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Abstract — regarding the actual automotive safety norms the 
use of artificial intelligence (AI) in safety critical environments like 
autonomous driving is not possible. This paper introduces a new 
conceptual safety modelling approach and a safety argumentation 
to certify AI algorithms in a safety related context. Therefore, a 
model of an AI-system is presented first. Afterwards, methods and 
safety argumentation are applied to the model, whereas it is limited 
to a specific subset of AI-systems, i.e. off-board learning 
deterministic neural networks in this case. Other cases are left over 
for future research. The result is a consistent safety analysis 
approach that applies state of the art safety argumentations from 
other domains to the automotive domain. This will enforce the 
adaptation of the functional safety norm ISO26262 to enable 
general AI methods in safety critical systems in future. 

Keywords — Functional Safety, SIL, ASIL, Artificial Intelligence, 
Behavior, Goal Structure Notation.  

I.  INTRODUCTION  

Artificial intelligence (AI) has made progress from a vision to 
real usage in the automotive domain. The cars of the future will 
be trained and will use their knowledge on the streets. But, 
machine learning has still its limitations, especially regarding 
questions related to functional safety. This already starts with 
the unsureness given in the definition itself. “Artificial 
intelligence automatizes intelligent behavior. The term is not 
precisely defined as there is no precise definition of 
intelligence. In general, artificial intelligence is related to the 
trial, to build machines and to program computers in such a 
way, that they are able to solve problems by themselves” [9]. 

From a computational point of view there are a couple of 
advantages of using artificial intelligence methods to be 
mentioned [10]: 

 Inherent distributed representation of a function 
which is the base for realization in parallel 
programming units. 

 Representation and processing of fuzziness which 
is usually difficult to model in classical system 
engineering processes. This especially includes 
cases when there is little understanding between 
the relationships of input and output patterns. 

 Highly parallel and distributed computational 
efficiency with the ability of high performance and 
high failure tolerance. 

 The ability to learn. This enables the application in 
cases whose intentionally complete algorithmic 
specification cannot be determined at the initial 
stages of development. Therefore the neural 
network uses learning algorithms and training sets 
to learn new features associated with the desired 
function. 

For the use in safety related environments these systems 
have to solve the requirements in norms like IEC61508 [2] or 
ISO26262 [3]. The IEC61508 explicitly mentions artificial 
intelligence as a not to be proposed technic/measure 
(IEC61508 table A2-5). 

The ISO26262 does not include an explicit mentioning of 
artificial intelligence. Nevertheless, also regarding this norm 
the usage is not possible, as artificial intelligence systems often 
(depends on the used technology) do not fulfill the basic 
principle of deterministic reaction of a system. This basic 
principle of the functional safety was so far not discussable in 
the past. AI seems to be nearly unrealistic to be used in safety 
related area. 

But, AI is attractive for safety-critical fields. Despite safety 
regulations don’t recommend AI, the future AI usage is a field 
of research. However, there have been few success cases, for 
the AI technique is usually a lack of determinism and 
predictability, which is usually regarded as a disqualifier in a 
safety context [1].  

mailto:juergen.mottok@oth-regensburg


 

The structure of the paper is as follows. The main concepts 
are based on related work which is presented in chapter II. The 
concept presentation is mainly split into a model definition 
chapter III and the safety case argumentation in chapter VI. The 
glue between both parts are filled by a hazard analysis in 
chapter IV and a limitation of scope for the further 
considerations in chapter V. The paper finalizes with a 
conclusion and outlook. 

II. RELATED WORK 

In [7] Rasmussen introduces a model of human behavior 
based on three levels of performance of skilled human 
operators. These levels are not alternatives to each other but 
interact with each other to fulfill an action. We use the model 
as a base definition to transfer the logic from human behavior 
to the argumentation related to usage of artificial intelligence 
in the automotive domain. 

The paper of Kurd et.al [1] outlines the safety criteria which 
if enforced, would contribute to justifying the safety of neural 
networks. The criteria are a set of safety requirements for the 
behavior of neural networks. A potential neural network model 
is also outlined and is based upon representing knowledge in 
symbolic form. The paper also presents a safety lifecycle for 
artificial neural networks. This lifecycle focuses on managing 
behavior represented by neural networks and contributes to 
providing acceptable forms of safety assurance. We will use the 
approach from Kurd et.al [1] to apply the safety argumentation 
to the automotive domain. 

