
HAL Id: hal-02155929
https://hal.science/hal-02155929v1

Submitted on 14 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ribbed support vaults for 3D printing of hollowed
objects

Thibault Tricard, Frédéric Claux, Sylvain Lefebvre

To cite this version:
Thibault Tricard, Frédéric Claux, Sylvain Lefebvre. Ribbed support vaults for 3D printing of hollowed
objects. Computer Graphics Forum, 2019, �10.1111/cgf.13750�. �hal-02155929�

https://hal.science/hal-02155929v1
https://hal.archives-ouvertes.fr

Volume xx (200y), Number z, pp. 1–12

Ribbed support vaults for 3D printing of hollowed objects

Thibault Tricard1, Frédéric Claux1, Sylvain Lefebvre2

1Université de Limoges, CNRS, XLIM,
2Université de Lorraine, Inria, LORIA, CNRS

Figure 1: Hollowed Bunny printed with our method, using only 2.2% of material inside (compared to a filled model). Left: The full model.
Middle and right: Same model cut in half, revealing the internal support structures generated by our approach (the supports use 316mm of
filament over a total of 1622mm for the print). Bunny model (size: 54×43×53 mm). Support generation took 34 seconds. Printing time 1h 5min 30sec.

Abstract
Additive manufacturing techniques form an object by accumulating layers of material on top of one another. Each layer has to be
supported by the one below for the fabrication process to succeed. To reduce print time and material usage, especially in the
context of prototyping, it is often desirable to fabricate hollow objects. This exacerbates the requirement of support between
consecutive layers: standard hollowing produces surfaces in overhang that cannot be directly fabricated anymore. Therefore,
these surfaces require internal support structures. These are similar to external supports for overhangs, with the key difference
that internal supports remain invisible within the object after fabrication.
A fundamental challenge is to generate structures that provide a dense support while using little material. In this paper, we
propose a novel type of support inspired by rib structures. Our approach guarantees that any point in a layer is supported by
a point below, within a given threshold distance. Despite providing strong guarantees for printability, our supports remain
lightweight and reliable to print.
We propose a greedy support generation algorithm that creates compact hierarchies of rib-like walls. The walls are progressively
eroded away and straightened, eventually merging with the interior object walls. We demonstrate our technique on a variety of
models and provide performance figures in the context of Fused Filament Fabrication (FFF) 3D printing.

Keywords: additive manufacturing, internal support, FDM, tree graph

CCS Concepts
• Computing methodologies → Shape analysis;

submitted to COMPUTER GRAPHICS Forum (6/2019).

2 Thibault Tricard & Frédéric Claux & Sylvain Lefebvre / Ribbed support vaults for 3D printing of hollowed objects

1. Introduction

Additive manufacturing techniques produce an object layer-by-layer,
where each successive layer bonds to the one just below to form
a solid object. While a wide range of technologies exist, several
approaches deposit material locally, and thus the process is subject
to the constraints of gravity. This is in particular the case of the very
popular Fused Filament Fabrication (FFF) process where material
may only be deposited at a location already supported from below,
either by the printer platter or by previously deposited material at
the layer immediately below. Failure to do so results in deposited
matter falling down, leading to catastrophic fabrication defects.

Support structures for 3D printing are generally understood as
external support: the necessity to support overhanging object parts
so that they can be printed. In this scenario, the support structure
is printed together with the object and removed after printing. The
removal is usually a manual, time consuming and delicate operation.
This problem has therefore been extensively studied in the literature.
Reseachers propose support structures that are fast to print, minimize
the quantity of deposited matter, avoid stability problems during the
print and are easy to remove (Section 2).

However, support structures may also be required inside an object.
Indeed, in the context of rapid prototyping or when mechanical
resistance is not a concern (e.g. printing decorative objects), the user
often seeks for a fast print, which translates to printing as-empty-as-
possible. Empty inner cores translate to internal overhang areas and
the related necessity to have supports for these overhangs as well.

Hollowing a part is not trivial with technologies such as FFF.
In particular, the inner cavity resulting from a standard hollowing
operator will not be printable: it will contain regions in overhang
(with a low slope, see Figure 2) as well as local minima: pointed
features facing downwards. There is therefore a need for support
structures that can operate inside a part.

The challenges are slightly different than those of external sup-
port. Inner supports are not meant to be removed: they are trapped
inside. Therefore, there is no consideration regarding ease of re-
moval. However, they should ideally minimally impact print time
and occupy little space within the cavity.

Another challenge of support structure generation is the manner

Figure 2: A Stanford bunny model is hollowed using a standard
offsetting approach. The resulting cavity, shown on the right, will
not print properly on a filament 3D printer due to local minima (red)
and overhanging areas (orange).

Figure 3: Top left: Partial print of Cute Octopus. On the top layer
the filament should have been deposited along circular toolpaths.
Due to lack of support across infill gaps, the deposited filament does
not adhere to the layer below and creates straight lines, leaving
gaps in the print. Top right: Comparison between full prints using
standard infill (left print) and our support structures (right print).
By ensuring that the filament is always supported, our technique
produces a higher quality surface. Bottom: Top right picture en-
hanced to highlight defects. Our method produces less artifacts.
(thingiverse.com/thing:27053 by MakerBot)

in which support structures are forming the supporting surface be-
low the layers. This surface may be more or less dense, controlling
how many support features (often points) are provided below over-
hanging areas. For external support, lower densities are generally
preferred to ease the removal process; however this comes at the
expense of residual defects on bottom surfaces. Higher densities
provide a full support. These can be used inside, since removal is
unnecessary, or when dissolvable material is available to print the
external support structures (e.g. PVA).

