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Abstract—Maintenance has long been a predomi-
nant activity in the industrial sector. Measuring and
analyzing physical signals on the machines allows to
provide a diagnosis on their health state. The more
recent Health Monitoring Systems (HMS) allow to
optimize the maintenance operations by performing
preventive maintenance. The existing HMS are based
on various signal-processing algorithms applied to
vibration data gathered during flights, in order to
compute health indicators. The computation of the
indicators is done on-ground, once a full data set has
been offloaded.

In this paper, we report on experiments made
to turn these on-ground computations into on-board
real-time computations, using a many-core processor.
There are two main issues to be addressed: (i) the
management of the flow of inputs from sensors;
(ii) the (hopefully tolerable) errors we make when
transforming an on-ground algorithm that can treat
data globally, into an on-board real-time algorithm
that is necessarily incremental. We show that the
error is indeed acceptable.

Index terms— on-ground, on-board, real-time,
many-core, global or incremental algorithms, Health
Monitoring Systems.

I. INTRODUCTION

The HMS function monitors the vibration of
the helicopter system components like gear boxes,
transmission shafts, rotors, and bearings. Vibrations
are measured by sensors and the data are then
provided to a computation unit that performs signal
processing to compute health indicators. Some of
the HMS indicators are intended to detect mechan-
ical fatigue occurring during helicopter operation.
The interpretation of the indicators in terms of
mechanical defects, and the very choice of the
indicators to be computed, are based on previous
expertise and empirical studies of the helicopters.
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The current implementation of the HMS is not
embedded in the helicopter. An embedded acqui-
sition unit records the vibrations during the flight
without any loss (the recording frequency must be
at least equal to the sensors sampling frequency).
Signal processing algorithms that define the various
health indicators are computed on-ground. This
requires a huge storage capacity, and a high network
bandwidth for data offloading.

According to [7], the helicopter S-92 designed by
Sikorsky is, since March, 2017, the first helicopter
that has the ability to transmit in real-time raw
vibration data. Vibration data are transmitted to
a ground support team that performs maintenance
operations. In others words, the real-time imple-
mentation is not embedded in the helicopter. It is a
real-time but on-ground computation.

We study how to provide an on-line embedded
version of the existing on-ground HMS application
for several reasons. First, the existing application
runs on the PC of the helicopter operator/customer,
and cannot be trusted entirely by the helicopter
manufacturer, who has to recommend periodic and
potentially costly maintenance sessions. If the HMS
is computed on-line, it will inherit the critical-
ity level of the on-board computing unit, and be
more reliable for the manufacturer. It is one of
the enablers to replace periodic maintenance with
predictive maintenance. Second, it will save time
between flights, and therefore increase the heli-
copter availability.

Our purpose is to build an embedded real-time
implementation of the HMS. The health indicators
will be computed on-board. Because of the comput-
ing requirements of the signal processing algorithms
involved, it is necessary to choose an embedded
processor that guarantees high performance and the
ability to be used in certified equipment. According
to [1], the benefits of the MPPA family of proces-
sors for critical real-time systems are: predictable
computation and responses times, low power, and
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high performance.
The first challenge is the need to transform a

global algorithm into an incremental one. With the
on-ground global algorithms, we consider the full
data set to compute indicators (e.g., we may use a
global average). The embedded real-time algorithm
should be able to treat data as soon as they become
available, because it is impossible to store them
before computing the indicators. The transformation
of the algorithms will necessarily introduce some
errors, w.r.t. the on-ground global algorithm con-
sidered as the reference implementation.

The second challenge is the real-time aspect: we
focus on inputs, and the constraint of computing
health-indicators sufficiently fast with respect to the
volume of data determined by the input frequency
and the number of sensors.

In this paper we are not concerned by the tech-
niques that can be used to map the entire compu-
tations onto the computing units of the many-core
processor. We carefully examine the whole chain
between sensor data and the indicators, through
the acquisition card, the bus connecting it to the
processor, and the I/O interface of the processor. We
perform experiments with a simple mapping, and
derive various dimensioning indications, related to
the number of sensors, the sampling frequency (i.e.,
the volume of data), and the number of indicators
to be computed.