Safety analysis methods like functional hazard analysis [11] 
are standard in several industries. But so far they are not 
applied consequently and integrated in the literature to a 
systematic approach for safety argumentation for systems 
using artificial intelligence. 

III. DEFINITIONS 

To run a safety analysis of an AI-based functionality requires 
some initial definitions and the understanding of its nature 
from a system and a lifecycle perspective.  

A. Structural definitions 

The term “system” is used as defined by ISO26262 [3], i.e. 
“a set of elements that relates at least a sensor, a controller and 
an actuator with one another”. An AI-system is a system with 
the capability to learn. As illustrated in Figure 1, the main 
elements of an AI-system are 

1. the AI-system itself 
2. a learning procedure 
3. the learning content 
4. a learning goal 

 
Figure 1: Elements of the AI-system [8] 

 
For an AI-system one differentiates between the learning 

phase and the operation phase. During the learning procedure 
(2) the AI-system (1) is triggered by input vectors xT=(x1, … , xn) 
that are given by a learning content (3) and the AI-system 
adapts itself such that the output vectors yT=(y1, … , ym) of the 
learning content (3) are reached. 

The learning goal (4) specifies the operational contribution 
of the AI-system – strictly speaking it is exactly the general 
behavior of the AI-system. Its determination requires 
awareness of the context on which the AI-system is embedded 
in. 

Following a logical point of view, during operation time an 
AI-system (1) reasons for each possible input vector x~T=(x~1, … 
, x~n) based on the internal structure that has grown up due to 
the learning content (3). I.e. it reasons from a special learned 
input vector xT to a general one x~T. 

B. Behavioral definitions 

With the definitions given so far the AI-system is still 
considered as a black box system. To enable a white box view 
one has to have a deeper look into how the AI-system behaves. 
Rasmussen [7] introduced a view which is oriented on a human 
behavior model. It is based on the principle that “humans are 
not simply deterministic input-output devices but goal-
oriented creatures who actively select their goals … Human 
activity in a familiar environment will not be goal-controlled; 
rather, it will be oriented towards the goal and controlled by a 
set of rules which has proven successful previously”. In this 
section we adapt this model to the automotive domain such 
that we can base the safety arguments on this model later in 
the paper. 

A safety-critical context is mostly determined by the control 
structure the AI-system is embedded in. Achieving safety in 
practice means to find an appropriate, hazard-minimizing 
control action [6]. In automotive vehicle control usually 
quantitative models for systems design and performance 
analysis are used. The considerations in this paper use 
extensions of these models to higher level of human decision 
making. 



 

AI-systems have also to support the process model (see 
Figure 2) of a controller. In many expert systems, the process 
model represents computerized causal human knowledge [8]. 

 
Figure 2: Process model of a controller [6] 

 
Compared to categories of human performance, the tasks 

of the process model are typically categorized into skill-based 
behavior, rule-based behavior and knowledge-based behavior 
[7]. The skill-based behavior represents the sensory-motor 
action which is done in an automated way without conscious 
control. At the rule-based behavior level typically the action is 
controlled by a sequence of stored procedures. The knowledge-
based behavior level occurs in unfamiliar situations, when a 
goal controlled performance is needed. 

  

 
Figure 3: Behavioral Levels of AI-system (adopted from [7]) 

 
Figure 3 describes the interaction at and between each level 

in the steps perception, cognition and action. Following this 

concept, the principle functional behaviors of AI-systems can 
be summarized as follows: 

 

Table 1: Functions of AI-system in Context 

 Perception Cognition Action 

Knowledge-
based 

To identify 
symbols 

To decide 
next task(s) 

 

Rule-based To 
recognize 
signs 

To select 
rule for task 

 

Skill-based To form 
features 

 To apply 
control 
pattern 

 
In traditional automotive control systems the safety 

argumentation is based on the rule-based level only. The 
structure of the safety argumentation for AI-systems as worked 
out in this paper comprises all levels. 