It is often considered that the sparse, grid-like filling structures
used inside the prints provide enough support for the roofs of inner
cavities. However, Figure 3 is showing how defects – gaps in partic-
ular – can still appear. These stem from deposited filament sagging
between sparse support points, and not attaching properly to the
layer below. When the filament starts to be deposited over an almost
empty zone, printing defects become increasingly noticeable (Fig-
ure 4). Another situation often considered acceptable is when roof
layers are forming bridges: areas with outer contours are supported,
even though their surface is not supported. The filament may indeed
be deposited above voids in straight lines supported only at their
starting and ending extremities. However, this typically requires
multiple layers to limit the filament sagging and improve the print
quality of topmost layers; otherwise defects remain (Figure 5). For
artifact-free printing to truly take place, it is necessary to support
densely, as any unsupported region, even small, would result in a
downward bulge. This is aggravated when heavy material is being
deposited (e.g. clay, ceramics).

Contributions: We propose an algorithm to generate internal sup-
port structures that guarantee that deposited material is supported
everywhere from below, are reliable to print, and require little extra
material. This is achieved by generating hierarchical rib-like wall

submitted to COMPUTER GRAPHICS Forum (6/2019).

Thibault Tricard & Frédéric Claux & Sylvain Lefebvre / Ribbed support vaults for 3D printing of hollowed objects 3

structures, that quickly erode away into the internal walls of the
object. Remarkably, our method uses less material than previous
works while providing a dense, reliable support everywhere.

The paper is organized as follows. Section 2 deals with previous
works, reviewing existing methods for support generation. Section 3
formalizes support requirements and guarantees. Our algorithm
is detailed in Section 4. Results and limitations are presented in
Section 5. We discuss future work in Section 6.

2. Previous work

We review here the contributions that have been made on support
structures in the context of 3D printing hollowed objects. We only
focus on works relevant to ours and direct interested readers to the
survey of Livesu et al. [LEM∗17] for extensive details.

Sparse infills. The most straightforward method to speed up 3D
prints is to use low-density infills [MSWS00]. Several infill patterns
can be used [Sli] with either fixed or gradual density [Ice, Ult].
However, these infills were primarily designed to provide a good
compromise between mechanical resistance and material use. They
are not designed for extremely low density printing, even though
users often select them in an attempt to do so. At low densities
these patterns exhibit large gaps, leaving the filament above only
partially supported. This leads to noticeable gaps (Figure 3). This
problem can only be mitigated by using multiple covers (increasing
tops/bottoms thickness) or by increasing the infill density, leading
to longer print times.

Self-supported cavities. Instead, recent works explore the idea of
creating large self-supported cavities inside models.

Several of these methods are based on an adaptive rhombic struc-
ture (angled 3D grid). Lee et al. [LL17, LLL17] use a structure of
predefined resolution. In order to reduce the support size, inner grid
blocks are merged together. Unprintable V-shaped features (eg. local
minima) are eliminated using a block subdivision process. However,
block grid cells unfortunately do not provide a dense support (see
Figure 3), meaning support cannot be guaranteed within cells. The
method proposed by Wu et al. [WWZW16] starts by building a
coarse rhombic grid and refines it in an octree-like fashion, follow-
ing a mechanical resistance criterion. Cells near model boundaries
with overhang areas are refined appropriately. Xie and Chen [XC17]
use a rhombic-shaped voxel representation of the object and formu-
late internal support generation as a combined global optimization

Figure 4: Solid flat face supported by sparse infill below. The infill
is too sparse which causes noticeable gaps to appear.

Figure 5: Print quality comparison for the top layer of a same part
(3D model shown at the top) having half the top surface printing
as bridges (foremost side). Top print: Bridges are one layer thick
and unsupported between pillars. Note the significant sagging. Mid-
dle print: Bridges are three layers thick and unsupported between
pillars. The top surface still exhibits sagging. Bottom print: Using
our method provides a dense support resulting in a perfectly flat top
surface, even with a single top layer.

Figure 6: 3D printing a skull. On this model [HL18] produces long
bridges (top right, in red) entirely supporting the eye sockets (result
obtained with the implementation of [HL18]). These will be difficult
to print and prone to failure. In contrast, our technique (bottom right,
in green) encloses the sockets in ribbed supports firmly connected
to the surrounding part walls.

and discrete dithering processes. Their algorithm is prone to gener-
ate suboptimal, extraneous pillars for flat overhang areas. Note that,
in contrast to our approach, these two latter methods can generate
support-free interior voids while also statisfying user-specified func-
tions such as mechanical stiffness, ability to spin or static stability.
This is especially relevant since internal supports have an impact
on the mass distribution of the object. The approach of Wang et
al. [WWY∗13] optimizes truss structures within parts, to reduce
material consumption while preserving structural integrity.

Other methods use morphological operations on slices to carve
self-supported interior spaces within the objects. The methods of
Hornus et al. [HLDC16, HL18] generate a cavity within a part by
initiating a tear in top slices, which then grows down as quickly as

submitted to COMPUTER GRAPHICS Forum (6/2019).

4 Thibault Tricard & Frédéric Claux & Sylvain Lefebvre / Ribbed support vaults for 3D printing of hollowed objects

possible within the volume. This approach is iterated in remaining
pockets. The algorithm is computationally efficient and generally
produces large, self-supporting cavities. Unfortunately, it is not self-
sufficient: bridge supports are required in addition to the cavities
themselves. These bridges support local minima (islands) that can
appear in the cavities. As shown in Figure 6 they can become long
while supporting large parts above, making the print prone to failure.
A second issue, described in an errata by Hornus et al. [HL18] is
that the morphological approach may miss overhanging edges. This
is shown in Figure 7, where an edge in overhang is left dangling. In
contrast our technique provides strong guarantees for printability,
does not require to explicitly detect problematic cases, and often
uses slightly less material.

The method of Wang et al. [WLW∗18] also considers nested
self-supported cavities. It segments the object interior space into
simpler volumes, within which cavities are grown under self-support
constraints. Cavities are iteratively added in remaining pockets.
Since the cavities are restricted to their volume segments they cannot
join and form local minima. The growth is driven by an optimization
process which allows for auxiliary objectives such as optimizing
for balance. This added flexibility however comes at the price of a
computationally intensive approach that does not scale to large parts
and high resolutions. We provide direct comparisons with results
produced by this approach in Section 5.

