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ABSTRACT
In this article, the possible use of sets of basis functions alternative with respect
to the usual atom-centred orbitals sets is considered. The orbitals describing the
inner part of the wavefunction (i.e. the region close to each nucleus) are still atomic
Gaussian functions: tight Gaussian orbitals having different angular momenta and
large exponential coefficients, centred on each nucleus. On the other hand, the outer
part of the wavefunction is described through a set of s-type distributed Gaussian
orbitals: s-type Gaussians having a unique fixed exponent, and whose fixed centres
are placed on a uniform mesh of points evenly distributed in the region surrounding
all the atoms of the molecule. The resulting basis sets are applied to various one-
electron systems in order to assess the capability to describe different types of one-
electron wavefunctions. Moreover, the hydrogen atom and the dihydrogen cation,
for which accurate solutions exist, are also considered for comparison, to assess the
effectiveness of the proposed approach. Preliminary results concerning the treatment
of electron correlation, necessary for a quantitatively correct description of many-
electron atoms and molecules, are also presented.

KEYWORDS
Molecular Basis Sets, Linear Combination of Atomic Orbitals (LCAO),
Distributed Gaussian Orbitals, Electron Correlation.
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1. Introduction

A common practice in quantum chemistry is the expansion of the molecular orbitals
(MO) of the system on a set of fixed basis functions. These can be either orbitals
having an atomic character, such as Gaussian-type orbitals (GTOs) [1, 2] and Slater-
type orbitals (STOs), or functions distributed on the region surrounding the molecule,
such as plane waves, wavelets, etc. (see e.g. Ref. [3]). In particular, GTOs, introduced
first by Boys in quantum chemistry [4] are nowadays by far the most common type of
orbitals used to perform numerical calculations on atoms and molecules. In principle,
a single-centre (infinite) set of Gaussian orbitals is enough in order to have a complete
basis set, provided the exponents are chosen in a suitable way [5, 6]. From a practical
point of view, however, such a single-centre expansion has two major problems:

• The basis set becomes quickly quasi-linear dependent.

• The convergence of the expansion to describe the electrons of atoms whose nuclei
are not placed on the centre of the Gaussians is extremely slow.

In practice, therefore, a single-centre Gaussian expansion does not appear to be the
most suitable choice to perform actual calculations on multi-atomic systems. In par-
ticular, the nuclear cusp of an s-type orbital of a given atom can hardly be described
unless the expansion contains Gaussians with very large exponents that are centred on
the nucleus of the atom itself. For this reason, a very common computational strategy
is to expand the molecular orbitals (MOs) of the system on a set of multi-centred
atomic orbitals (AOs) of Gaussian type, centred on each one of the atoms that belong
to the molecule. This is the very well known Linear Combination of Atomic Orbitals
(LCAO) strategy, first used by Linus Pauling to describe the H+

2 system, and in a
more systematic way by Lennard-Jones, to describe the bonds of atoms belonging to
the first main row of the periodic table. The reason why this choice is so effective is
that the intra-molecular interactions are relatively weak, and therefore the different
atoms maintain their individuality in a molecular system.

In order to avoid extremely large expansions and to limit quasi-redundancy problems
connected to the use of very small exponents on neighbouring atoms, a very common
practice is to work with linear combinations of the GTOs having fixed expansion
coefficients. In this way, the contracted Gaussian-type orbitals (CGTOs) are obtained.
The set of fixed linear coefficients is usually optimized on atomic calculations involving
different states of the atom, and possibly some of its ions. A common practice is to use
the atomic natural orbitals (ANOs) of the system in order to define these contraction
coefficients [7, 8]. However, this well defined and elegant procedure is by no means the
only possibility to obtain a set of CGTOs suitable for molecular calculations.

The LCAO strategy can be generalized by the introduction of distributed basis
sets, i.e., basis sets composed of orbitals not centered on any nucleus. To the best of
our knowledge, the first attempt to use a set of distributed Gaussian orbitals in order
to describe a molecular wavefunction goes back to John Murrell and co-workers in
1974, who proposed such an approach under the name of the Gaussian Cell Model [9].
In their original proposal, a set of single-exponent 1s Gaussian orbitals is located at
the centers of the cells of a simple-cubic lattice surrounding the molecular system. For
a given number of Gaussians, both the lattice constant and the Gaussian exponent
are variationally optimized. The conclusion of these authors was that the method was
“insufficiently flexible to give good results (...) unless economical techniques can be
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developed for handling much larger bases” [9]. At that time, “much larger” was meant
to be of the order of 103. Notice that calculations with this number of orbitals are
perfectly feasible with present-day software packages, although such a huge number
of centers is somehow uncommon for molecular calculations, and can pose some
practical problems. In subsequent works, Ralston and Wilson [10] and Wilson [11, 12]
reconsidered Murrell’s approach by using a substantially larger number of Gaussians
(up to 11 Gaussians in each direction), and by considering the use of atom-centered
Gaussians basis sets in order to improve the description of the nuclear cusp. Several
possibilities were considered by Wilson, involving not only the presence of additional
Gaussians on the nuclei, but also of several Gaussians, and of different angular
momentum. In this work, we will develop one particular among these possibilities, in
which a unique-exponent series of s distributed Gaussians is used, combined with a
set of nucleus-centered tight orbitals that describe the inner part of the wave-function
in the region of the nuclei.

The essential idea of this approach is to use a set of Gaussian-type orbitals of s type
that are evenly distributed in the space surrounding the atoms of the molecule, as in
the floating orbitals scheme. We already noticed, however, that the use of atom-centred
tight GTOs can hardly be avoided in order to describe the nuclear cusps. Therefore,
we construct a mixed basis set according to the following two guidelines:

(1) The orbitals describing the inner part of the wavefunction will be atomic-centred
GTOs having different angular momenta and large exponential coefficients.

(2) The outer part of the wavefunction, will be described through a set of s-type
distributed GTOs: s-type Gaussians having a unique fixed exponent and whose
fixed centres are placed on a uniform mesh of points evenly distributed in the
region surrounding all the atoms of the molecule.