Section II describes the mechanical system, the
sensors, and the maintenance decisions. Section III
details the different steps of the existing global
algorithm used on-ground to compute health in-
dicators. Section IV explains the problems faced
when transforming the existing algorithms into real-
time embedded ones. Section V focuses on the
architecture of the many-core processor MPPA-256.
Section VI reports on our implementation experi-
ments on the Kalray MPPA processor and finally
section VII lists lessons learnt and further work.

II. MECHANICAL SYSTEM, ACQUISITION UNIT,
AND INDICATORS ANALYSIS

A. Mechanical System

The mechanical system involves phase sensors
and accelerometers. Phase sensors are placed on
reference shafts. They observe a tooth placed on
the rotating part, in such a way that a top signal
can be generated at each revolution, and sent to
the rest of the system. Various accelerometers are
placed on the rotating elements to monitor their vi-
brations. Each monitored shaft has a fixed rotational

speed ratio w.r.t. the speed of the reference shaft it
depends on.

Figure 1 shows two reference shafts: the main
and the tail rotors. Two monitored shafts are con-
nected to the main rotor: IGB and OGB, with a
rotational speed ratio rm = 2 (they rotate twice
faster). Two monitored shafts are connected to the
tail rotor, TDS1 (Tail Drive Shaft left) and TDS2
(Tail Drive Shaft right), with a rotational speed ratio
rt = 4 (they rotate 4 times faster).

main
rotor

rm = 2

OGB

IGB

phase sensor
accelerometer

monitored shaft
connection/speedup ratio

rt = 4

TDS1

TDS2

tail rotor

Fig. 1: The Mechanical System and the sensors

B. Acquisition Unit

The acquisition unit is a piece of equipment that
acquires the sensor data, and provides a flow of
inputs for the computations. During a flight, it per-
forms one or several acquisition sessions. A session
is characterized by the choice of enabled accelerom-
eters, the sampling frequency, and the sampling
size (number of samples per accelerometer acquired
during the session). Each session is stored in a file
and contains vibration samples of accelerometers
and tops from the phase sensor. Suppose we have
only one phase sensor on the tail rotor, and one
accelerometer on a rotating element with speed
ratio 4. The acquisition unit builds a sequence of
tuples (v, t), where v is a vibration measure, and t
is a Boolean, corresponding to the phase sensor.
The sequence of values occurring between two
successive rising edges of t corresponds to the data
gathered for 4 revolutions of the monitored element.
The sampling frequency is in the range [1−31]kHz.
The top is very important: although the speed of the
rotating parts varies, the top allows the measures to
be gathered per revolution of the monitored rotating
part.

Moreover, the data are not delivered one sample
at a time. The acquisition unit fills a buffer (the
size of which corresponds to 100 ko, typically).
The buffer is then read by the computation part,
sufficiently often so as not to lose samples. In
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the on-line version, the size of the data packets
exchanged between the acquisition card and the
many-core processors has to be large enough, to
ensure that the over-cost of the transmission w.r.t.
to the payload is not too big. We examine this point
in section VI-B.

C. Computation of the HMS Indicators and Main-
tenance Decisions

For a given acquisition file and monitored shaft,
the existing off-line application computes a set of
frequency indicators (OM1, OM2, ...) and tem-
poral indicators (RMS,RMSR,Kurtosis, Skewness,
...). For instance, OM1 allows to detect the mis-
alignment of the monitored shaft (i.e., the relative
position deviation of the shaft from the collinear
rotation axis). Maintenance decisions are taken by
considering the evolution of indicators at successive
acquisition dates. Acquisition dates can come from
the same flight, or different flights, but always at the
same helicopter flight regime, in order to be com-
parable. The helicopter regime is characterized by
a value IAS (Indicator Air Speed) between IAS min
and IAS max, which are configuration parameters
for the helicopter.

Figure 2 illustrates the evolution of the indicator
OM1 depending on the acquisition date. The x axis
represents the acquisition dates from 1 to 5, and the
y axis gives the indicator OM1 (in g unit).

date2 date3 date4 date5date1

Threshold

maintenance

OM1
(g)

2

1

Fig. 2: Evolution of indicator OM1, for a given
flight regime.