The method of Zhang et al. [ZXW∗15] is also related to our
work, albeit it focuses on structural properties. It uses a 3D medial
axis to generate a sparse, pillar based structure inside a 3D object.
The algorithm is designed to ensure the printed object resists ex-
ternal stresses. As the method does not consider FFF printability
constraints it requires auxiliary supports when fabricating on FFF
printers.

External supports as internal structures. External support struc-
tures may be used within hollowed cavities, although they have not
been primarily engineered with this goal in mind.

The typical external supports are volumes extruded downward
from overhanging surfaces, and are therefore quite large. To reduce
their size, Huang et al. [HYW∗08] shrink their sections in the mid-
dle, producing support volume with slanted sides. Recent methods

Figure 7: Inside a Yoda model. Top left: The iterative carving
method [HL18] misses an internal edge in overhang, outlined in
red. Bottom left: Illustration of the problem. Sharp edges (red) are
erased during morphological operations (dilation by orange disk)
and entirely disappear. Please refer to the errata of [HL18] for
details. Right: Our method correctly adds support below such edges
in overhang (in green), while still using less material overall.

go further and create sparse pillar tree structures to support an object
during its fabrication [SU14, VGB14]. The method of Dumas et
al. [DHL14] generates stable scaffolds made of cross-shaped pillars
and flat bridges. While very efficient as external supports, these
techniques suffer two main limitations when considered as internal
supports. The first is that pillars are actually slow to print due to
the decelerations required to print each circle within a slice. Angled
pillars are also subject to thermal warping and torque. The second is
that, when using a high support density, the structures start fusing
resulting in complex, slow to print geometries below the overhang-
ing surfaces (Figure 8). This can be alleviated by using a sparser
set of support points, but this tradeoff may again result in gaps on
surfaces above.

Our algorithm produces structures offering a very high support
density, while using little extra material. In addition, our supports
print reliably as they are composed of continuous, wall-like struc-
tures that suffer less from stability issues. We compare our method
to the state of the art in Section 5.

3. Supporting a shape

We formalize in this Section the well known criteria for supportabil-
ity in the context of our work. We start by introducing our notations
and then discuss the constraints and properties of supports for the
fabrication of 3D models.

3.1. Notations

Given a 3D object O⊂ R3, we define B as the outer boundary of a
hollow version of O containing only the external shell of the object.
Note that B can be obtained immediately when using meshes. B
can be decomposed into I slices for printing, with Bi referring to
the ith slice. Slices Bi are to be understood as exact, geometrical
cross-sections of B with Z-axis aligned planes. Slices are numbered
from bottom to top, meaning that Bi−1 identifies the slice below Bi.

Figure 8: Pillar structure supporting an hollowed skull top model
(top right). The red areas along the cavity roof (bottom right) cannot
print without support. The pillars are generated by Autodesk Mesh-
mixer (Schmidt and Umetani [SU14]). We set support density to
match our support requirements as defined in Section 3.2. Note how
pillars fuse below the overhanging surface producing a compact,
slow-to-print geometry. Note that the pillars are also quite unstable
and subject to torque (see Figure 2 of [DHL14] for details). Model:
www.thingiverse.com/thing:4378 by ssd.

submitted to COMPUTER GRAPHICS Forum (6/2019).

Thibault Tricard & Frédéric Claux & Sylvain Lefebvre / Ribbed support vaults for 3D printing of hollowed objects 5

We define S as the internal object support, and its corresponding
slices Si which identify supports that are printed on layer i. Paths
on layer i support the paths on the layer above, i+ 1. Si supports
the paths of both Bi+1 and Si+1 that are not already supported by Bi.
For simplicity, the paper sometimes omits the union (∪) sign when
referring to composite sets, for instance B

⋃
S may be referred to as

BS, and related slices to BSi. Ui identifies the unsupported areas of
layer i.

We denote by r the nozzle radius, K a disc kernel with a radius of
r, Kp the K kernel centered on the point p, and h the layer height.

3.2. Supporting a slice

Supporting a 3D object can be achieved by sweeping through its
slices from top to bottom, looking for unsupported parts within each
slice, and adding material below these parts in the next slice. The
process goes on until the bottom slice is reached, where material is
supported by the printer platter.

The material that is added below unsupported parts does not
have to cover the whole unsupported area. For a slice to be fully
supported, it is generally considered that every single point p ∈ R3

on that slice needs to have material in a vicinity of the nozzle radius
in the slice below.

∀ p{x,y,z}∃ p′{i, j,z−h},
√

(i− x)2 +(j− y)2 ≤ r (1)

where h represents the layer height used for the print. This guaran-
tees that the whole filament will be supported with a ratio of 50% of
material support, which is sufficient for artifact-free printing. This
ratio can be adjusted by the user.

As long as equation (1) is honored, support material can take any
shape. Material in one slice can either be smaller or larger than the
one in the above slice for support to be effective.

Intuitively, support material can be added immediately below
overhanging parts and then undergo a reduction operation from slice
to slice going downwards to limit the quantity of deposited material.
Reduction operators are covered in Section 4.1.

The amount of material added can also be larger than the area
needing support. Depositing more material than necessary comes at
the price of longer printing times, but can be interesting to signifi-
cantly improve printability. Large, simple support structures often
are faster to print than complex, smaller structures. Indeed, when
multiple disconnected locations need to be supported, it is in many
cases more effective to print a single, large structure. It encompasses
and conservatively supports many small locations. This is more
effective than supporting isolated spots, which individual support
size may be very small and therefore difficult to print, and which
will inevitably increase the amount of travel and therefore print
time (taking nozzle acceleration and deceleration into account). For
instance, Hornus et al. [HLDC16] build on this idea to reduce the
geometric complexity of sparse support structures (see their Figures
10 and 11).

Support requirements may here be formulated using morphol-
ogy, whereby the boolean difference between the upper and dilated
lower slices should give an empty set (equation (2)). BSi has to be

contained in slice BSr↑
i−1, with r ↑ defining a circular morphological

dilation of Si.