Apparently, however, this approach did not receive much attention in subsequent
works on the field. Glushkov and Wilson, for instance, used instead a small number
of variationally optimized Gaussian functions placed on the inter-nuclear molecular
axis in the case of diatomic molecules [13].

A particularly sensitive point is the issue of “practical” linear dependence, i.e.,
very small eigenvalues of the overlap matrix. In Wilson and co-worker’s approach
[11], this is treated by orthogonalizing the basis set to the eigenvectors corresponding
to eigenvalues smaller than a given threshold (10−10). This procedure can produce
artifacts, particularly if derivatives of the energy with respect to the nuclear coordi-
nates are numerically computed. For this reason, in our approach, we decided to avoid
linear dependencies by performing a suitable choice of the basis set. With respect to
previous investigations, we made the choice to avoid any type of orthogonalization of
the basis set in order to avoid quasi linear dependencies. Our choice was done since
the procedure of discarding the eigenvectors associated to very small eigenvalues is
often numerically unstable. Thus our basis set avoids quasi linear dependencies by
using a single exponent for the Distributed set, and an exponent separation between
the Atomic and Distributed sets.

Notice that a number of previous attempts to construct mixed basis sets are spread
among the literature of last decades and proposed, among others, mixed atom-centred
STOs and floating Gaussians [14], the possible addition of bond functions to an atom-
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centred Gaussian basis [15] or, more recently, the mixed use of local Gaussians and
plane waves for applications to correlated periodic systems [16]. Notice also that in
recent works by our group, the possibility of using distributed Gaussian orbitals to
describe smoothly varying wavefunctions (i.e., in absence of nuclei) has been consid-
ered [17, 18]. This strategy is closely related to the floating spherical Gaussian orbital
(FSGO) method, developed long time ago by Frost and co-workers and successfully
applied to a series of small molecules [19–23], see also [24]. In the FSGO formalism, a
series of additional orbitals of s type is added in region of the bond of a molecule in
order to improve the wavefunction flexibility in this region. This approach has never
become very popular, and a limited number of applications is found in the literature.
It should be noticed however, that recently this formalism was applied in the field of
molecular dynamics by Perlt et al. [25, 26].

The formalism resulting from the approach described above is here presented and
applied to the description of some one-electron systems, to validate is as a method
to handle different types of one-electron wavefunctions. In particular, the proposed
approach will be applied to simple analytically soluble systems, like the harmonic
oscillator and the hydrogen atom. The dihydrogen cation, for which very precise so-
lutions exist, will also be considered, as an example of multi-centre expansion. The
introduction of electron correlation, necessary to describe many-electron atoms and
molecules, is given in Section 7 along with some preliminary results from applications
to simple systems. Notice that, to our knowledge, the mixed LCDAO approach has
never been applied to correlated functions containing more than two electrons. More
complete work is postponed to a forthcoming paper.

This article is organized as follow: in Section 2 we illustrate the basic ideas leading
to a linear combination of distributed and atomic orbitals; in Section 3 the Gaussian
basis sets required by this approach are formally presented; in Section 4, the problem
of the quasi-completeness and quasi-linear dependence of the basis set is addressed;
Section 5 describes the details of the numerical calculations, while in Section 6 results
concerning one-electron systems are presented and discussed; In Section 7, applications
to many-electron systems are considered. Finally, in Section 8, some conclusions are
drawn, and the perspective use of such a type of basis sets for realistic molecular
calculations is considered.
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2. Linear Combination of Distributed and Atomic Orbitals

Following one of the approaches examined by Ralston and Wilson in their article [10],
we will consider in this work two types of orbitals that are combined for the construc-
tion of basis sets for the calculation of the wavefunctions of atomic and molecular
systems:

(1) Atomic-centred orbitals: these are orbitals whose centres are placed on an atomic
nucleus. In this work, we will consider GTOs whose exponents form a geometric
series (even-tempered Gaussians).

(2) Distributed orbitals: evenly distributed identical Gaussian orbitals that occupy
the whole molecular region. For the sake of simplicity, only uniformly spaced
s-type orbitals having a unique exponent will be considered.

The orbitals at point (1) are the type of orbitals of the usual LCAO approach. Although
these orbitals do not form a complete basis set, by choosing the ratio of the series
sufficiently close to one, it is possible to construct a suitable linear combination to
approximate an atomic orbital to a very high accuracy, provided that the centers
of the Gaussians are located on the nuclei. They are very effective for describing
the core and inner valence orbitals of an atom. Since the inner atomic shells remain
essentially unchanged when a given atom combines with other atoms and gives rise
to a molecular structure, the LCAO approach gives a good description of the inner
region of the orbitals even in a molecular system. Things are much more complicated
for the external regions of the atoms, where, because of the bonding mechanism, the
molecular wavefunction looses its atomic character. For smoothly varying orbitals,
one can adopt the strategy illustrated at point (2) and describe the orbitals through
Gaussian functions evenly distributed in the molecular region. As an example, these
orbitals can be used to describe a set of electrons placed in a smooth external potential
(for instance, the electrons in a quantum dot). However, this approach fails to describe
an essential element of any molecule: the cusp of the s orbitals on each nucleus, where
the wavefunction derivative has a singularity. For this reason, for atoms, molecules
or real solids, this mixed approach seems to be preferable: the simultaneous use of
tight atomic orbitals in order to describe the inner region of the wavefunction, with
distributed orbitals for the description of the outer region. This technique for the
calculation of atomic and molecular orbitals will be indicated as linear combination of
distributed and atomic orbitals (LCDAO).