The human operators are provided with a web
interface that essentially shows pictures similar to
that of Fig. 2. A threshold value is set, based on
human expertise. It may depend on a particular
helicopter and operating conditions. If the indicator
is above the threshold, it means a defect has been
detected. In figure 2, the threshold has been set to
2g. The value of the indicator has been above 2g at
dates 3 and 4. A maintenance operation was decided

based on that observation, and performed after date
4. This is the reason why the OM1 indicator then
decreases to 1.5g at date 5.

There is a trend towards using machine learning
techniques in order to replace the human diagnosis
based on indicators by automatic decision meth-
ods [5]. The machine learning algorithms should
be trained with existing data from previous flights,
and corresponding recorded human decisions.

D. Evaluation Criteria for the Online Version

When transforming the on-ground algorithms
into embedded real-time ones, we need to compare
the new version to a reference one. What really
matters is the decision taken by the human operator,
based on the evolution of the indicators as shown
on Fig. 2. The ultimate criteria is that, for the same
data, the on-line version leads to the same decisions
as the on-ground global version.

However, in the experiments reported in this
paper, we cannot only look at the final result,
because we cannot ask the human operators what
they would have decided based on the results we
compute. Instead, we carefully tracked all the steps
of the algorithms (from the acquisition of sensor
data to the computation of the indicators), in order
to detect potential discrepancies as early as pos-
sible in the complete chain. This provides general
guidelines on what to check when transforming any
on-ground global algorithm into on-line real-time
programs. The differences between the two versions
my have different impact depending on the nature
of the indicators (temporal of frequency domains,
typically).

III. EXISTING GLOBAL ALGORITHM

The existing global algorithm uses as inputs
the vibration data acquired during the flight. The
acquisition file contains vibration samples of ac-
celerometers and the tops of the phase sensor. The
global algorithm is used to calculate the raw signal
that will be used as inputs to compute the indicators.

A. Steps of the Global algorithm

There are several shafts to monitor and the in-
dicators which allow to monitor the vibration level
are computed using samples of each revolution of a
given shaft. Because indicators are associated with
monitored shaft revolutions, we must be able to
delimit the beginning and the end of each revolution
of the monitored shaft. This operation is done by
first detecting the reference tops in the acquisition
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discrete time scale given by the samples

phase sensor

1st rev. 2nd rev. 3rd rev.

s1 s1

s2

s1

Estimated revolutions of the monitored shaft (r = 2)

Estimated revolutions of the monitored shaft (r = 2.3)

Fig. 3: Estimated tops of the monitored shaft with
integer or non integer ratational speed ratios.

file, then estimating the position of the tops of the
monitored shaft, knowing the rotational speed ratio
between the reference rotor and the monitored shaft.
This allows to gather the samples per revolution
of the monitored shaft. Notice that, although the
sampling frequency is of course constant, since the
speed is not constant, the number of samples per
revolution varies. A linear interpolation is then used
to obtain the same number of values per revolution,
for all revolutions of the same acquisition file. A
synchronous average provides the raw signal for one
revolution.

We now examine each of the steps in more de-
tails. In the sequel, all the pictures and text are based
on the same discrete base scale which is that of
the individual samples (the accelerometers and the
phase sensor being sampled at the same frequency).
It is important to notice that, when estimating the
beginning and end of a monitored shaft revolu-
tion, we compute the position as a integer index
on this time scale. This involves some rounding
operations. Previous experiments have shown that
the overall computation of the indicators is not
too sensitive to these rounding operations, with the
existing application. We will anyway reproduce the
same computations of the indices in the on-line
application, using the same rounding operations.

1) Detecting the tops of the reference shaft:
The principle of a phase sensor is illustrated on
the figure 3. A phase sensor signal has two values
0 or 1. Each rising edge indicates the beginning

of a new revolution of the reference shaft (main
or tail rotor). The rotation speed of the reference
shaft is not constant. That is why, in figure 3, the
interval between two rising edges is not constant.
For example, the 2nd revolution of the reference
shaft is longer than the 1st revolution. It means the
shaft slows down during the 2nd revolution. A lower
speed of the reference shaft implies a higher number
of samples. Here, in particular, the first revolution
has 22 samples, while the second one has 25.