IV. FUNCTIONAL HAZARD ANALYSIS 

With the above considerations on the design of a specific 
AI-system in its context (which may contain multiple AI-
systems) the safety analyst is ready to start a functional hazard 
analysis (FHA) [11] on the functions defined in Table 1. The FHA 
identifies the relationships between functions and hazards, 
thereby identifying the safety-significant functions of a system 
as well as the hazards associated with that functionality. This 
identification provides a foundation for the safety program to 
scope additional safety analyzes and level of rigor analysis and 
verification of the system software. 

For an exemplary illustration of a FHA, we use a simple sign 
recognition function. A sensor identifies a sign with a symbol on 
it. Based on the recognition on the rule-based behavior level 
and the identification on the knowledge-based behavior level, 
actions are taken on an actuator. The actuator is not explicitly 
defined here, as it is not needed for the safety argumentation 
in the example. An initial FHA is contained in  

Table 2 below. 

From the criticality classification, the safety integrity level 
(SIL/ASIL) can be derived as guidance for activities during 
system design, development and operations. If protection 
functions outside the AI-system are available in the control 
context, they can be used to relax the criticality assignment.  

Dependent on the FHA made in a given context, risk 
mitigation mechanisms introduced during system design could 
be for example: 

 a collision avoidance function based on dedicated 
distance-measuring devices 

 traditional envelope protection functions as ABS or 
ESC 

 an emergency stop function 
These functions can mitigate situations of AI-system failure. 

They can incorporate own AI-systems, but should be designed 
independently.  

 

 

 

 



 

Table 2: Exemplary FHA for Sign Recognition 

Functional Failure Mode Existing Sign 
not 
recognized 

Non-existing 
sign 
recognized 

Wrong 
recognition 

Untimely 
recognition 

Undetermine
d recognition 

Worst-case Consequence Applicable 
rule missed 

Wrong rule 
applied 

Wrong rule 
applied 

Wrong rule 
applied 

No situational 
awareness 

Criticality hazardous hazardous hazardous hazardous major 

Comment Collision avoidance, envelope protection present Emergency 
operation 
triggered 

Causal Factors during Design Inadequate AI-system design 
Inadequate off-line procedure 

Inadequate content 
Potentially unrealistic goal 

Causal Factors during Runtime System Runtime Failure 
Inadequate on-line procedure 
Reasonably foreseeable event 

Unforeseeable event 

 
 

 

V. CLARIFICATION OF SCOPE 

Until now the considerations were based on a general 
definition of AI-systems. For the remaining paper it is necessary 
to structure the types of AI-systems in more detail. 

1. On-operation versus Off-operation learning 

Off-operation means that the learning and the operation 
phase are separated from each other in the product 
lifecycle process. Usually the learning is done on a high 
performance PC or in a processing service center and the 
operation environment is an automotive embedded board. 
On-operation enables adaptations of the AI-system with the 
help of learning during operation, i.e. during driving within 
the car.  

2. Supervised- versus unsupervised- versus reinforcement-
learning 

This classification mainly determines which control is given 
during the learning phase through the process [5]. 

In supervised learning an external teacher presents the 
network with desired input-output mappings.  

In unsupervised learning the desired outputs are not known 
in advance during training. The neural network is allowed to 
settle into suitable parameter states and during 
optimization the neural network develops its 
representation according to the inputs received. 

Reinforcement learning is used when learning examples 
(inputs and outputs) are not available. To determine the 
suitability of the neural network given an input a ‘critic’ 
element produces a ‘correct’ or ‘incorrect’ signal. This signal 
is generated by observing the interaction of the neural 
network with the environment.  

3. Deterministic- versus stochastic- learning approaches  

Some learning methods include an optimization step. This 
step is often done using stochastic optimization methods. 

For the case of deterministic off-operation learning we will 
introduce a safety argumentation for an AI-system in the 
following chapter. 

In case of a deterministic on-operation learning an AI-
system applies itself to the environment which makes the 
safety concept much more difficult to argue. Using stochastic 
approaches nevertheless makes the argumentation even more 
complex and in case of on-operation learning impossible 
regarding the requirement to fulfill the basic principle of 
deterministic reaction of a system. Both cases are topics for 
further future research. 

As a complete consideration of all possible combinations of 
the classifications would be beyond the limited space of this 
paper, we will limit us in the remaining paper to off-operation, 
deterministic learning approach exemplarily analyzed using 
neural networks. 