As it will be discussed in detail in the next two sections, a crucial step is represented
by the choice of the specific Gaussian-type functions. For nuclear-centred atomic or-
bitals, there is a large amount of literature concerning even-tempered GTOs and their
ability to describe the orbitals of an atom in a satisfactory way. For distributed Gaus-
sians, on the other hand, the situation is much less clear, so we will here focus on this
aspect of the problem. It turns out that the key parameter in this case is given by
the dimensionless product ξ (formally introduced in the next section) of the Gaussian
exponent (whose dimension is a length to the power of minus two) and the square of
the inter-centre distance. The situation is illustrated in Figures 1, 2 and 3.
If the product is small (Figure 1), the sum of the two Gaussians is a single-peak func-
tion, and these functions are in principle suitable to describe a smooth MO. However,
if this product is too small, the two Gaussians have a very large overlap, and they
quickly become linearly dependent. If the product is too large, on the other hand, the
sum of the two Gaussians has a double-peak shape (Figure 2). In this case, a linear
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combination of such GTOs will necessarily have a large oscillatory behaviour while
describing any molecular function. This fact introduces a large spurious contribution
to the kinetic energy of the system, and the interpolation would be impossible. The
border between these two regimes is found when the product equals two: the sum of
two Gaussians with identical exponent still has a single peak, but the second deriva-
tive in the mid-point between the two functions is zero. This situation is illustrated in
Figure 3. In order to describe a smooth function, Gaussians having a product smaller
than 2 have to be used. At the same time, the product should not be much smaller
than 1, otherwise we face problems of quasi-linear dependence of the basis set [27].
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3. Gaussian Basis Sets

In this section, the properties of the Gaussian orbitals used in this article will be de-
scribed and detailed. We consider a non-normalized three-dimensional (3D) Gaussian
function of the type

gi(r) = gαi,ri(r) = exp
(
− αi‖r− ri‖2

)
(1)

where αi and ri are the exponent and the centre of the Gaussian, respectively. The
overlap integral between two Gaussians gi and gj is given by

Sij = S(αi, αj , dij) =

(
π

αi + αj

)3/2

exp

(
− d2

ij

αiαj
αi + αj

)
(2)

where dij is the distance between the two centres ri and rj , dij = ‖ri − rj‖. For a
single Gaussian, the previous equation gives the square norm of the orbital as

Sii = S(αi, αi, 0) =
( π

2αi

)3/2
(3)

Two cases are particularly relevant for the present work, and will be treated in
detail:

(1) The two Gaussians have the same centre (and in general different exponents).
In this case, the overlap becomes

S(αi, αj , 0) =

(
π

(αi + αj)

)3/2

(4)

(2) The two Gaussians have identical exponents (and in general different centres).
In this second case, one gets

S(α, α, dij) =

(
π

2α

)3/2

exp
(
− d2

ijα/2
)

(5)

In the following, it is convenient to work with normalized Gaussian orbitals, by defining
the new functions

ḡi(r) = ḡαi,ri(r) =

(
2αi
π

)3/4

exp
(
− αi(‖r− ri‖2

)
(6)

The overlap between two normalized Gaussians, denoted as S̄(αi, αj , dij), becomes
then

S̄(αi, αj , dij) =

(
2αi
π

)3/4(2αj
π

)3/4( π

αi + αj

)3/2

exp

(
− d2

ij

αiαj
αi + αj

)
(7)

The two particular cases considered earlier therefore become
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(1) Two Gaussians with the same centre:

S̄(αi, αj , 0) =

(
2αi
π

)3/4(2αj
π

)3/4( π

αi + αj

)3/2

=

(
4αiαj

(αi + αj)2

)3/4

=

(
2

1 + αi/αj

2

1 + αj/αi

)3/4

(8)

(2) Two Gaussians with identical exponents:

S̄(α, α, dij) =

(
2α

π

)3/4(2α

π

)3/4( π

2α

)3/2

exp

(
− d2

ijα/2

)
= exp

(
− d2α/2

) (9)

Notice that Equation (8) is manifestly symmetric under the exchange αi ↔ αj . More-
over, this equation implies that S̄(αi, αj , 0) is a function of the ratio αi/αj only. The
overlap S̄(α, α, dij), on the other hand, depends only on the product d2

ijα. These ex-
pressions can be further simplified if we consider some particular series of orbitals. For
case (1), if a geometric series for the exponents αi’s is used, αj = αiγ

j−i, and we set
αi = α and j − i = k, we get

S̄(α, αγk, 0) =

(
4γk

(1 + γk)2

)3/4

(10)

where γ is the ratio of the series.
Noticeably, S̄(α, αγk, 0) does not depend on α. In case (2), by assuming dij = (j−i)l =
kl (with k ∈ N ), and ξ = αl2, one has

S̄(α, α, kl) = exp(−k2ξ/2) (11)

In this case, the overlap does not depend separately on the exponent and the inter-
centre distance, but only on k and the product ξ.

Equations (10) and (11) have deep consequences on the quasi-degeneracy properties
of this Gaussian basis set. In particular, Equation (10) shows that the overlap between
two normalized Gaussians tends to zero if the ratio between their exponents is very
different from one. This means that the two Gaussians are almost mutually orthogonal,
and they approach exact orthogonality if the ratio tends to zero (or infinity). If the ratio
approaches unity, on the other hand, the overlap goes to one, and the two Gaussians
become the same function.
Equation (11) implies that for any non-zero fixed exponent α and first inter-centre
distance l, the overlap will go to zero for sufficiently large values of k: well separated
Gaussians tend to be orthogonal in this case. The first-neighbour overlap, on the other
hand, will become arbitrarily close to one for small values of the product ξ.
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Unfortunately, as it is often the case for non-orthogonal basis sets, completeness is
associated to quasi-degeneracy: in order to be able to describe accurately a function,
one gets into troubles of quasi-linear dependence of the basis sets. The connection
between these two properties of the basis set will be made evident by considering the
numerical investigations of the two next sections.
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4. Completeness and Linear Dependence

From a computational point of view, two issues have a crucial importance for the
practical applicability of the present scheme, in order to perform actual accurate cal-
culations. These are the quasi-completeness and quasi-linear dependence of the basis
set. For non-orthogonal basis sets, these two aspects are often closely related, since, in
trying to improve the description of an orbital, the basis set is pushed toward linear
dependency

Quasi-completeness means that, given a molecular orbital, the basis set must be
able to reproduce such orbital to an (in principle) arbitrary precision. We will not
discuss here about the mathematical aspects of such a property, assuming a pragmatic
approach. In practice, a basis set will be considered to be accurate enough, or “quasi-
complete”, with respect to a given system if the energy of the system is reproduced
up to a fraction of a µHartree.