2) Estimating the tops of the monitored shaft
(case of an integer ratio): Once the positions of
the reference revolutions have been detected, each
of them has to be split into r equal parts, where r
is the speed ratio of the monitored shaft (as shown
on Figure 1).

On figure 3, the first case corresponds to the
integer ratio r = 2. Each revolution is split into
2 equal parts.

Notice that dividing the reference shaft revolution
into equal monitored shaft revolutions implies that
we consider the speed to be constant during one ref-
erence revolution (some knowledge about previous
revolutions and a bound on the acceleration could be
used to perform a more accurate division, but the
reference global algorithm does not do that). The
division consists in placing virtual tops of the mon-
itored shaft on the discrete base scale, as defined
above. This involves some rounding operations.

3) Estimating the tops of the monitored shaft
(case of an non integer ratio): Estimating the tops
of the monitored shaft is more complicated when
the speedup ratio is not an integer. The second
part of figure 3 shows an example with r = 2.3.
The estimated tops of the monitored shaft are no
longer aligned with the tops of the reference rotor.
As in the previous case we assume the speed is
constant during one reference revolution. Hence
each of them now has to be divided into 2.3 equal
parts. Knowing the number of samples of the 1st
revolution, it is divided by r = 2.3, which gives
the number of samples s1 for a monitored shaft
revolution.

The problem is that, for the revolution of the
monitored shaft that spreads across two successive
revolutions of the reference rotor, we cannot assume
that the speed is still constant. Hence the first 0.3
portion of the monitored shaft revolution is com-
puted assuming a given speed s1, and the remaining
(1 − 0.3) portion assuming a new speed s2 (the
number of samples of the second revolution, divided
by r = 2.3).

Estimating the positions of the virtual tops of
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the monitored shaft can be done by starting at
the beginning of the first reference revolution, and
then adding successive segments of the appropriate
size. The size of the segment may change at each
reference revolution, and a decision has to be made
for the size of the segments that spread across two
reference revolutions.

In cases like the one just described, the global
reference algorithm is based on a quite tricky deci-
sion: if the end of the last complete monitored shaft
revolution that is entirely included in the reference
revolution is sufficiently close to the boundary be-
tween two reference revolutions, then the first speed
(s1 in the example) is used to determine its length;
otherwise the second speed (s2) is used.

Moreover, in order to determine how close we are
to the boundary, the global algorithm is based on
the global average speed, as observed on the entire
acquisition file. This gives the average number of
samples that should be observed in a monitored
shaft revolution (the size of the segment). If more
than half of that number has been observed before
the boundary, this means we are sufficiently close to
the boundary, and we use s1 to compute the exact
length of that particular revolution; otherwise we
use s2.

Although it’s unavoidable to introduce rounding
errors in the estimation of the tops of the monitored
shaft, we may question the use of the global average
speed to decide on the length of any particular
monitored revolution. The average speed on the
two reference revolutions involved could seem more
appropriate.

In our objective of respecting the global reference
algorithm, we must notice that this use of the global
average is a source of discrepancy between the
two versions. We will replace it by the average
until now, which can be computed incrementally.
The validation criteria mentioned in Section II-D is
that this difference does not have too much impact
on the final decision (through the complete chain:
placement of the monitored virtual tops, linear inter-
polation, computation of the average signal for one
revolution, and finally computation of the indicators
and their presentation to the human decision).

4) Interpolation: In the previous steps, we have
determined the beginning and end of each moni-
tored shaft revolution. They do not have the same
number of samples. A linear interpolation is per-
formed, in order to get a fixed number of samples.

5) Synchronous average: The preparation of data
ends with the computation of the average of all

these interpolated revolutions, which gives the sig-
nal to be analyzed.

6) Indicators: Finally, the frequency and tem-
poral indicators can be computed on this average
signal.