BSi \BSr↑
i−1 = ∅ (2)

4. Our approach

From the discussion in Section 3 we derive a general principle
described in Algorithm 1. We then instantiate this general principle
to define our ribbed support vault structures.

General principle. The idea behind our algorithm is to produce
supports through three main operations, during a top–bottom sweep
through the model slices: 1) propagation and reduction of the sup-
ports from the slice above (Section 4.1) 2) detection of appearing
unsupported areas in the current slice (Section 4.2) and 3) addition
of new supports required for the current slice (Section 4.3).

Model B and support geometry S are kept separate during the
whole algorithm. Once S is fully generated, B and S are printed
together. The general algorithm is presented in Algorithm 1. The
main loop visits the slices from top to bottom, generating a support
slice Si from the previous slice Si+1. We denote by Ti the propagated
reduced supports and denote the propagation-reduction operator as
→.

Algorithm 1 General Algorithm
function GETSUPPORT(B, r)

I← B.height
SI−1←∅
for i = I-2 down to 0 do

Ti← (Si+1→ Bi) // Section 4.1
Ui+1← BSi+1 \BT r↑

i // Section 4.2
Si← getSliceSupport(Ui+1,Bi,Ti) // Section 4.3

end for
end function

Ribbed support vaults. We instantiate this general principle to
produce support structures made of hierarchies of rib-like walls.

Our inspiration comes from architecture, where supports are gen-
erally designed in an arch (and vault) like manner. In particular,
vaults tend to join walls in any interior space, with only a few
straight pillars directed towards the floor. Similarly, many vault
structures present hierarchical aspects. Such hierarchies afford for
dense supports while quickly reducing to only a few elements –
much like trees.

Within each slice we favor supports having a rectilinear aspect:
they provide support all around them while eroding quickly from
their ends. Thus, within a given slice, we seek to produce rectilinear
features covering the areas to be supported.

We propose to rely on 2D trees joining the object inner boundaries.
Through the propagation-reduction operator, the trees are quickly
eroded away (from their branches). Taken together across slices, the
trees produce self-supported walls that soon join and merge with
the object inner contours, much like the ribs of ribbed vaults. The
principle is illustrated in Figure 9. Figure 10 reveals the inside of a

submitted to COMPUTER GRAPHICS Forum (6/2019).

6 Thibault Tricard & Frédéric Claux & Sylvain Lefebvre / Ribbed support vaults for 3D printing of hollowed objects

Kitten model split in half. The hierarchical aspect within each slice,
together with the reduction moving downwards leads to very small
linear structures.

Note that all our supports are permanently connected to B – this
exploits the fact that internal supports do not need to be removed
and remain hidden inside the parts.

Figure 9: Three slices (BSi) for a hollowed cube (from higher to
lower). The initial support trees quickly merge into the outer walls.

Figure 10: Hollow kitten model printed with our method and split
in half vertically. thingiverse.com/thing:12694 by MBCook

4.1. Propagating supports down from the previous slice

Our algorithm starts by first propagating support geometry from a
slice to the next one downwards. For now, let us assume we have a
support slice Si. We obtain Si−1 in two passes.

Copy. The copy operation first adapts Si’s shape to the boundaries
of Bi−1. Tree trunks may be clipped so that they never cross slice
boundaries, or may be extended to join slice boundaries. This is
illustrated in Figure 11.

Reduction. Once support trees from the upper slice have been
copied over to the lower slice and connections with the lower slice
boundaries have been restored, we can deform trees in a way that
is compatible with equation (1). Reducing their length ensures less
material will be used when printing and that material geometry will
eventually join B and vanish.

First, we erode all extremities of support trees by a ratio of r.

Figure 11: Propagating Si down to the lower slice. Projecting and
reconnecting the graph on to the i-1 slice. (a): Si and Bi, (b): Si and
Bi−1 (c): Ti−1, which is a modified version of Si fitting Bi−1 (green:
prolongated tree parts, red: clipped tree parts)

Figure 12: Effect of the straightening operator on the supports
within a cube. Left: second slice. Center: 12th slice with tree straight-
ening disabled. Right: tree straightening enabled.

Then, we straighten the trees so as to reduce their overall length.
Only branch-free, purely linear portions of trees are straightened.
As erosion progressively erases branches from one slice to the other,
our straightening operator has longer and longer segments to work
with.

Let’s define a linear portion of a tree as a set of point pi ∈ R2, i ∈
{0,n}.For each point pi we calculate the rectilinear distance Di
between pi and p0 defined as Di = ∑

i
1‖
−−−−→pi−1 pi‖. We then define

di =
Di
Dn

,0 ≤ di ≤ 1. We use di to determine pe
i , the equivalent of

the point pi on the segment {p0, pn}. We move pi towards pe
i using

the formula pi← pi +min(r, ||
−−→
pe

i pi||)∗
−̂−→
pe

i pi. Note that r limits the
displacement of pi, and consequently that equation (1) holds.

Tree straightening is illustrated in Figures 13 and 14. Overall, it
greatly reduces the amount of printed material as can be observed
in Figure 12. Material quantities with and without tree straightening
are compared in Section 5.

4.2. Detecting points to support within a slice

Now that supports generated for upper slices have been propagated
downwards, we need to add new support for the current slice BSi.
Unsupported points Ui of BSi are defined as

{p ∈ BSi : Kp∩BSi−1 = ∅} (3)

where Kp identifies a disc of radius r at location p.

submitted to COMPUTER GRAPHICS Forum (6/2019).

Thibault Tricard & Frédéric Claux & Sylvain Lefebvre / Ribbed support vaults for 3D printing of hollowed objects 7

p0

p3

p7

p1

p4

p2
p5

p6

pe
1

pe
2

pe
3

pe
4

pe
5

pe
2

Figure 13: Progressive straightening of a linear sequence of points.
Left: The original polyline vertices are projected onto the target
segment joining the first and last point of the polyline. The target
location for each vertex is calculated using the rectilinear distance
between the original vertex and the start of the polyline. Right: the
shape of the polyline at each transformation step. Each vertex is
iteratively moved by a distance equal to the nozzle radius.