For very large Gaussian expansions (n → ∞), and either γ → 1 or ξ → 0 for the
two cases, respectively, the numerical evidence seems to indicate that one gets quasi-
complete basis sets. These two conditions, however, imply that the overlap between
two first-neighbour normalized Gaussians tends to one, and the basis set becomes
quasi-linear dependent

lim
γ→1

S̄(α, αγ, 0) = lim
γ→1

(
4γ

(1 + γ)2

)3/4

= 1 (12)

and

lim
ξ→0

S̄(α, α, l) = lim
ξ→0

exp(−ξ/2) = 1 (13)

From a numerical point of view, therefore, γ and ξ cannot be chosen arbitrarily close
to one and zero, respectively, since in these cases the overlap matrix becomes singu-
lar. This would mean that the smallest eigenvalue of the S̄i,j matrix, S̄min, becomes
arbitrarily close to zero, and numerical calculations would be impossible. In a next
section, it will be shown that there exists a finite range of exponent values that allow
a good approximation of an atomic or molecular orbital without being plagued by
quasi-linear dependence.
We address here the problem of the quasi-singularity of the metric. The analysis be-
comes much simpler if we assume an infinite number of Gaussians, by working in the
limit n → ∞. The smaller and largest eigenvalues of the overlap matrix are given in
this case by the following expressions

S̄min = S̄(0) + 2

∞∑
k=1

(−1)kS̄(k) (14)

and

S̄max = S̄(0) + 2

∞∑
k=1

S̄(k) (15)
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By using Equations (10) and (11), Equation (14) becomes

S̄min(γ) = 1 + 2

∞∑
k=1

(−1)k
(

4γk

(1 + γk)2

)3/4

(16)

for the one-centre expansion, and

S̄min(ξ) = 1 + 2

∞∑
k=1

(−1)k exp(−k2ξ/2) (17)

for the distributed-centre one.
The minimum eigenvalue is particularly relevant in the present investigation, since it is
precisely S̄min that, for numerical reasons, must not be too close to zero. For instance,
the general-purpose quantum chemistry code MOLPRO [28] does not allow metric
eigenvalues smaller than 1.0 ·10−6. In Figure 4, the lowest eigenvalue S̄min(γ) given by
equation (16) is reported as a function of γ. The eigenvalue is a growing function of γ
that slowly saturates toward the asymptotic limit of one. The threshold value of 10−6

is reached for γ = 1.5. This leaves a relatively large interval for the choice of the ratio
of even-tempered sequences. In Figure 5, a similar behaviour is illustrated for S̄min(ξ).
In this case, it appears that the region to which ξ must belong is much narrower than
in the previous case. In fact, one must consider that, for a simple cubic arrangement
of the Gaussian mesh, the 3D lowest eigenvalue is the third power of S̄min(γ) given
in Equation (17), since this equation refers to the one-dimensional case. Therefore,
in practice the “safe region” is 0.7 < ξ < 1.4. Nevertheless, as it will be shown in
the numerical applications presented in this article, this narrow region is enough to
choose a set of distributed Gaussians that describe to a very high degree of accuracy
the orbitals of a molecular system.
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5. Numerical Investigations: Computational Details

In this work, the proposed scheme is tested through the application to two one-electron
systems: the hydrogen atom and the hydrogen dimer cation. The hydrogen atom is
an analytically soluble system. Its spherical symmetry implies that only orbitals of s
type are required for the atomic expansion. On the other hand, for the H+

2 molecular
cation, that is the simplest molecular system, an exact solution is not known. Because
of the lack of isotropy around each nucleus, an accurate wavefunction description re-
quires in this case the introduction of non spherically symmetric orbitals. In both
cases, the presence of the nuclear cusp requires the presence in the basis set of atomic
s functions having very large exponents. Unless otherwise stated, all calculations in-
volving one-electron systems were carried out using a self-developed software, whereas
those involving many-electron systems were performed using the MOLPRO program
package [28].

5.1. Hydrogen Atom

The hydrogen atom wavefunction requires the presence of Gaussians with a high ex-
ponent, in order to approximate the nuclear cusp. For this reason it can be described
by using either atomic or a combination of distributed and atomic GTOs.

A set of s-type even-tempered Gaussian orbitals is suitable to describe the hydrogen
atom wavefunction. The basis set exponents are chosen as

αk = γkα0 (18)

where k is an integer number, either positive, negative or zero. The sequence of ex-
ponents defining the Gaussian functions starts at k = 0 and is expanded in both
positive and negative directions in order to describe both the nuclear cusp and the
diffuse region of the electron density. To limit the number of independent parameters
to be considered, very large Gaussian expansions were taken until stable values of the
energy were reached. In this way, the results coincide, up to an error of about 10−10

Hartree, with the infinite-expansion ones. We did not investigate the dependence of
the approximation quality on the origin α0 of the even-tempered sequence, that has
been arbitrarily chosen to be equal to the best single Gaussian exponent, α0 = 8

9π (see
Appendix). Notice that, in the limit of γ → 1, the choice of α0 becomes irrelevant.

The distributed basis functions were chosen as equally spaced s-type Gaussians,
having a unique exponent. Again, in order to limit the number of parameters to be
considered, the exponent was chosen equal to α0 = 8

9π . The centres of the Gaussians are
located at the corners of a simple cubic network, whose edges contains 2N+1 functions.
Integer values of N from zero to six were considered, giving rise to cubic arrangements
of Gaussians going from 1 to 2197 atomic orbitals. The distance d between two first-
neighbour centres is related to α0 via the equation

α0d
2 = ξ (19)

where ξ is a parameter close to one.

In the case of LCDAO basis sets, we used 30 s-type atom-centred even-tempered
Gaussians for the atomic basis set, having exponents of the type αk = γkα0, with
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k being a positive integer starting at k = 1 and the ratio γ equal 2. These Gaus-
sians therefore characterize the inner part of the electron density, being a sequence of
increasingly tight functions.

