be incrementally refined until they reach a level of maturity that is sufficient to generate code that complies with international software safety standards. To incrementally increase the maturity of the design models, different engineering disciplines need to be involved such as system engineering, control engineering and software engineering. Collaborating with the same language, tools, and models is a great way to improve communication between engineers and reduce the project cost and development time. However, with different disciplines using design models at different project phases, confusion may arise about the contribution of models and what they represent.

An incorrect interpretation of what the models represent can lead to an incorrect use of those models and ultimately impact the quality of the software produced.

OEM and tier-one suppliers that participate in the definition of MQO have shared many concrete use cases when underspecified models or models with insufficient maturity have been prematurely promoted as "ready for coding". Consequently, higher development effort than planned, bugs, and difficult conversations related to responsibilities would then take place. In order to avoid this situation, this document proposes to clarify the role of design models for the development of embedded software and standardize measurable criteria to verify their quality. This approach has been inspired by the Software Quality Objectives (SQO) [START_REF] Briand | Philippe Spozio (Renault SAS), Frederic Retailleau (Delphi Diesel System), Software Quality Objectives for Source Code, ERTS 2010-Conference[END_REF] defined by a group of automotive actors and MathWorks in 2010, at a time when most exchanges between car manufacturers and suppliers were based on textual specification and manual code. This approach also aims to go one step further in the formalization of model sharing, as defined by Bosch [START_REF] Louvet | Robert Bosch GmbH Model Sharing to leverage customer cooperation in the ECU software development[END_REF] in 2014, and in the implementation of techniques and measures proposed by software safety standards such as ISO26262-6. [START_REF]ISO 26262 Road vehicles Functional Safety Part 1-10[END_REF] 2 Purpose and Scope The purpose of this paper is a) to define the main use cases of design models for software development and b) to define a standard and generic approach to assess the quality of models depending on their use cases.

Software Development with Design Models

This document defines a development approach based on four types of design models supporting the left-hand side of the Vcycle.

Figure 1. Model-Based Design/MQO software lifecycle.

The Model-Based Design/MQO software development lifecycle involves five specific phases marked as 1 to 5 in Figure 1. Sections 3.1 to 3.5 will provide greater details on the phases. Figure 2. Model-Based Design / MQO software phases versus other industry standards [START_REF]ISO 26262 Road vehicles Functional Safety Part 1-10[END_REF], [START_REF] Rtca/Eurocae | Software Considerations in Airborne Systems and Equipment Certification[END_REF], [START_REF]Automotive SPICE Process Assessment 3.0 / Reference Model from VDA QMC Working Group 13 / Automotive SIG[END_REF], [START_REF]Railway applications -Communication, signalling and processing systems -Software for railway control and protection systems[END_REF].

Software Planning Phase

This section defines the planning activities that must be carried out to prepare the use of design models. This is recommended for the use of functional models and mandatory for the use of architecture, component design, and component implementation models. Most of these concepts are already imposed by safety standards such as DO-331 [START_REF]Automotive SPICE Process Assessment 3.0 / Reference Model from VDA QMC Working Group 13 / Automotive SIG[END_REF].

Scope definition: All design models may not be applicable to all projects. For instance, the scope of Model-Based Design can be reduced to the development of a single software component or only used to support the software architectural design specification. The project shall define the software development phases that will be supported by design models. Each design model shall be managed independently as a work product of the software development phase it belongs to.

Tools definition: The tools that support the development and verification of design models shall be identified and classified at the beginning of the project. Those tools shall be qualified, if required by the project.

Standards definition: The modeling standard used to support the development of design models shall be defined prior to entering the software architecture phase. The coding standard used to support the development of design models shall be defined prior to entering the software component implementation phase, or ideally, prior to entering the software component design phase.

MQR identification and allocation: The MQR shall be identified and agreed to by the project stakeholders at the beginning of the project. Some MQR shall be adapted to the project requirements (e.g. model and code coverage criteria). Each MQR shall be allocated to a project stakeholder.

Strategy to achieve MQR: Once the MQR has been defined for the project, a strategy shall be defined to achieve the objective. Such a strategy can include intermediate steps corresponding to project milestones, specific training, or a tools migration process. For instance, it is recommended to gradually increase the coverage criteria and not wait for the final version of the software to perform most of the test development effort.

MQR conformance demonstration: The conformance with the project MQR shall be planned and demonstrated at the end of the project. The verification of each MQR shall lead to the production of a report produced by the project stakeholder responsible of the MQR. Sufficient justifications must be provided when MQR are not met (e.g. missing coverage should be justified). The person in charge of assessing the compliance shall have the necessary skills to understand the justifications.

