Johannes Freitag

Sascha Uhrig

Airbus

Quality of Service for Integrated Modular Avionics (IMA) on Multicore Processors using a Safety Net Architecture

Keywords: multicore, safety net, monitoring, Integrated Modular Avionic (IMA), avionics

Tight timing guarantees for COTS multicore processors are still hard or even impossible to provide because of interferences between cores when accessing shared resources like memory or caches. Hence, this kind of processor is rarely used in real-time systems so far. Nevertheless, due to the multicore's clear advantage of saving space, weight, and power compared to multiple single-core legacy systems, many industry domains like avionic have high interest in applying multicores in future products.

In this paper an extended version of a non-intrusive online interference detection and quantification approach based on applications' Fingerprints is presented. The Fingerprinting technology has been extended for application on a real-world avionic Integrated Modular Avionic system. The evaluation shows that the extended approach is able to track the performance of multiple partitions of the system independently. Performance slowdowns above 1.5% are reliably detected and detecting slowdowns higher than 4.8% takes less than 7ms in all cases.

Introduction

Future avionic applications will require higher computation performance while at the same time a reduction in space, weight and power is needed. This need is shown for example in the concept of the Airbus Vahana [START_REF] Airbus | Future of urban mobility[END_REF] aircrafts which will be ultra lightweight electrical helicopter-style vehicles providing novel autonomous urban transportation. In comparison to current aircrafts the avionic systems must be much smaller and lightweight while at the same time provide sufficient performance to compute not only the flight control data similar to current airplanes but additionally compute the complex algorithms for autonomous flying, navigation, and collision avoidance. One solution for these demands is the consolidation of flight applications currently running on multiple single core processors on a small number of multicore processors. Furthermore, legacy applications shall be reused without major modifications.

Avionic systems show special requirements with respect to system reliability and availability because of their safety-critical nature. Even though first ideas of the regulations on how to apply multicore systems in avionics are presented in the CAST-32 position paper and its follow-up CAST-32a [START_REF]Position Paper CAST-32A: Multi-core Processors[END_REF], both from the Certification Authorities Software Team (CAST), concrete design details are still open. One of the major challenges in this context is the interference between applications since theoretically one application can compromise another one, at least in the timing domain by the usage of shared resources. Accordingly, an essential requirement for certification is a clear and reliable isolation of safety-critical applications that needs to be demonstrated to the certification authorities. This includes suitable Worst Case Execution Time (WCET) estimates. However, this is a very difficult task since application performance can drop significantly if multiple cores (i.e. applications) are sharing the bus and memory [START_REF] Nowotsch | Leveraging multi-core computing architectures in avionics[END_REF]. Therefore, a WCET analysis on possible worst case scenarios is useless because due to WCET overestimation for current COTS MPSoCs the performance gain of the multicore is neglected.

The contribution of this paper ia a Safety Net approach for IMA multicore systems executing a critical IMA application on one core concurrently to other less critical applications on other cores. The Safety Net continuously tracks the progress of the critical IMA partitions or the complete IMA system. Furthermore, it triggers countermeasures if an acceptable delay is exceeded. Our proposal allows tracking the progress of an application without any modification of the application code. Therefore, it is well suited for migration of safety critical legacy IMA applications to one core of a multicore system.

Moreover, since our safety net approach focuses on timing aspects, i.e. interferences between cores, it is able to detect also system failures causing timing variations. Reactions required after detection of such failures are not in the scope of this paper.

The remainder of this paper is organized as follows. A background on the fingerprint safety net technology is described in Section 2 with the description of the extension for IMA systems. The evaluation is presented in Section 3 while Section 4 provides an overview of mature techniques and related work. The paper concludes with Section 5 including an outlook on future work.

Fingerprint Safety Net

In the following the basic idea of the Fingerprinting approach is briefly described. The extension allowing not only tracking of exclusively executed (sequential) applications but also a timeshared system as provides by avionic IMA standard is presented in Section 2.2.

Basic Fingerprinting

During execution of an application, a flow of instructions is executed. This flow is not homogeneous in terms of type of instructions, source of the instructions, and execution time of instructions. Accordingly, measuring for example the number of executed floating point instructions per time unit will lead to a characteristic curve of an application or a part of the application. If the application is executed several times with the same input parameters the measured curves are very similar. For tracking the progress of a known application, its measured curve can be compared to the recorded reference curve.