We also investigated the dependence of the results on the position of the atomic
centre within the cube of distributed Gaussians. To this purpose, the nucleus was
moved from the central position towards the cube surface along the three independent
directions ex, ex + ey and ex + ey + ez. For each independent direction, the energy
was calculated at 11 equally spaced points between the position of two Gaussians.

5.2. The H+
2 Dimer

The hydrogen dimer cation was studied within the LCDAO approach only. A large
box containing 9·9·21 distributed orbitals with exponent α0 = 8

9π was chosen, in com-
bination with atomic orbitals given by an even-tempered series of Gaussian functions,
starting from α1 = 2α0 and with ratio γ equal to 2. In view of the large number
of atomic and distributed functions involved in the expansion, this basis set can be
considered converged as far as the s exponents are concerned.

For the atomic part, higher angular momentum functions were also included in
the expansion in order to correctly describe the wavefunction in the bonding region.
In particular, the dissociation was performed using a basis comprising 30 s-, 10 p-
and 5 d-type orbitals, for a total of 90 atom-centred Gaussians (Cartesian Gaussian
functions were used for the d-type orbitals). The dependence on the atomic orbitals
was investigated at three different internuclear distances, namely at R = 1, 2, 4 bohr.

The reference values were obtained with a standard v6z basis set expansion [28–30],
having 6s5p4d3f2g1h contracted orbitals and using the MOLPRO program package.
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6. One-Electron Systems

6.1. Hydrogen Atom

The system that will be used to investigate the quality of the one-centre atomic ba-
sis set is the hydrogen atom. Being a one-electron system that admits an analytical
solution, the error in the energy is exactly known, and due to the basis set incomplete-
ness only. If we assume an infinite value for the mass of the nucleus, the ground state
wavefunction depends only on the radial coordinate. For the sake of simplicity, we will
limit our investigation to s-type orbitals only. In this case, the energies are given (in
atomic units) by

εn = − 1

2n2
(20)

while the corresponding wavefunctions are

ψn(r, θ, φ) = ψn(r) = exp(−r) (21)

By using a one-centre even-tempered Gaussian expansion, it is possible to approxi-
mate the hydrogen atom wavefunction to an arbitrary accuracy. The results are shown
in Table 1 as a function of the even-tempered ratio γ. Notice how the single-centre ex-
pansion of ratio γ = 2 provides an energy of −0.499999998129 Hartree. If, on the other
hand, a ratio γ = 1.8 is used, the total energy becomes −0.499999999949 Hartree.
The number of basis functions required to converge to the prescribed accuracy is in-
versely proportional to γ because for large values of the ratio, extremely tight and
very diffuse Gaussians are generated, which do not significantly contribute to the
wavefunction anymore.

In Table 2, the energy of the hydrogen atom obtained within the LCDAO approx-
imation is reported for different values of the product ξ. In order to keep the error
associated to the one-centre expansion sufficiently small, a ratio γ = 2 was chosen for
the even-tempered series. The nearest-neighbour distance in the mesh is set to

d =

√
ξ

α0
=

√
8ξ

3
√
π

(22)

and is listed in the last row of Table 2 for each value of ξ.
Note how the value of ξ limits the achievable accuracy of a distributed basis set for
a fixed value of the exponent α0. An accuracy in the µHartree range is only achieved
in the case ξ = 0.7. For ξ = 1.4, the energy starts to saturate already with a cubic
mesh with 5 Gaussians on each edge, whereas for ξ = 0.7, the energy gains significant
digits up to 2N + 1 = 9. This can be understood from the directly proportional
relationship between ξ and the distance d between the Gaussians: the smaller ξ is, the
more compact is the cubic mesh, ultimately providing a better achievable accuracy.
On the other hand, too smaller values of ξ cannot be chosen without incurring into
linear dependency issues (cf. Section 4).

The dependence of the energy on the position of the atom within the box of dis-
tributed Gaussians was investigated too, using a cubic mesh of 11·11·11 basis functions
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and setting ξ = 0.7. This box is sufficiently large such that surface effects do not ap-
pear. Moving the atom from the centre of the cube in three independent directions,
a difference δ in the order of 10−5 Hartree was observed, as reported in Figure 6. In
principle, only one parameter plays a role here, which is the distance d between the
distributed Gaussians. The smaller the value of d (set according to ξ), the less sen-
sitive is the energy to the actual position of the atom in the cubic mesh. In practice
nevertheless, for small boxes, surface effects might appear, in particular for systems
described by a diffuse wavefunction. Small d values imply compact boxes, thus one has
to find the right trade-off between ξ and the size of the box of distributed Gaussian
in order to balance the errors coming from the different sources.

6.2. The Hydrogen-Dimer Cation

In Figure 7, the dissociation curve of the H+
2 cation within the LCDAO approximation

is shown and compared to the all-s and spdfgh curves. The minimum is very close to
the internuclear distance R = 2.0 bohr with all the three basis sets. The dissociation
energy, on the other hand, is affected by the basis set in a more noticeable way.
Clearly, the all-s expansion does not have much flexibility, such that a large fraction of
the dissociation curve lies above the other two cases. On the other hand, the LCDAO
approximation is able to practically reproduce the reference curve very accurately at
all internuclear distances. In fact, by using the distributed Gaussian expansion one
gets for the total energy, at a distance of R = 2.0 bohr, the value E = −0.602631
Hartree, while the spdfgh value at the same distance is E = −0.602632 Hartree.
By using an all-s basis set, one gets the substantially higher value E = −0.590900
Hartree.
The dependence of the energy on the GTOs centred on the two nuclei is reported
in Table 3. One can see how the presence of p-type orbitals is necessary in order
to obtain energies coinciding with the reference at mHartree accuracy at least.
Actually, addition of d-type orbitals improves the results compared to the spdfgh
basis set, as highlighted by the bold digits in Table 3. Even though the effect of the
d functions decreases with increasing interatomic distance, it remains significant at
the equilibrium. These d functions probably explain the remaining difference of our
converged value with that obtained previously by Ralston and Wilson[10].