VI. SAFETY ARGUMENTS FOR NEURAL NETWORKS 

Based on the safety integrity level classification given by the 
hazard analysis, the safety case responds with a structured 
argument intended to justify that the system is acceptably safe 
for the specific AI-system in a specific operating environment. 
Figure 4 shows the safety argumentation documented by using 
the goal structuring notation (GSN) [12]. 

The Goal Structuring Notation (GSN) is a graphical 
argumentation notation – explicitly represents the individual 
elements of any safety argument (requirements, claims, 
evidence and context) and (perhaps more significantly) the 
relationships that exist between these elements (i.e. how 
individual requirements are supported by specific claims, how 
claims are supported by evidence and the assumed context that 
is defined for the argument) [13]. 

We used a hierarchical GSN modeling approach: Figure 4 
shows the goal structure for neural networks on a top level. The 



 

GSN details for Goal 4 “(Diverse) redundancy and/or 
monitoring to dedicated ASIL” are shown in Figure 5. The GSN 
details for G6 “Neural network hazards have been eliminated” 
as derived in Figure 7. Figure 7 shows the GSN details of rule-
based supervision to hazardous outputs of neural networks. 
The rule-handling approach of Table 1 is used.  

Leafs of the GSN tree represent a list of methods applicable 
in the safety argumentation. Such methods are listed in, e.g. 
[14], [15], [16], [17], and [18]. 

As one may imagine the safety argumentation for neural 
networks are on a coarse level not different to other adaptive 
systems. Some of the solutions in the GSN tree are generic 
applicable also to neural networks. Some others are specific in 
their implementation for neural networks. Let’s consider three 
parts in the GSN tree in more detail, as these are of specific 
interest for the safety argumentation regarding neural 
networks 

A. Plausibility checks as solution for G4.2 – monitoring 

The solution “plausibility checks” is a substitute for a set of 
methods that check the plausibility of an outcome with the help 
of more or less formal methods which go beyond visualization. 

E.g. Heatmapping [22] is a visualization method that 
quantifies the “importance” of individual pixels with respect to 
the classification decision and allow a visualization in terms of 
a heatmap. A more formal analysis of Bayesian networks help 
to estimate regularization parameters, and to predict the width 
of the outcome distributions generated by the model. 

In [23] Ribeiro e.a. state “Understanding the reasons behind 
predictions is, however, quite important in assessing trust in a 
model“. They introduce the Lime procedure (local 
interpretable model-agnostic explanations) to create 
explanations that reflect the behavior of the classifier 
"around" the instance being predicted. 

B. Solutions regarding G10 – Restriction of outcome space 

A restriction of the outcome space provides a reduction of 
complexity and in some solutions the possibility to ensure 
stability between input and output. The solutions listed in this 
branch of the GSN tree have been previously mentioned in [14] 
and [16].  

Extreme value theory is a method that has been used to 
promote confidence by a quantification of the probability 
estimates made at the tails of the used activation functions. By 
a formal analysis of assumptions about extreme values the 
possible outcome space is bounded with a probability based 
argumentation. With a similar goal the method novelty 
detection classifies test data that differs from the training data. 
Both methods do not restrict the values of the outcome space 
completely but reduce the probability of failure classification. 

To ensure stability and convergence during real-time 
operation some kind of envelop tools help to predict and avoid 
regions of instability. Also real-time rage limiters on learning 
state space as well as on input space may ensure more stability. 

To ensure that the neural network actively controls only when 
appropriate, an engage/disengage mechanism could be the 
method of choice. The usage of dead bands such that learning 
is allowed only when useful command/response dynamics are 
available should also ensure that the neural network does not 
adapt to noise or drift away from good solutions. 

C. Solutions regarding G11 – Formal methods 

In the literature one may find an increasing set of formal 
methods that are at all an attempt to get the structures of 
neural networks understandable, reasonable and under 
control. Several neural network specification languages have 
been developed, like CONNECT [17], nn [17], NSL [19], 
NeuroML [20], or EpsiloNN [21]. CONNECT, nn, and NSL 
concentrate on the definition of a dedicated structure of the 
neural network. NeuroML is created with respect to the 
exchange of descriptions of neuronal cell and network models. 
EpxiloNN provides a high-level description of artificial and 
biology-oriented neural networks with the main objective to 
support the inherent parallelism of neural networks. 