In case an application executed on a multicore processor suffers from interferences with other applications on the shared memory hierarchy, its progress is slowed down. Slowing down the application will result in a stretched (in time) but shrunk (in the value range) curve. When comparing such a mutated measured curve with the original reference curve, the actual slowdown can not only be identified but also be quantified at any time during execution.

Many current MPSoC (e.g. based on ARM, PowerPC) include performance counters implemented in hardware which can be configured to increment every time a given event is raised. While the amount of events which can be configured is usually more than 100, the amount of counters that can be incremented simultaneously is small (around 4 to 6) [START_REF]e500mc Core Reference Manual[END_REF]. An example of such curves is shown in Figure 1.

The Fingerprint model is obtained by execution of the main application several (thousand) times without other applications running in parallel. The performance counter values of the selected events are recorded with the frequency defined by the safety net system (100µs period in the prototype FPGA case). Afterward, the recorded characteristics are clustered using a bisecting k-means algorithm. Finally, the medians of the resulting cluster centroids are combined into a tree model, the Fingerprint.

During actual execution, the Fingerprint safety net system compares the performance counter values with the stored Fingerprint model and the actual execution path along the tree is tracked. In contrast to the generation of the Fingerprint model which can be created off-line on a powerful compute node, timing is crucial for the tracking phase.

In case the slowdown of a critical application executed on one core exceeds a given limit (acceptable delay), other cores running less critical software can be thwarted to reduce concurrency and, hence, increase performance of the critical application.

In summery, the fingerprint safety net approach [START_REF] Freitag | Dynamic interference quantification for multicore processors[END_REF] tracks the application's progress on the basis of characterized behavior of hardware event counters integrated inside the core of a multicore. Periodically reading and resetting such counters results in a curve that is characteristic for an executed application, more specifically, for the progress of that application. When comparing a recorded reference curve with the performance counter values measured in real time, the current progress with respect to the reference execution can be measured. We expect that the performance of a current DAL-A processor is sufficient to implement the functionality required for the fingerprint safety net. Hence, an appropriate certification of our approach should be feasible.

Extension for IMA Systems

Integrated Modular Avionic (IMA) systems execute multiple applications within fixed time slots. The slots are scheduled round-robin and form a so-called major cycle. The major cycle of the demonstrator HTAWS system (see Section 3) is 67ms and comprises eight slots. Figure 2 shows the performance counters of one major cycle with indicated time slot splittings in slots A to H. These eight slots are used by seven applications, one application is executed twice per major cycle in slots C and F . In the characteristics of Branches, Inst fetched, and Stores completed there can be recognized some small spikes every millisecond. These spikes stem from a system timer interrupt that is called every millisecond. The interrupt is called continuously, even in periods in which it is not clearly visible. Since the applications are executed independently within their time slots, they do not form a common Fingerprint. Instead, each application has its own Fingerprint such that each application/Fingerprint combination needs to be treated separately. This means that in parallel to the partition switch on the processing core, also the safety-net must change its context to track the next application. We exploited a feature of the QorIQ PowerPC processor series in combination with the used operating system: The PowerPC comprises a so-called Process ID Register (PIDR) that is written on a partition switch by the OS partition scheduler. In addition to that, we enabled a dedicated trace message (Ownership Trace Message) that is sent each time this PIDR register is written. Since the trace interface is used for reading the performance counters, the generated trace message is also captured by our safety-net processor. The safety-net system changes its internal context each time such a trace message is detected, according to the received value which corresponds directly to the newly executed application. This means that the safety-net uses the Fingerprint model that belongs to the currently executed application.

In addition to the pure switching of the model, an application's execution run is not limited to a single slot. This means an application can be suspended at the end of a slot and resumed at its next slot. The safety-net must take care of this and must continue tracking the progress in the new slot where the execution stopped end of the previous slot. As a separate model is created for every partition it is also possible to independently exchange or modify applications in partitions without having to recreate the model of the other partitions again (incremental development).

In Figure 3 the execution characteristic of one HTAWS partition concatenated over five slots (i.e. major cycles) is shown. It can be recognized that there are performance drops (shown values are the number of completed instructions per time unit) at each partition switch. Since the OS is not configured to provide separate cache areas to the partitions, cache contention between the partitions' time slots occurs that generates these performance drops. It turned out that our Fingerprint checking algorithm is robust enough to deal with these short drops without any additional functionality.

Evaluation of the Fingerprint Technology

We evaluated the Fingerprint technology using the Helicopter Terrain Awareness and Warning System (HTAWS) application. The HTAWS is a real world IMA avionics system acting as a pilot support system. Depending on the position and heading of a helicopter terrain information and warnings are displayed. HTAWS is running on a VxWorks 653 operating system implementing the IMA environment on one core. The approach is independent of the kind of application running on the other cores.