B. Versions of the algorithm and summary of the
potential sources of discrepancies

In our experiments, we consider several versions
of the algorithms:

1) The Java implementation of the current on-
ground HMS function, of which we only have
the binary

2) A version in C, obtained by recoding the tex-
tual specification (still using the global average
speed in order to determine the monitored shaft
revolutions, as explained in section III-A3)

3) A version in C prepared for the embedded
implementation, obtained by modifying the
previous one as little as possible (but having to
replace the global average by an average “until
now”)

4) The C code that will run on the embedded
platform, which must take into account the
constraints due to the connection of the em-
bedded computing platform to the acquisition
card.

The main potential source of discrepancies be-
tween those 4 versions is the use of the global or
incremental average speed to estimate the position
of the tops of the monitored shaft. We will focus
on this source of errors in the selection of tests to
be performed. Typically, this error will be bigger
for acquisition sessions in which the speeds varies
a lot.

Concerning the potential rounding errors for the
placement of the monitored shaft revolutions on
the discrete base scale, we managed to reproduce
exactly the same sequence of indices as the existing
application.

We also have to check that the interpolation
algorithm and implementation produce the same
sets of values.

IV. ONLINE COMPUTATION OF THE INDICATORS

A. The on-line computation: management of inputs

For the sake of simplicity, we present the de-
sign of an on-line version of the health indicator
considering the simple case in which there is a
single phase sensor (on the tail rotor), and a single
accelerometer, on a rotating element (TDS1) with
speed ratio 4 (rotating 4 times faster than the tail
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rotor). Vibration samples are acquired at 15630Hz.
This is enough to show the impact of the connection
of the MPPA to the acquisition card, with the
samples arriving in packets.

More complex cases (several sensors, or non-
integer speed ratios), are refinements of this pre-
sentation. When several sensors are used, we have
to perform transpositions on the flow of inputs.

Figure 4 illustrates how the flow of inputs is read
in chunks, and how its samples are then grouped
according to the position of the tops. It also shows
the earliest time at which the grouped data is
available for further treatments.

tops

t

VIBRATION CHUNK SIZE

NR0 NR1 NR2 NR3 NR4

t

step1
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r m
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×
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×

IT

r m
×

IT

Fig. 4: Preparation of inputs

step1 represents the discrete samples, taken at
frequency fs in the range [1 − 31]kHz. step2
illustrates the transmission of packets of size
VIBRATION CHUNK SIZE from the acquisition unit
to the MPPA processor. Packets are composed of
samples of shafts to be monitored, and tops of the
reference shaft (denoted by small circles). Since the
speed varies, the number of tops in a given packet
varies.

On step3 we gather samples per revolution (i.e.,
between 2 tops). The data are available a bit later
than the end of the packet. The vertical rectangle
is an array of samples of size NR0, then NR1, etc.
Notice that NR3 and NR4 are available late, and at
the same time, due to the absence of tops in the
fourth packet of size VIBRATION CHUNK SIZE.

One packet of size VIBRATION CHUNK SIZE

can represent 0 to K complete revolutions of the
reference shaft. K is bounded by

VIBRATION CHUNK SIZE/(
fs

60× vref
)

where fs is the sampling frequency (Hz) and vref is
the rotational speed of the reference shaft (given in
revolutions/minute).

step4 shows the interpolation phase: when an
array NRi is available, it represents rm = 4 revolu-

tions of the monitored shaft. For each of them, we
produce a fixed number “IT” of samples, by linear
interpolation, assuming that the rotation angular
velocity of the reference shaft is constant during one
revolution. We now have arrays of rm × IT points.
The computation of the indicators starts from there.

Since the speed varies between two tops of the
phase sensor (i.e., NRi 6= NRi+1), and rm is not
always an integer, there will be sets of samples
corresponding to one revolution of the monitored
shaft, which spread across a top. In the current
on-ground computations, the interpolated points are
placed according to the global speed average. This
is clearly not feasible in the on-line version, where
we use a incrementally computed average until
now, instead.