Figure 14: Straightening of a tree. (a): original tree (b): linear
tree sections (c): final tree once all sections have been straightened.
Branching locations are not affected by the straightening.

4.3. Adding support within a slice

Once unsupported points have been detected in BSi, material needs
to be added into the slice Si−1, located below. Any shape can be
used as long as equation (2) is verified.

For each of the unsupported points u of Ui, if u is not yet sup-
ported (equation (1)), we create a wall by drawing a straight line
between u and the closest point on BSi−1. The priority with which
unsupported points are processed depends on their distance relative
to Bi−1. A distance field DB, calculated once for each slice, is used
for this purpose (Figure 16). When multiple candidates with the
same distance to DB are available, we pick a candidate randomly.
Having such a priority scheme tends to make the algorithm process
unsupported points that are close to B first, favoring the creation of
web-like structures, moving inwards starting from B.

Favoring branches over new tree trunks. As unsupported points
located further away from B are processed, we encourage lines of
S to merge to one another and form trees, using a heuristic. Exist-
ing supports are vastly reused this way. The reduction operators
presented in Section 4.1 are very efficient when applied simultane-
ously to many branches on the same slice. We now describe our tree
creation heuristic defining how a line segment should connect to BS.

For each unsupported point p, we locate the closest point pb on B
and associated distance d(pb) (equation (4)) and do the same for S.

d(pb) = ‖−→ppb‖−(0 < valence(pb)< 4 ? 4r : 0) (4)

The retained point and p will then form a support segment in
S. For S, the associated distance field is a function taking junction
points into account. Junction points deform the distance field so as
to shorten the distances towards them (Figure 16, right). As junction
points are being created, they tend to attract unsupported points in
their proximity. When their valence reaches 4, they no longer bend
the distance field, to encourage the creation of junctions at other
locations (Figure 15). Junction points with a too high valence may
become more complex to print, as discussed in Section 4.4. We note
D the distance field to B∪S and note Pro jDBS(u) the projection of a
point u onto the zero-set of DBS.

This heuristic significantly reduces the amount of material nec-
essary to support a slice by favoring the creation of branches over
new trunks. A comparaison of support generation with and without
the branch heuristic in shown in Figure 17 and in Table 4. The full
tree generation method is detailed in algorithm 2. An illustration is
shown in Figure 18.

4.4. Printing support trees

To print support trees, we print trunks first, then branches, as illus-
trated in Figure 19. Likewise, when branches have sub-branches,
parent branches are printed before child branches.

We avoid excessive extrusion at junction points by making sure
only the first branch is printed through the junction point. Other
branches do not reach the junction and stop before – taking into
account extrusion width so that the deposited tracks are in contact

p[1]

p

p[2]

pB

d(
p)

d(
p[

1]
)

d(p[2])

Figure 15: Black curve: B. Red lines: S. p[1] and p[2] are points
of S. p needs to be supported. The distance from p to B (d(pb)),
from p to p[1] (d(p[1])), and from p to p[2] (d(p[2])) are computed.
Because the valence of p[1] is 2, we have d(p[1]) = ‖

−−−→
pp[1]‖−4r

(equation (4)). In the end, a support line is created from p to p[1]
even though the euclidean distance to p[2] is smaller.

submitted to COMPUTER GRAPHICS Forum (6/2019).

8 Thibault Tricard & Frédéric Claux & Sylvain Lefebvre / Ribbed support vaults for 3D printing of hollowed objects

Figure 16: Left: distance field DB used to prioritize U candidates.
Right: distance field DBS used to add new supports.

Figure 17: Support tree generation for a flat, square slice. Left:
without branch heuristic. Right: with branch heuristic. The branch
heuristic favors the creation of trees, affording for more efficiency
of the reduction operators used when moving from the upper to the
lower slice (Section 4.3).

but do not overlap. There is one exception to this rule when one
branch is just starting. In such a case it extends to the junction to
ensure it sticks to the main branch. This is explained in Figure 20.

5. Results and comparisons

In this section we present the results obtained with our method and
compare them to the state of art. In all comparisons our models are
printed with a layer height of 0.2 mm, one perimeter, no shells and
no cover, using a 0.4 mm nozzle.

We printed our models on a variety of printers. Orange models
have been printed on an Ultimaker 3 using PLA plastic; white
models on a Prima P120 using PLA; the blue Buddha on a eMotion
Tech MicroDelta Rework; the giant octopus on a CR-10 printer; the
yellow Moai on a Ultimaker 2 printer; the dual-color Fawn on a
Flashforge Creator Pro.

All the models used in the paper are listed in Table 1.

5.1. Print quality

The quality of prints using our method is indistinguishable from
the quality obtained with a dense infill. This is thanks to the full
support property of our structures. Figure 3, right, compares a model
printed with a standard honeycomb infill and our method. Figure 5
compares top, flat surfaces printed with and without our supports.
Other results are visible in Figures 1, 10, 21 and 22.

Our algorithm generates many small segments that need to be
individually printed, leading to a high number of retract/prime oper-
ations surrounding travels. Depending on the printer model used, the

Algorithm 2 Generate the support for a slice
function GETSLICESUPPORT(U , B, T)

DBT ← DistanceField(B∪T)
DB← DistanceField(B)
for each u ∈U sorted by increasing distance to B w.r.t DB do

if Ku∩BT = ∅ then // if u is unsupported
L← LineSegment(u,Pro jDBT (u))
T ← T ∪L
DBT ← DistanceField(B∪T)

end if
end for
return T

end function

Model Thingiverse ID
Low Poly Bunny (Figure 1) 645740
Cute Octopus (Figure 3 and 21) 27053
Skeleton (skull only) (Figure 6) 644370
Low Poly Yoda (Figure 7) 906951
Hollow Skull Top (Figure 8) 4378
Kitten (Figure 10) 12694
Owl (Figure 21) 18218
Buddha (Figure 21) 329057
Low Poly Moai (Figure 21) 908062
Fawn (Table 3, Figure 27) 906692
Low Poly Skull (Figure 22) 906562
Yoda (Figure 23) 276994
Demon Dog (Figure 26) 67935