Hardware Setup

The Fingerprint safety net observing the HTAWS application is implemented using a soft-core processor (MicroBlaze 125MHz) in a Xilinx Kintex FPGA. This FPGA safety net is connected to the HTAWS running on a NXP P5020 dual core processor (see Figure 4). The two components are located inside the same avionic prototype computer housing but on different boards. The performance counters of the cores of the P5020 can be read out by the FPGA via an Aurora High-Speed Serial Link integrated on the backbone of the system. The trace messages of the P5020 are encoded in the NEXUS 5001 [START_REF]The Nexus 5001 Forum -Standard for a Global Embedded Processor Debug Interface[END_REF] format. In order to decode the messages and extract the performance counter values on the FPGA an IP core was created. The readout speed is 100µs (10 kHz). This is bound by the speed of the prototype safety net processor and the model size.

Performance of the detection algorithm

We used the three HTAWS partitions called Control, Graphics and Storage for our evaluation, executed in the slots D, C+F, and H, respectively. In total 1000 major frame cycles were recored for the creation of the Fingerprint model in single core mode. The Fingerprint model is created by first splitting and concatenating individual partitions as described in Section 2.2. The splitting and concatenation works reliable and there was no missing ownership trace message observed. After concatenation, the Control application has a length of 50 ms (see Figure 3), Graphics 32 ms and Storage 40 ms in every run. Therefore, for example a total amount of 200 different and complete Control application periods are used for the model creation. In the second step the individual application traces are clustered and combined into an individual fingerprint model for every application. The clustering and model representation is described in [START_REF] Freitag | Dynamic interference quantification for multicore processors[END_REF].

The evaluation is based on a combined real execution and simulation approach. 1000 further major frame cycles were recorded from execution in stand-alone mode. Interferences between the cores and the resulting slowdown is simulated by shrinking and stretching the recorded curves per partition from 0% up to 6%. Shrinking and stretching was done after splitting and concatenation because even if an application is slowed down and executes longer the partition switch triggered by the operating system is at a defined point in time.

The slowdown ratios that can be reliably detected for the example partitions are shown in Figure 5. For all the partitions a slowdown above 1.5 % can be detected reliably. However, it can be recognized that the slowdown detection algorithm is behaving slightly different for different partitions as there are deviations of the curves between 0% and 1%. Furthermore, there are false positive detections at a slowdown of 0%, i.e. a slowdown is detect even though the applications run at full speed. The average time span until a certain delay is detected is shown in Figure 6. At a slowdown of 0.5% the detection algorithm needs on average of about 12ms to detect the slowdown for the control and graphics partition while it needs around 18ms to detect it for the storage partition. For all the partitions the optimum is reached at around 4.8% slowdown. For the graphics and storage partition this optimum is at around 7ms while it is significantly better for the control partition (3ms). There is a deviation because the algorithm responds faster to the characteristics of the control partition curves.

Discussion

Section 3.2 shows that the Fingerprint safety net for IMA approach is suitable for detecting slowdowns of individual partitions reliably. However, there are false positive slowdown detections even if there is no actual slowdown. This results from the fact that the algorithm extracts data with a certain extraction frequency not synchronized with partition switches. In one execution of a partition the measurement could be done very close to the partition switch. In this case all events happening in the partition are counted. In another case the measurement happens close to 100µs after the partition switch. In this case the first around 100µs events are not taken into account and the execution appears to be faster. The algorithm cannot distinguish between real slowdown and this measurement uncertainty and detects it. As the slowdown in such cases is quantified less than 0.1% and classified as acceptable delay, no countermeasure will be triggered.

The time it takes to detect a slowdown is varying for a given slowdown. For slowdowns from 0 to 3% it is not a problem to be detected after a longer period because such small delays should be in the region of the defined acceptable delay (see Section 2). However, a significant delay (greater 3%) has to be detected early enough before the end of the period of the application. This is the case for all the measured partitions of the HTAWS system. The graphics partition has the smallest period (32ms) and the worst detection time (7ms at 5% slowdown). This detection time is sufficient to perform countermeasures in time. However, if an application has a shorter period the detection time has to be reduced. This can be done by increasing the sampling frequency but at the cost of higher model sizes and higher demand for computation in the safety net processor.