Software Requirements Phase

This section focuses on the functional model developed during the software requirement phase. The role of the functional model is to clarify and refine complex dynamic behaviors that need to be translated into software requirements.

In most cases, the functional model and the software requirements are concurrently developed by the person in charge of the software requirements. This functional model engineer supports the stabilization of the software requirements (the "what") while identifying good design solutions (the "how") that could be further elaborated during the design and implementation phases. The functional model is often referred to as an executable specification because it provides a functional behavior that satisfies the functional requirements. However, the functional model does not replace the software functional requirements. The functional model contributes to the validation activities of the software requirements.

The functional model focuses on the correctness of algorithms and equations. It does not have to consider design constraints related to embedded software development. However, when developing the functional model, it should anticipate the main characteristics of the hardware platform and their impact on the software requirements.

The functional model may not be needed if the software functional requirements are simple to implement, nor does it have to be representative of all the software functional requirements. Figure 3 shows an example of a functional model using continuous time and is limited to a small function of a larger software.

Figure 3. Example of a functional model (anti-lock braking system).

Software Architectural Design Phase

This section focuses on the architecture model developed during the software architectural design phase. The role of the architecture model is to contribute to the specification of the software architectural design.

Graphical notation is naturally well-suited to defining an organization of components, representing interfaces and connections, and specifying component scheduling. For a complex architecture, it is not conceivable to develop such a diagram without a proper modeling language and a computer-aided design tool such as Simulink.

The architecture model fully specifies the static software architectural design (e.g. component models, interfaces) and provides links/references to the component design models that will be built or are already built. The architecture design model is associated with a data dictionary that defines the data and interfaces of the software and its components.

The architecture model directly contributes to the design activities and is therefore subject to conformance with industry quality standards, safety standards, and/or architecture standards (e.g. traceability to requirements, compatibility with architecture standard). The use of a high-level modeling and programming language enables better management of the complexity of algorithms and reduces the probability of design errors. The support of simulation and static analysis contributes to elimination of design errors.

The component design model fully specifies the algorithms and equations that will be part of the embedded software and excludes any elements used for debugging or prototyping such as measurement points or override mechanisms. Each component design model is associated with a data dictionary that defines its interface, parameters, and monitored signals.

The component model directly contributes to the development activities and is therefore subject to conformance with industry quality standards, safety standards, and/or design standards (e.g. conformance to modeling standard, traceability to requirements). Figure 5 shows an example of a component design model with fully defined interfaces and sub-functions implemented with state machines.

Relationship Between Design Models

Each design model shall be independently managed as a work product of the software development phase in which it belongs. At the same time, design models can share design information and shall be consistent. For instance, the component design model in Figure 5 shares its interface definition with the architecture model of Figure 4. Whenever consistency is required, reuse is encouraged.

Figure 7 indicates which aspects can be reused between design models ("reuse" arrow). It also provides guidance on which aspects of design models can be partially reused to accelerate development ("refine" arrow). The arrows on Figure 7 can apply to the following modeling aspects of design models:

• Architectural aspect: interface, scheduling, partitioning, intercomponent control and data flow, etc. The design models differ from each other by the level of maturity and importance of the different modeling aspects described above. The architecture model shall define the component interface and scheduling of the software architectural design. The architectural design aspect of the functional model can serve as a baseline to initiate the development of the software architecture for production (1a). The prototype algorithms of the functional model can populate the architecture model to enable early dynamic verification of the model in simulation to evaluate the impact of the architecture on the functional behavior (2a).

A prototype code generation configuration representative of the software architecture standard (e.g. AUTOSAR) can be created to achieve early verification of the impact of the functional behavior in real time and its integration with software and hardware (e.g.

AUTOSAR RTE).

The component design model shall fully define the software component design with its structure, scheduling, and algorithms.

The interface of the model shall be consistent with, and can be reused from, the architecture model (1b). The prototype algorithms developed for the functional model can serve as a baseline to define the production algorithms (2b). A prototype code generation configuration can be used for early verification of the non-trivial impacts of the design model on the generated code (e.g. compliance with the coding standard, level of code coverage versus model coverage, code expansion).

The component implementation model shall define both the software component design and implementation. The structure, scheduling, and algorithms shall be reused from the software component design model (1c, 2c). The way algorithms are implemented can be adapted to address non-functional requirements (e.g. optimization, safety). The code generation configuration shall be used for production code generation and shall then be compatible with the software coding standard and the target hardware.

4 Design Model Quality

Overview

As design models are critical for software development using Model-Based Design, their quality must be carefully assessed. Design models can automatically transform into other design artifacts such as documentation, source code, or executables. Therefore, the quality objectives defined on the design models shall impact the models themselves as well as their derived products. A specific quality objective is defined for each type of design model to account for their specific role.