Table 1: Models used in the paper. They can be reached by using
the following URL: http://thingiverse.com/thing:ID, where ID holds
the thing identifier.

quality of the extrusion mechanics, the user-adjustable pressure of
the dented extrusion wheel on the filament, as well as the brand of
the filament itself, a small amount of under-extrusion may happen.
Indeed, the extrusion axis going back and forth many times tends to
slightly shift the filament upstream, generating a tiny but noticeable
loss of plastic†. To compensate for this, we perform a 5% prime
surplus at the beginning of each support segment: if the filament
was retracted by 3 mm before travel, we push it back by 3.15 mm
after travel. Because the extra prime may create a bulge, we avoid
doing it when located too close to perimeters, so as to not impact
surface quality.

Unlike pillars and bridges, linear supports can be printed at rel-
atively high speed. The advantage stems from the possibility to
extract long continuous print paths from the tree structures. Models
print well with our method regardless of the selected layer height,
with no noticeable printing artifacts (Figure 22).

5.2. Material quantity

We now evaluate the quantity of material required by our approach,

† With 1.75 mm diameter filament, a 0.4 mm nozzle and a 0.2 mm layer
thickness, a shift of 17µm of the filament leads to a 0.5 mm gap in deposition.

submitted to COMPUTER GRAPHICS Forum (6/2019).

Thibault Tricard & Frédéric Claux & Sylvain Lefebvre / Ribbed support vaults for 3D printing of hollowed objects 9

Input Support-Free Hollowing Iterative Carving Our method
Model Full volume Height Output volume Reduction Output volume Reduction Output volume Reduction

Demon dog 94779 82 36439 61,55% 8900 90,61% 7098 92,51%
Owl 21484 59 8780 59,13% 2764 87,13% 2374 88,94%
Yoda 101526 69 33626 66,87% 8409 91,71% 6994 93,11%
Skull 158575 64 - - 9919 93.74% 9128 94.11%
Moai 51205 73 - - 4493 91.22% 3663 92.84%
Kitten 15596 50 - - 2400 84.61% 2109 86.47%

Low poly bunny 34160 55 - - 3882 88.63% 3901 88.58%
Cube 8000 20 - - 954 88.07% 1248 84.40%

Table 2: Comparison with Support-Free Hollowing [WLW∗18] and Iterative Carving [HL18]. The input volume represents the volume (in
mm3) and the height (in mm) of the model. For each method we present the volume of the model after hollowing, and the volume reduction in
percentage (1− out putvolume

inputvolume)×100. Please refer to the text for discussion.

compared with both iterative carving [HL18] and support-free hol-
lowing [WLW∗18]. Results are summarized in Table 2. The results
we compare with were provided by the authors of these methods.

Compared with the method of Wang et al. [WLW∗18] our method
uses significantly less material for a same setup (45◦ angle for
cavities matching our 50% material overlap rule at 0.2 mm layer
thickness). For instance, on the Yoda model our technique incurs a
91.71% reduction versus 66.87% for support-free hollowing. This
can also be seen in the visual comparison in Figure 23. Note how
our technique produces thinner structures printed in each layer
with exactly one deposition path. Note that support-free hollow-
ing [WLW∗18] outputs a mesh and has to ensure sufficient wall
thickness between cavities for the slicing process to operate cor-
rectly. The slicer then creates two deposition paths for each wall,
which incurs an additional overhead. Our approach has an inherent
advantage by directly producing deposition paths. Our algorithm is
also significantly faster (discussed in Section 5.3).

Compared with the method of Hornus et al. [HL18] our algorithm
uses either a similar quantity of material or slightly less. In addition,
a closer inspection reveals that our method consistently provides
denser support, even when using less material. This is a direct
consequence of iterated carving missing internal edges in overhang,
see Figure 7. In addition, our approach is much more reliable with
respect to large isolated dangling features. These produce long
fragile bridges with iterative carving, see Figure 6.

Figure 24 shows the results of our technique as the object size
scales up. The last point on the curve is the 15 cm owl shown in
Figure 21 (Top Left). This is especially interesting as our method is
memory efficient (single sweep) and allows to process large models.
To highlight the benefits of this reduction, let us take the example
of a Moai model shown in Figure 21 (Bottom Left). When scaled
five times, using a 15% standard infill would require 419 meters of
filament – more than the standard 330 meters of a 1Kg PLA roll.
With our approach it requires only 46 meters of filament: multiple
prints fit easily a single roll. Figure 21 (Bottom Right) is an example
of a print that maximizes the print bed utilization of a printer, here
a CR10. The model is 273× 270× 186 mm and uses 68.5 m of
filament, where a 15% fill would require 278.2 m.

Table 3 reveals how the support size is impacted by layer thick-
ness. The required material quantity quickly decreases when using

Model Total volume (mm3) 0.2 mm 0.1 mm
Fawn 56151.57 83.00% 87.31%
Yoda 12176.73 92.84% 94.64%
Skull 76286.19 94.11% 96.25%
Moai 51205.01 92.84% 93.49%

Table 3: Percentage of volume reduction for different layer heights
with a 0.4 mm nozzle (higher is better).

thinner layers, which increases the overhang angle. This is true for
most techniques taking into account the maximum overhang angle.

Finally, Table 4 reveals the significant benefit of the straightening
operator (Section 4.1) on material quantity.

5.3. Implementation and performance

Our method requires a single sweep from the top slice to the bottom
slice of the model. Only two slices (Si and Si−1) need to be kept in
memory at any given time. This is similar to the method of Hornus
and Lefebvre [HL18] and provides scalability to large models.