Related Work

The use of multicore systems in avionic applications is still not wide spread. One reason is the difficulty to obtain suitable Worst Case Execution Time (WCET) estimates since application performance can drop significantly if multiple cores (i.e. applications) are sharing the bus and memory [START_REF] Nowotsch | Leveraging multi-core computing architectures in avionics[END_REF]. Therefore, a WCET analysis on possible worst case scenarios is useless because due to WCET overestimation (WCET to average execution time ratio) for current COTS MPSoCs the performance gain of the multicore is neglected.

There exist several approaches to limit or even control the interferences between high and low critical tasks on multicore systems to relax the worst case scenario and, hence, improve WCET analysis results. Most of them focus on task or even thread granularity and are integrated into the scheduling of the system. The main idea of these approaches is counting e.g. bus accesses and limiting them by suspending the corresponding thread. Examples of such approaches are presented in [START_REF] Kritikakou | Distributed run-time wcet controller for concurrent critical tasks in mixed-critical systems[END_REF], [START_REF] Nowotsch | Multicore interference-sensitive wcet analysis leveraging runtime resource capacity enforcement[END_REF], [START_REF] Bak | Memory-aware scheduling of multicore task sets for real-time systems[END_REF], [START_REF] Agrawal | Contentionaware dynamic memory bandwidth isolation with predictability in cots multicores: An avionics case study[END_REF]. On overview of these and other approaches is given in [START_REF] Girbal | Deterministic platform software for hard real-time systems using multi-core cots[END_REF]. Even though these approaches are interesting for newly developed applications, they are not suitable for combing multiple legacy single core avionic applications on a multicore processor because the legacy applications or the underlying operating system would either have to be modified completely, which leads to a high effort in certification, or restrict the applications in a way that the performance gain of the multicore is neglected.

An analysis on the interference channels on modern multicore systems on the example of the P4080 is given in [START_REF] Agirre | On the Tailoring of CAST-32A Certification Guidance to Real COTS Multicore Architectures[END_REF]. Mitigations for some of the channels are proposed but the paper concludes that it is not possible to find internal mitigations for all the identified channels (one example being the CoreNet which is the interconnect between the cores and all the devices). Furthermore, not all interference channels can be identified because insufficient documentation is provided by the chip vendors. In the fingerprinting method proposed in this in this work it is not important which interference channel (even unknown interference channel) caused the interference as it measures the interference as a slowdown of the software executed on the observed core.

A previous approach for characterizing an application's execution is presented in [START_REF] Duesterwald | Characterizing and predicting program behavior and its variability[END_REF]. It is used in high performance systems to predict an application's future behaviour and needs for adjusting architectural parameters for performance optimizations. It is not related to embedded real-time systems but successfully uses a similar, but intrusive, technology for tracking application's performance.

Conclusion

This paper introduces and evaluates an extended proposal of transparent and non-intrusive tracking of an application's performance for multicore processors. Evaluations using the real world avionics IMA application HTAWS showed that the approach reliably detects and quantifies slowdowns of the observed application. Furthermore, in contrast to other approaches, this approach implements an external safety net as proposed by the CAST-32a position paper. In the evaluation, we focused on the three dominant partitions of the HTAWS applications. The evaluation shows that the extended approach is able to track the performance of multiple IMA partitions of the system independently. Any performance slowdown above 1.5% is detected reliably and slowdowns large than 4.8% take less than 7ms detection time for the partitions under test.

Future work will focus on developing countermeasures that can be triggered if an application tends to leave the accepted range of performance slowdown. These countermeasures shall have a regulating nature to increase the application's performance by reducing contention on the bus and memory. This can be achieved for example by thwarting other cores, e.g. by interrupts or hardware based bus access limiters, or by rearrangement of cache quotas. Furthermore, higher sampling rates at partition switches need to be investigated in order to detect the partition switches more accurately and means to improve the time required to detect a slowdown, e.g. by hardware acceleration of the detection algorithm, need to be evaluated. Moreover, maturity of the derived Fingerprint model need to be determined. This can be done by examining MCDC coverage during Fingerprint generation.

Figure 1 :

 1 Figure 1: Measured curves of four event counters when executing the HTAWS application

Figure 2 :

 2 Figure 2: Major cycle of the HTAWS IMA application

Figure 3 :Figure 4 :

 34 Figure 3: Concatenation of the control partitions extracted from five subsequent major cycles

Figure 5 :

 5 Figure 5: Amount of runs in which slowdown is detected for a given simulated slowdown

Figure 6 :

 6 Figure 6: Average time span until a given slowdown is detected for three selected IMA partitions