Specification languages directly influence the structure of 
neural networks. Another technique is the usage of linear 
models. Using explicit linear models for the activation functions 
of a node, neural networks provide a theoretical framework to 
demonstrate stability and evaluate stability margins, which is 
lacking in widely used heuristic approaches to non-linear 
control [17]. 

The other solutions presented in this branch of the GSN tree 
are attempts to transform the neural networks into structures 
that are easier to handle by formal analysis methods. To 
convert a neural network to a decision tree is one of these 
solutions. Examining a decision tree representing the 
knowledge of the neural network is more understandable than 
examining the neural networks actual structure. The decision 
tree information can be utilized, to check against requirements 
and to provide confidence in the neural network. 

Last but not least the mapping of the empirical model onto 
a structural model of domain expertise provides more analysis 
methods, e.g. sensitivity analysis or Bayesian regularization. 
Bayesian regularization is a mathematical process that enables 
to consider the neural network in the context of a statistical 
problem to enable the applicability of regression analytics. 

VII. ASSIGNMENT OF SAFETY METHODS TO BEHAVIOR LEVELS 

All the solutions presented in the previous section make 
more or less use of the knowledge that is coded in the neural 
network. In Table 3 the solutions are mapped to the knowledge 
levels introduced in Figure 3. 

Table 3: Relationships Safety Methods to behavior levels 

Behavior 
Level 

Available Technical Safety Methods 

Knowledge-
based 
Identification 

 Fault removal 

 Diverse redundancy & voting 

 Neural network tolerates faults in inputs 



 

 Fault detection in weights 

 Dealing with novel inputs metrics 

 Fault detection in the activation function 

 Detect uncompleteness of learning data 

 Specification languages 

 NN to decision tree 

 Rule extraction 

 Bayesian regulation 

 Sensitivity analysis 

 Use linear models 

Rule-based 
Recognition 

 Build-In self test 

 Plausibility checks 

 Extreme value theory 

 Novelty detection 

 Predict and avoid regions of instability 

 Real-time range limiter on learning sate 
space 

 Real-time range limiter on input space 

 Use engage / disengage mechanisms 

 Dead band on adaptive system inputs 

Skill-based 
Formation 

 Program-Flow 

 Memory Overflow 

 Time-out given training samples 

 Time-out given input pattern 

 Timing guarantees 

 

The list of technical measures is neither complete nor 
sufficient for the complete fulfillment of a safety 
argumentation in a concrete automotive application context. 

However, the measures are necessary and constitute a 
foundation from which the safety argument can be started and 
expanded. Some of them are mentioned in research literature 
but so far not applied in the automotive industry context. 
Nevertheless, the assignment to the knowledge levels gives 
already an overview about the generality of the solutions. The 
more knowledge is needed for the application of a solution the 
more effort has to be done during the application. 

VIII. CONCLUSION AND OUTLOOK 

The ultimate goal to provide guarantees for all unexpected 
cases cannot be achieved by definition. So, for example, there 
always exists a point where the physical system is 
damaged/changed to such an extent that adaptation toward 
controllable behavior is simply not possible [4]. As this is 
generally accepted for human intelligence, it should also be for 
artificial one. However, the transition requires a careful 
argumentation from which the existence of adequate means of 
protection becomes comprehensible for the public. 

This paper proposes a structural framework in which safety 
aspects of AI become arguable. In order to establish a 
defensible position for a certain use of AI, this is a relevant and 
a significant step. 

The list of solutions presented in this paper is however not 
complete to argue the applicability of a neural network in an 
automotive safety application. So far no structured and at least 

sufficiently complete approach for the safety argumentation 
can be found in the literature. More research is needed to 
ensure the functional safety in the upcoming future application 
of neural networks in the automotive applications.   
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APPENDIX: GSN DIAGRAMS 
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Figure 4: Goal Structuring Notation (GSN) diagram to represent the safety case argumentation regarding neural networks 
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Figure 5: GSN details for G4 as derived in Figure 4 
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Figure 6: GSN details for G6 as derived in Figure 4 
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Figure 7: GSN details for G8 as derived in Figure 6

 