V. THE KALRAY MPPA-256 MANY-CORE

PROCESSOR

Not all many-core architectures are suitable for
avionic systems. Some processors are designed to
achieve high average performance, but offer no
guarantees on individual executions. In particular,
the sources of non-predictability of timing are nu-
merous: they can be due to the complexity of
the cores themselves, or to the access to shared
resources like buses, networks-on-chip (NoCs), and
the memory.

Determining precisely the worst-case execution
time (WCET) for a many-core architecture is very
challenging due to the many contention points due
to shared resources. For example, the experiments
described in [6] examine the memory access laten-
cies for read and write operations while increasing
the number of interfering cores. On the Freescale
P4080, the latency of a read (respectively write)
operation varies from 41 to 604 cycles (respectively
39 to 1007 cycles) depending on the total number
of cores running competing tasks.

Some recent developments in the microprocessor
industry address this problem specifically. This is
the case of the Kalray MPPA-256 (Multi-Purpose
Processing Array). This type of processors reduces
the number of contention points (they do not remove
all of them). Each core is a simple VLIW architec-
ture, which allows predictability. In particular, the
dynamic optimizations present in a lot of off-the-
shelf microprocessors, like branch prediction and
out-of-order execution are forbidden. According
to [2], the benefits of the Kalray platform for critical
real-time systems are: deterministic computation,
deterministic and predictable response times, low
power and high performance.
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IO Cluster 16 PE Clusters

IO Core
Computing
Cluster

PCIe

IO DDR

HOST

Fig. 5: Abstract view of the MPPA-256 Many-core
Architecture (adapted from [1])

Fig. 6: MPPA-256 Compute Cluster (extracted
from [1])

The MPPA-256 by Kalray is an array of 16
computing clusters and 4 specialized Input/Output
(IO) clusters connected by a NoC (Network on
Chip). The global architecture of the MPPA-256 is
depicted in figure 5. Each square box corresponds
to a computing cluster. The four I/O clusters are
represented on the four sides (east, west, north and
south). Two of them are connected to a PCIe con-
troller and the two others to an Ethernet controller.
Each IO cluster has 4 cores.

A computing cluster is illustrated in figure 6.
It is composed of 16 computing cores (each core
is called a Processing Element or PE), one sys-
tem core (Resource Management), one NoC Rx
(receiver) interface, one NoC Tx (transmitter) in-
terface, one DMA (Direct Memory Access) and
one DSU (Debug System Unit). They access con-
currently the 2MB shared memory. The overall
architecture provides separate memory banks, and
reservation mechanisms on the NoC, which also
contribute to predictability.

VI. MPPA IMPLEMENTATION EXPERIMENTS

A. Time-stamping tool

For our experiments, we need to gather precise
timing data from the MPPA target. The MPPA
IO cluster, and its internal clusters, each have an
internal clock running at 400Mhz. These counters
have the same period, but not the same phase (they
are mesosynchronous). The maximum observable
offset is around 100 cycles. This means that, when
taking a time-stamp T0 in the IO cluster, and a
time-stamp T1 in the internal cluster, the difference
T1 − T0 cannot be more accurate than 100 cycles
(250ns).

The Kalray software development kit (SDK) al-
lows time measurements on a simulator of the K1
architecture (the cores of the MPPA). But we need
to perform on-target measurements. Kalray also
provides a target trace capability, but the tracing
is too intrusive. We designed a lightweight tracing
mechanism, by adding time-stamps to the data-
flow before/after each data transmission to/from a
processing element (PE). For this we need to change
the type of the data transmitted.

Instrumentation at the software level always has
a impact on the execution. In some cases, it can
change the timing significantly and even reorder
events. We addressed this problem in the following
way: although adding the time-stamps to the data
does change the behavior of the system, we observe
that the changes are essentially the ones that would
be observed with larger data (transmission time,
packet storage). The only timing effect that would
not be observed with larger data is the time it takes
to compute the time-stamps themselves, but this can
safely be neglected.