A second parameter which plays a role regarding the accuracy of the expansion is
the square section size of the distributed Gaussians mesh. Accordingly, to study this
effect, the energy was computed at the same three distances R as before, but with
boxes of different sizes starting from 3 · 3 · 21 up to 9 · 9 · 21 and with the largest atom-
centred basis. The energies obtained in this case are reported in Table 4. As observed
for the Gaussian cell model [10], the energy saturates quite fast with respect to the
mesh size, and already for the 5 · 5 · 21 box the energy is better than the reference one
at R = 1 and R = 4, whereas virtually the same at R = 2. These results imply that
one has to find an ideal trade-off between the number of distributed and atom-centred
Gaussian functions in order to keep the corresponding errors at the same order of
magnitude. Note that in all calculations presented for the H2 cation the length of the
box was kept fixed to account for all internuclear distances, thus resulting in a large
number of Gaussians which effectively have no contribution. This was made to reduce
the number of parameters to consider in this study. A more effective approach would
only require to have a box of distributed Gaussians around each atom, substantially
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decreasing the size of the basis.

6.3. Computational Complexity

Clearly, the success of any computational approach strongly relies on the efficiency
with which calculations can be carried out. The last column of Tables 1 to 4 reports
for each case the number of Gaussian-type orbitals in the basis. Evidently, in terms
of raw number of basis functions, the LCDAO approach appears rather unfavourable.
Nevertheless, a more scrupulous analysis reveals a different picture.
As the LCDAO approximation is a Gaussian basis set expansion only, the actual
computational complexity of any calculation is still dictated by the quantum chemical
method used, e.g. O(N 5) for MP2, O(N 6) for CCSD, and so on. On the other hand, as
these methods scales with the number of basis functions, it is important to understand
how this number changes with respect to the system size.
Let us assume that each atom must be embedded in a mesh of M3 Gaussians to be
correctly described. For the sake of simplicity, we consider a “cubic” system of linear
dimension N . More specifically, if D is the dimension of the system, then for D = 1 we
have a linear chain composed by N atoms, for D = 2 we have a square lattice made
by N2 atoms and for D = 3 we have a cube made by N3 atoms. Let us call d the
distance between the centres of two adjacent Gaussians as before and l that between
two atoms. The point is that usually d ≤ l such that the total number of Gaussians
is much smaller than the total number of atoms ND times M3, since many functions
are “shared” by several atoms. Let us start by considering a one-dimensional system,
where we note that the total number of Gaussians needed along the chain within the
two atoms at the extremities is (N − 1) ld + 1. To this number we should add extra

(M − 1)/2 Gaussians on each end of the chain, summing to (N − 1) ld + M . Note
that this number represents the “Gaussian centres” along one dimension. The total
number of Gaussians for a one-dimensional system is then simply given by multiplying
the number of centres with the number of Gaussians required in a two-dimensional
section, i.e. M2, yielding

Ng ∝
[
(N − 1)

l

d
+M

]
·M2

For a two-dimensional system, the Gaussian centres are simply the squared value of
the linear centres, i.e. [(N − 1) ld + M ]2. This number should be now multiplied with
M Gaussians required for each of the centre, for a total number of functions given by

Ng ∝
[
(N − 1)

l

d
+M

]2

·M

In the three-dimensional case, the total number of Gaussians is simply the cubed
value of the linear centres, i.e. [(N − 1) ld + M ]3. However, this number should not
be multiplied by anything else, since we already accounted for all Gaussians at the
border. Thus, the general scaling of Gaussians required within the LCDAO approach,
representing an upper bound to the actual number required, is given by

Ng ∝
[
(N − 1)

l

d
+M

]D
·M3−D
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where D is the dimension of the system as introduced before. Note how the latter
formula reduces to M3 in the trivial case of a single atom.

Substituting diffuse basis functions of high angular momenta with a set of dis-
tributed s-type Gaussian to fill the space brings some computational advantages. Cal-
culation of integrals of high angular momenta relies on the use of recursive relations
[31, 32] which are at least an order of magnitude slower than computing integrals
over s-type orbitals, for which simple analytical formulas exist [33]. Therefore, one
can expect the LCDAO to be much more efficient than the LCAO approach in that
respect. Secondly, the fact that the distributed Gaussians are taken relatively compact
and far away from each other, implies that a large portion of integrals will contribute
insignificantly to the calculation and hence can be discarded by employing prescreen-
ing techniques. Lastly, the regular pattern of the 3-dimensional grid of Gaussians is
likely to generate a large number of linear dependencies in the bi-electronic integral
matrix, which can be therefore efficiently discarded by techniques such as the Cholesky
decomposition [34–36].
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7. Many-Electron Systems

The present, preliminary investigation is mainly focused on one-electron systems. How-
ever, our final aim is the description of atoms, (large) molecules, and possibly solids.
Therefore, although the systematic treatment of many-electron systems is postponed
to future works, it is important to give a preliminary overview of the feasibility of the
proposed approach. For this reason, we report in this section the results of calculations
on a few many-electron systems.

The first case that will be discussed is given by two isoelectronic systems, i.e., the
helium atom and the H− negative ion. The Helium atom is a very compact system, due
to the closed-shell character and the occupation of 1s orbital only. It can be described
by a relatively small number of distributed function. On the other hand, because of
the excess of negative charge, the H− system has a very diffuse wavefunction, and thus
requires a large number of distributed Gaussians for an accurate description. Notice
that this large number could be substantially reduced at the price of using more dif-
fuse distributed Gaussians, i.e. by taking a smaller value of α0. However, since our
philosophy is to use a unique type of Gaussians for the distributed functions, we did
not explore this possibility.
In Table 5, the Hartree-Fock (HF) and full configuration interaction (FCI) total ener-
gies for the He atom, obtained by using different boxes, are compared with one-centre
calculations with a large size basis set containing 28s15p13d11f9g7h5i3j uncontracted
Gaussians. Both the HF and FCI energies converge quickly as a function of the size
of the box, and the difference between the 2N + 1 = 7 and 2N + 1 = 9 FCI energies
is less than 2 · 10−7 Hartree. With respect to the one-centre expansion, and by using
the largest basis set, the HF error is less than 10−6 Hartree, while the FCI error is of
the order of 3 · 10−6 Hartree. The cpu time to obtain these energies is at the moment
substantial, since the programs we used are not adapted to such distributed basis sets,
where a large number of four-centre two-electron integrals need to be computed, but
are not efficiently prescreened or approximated. In the largest case (2N + 1 = 9), the
calculation required about ten hours on a medium-size computer.