Our framework is based on discrete slices at high resolution
(typically 0.05 mm per pixel), which enables support for implicit
functions, 3D textures and CSG constructs. Overhang detection is
done on a pixel basis using slice bitmaps. The distance field to BS
(Section 4.3) is reconstructed by going through each individual pixel
classified as overhang and by calculating the closest distance to a
discrete representation of BS in the inferior slice. We do however
maintain a vector representation for S as our ribbed support walls
originally come to life as line segments. Our erosion and straighten-
ing operators use this vector representation, which directly provides
toolpaths for S.

Processing times are listed in Table 5. Note that our prototype im-

Model With Without
Cube 132.31 mm 165.91 mm
Skull 461.15 mm 719.78 mm
Moai 87.68 mm 149.10 mm

Table 4: Effect of the straightening operator on filament length.

submitted to COMPUTER GRAPHICS Forum (6/2019).

10 Thibault Tricard & Frédéric Claux & Sylvain Lefebvre / Ribbed support vaults for 3D printing of hollowed objects

plementation, even if not optimized and running on a single thread,
is already orders of magnitude faster than the optimization based
approach of Wang et al. [WLW∗18]. For instance, we produce sup-
ports for the 50 mm tall Kitten in 40 seconds (single CPU thread),
versus 31 minutes in their approach. Significantly improved perfor-
mance can be expected if our algorithm is entirely implemented
using vector geometry for both S and B, eg. when dealing with mesh
models only.

Model Time (s) Model Time (s)
Cute Octo 4 Fawn 9
Cube 4 Yoda 11
Skull 79 Giraffe 61
Moai 39 Waving Groot 25 7
Waving Groot 50 55 Bunny 34

Table 5: Computation times in seconds for support generation.

Figure 18: Overall pipeline. (a): a slice of the outer model boundary
B (black) and its unsupported area U in red. (b): a location pu is
picked on U. Location selection is sorted by distance relative to B.
When multiple locations with equal priority can be selected, one is
chosen at random. The point closest to pu on either B or S is found
by using the distance field defined in Section 4.3. Here, the closest
location is on B, as S is empty. A line (in blue) linking pu to that
location on B is therefore created. (c): the deposited filament (in
blue) and its corresponding support area. (d)-(f): other locations
are picked on U and additional support lines are created. Locations
on the outer boundary of U are again considered first. Their random
selection tends to create support lines towards B, away from S.
(g)-(l): inner locations are picked on U. Support lines link these
locations to S, as S is now always closer than B. The process goes
on until U is empty (l).

Figure 19: Print tree ordering. (a) support tree, (b) printing order,
(c) printing path (blue: deposited material, green: travel only)

Figure 20: Side view of two printed walls at a junction. Note the
progressive, downward erosion of the right part. At a junction be-
tween walls we take special care to avoid over-extrusion. Child walls
do not reach the parent wall but stop before, taking into account
extrusion width. Only the first layer (in red) starts from the actual
branching point to allow some overlap and ensure adherence.

5.4. Limitations

While producing supports of small length, our algorithm is clearly
not optimal. This is revealed for instance on low-angle overhangs,
see Figure 25. The inefficiency is due to the local choice of con-
necting support walls to the closest internal surface, ignoring the
material quantity that will have to appear in slices below. While
a more global scheme could be devised, it could quickly become
prohibitively expensive to compute.

Similarly, in some specific cases pillars could be better than walls
for supports. For instance, a V-shaped roof produces a tip far away
from inner walls, requiring a wall extending all the way from the
side to reach the tip. This is illustrated in Figure 25. Generating a
pillar in these cases could further reduce the amount of material
used. However, as explained in Section 2 pillars must be printed
with great care, whereas our structures print reliably.

Our method is designed to provide supports that respect the re-
quirements detailed in Section 3.2 and does not take into account
the weight of the parts requiring supports. Weight-related problems
may arise when printing large, heavy objects. We however never
observed the issue, even when printing the large CuteOcto model
(Figure 21).

submitted to COMPUTER GRAPHICS Forum (6/2019).

Thibault Tricard & Frédéric Claux & Sylvain Lefebvre / Ribbed support vaults for 3D printing of hollowed objects 11

Figure 21: Top Left : 15 cm owl printed with our method. A
strong back light reveals the inner structures generated by our
approach. Top Right: 88 mm Buddha model printed using our
method, with no shell or cover, and using a print speed of 70 mm/s
for supports and 20 mm/s for perimeters. The input model has
734,947 vertices and 1,469,760 triangles. Support generation took
107 seconds. https://www.thingiverse.com/thing:329057 by Geoffro. Bot-
tom Left : Moai printed with our method, a strong back light reveals
the inner structures generated by our approach. Moai model: thin-
giverse.com/thing:908062 by slavikk Bottom Right :Large CuteOcto
printed with our method using transparent filament (273 mm × 270
× 186 mm).

Figure 22: Two skulls printed with our method using different layer
heights. Left: 0.1 mm, Right: 0.2 mm. Corresponding material usage
is shown in Table 3.

6. Conclusion and future works

We have presented a method to print hollowed objects through
the generation of internal support structures akin to ribbed vaults.
Our structures use little material while providing a dense support,
enabling reliable, high quality printing at a fraction of the time and
cost normally required.

Despite producing smaller structures than prior works, our al-
gorithm ensures that deposited material is completely supported.
Beyond thermoplastics, we believe this property to be especially

Figure 23: Printing the Yoda model. Left : Hollowed by support-
free hollowing [WLW∗18]. Right : Printed with our method and cut
open with a blade (hence the raw outline). Center : Result before
cut-out. We did not add external supports which explains small
defects around the ears.

Figure 24: Volume reduction as a function of the object size, com-
puted on the owl model. The method becomes increasingly efficient.

important when extruding heavy or viscous materials such as clay
or concrete (contour crafting).

As future work, we think our technique could lead to novel exter-
nal support structures. We show preliminary results in Figures 26
and Figure 27, as well as Table 6, comparing to the bridge structures
of Dumas et al. [DHL14]. When used externally our technique pro-
duces walls that extend from the print to support areas in overhang
above. This produces surprisingly small and effective supports, apart
from of few places where large walls appear (see also Section 5.4).
The structures are however hard to remove if printed with PLA or
ABS, as they are strongly connected to the model, but printed with
soluble materials (PVA/HIPS) they could be efficiently dissolved.
This is a natural direction for future research.