The number of time-stamps that are necessary to
perform useful measurements has to be confronted
to the cost of transmitting data on the network
on chip. First, we choose the granularity, i.e., the
minimum packet size with which we associate time-
stamps to follow the route. The chosen granularity
is set to one input sample processed by each core
PE. To measure the MPPA latency, the latency of
the entire system (MPPA + host), and the computing
duration on each worker, we need around 20 time-
stamps. Each cluster has a Debug System Unit
(DSU) offering a 64-bit counter for time-stamping.
We assume that our measures do not exceed 10
seconds. For measuring up to 10s with the 2.5ns
MPPA clock period, we need a 32-bit counter. With
all our experiments, the time-stamp overhead in the
data transmitted is estimated to be around 1%.
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B. Dimensioning Experiments

In [3], we show that the communication through
the IO cluster becomes the main bottleneck of the
system. We implement a pipeline architecture with
a double-buffer communication to parallelize the
communication and the internal cluster processing.
Another case study on the same platform described
in [4] had to address the same problem.

In order to observe the end-to-end latency, we
made an experiment where data is received by the
MPPA, and sent back to the host, without any
computation.

The experiment is performed for increasing sizes
of data chunks, and 100 times for each size. The
MPPA latency remains less than 200 µs for sizes
ranging from 4 to about 10000 bytes.

Since the size of one sample data is 4 bytes
(a tuple made of a vibration measure and a phase
sensor), we can choose any size lower (and close) to
10000/4 = 2500 for the size of packets to be sent
by the HOST to the IO cluster. We actually choose
VIBRATION CHUNK SIZE = 2048 = 8192/4 for
the advantage of manipulating power-2 sized arrays.

C. On-line HMS experiment

Once chosen the data chunk size for transmission,
we have set up an experiment to mimic the on-
line computation of indicators. On the MPPA side,
we use 2 threads on the IO cluster core, ioreader
and iowriter, and a Worker thread running on
a computation core. The ioreader transmits the
vibration data coming from the host to the Worker
thread that computes the indicators, and iowriter
sends back indicators to the host.

On the host side, the host mimics the actual
sensors by sending packets of vibration data stored
in files. Those data were collected in real operation
conditions from a servicing H 175 aircraft, and
correspond to the acquisition of 224 monitored shaft
revolutions.

1) OM1 on-line indicator results: The OM1 in-
dicator is computed as follows:

2×Module(FFT(AverageSignal))

where AverageSignal represents the average signal
of all 224 monitored shaft revolutions in the off-line
version of the application. The on-ground OM1 is
equal to 1.823g.

Unlike the on-ground version where only one
OM1 is computed by using the average signal of
224 shaft revolutions, the on-board version com-
putes OM1 by using a growing window of samples.
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Fig. 7: Evolution of indicator OM1 according to the
number of revolutions of TDS1

Online OM1 at step k is calculated by averaging all
the k−1 previous shaft revolutions. OM1 converges
from the 50th shaft revolution (k = 50) in Figure 7.
When k = 50, OM1 is equal to 1.84g. The relative
error of OM1 computed in two different manner
(on-ground versus on-board) is equal to 0.9%.

Comparing two OM1 values (on-ground and on-
board) does not make sense. People who analyze
the indicators results are not interested in absolute
values of indicators but in the trend of indicators.
In other words, given the same set of samples, the
results of indicators given by the two methods must
have the same trend.

2) Comparison of on-ground and on-line OM1
indicator: In this experiment, we monitor the equip-
ment input drive shaft left, whose rotational speed
ratio is rt = 16.82 (it rotates 16.82 times faster than
the tail rotor). The purpose of this experiment is to
compare the indicator OM1 in two cases. The first
case corresponds to the OM1 indicator calculated
using the global algorithm (recall, a single value of
OM1 is calculated after interpolating and averaging
all the monitored shaft revolutions). However, in
the case of the incremental algorithm, one OM1
is calculated at each monitored revolution by using
a growing window. We compare the last value of
the incremental OM1 indicator and the OM1 com-
puted using the global algorithm. The experiment is
performed on 20 raw vibration files acquired during
the same flight conditions. Figure 8 shows the OM1
indicator computed using different vibration files
with the global and incremental algorithms. We
note that the error is tolerable in the case of OM1
indicator. For instance, the global and incremental
OM1 computed at date1 are respectively equal to
3.013763g and 3.012429g. The two OM1 values
are not exactly the same but the difference is very
small. Finally, the maximum relative difference af-
ter computing OM1 indicator using 20 raw vibration
files is equal to 2.65%.
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Fig. 8: Comparison of on-ground and on-line OM1 indicator
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Fig. 9: Comparison of on-ground and on-line RMSR indicator