In Table 6, the FCI energy for the hydrogen anion is reported for a series of boxes of
different size and compared with high-accuracy calculations. The situation is similar
to the previous one, except for the fact that the wavefunction is more diffuse due to
the excess of negative charge. It can be seen from the table that a cubic box with edge
size 2N + 1 = 9 is able to reproduce the reference energy of this system up to one
mHartree.

As a more challenging example, we considered the beryllium atom and the poly-
atomic system Be4, whose results, obtained using a completely decontracted cc-pVDZ
basis set for Be[37], are reported in Table 7 and Table 8, respectively.
The calculations with atom-centred orbitals were performed by using the complete
set of orbitals for each beryllium atom. The LCDAO calculations, on the other hand,
were done by taking those atomic functions having a value of the exponent larger
than 0.5. Different box sizes were explored for the distributed Gaussians, all having
the exponent α0 = 8/9π: for both systems the box sizes from 1 to 9 were considered.
For Be4, we used a Td symmetry geometry, where the HF equilibrium distance was
chosen for all calculations. We performed Hartree-Fock and coupled cluster singles and
doubles (CCSD) calculations on both systems as well as complete active space self-
consistent field (CASSCF) calculations, with a (2,4) valence active space for the atom,
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and a comparatively smaller (8,10) active space for the tetramer. In the atomic case, a
good µHartree accuracy is achieved for the uncorrelated method and the largest box,
whereas the approaches introducing electron correlation deviate significantly from the
reference energy.
For the beryllium tetramer, a similar accuracy to the single atom is observed for boxes
up to a size of 2N+1 = 7. However, the CASSCF energy is particularly underestimated
for this system. On the other hand, remarkably, the distributed-orbital expansion is
capable to outperform the LCAO approach by more than 2 mHartree in the CCSD
case.
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8. Future Perspectives and Conclusions

In this contribution we investigated the combination of distributed and atomic Gaus-
sian orbitals for the description of a molecular system. In a previous article, it had
been shown that distributed Gaussian functions are well suited to describe orbitals
having a smooth dependence on the spatial coordinates, as it is the case for a har-
monic oscillator [18]. The presence of the nuclear cusp in molecular systems, on the
other hand, requires the use of tight atom-centred Gaussians having large exponents.
For this reason, a mixed approach, combining space-fixed distributed Gaussians for
the valence region and atom-centred Gaussians to describe the inner shells can be seen
as an interesting strategy.
We notice that, in the present approach, diffuse orbitals are never introduced in the
distributed basis set expansion, and this fact has several advantages. In fact, the results
obtained with this strategy should be very little affected by the basis set superposi-
tion error (BSSE). The BSSE is mainly due to the presence in the basis set of diffuse
orbitals centred on one atom, that artificially improve the description of neighbouring
atoms only in the case of short inter-atomic distances. Also the quasi-linear depen-
dence problems at short inter-atomic distances, associated to the use of very large
basis sets, should be substantially reduced. Despite the large number of orbitals in the
basis set expansion, their compactness and organized position in a regular mesh can
be exploited by prescreening and decomposition techniques applied to very large ba-
sis sets, which substantially reduce the number of significant two-electron integrals to
compute. Moreover, regarding efficiency, the calculation of integrals over s-type GTOs
is substantially faster than over functions of higher angular momenta.
At the moment, the main bottleneck for a systematic exploration of the proposed
approach is represented by the number of centres of the distributed Gaussians, that
are seen in standard ab initio codes as dummy atoms not bearing any charge. In fact,
while the total number of orbitals in many general-purpose codes can easily be of
several thousands, the total number of atoms, and therefore of Gaussian centres, is
often limited to a few hundreds. For this reason, in the many-electron applications
we were not able to go beyond a box of 9 · 9 · 9 Gaussians, that is not enough to
converge the total energy to more than four digits in general. Work is in progress in
order to overcome this limitation, and be able to obtain results using substantially
larger distributed basis sets.
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9. Appendix : Best Gaussian Orbital for the Hydrogen Atom

Let us consider a Gaussian orbital φα, centred on the origin of the coordinates. The
square of its norm is

‖φα‖2 = 〈φα|φα〉 =

(
π

2α

)3/2

(23)

The kinetic and potential mean values on the Gaussian orbital are

〈T 〉α = 〈φα|T̂ |φα〉 =
3

2
α

(
π

2α

)3/2

(24)

and

〈V 〉α = 〈φα|V̂ |φα〉 = −
(
π

α

)
(25)

respectively (see, for instance, the book by Szabo and Ostlund[33]). The mean value
of the energy becomes then

Eα =
3

2
α−

(
α

π

)1/2

23/2 (26)

The best variational value for α is found by imposing the first derivative of Eα with
respect to α equal to zero, yielding

d

dα
Eα =

3

2
−
(

2

π

)1/2

α−1/2 (27)

By setting d
dαEα = 0 we obtain the optimum value for α, namely 8

9π .
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D. Kats, T. Korona, R. Lindh, A. O. Mitrushenkov, G. Rauhut, K. R. Shamasundar,
T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan,
A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar,
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10. Figure Captions

(1) The linear combination of two equal-exponent Gaussian orbitals having ξ < 2,
arbitrary units.

(2) The linear combination of two equal-exponent Gaussian orbitals having ξ > 2,
arbitrary units.

(3) The linear combination of two equal-exponent Gaussian orbitals having ξ = 2,
arbitrary units.