Rationale

The component software memory footprint shall be measured prior the component integration to verify compatibility with architecture requirements, avoid shortage of hardware resource, and enable reuse of component on different architecture.

Conclusion

This paper clarifies how Simulink design models contribute to accelerate development and verification activities from software requirements specification to software implementation. Four types of design models with specific purposes have been introduced, each with a specific quality objective to control their proper usage. Each quality objective is a set of measurable metrics with quantified satisfaction criteria in order to facilitate and standardize model quality assessment.

The organizations that apply the concepts presented in this paper should experience the following benefits:

Figure 2

 2 Figure 2 shows how the Model-Based Design/MQO software development lifecycle maps to other software development lifecycles from the industry. The phases supported by design models are highlighted with a dark background, and Model-Based Design is referred to as MBD.

Figure 4 .

 4 Figure 4. Example of architecture model.

Figure 5 .

 5 Figure 5. Example of component design model.

Figure 6 .

 6 Figure 6. Example of code generation configuration for the component implementation model.

Figure 7 .

 7 Figure 7. Design model relationships and contribution to prototyping and production development.

 a) Shared understanding of Model-Based Design within the organization b) Application of a quality model adapted to Model-Based Design projects and compatible with industry software quality and safety standards c) Assessment of model quality at different phases of projects The organizations that also collaborate with partners to execute Model-Based Design projects should experience the following benefits when applying the concepts presented in this paper: a) Clear split of responsibility between parties at the beginning of projects b) Common understanding of model quality c) Common expectation on model quality when sharing models

Table 1 .

 1 Model Quality Objectives of design models. a model without comments is harder to understand by peers. Lack of description can negatively impact the efficiency of the peer review activity and maintenance activities. Component design model and component implementation model shall trace to software component requirements The correctness of the links to model higher level requirements is not in the scope of this requirement and shall be assessed by peers during the model review. When model references are used inside component design and implementation models, each referenced model shall trace to its own model higher level requirements. Each test shall have a defined procedure, stimuli, and expected outputs. The model test environment shall not impact the behavior of the model under test. The correctness of the tests and links to model higher level requirements are not in the scope of this requirement and shall be assessed by peers during the tests review. part of the design and need to be fully defined. For instance, incorrect or unknown data integrity level or data design min/max can impact the model and software reliability and robustness. time shall be specified during software architectural design phase. The execution time shall include the generated code and its calling functions (e.g. basic software services). The production target can be an emulator or a representative hardware. The model tests can be reused on the generated code running on the production target (aka processor-inthe-loop) and the expected outputs shall still be obtained. Profiling in processor-in-the-loop from SimulinkRationaleThe component software execution time shall be measured prior the component integration to verify compatibility with architecture requirements, avoid shortage of hardware resource, and enable reuse of component on different architecture. such as RAM, ROM, and stack, shall be specified during software architectural design phase. The memory footprint shall include the generated code and its calling functions.

	Software development phase	Type of design model	Model Quality Objective
	Software requirements phase	Functional model	MQO-1
	Software architectural design phase	Architecture model	MQO-2
	Software component design and testing phase	Component design model	MQO-3
	Software component	Component	
	implementation and testing	implementation	MQO-4
	phase	model	
	Table 2 provides the list of Model Quality Requirements
	applicable to achieve the quality objective of each type of design
	model.		

Note: An additional MQR to verify the generated source code against the model can be required in the context of DO-331.

Model Quality Requirements

This section provides further details on the MQR introduced in Table 2.

MQR-01 Model layout Description

The model shall define Simulink and Stateflow ® diagrams that are completely visible on A4 paper size. The threshold of 30 for local complexity is a recommendation and can be adapted on a project basis. The number 30 for cyclomatic complexity has been derived from the HIS (Hersteller Initiative Software) code metric and adapted to Model-Based Design.

References / Examples of techniques

Cyclomatic complexity is a measure of the structural complexity of a model. It approximates the McCabe complexity measure for code generated from the model. The McCabe complexity measure is slightly higher on the generated code due to error checks that the model coverage analysis does not consider. To compute the cyclomatic complexity of an object, such as a block, chart, or state, model coverage uses the following formula:

N is the number of decision points that the object represents and on is the number of outcomes for the nth decision point. The tool adds one to the complexity number for atomic subsystems and Stateflow charts.

Rationale

Cyclomatic complexity is a leading testability metric. Test harness can be created for simulation at model, subsystem, chart, and MATLAB function level.

MQR-09 Model coverage Description

The model structure shall be fully covered by the test suite that is derived from and traced to the model higher level requirements.