Acknowledgements

We would like to thank Weiming Wang for the generated models
obtained with Support-Free Hollowing [WLW∗18].

submitted to COMPUTER GRAPHICS Forum (6/2019).

12 Thibault Tricard & Frédéric Claux & Sylvain Lefebvre / Ribbed support vaults for 3D printing of hollowed objects

Figure 25: Left: Low angle, flat overhang areas mislead our wall
direction heuristics, generating suboptimal supports. Right: Over-
hang area located far away from the rest of the model and close to
the bed. Our method connects the support for that overlang to the
post on the left, using up a lot of material. A pillar would use much
less material here.

Model Bridging the gap Our method
Fawn 55cm (22min) 10cm (3min)
Nail 120cm (40min) 78cm (12min)
Bridge 46cm (16min) 53cm (11min)
Bunny 65cm (25min) 8cm (4min)
Female Knight 127cm (1h38min) 36cm (1h)
Minotaur 251cm (3h12min) 48cm (1h)

Table 6: Material and printing time spent on external supports by
our method compared to bridging the gap.

References

[DHL14] DUMAS J., HERGEL J., LEFEBVRE S.: Bridging the Gap:
Automated Steady Scaffoldings for 3D Printing. ACM Transactions on
Graphics 33, 4 (July 2014), 98:1 – 98:10. 4, 11

[HL18] HORNUS S., LEFEBVRE S.: Iterative Carving for Self-supporting
3D Printed Cavities. In EG 2018 - Short Papers (2018), Diamanti O.,
Vaxman A., (Eds.), The Eurographics Association. 3, 4, 9, 10, 11

[HLDC16] HORNUS S., LEFEBVRE S., DUMAS J., CLAUX F.: Tight
Printable Enclosures and Support Structures for Additive Manufacturing.
In Eurographics Workshop on Graphics for Digital Fabrication (2016),
e Sa A. M., Pietroni N., Echavarria K. R., (Eds.), The Eurographics
Association. 3, 5

[HYW∗08] HUANG X., YE C., WU S., GUO K., MO J.: Sloping wall
structure support generation for fused deposition modeling. The Inter-
national Journal of Advanced Manufacturing Technology 42, 11 (2008),
1074. 4

[Ice] ICESL: Progressive infills. https://twitter.com/
iceslapp/status/1000063188082282497. 3

[LEM∗17] LIVESU M., ELLERO S., MARTÍNEZ J., LEFEBVRE S., AT-
TENE M.: From 3D models to 3D prints: an overview of the processing
pipeline. In Computer Graphics Forum (2017), vol. 36, Wiley Online
Library, pp. 537–564. 3

[LL17] LEE J., LEE K.: Block-based inner support structure generation
algorithm for 3d printing using fused deposition modeling. The Interna-
tional Journal of Advanced Manufacturing Technology 89, 5 (Mar 2017),
2151–2163. 3

[LLL17] LEE T., LEE J., LEE K.: Extended block based infill generation.
The International Journal of Advanced Manufacturing Technology 93, 1
(Oct 2017), 1415–1430. 3

[MSWS00] MCMAINS S., SMITH J., WANG J., SÉQUIN C.: Layered
manufacturing of thin-walled parts. In ASME Design Engineering Techni-
cal Conference, Baltimore, Maryland (2000), Citeseer. 3

[Sli] SLIC3R: 3D infilling: faster, stronger, simpler . http://manual.
slic3r.org/expert-mode/infill. 3

[SU14] SCHMIDT R., UMETANI N.: Branching Support Structures for

Figure 26: Demon dog printed using our method for external sup-
port.

Figure 27: Half-size fawn model, printed with our method for exter-
nal support, using a blue filament color for supports.

3D Printing. In ACM SIGGRAPH 2014 Studio (New York, NY, USA,
2014), SIGGRAPH ’14, ACM, pp. 9:1–9:1. 4

[Ult] ULTIMAKER: Gradual infill. https://ultimaker.com/en/
resources/52670-infill. 3

[VGB14] VANEK J., GALICIA J. A. G., BENES B.: Clever support:
Efficient support structure generation for digital fabrication. Comput.
Graph. Forum 33, 5 (Aug. 2014), 117–125. 4

[WLW∗18] WANG W., LIU Y., WU J., TIAN S., WANG C. C. L., LIU
L., LIU X.: Support-free hollowing. IEEE Transactions on Visualization
and Computer Graphics (2018), 1–1. 4, 9, 10, 11

[WWY∗13] WANG W., WANG T. Y., YANG Z., LIU L., TONG X., TONG
W., DENG J., CHEN F., LIU X.: Cost-effective printing of 3d objects
with skin-frame structures. ACM Transactions on Graphics 32, 6 (2013),
177:1–177:10. 3

[WWZW16] WU J., WANG C. C., ZHANG X., WESTERMANN R.: Self-
supporting rhombic infill structures for additive manufacturing. Computer-
Aided Design 80 (2016), 32 – 42. 3

[XC17] XIE Y., CHEN X.: Support-free interior carving for 3D printing.
Visual Informatics 1, 1 (2017), 9 – 15. 3

[ZXW∗15] ZHANG X., XIA Y., WANG J., YANG Z., TU C., WANG
W.: Medial axis tree – an internal supporting structure for 3d printing.
Computer Aided Geometric Design 35-36 (2015), 149 – 162. Geometric
Modeling and Processing 2015. 4

submitted to COMPUTER GRAPHICS Forum (6/2019).

https://twitter.com/iceslapp/status/1000063188082282497
https://twitter.com/iceslapp/status/1000063188082282497
http://manual.slic3r.org/expert-mode/infill
http://manual.slic3r.org/expert-mode/infill
https://ultimaker.com/en/resources/52670-infill
https://ultimaker.com/en/resources/52670-infill