(4) The minimum eigenvalue of the metric for a one-dimensional even-spaced infinite
set of identical Gaussians as a function of γ. The inset zooms in to small values
of γ. Note that values lower than one are omitted.

(5) The minimum eigenvalue of the metric for a one-dimensional even-spaced infinite
set of identical Gaussians as a function of ξ. The inset zooms in to small values
of ξ.

(6) Electronic energy error δ with respect to the position of the hydrogen atom in the
box of distributed Gaussians. A total of 11 equidistant points were considered
for each direction.

(7) The H+
2 potential energy curve as a function of the internuclear distance.
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Table 1. Energy of the hydrogen atom calculated using atom-centred GTOs as a function of the harmonic

ratio γ. The exact digits are underlined. The last column shows the total number of GTOs in the basis set. All

energies are given in Hartree.

γ Energy # GTOs

16 −0.470197942656 15
8 −0.491985592311 19
4 −0.499656436902 25
2 −0.499999998129 43

1.8 −0.499999999949 51
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Table 2. Energy of the hydrogen atom calculated within the LCDAO approximation for different sizes of

the box. The exact digits are underlined. The d values represent the distance in bohr between the distributed

Gaussians along the edges of the cubic mesh. The last column shows the total number of GTOs in the basis
set. All energies are given in Hartree.

ξ

2N + 1 1.4 1.0 0.7 # GTOs

1 −0.48858560 −0.48858560 −0.48858560 31
3 −0.49956512 −0.49918847 −0.49864904 57
5 −0.49990338 −0.49995258 −0.49989458 155
7 −0.49992076 −0.49999350 −0.49999371 373
9 −0.49992125 −0.49999431 −0.49999949 759
11 −0.49992139 −0.49999449 −0.49999987 1361
13 −0.49992142 −0.49999452 −0.49999989 2227

d 2.2244 1.8800 1.5729
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Table 3. Dependence of the energy with respect to the atom-centred basis at three different internuclear

distances of the H+
2 dissociation curve. The exact digits are underlined and boldface digits highlight the lower

energy obtained with the LCDAO approach. Energies are given in Hartree and distances in bohr.

basis R = 1.0 R = 2.0 R = 4.0 # GTOs

30s −0.44648815 −0.60041608 −0.54588596 1761
30s10p −0.45174444 −0.60248169 −0.54607627 1821

30s10p5d −0.45178575 −0.60263066 −0.54608306 1881

ref −0.45178187 −0.60263209 −0.54603249 182
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Table 4. Dependence of the energy with respect to the section of the cubic mesh at three different internuclear

distances of the H+
2 dissociation curve. The exact digits are underlined and boldface digits highlight the lower

energy obtained with the LCDAO approach. Energies are given in Hartree and distances in bohr.

2N + 1 R = 1.0 R = 2.0 R = 4.0 # GTOs

3 −0.45178481 −0.60261706 −0.54592175 369
5 −0.45178574 −0.60263059 −0.54607888 705
7 −0.45178575 −0.60263063 −0.54608281 1209
9 −0.45178575 −0.60263066 −0.54608306 1881

ref −0.45178187 −0.60263209 −0.54603249 182
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Table 5. Energy of the He atom obtained using four different boxes at HF and FCI levels of theory. The

exact digits are underlined. Energies are given in Hartree.

2N + 1 EHF EFCI

3 −2.86165904 −2.90347799
5 −2.86167782 −2.90350148
7 −2.86167842 −2.90350277
9 −2.86167844 −2.90350297

ref −2.86167906 −2.90350597
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Table 6. FCI energy of the H− anion obtained using five different box sizes. The exact digits are underlined.

Energies are given in Hartree.

2N + 1 EFCI

1 −0.393695
3 −0.490392
5 −0.516930
7 −0.524322
9 −0.526522

ref −0.527685
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Table 7. Ground state energies of the Be atom obtained within the LCDAO approximation for different box

sizes and different methods. Exact digits are underlined, and boldface digits highlight the lower energy obtained

with the LCDAO approach. Energies are given in Hartree.

2N + 1 HF CASSCF(2,4) CCSD

1 −14.26856824 −14.29070144 −14.28939455
3 −14.54550960 −14.59399663 −14.59533382
5 −14.56978700 −14.61263992 −14.61465921
7 −14.57233219 −14.61484891 −14.61696444
9 −14.57248747 −14.61496826 −14.61710109

ref −14.57233763 −14.61593821 −14.61782180
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Table 8. Ground state energies of the Be4 tetramer obtained within the LCDAO approximation. for different

box sizes and different methods. Exact digits are underlined and boldface digits highlight the lower energy

obtained with the LCDAO approach. Energies are given in Hartree.

2N + 1 HF CASSCF(8,10) CCSD

1 −53.49773025 −54.01994232 −53.94998949
3 −57.99063568 −58.12724099 −58.19390694
5 −58.32481811 −58.45532242 −58.53694478
7 −58.35101973 −58.47700987 −58.56181230
9 −58.35370683 −58.47932486 −58.56513432

ref −58.35445711 −58.48017161 −58.56252343
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Figure 1. The linear combination of two equal-exponent Gaussian orbitals having ξ < 2, arbitrary units.
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Figure 2. The linear combination of two equal-exponent Gaussian orbitals having ξ > 2, arbitrary units.
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Figure 3. The linear combination of two equal-exponent Gaussian orbitals having ξ = 2, arbitrary units.
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Figure 4. The minimum eigenvalue of the metric for a one-dimensional even-spaced infinite set of identical

Gaussians as a function of γ. The inset zooms in to small values of γ. Note that values lower than one are
omitted.
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Figure 5. The minimum eigenvalue of the metric for a one-dimensional even-spaced infinite set of identical

Gaussians as a function of ξ. The inset zooms in to small values of ξ.
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Figure 6. Electronic energy error δ with respect to the position of the hydrogen atom in the box of distributed

Gaussians. A total of 11 equidistant points were considered for each direction.
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Figure 7. The H+
2 potential energy curve as a function of the internuclear distance.
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