3) Comparison of on-ground and on-line RMSR
indicator: The RMSR (Root Mean Square Resid-
ual) indicator is calculated as follows:

4︷ ︸︸ ︷
RMS(

3︷ ︸︸ ︷
FFT−1 (Remove(FFT (AverageSignal)︸ ︷︷ ︸

1

, V )

︸ ︷︷ ︸
2

))

AverageSignal denotes the average of all moni-
tored shaft revolutions and V is the set of harmonics
to remove from the spectrum. The computation of
the RMSR indicator can be divided into four parts.
The first part consists in calculating the Fast Fourier
Transform using the AverageSignal. During the

second step, harmonics specified in the V argument
are removed. The third step consists in computing
the reverse FFT of the residual frequency spectrum.
Finally, the root mean square is calculated using the
residual temporal signal. This experiment has the
same parameters as the previous one (same acqui-
sition file and monitored shaft) and the purpose is to
compare the RMSR indicator calculated using the
global and the incremental algorithm. We replace
the global AverageSignal of the existing HMS by
the average signal “until now”. Figure 9 shows that
the difference between the 2 versions is very small.
The maximum difference is observed at date5 and
equals to 4%.
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VII. CONCLUSION AND FUTURE WORK

We have transformed an off-line on-ground com-
putation of health indicators, in which the global
average of a signal is used, into an on-line embed-
ded real-time computation of the same indicators,
in which the average is done on a growing window.
We used these experiments in order to validate the
error induced on the result of the computation,
and to provide dimensioning information for the
implementation of the full application.

The lessons learnt are detailed below. First, any
globally computed value has to be transformed
into some feasible incremental version (the same
function computed on either a sliding window, or a
growing window). There is no way to decide, based
on the algorithm alone, whether the discrepancies
produced are acceptable or not. The original de-
signers of the signal processing algorithms have to
be consulted, to assess the impact of this change on
the results. The complete approach we followed can
be used as guidelines for the transformation of other
signal processing applications, which are likely to
exhibit the same kind of algorithms.

For the future, if the idea of computing such
algorithms on an embedded platform is adopted, it
means that the very first design of the algorithms
has to take this constraint into account: global
averages, for instance, will be forbidden.

Second, some tools on the execution platform
would really help. The host PC (which is used first,
before the actual acquisition card is connected to
the MPPA) could be real-time. It would allow more
precise estimations of the overall final behavior,
without the need for the acquisition card, in early
stages of development. A precise timing tracing tool
is also needed (either with help from the hardware
for real executions, or with a cycle-accurate simu-
lator of the execution platform). We designed our
own timestamps mechanism, knowing that, for the
application under study, intrusiveness is limited. But
this should be studied again for another application,
which is not satisfactory.

Further work will be done along several lines.
First, we will finish the development and test of the
full HMS application on the Kalray MPPA, con-
nected to the real acquisition card; the full HMS in-
volves several sensors, takes input values at various
sampling frequencies, and takes into account several
distinct speed ratios with respect to the reference
shaft. Given the computing power of the MPPA,
it may work satisfactorily without optimizations.
The next step would be to develop solutions in

which the HMS application can share the Kalray
with another application, raising questions about the
criticality level of several applications sharing the
same platform.

We will also present the results of the new incre-
mental algorithms (not necessarily running on the
embedded platform) to the experts in charge of the
maintenance decisions. As mentioned previously,
their decision should be the same. Some experts
have been already asked to look at the results, but
the complete procedure has not been conducted in
full for now.

A longer-term prospect is to experiment with
machine learning techniques applied in the domain
of predictive maintenance, and to explore the idea
of implementing such a technique on the Kalray
MPPA, to be connected to the computation of
the indicators. The coupling of these computations
would give an on-ground real-time surveillance and
maintenance decision.
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