
HAL Id: hal-02155905
https://hal.science/hal-02155905

Submitted on 14 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Recursions of Robust COMET Algorithm for
Convexly Structured Shape Matrix

Bruno Meriaux, Chengfang Ren, Arnaud Breloy, Mohammed Nabil El Korso,
P Forster, Jean-Philippe Ovarlez

To cite this version:
Bruno Meriaux, Chengfang Ren, Arnaud Breloy, Mohammed Nabil El Korso, P Forster, et al.. On
the Recursions of Robust COMET Algorithm for Convexly Structured Shape Matrix. 27th Euro-
pean Signal Processing Conference (EUSIPCO 2019), Sep 2019, A Coruña, Spain. �10.23919/eu-
sipco.2019.8903167�. �hal-02155905�

https://hal.science/hal-02155905
https://hal.archives-ouvertes.fr


On the Recursions of Robust COMET Algorithm
for Convexly Structured Shape Matrix
B. Mériaux∗, C. Ren∗, A. Breloy†, M.N. El Korso†, P. Forster‡ and J.-P. Ovarlez∗§
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Abstract—This paper addresses robust estimation of structured
shape (normalized covariance) matrices. Shape matrices most
often own a particular structure depending on the application
of interest and taking this structure into account improves
estimation accuracy. In the framework of robust estimation, we
introduce a recursive robust shape matrix estimation technique
based on Tyler’s M -estimate for convexly structured shape
matrices. We prove that the proposed estimator is consistent,
asymptotically efficient and Gaussian distributed and we notice
that it reaches its asymptotic regime faster as the number of
recursions increases. Finally, in the particular wide spreaded case
of Hermitian persymmetric structure, we study the convergence
of the recursions of the proposed algorithm.

Index Terms—Robust shape matrix estimation, elliptical dis-
tributions, Tyler’s M -estimator, structured estimation.

I. INTRODUCTION

Most of the adaptive signal processing algorithms require a
Covariance Matrix (CM) estimation. In addition to its Hermi-
tian symmetry and positive definiteness, the CM may exhibit
a particular structure related to the application of interest. For
example, a linear array that is symmetrically spaced w.r.t. the
phase center leads to the Hermitian persymmetric structure
of the CM [1]. Another example is the Toeplitz structure for
uniform linear arrays. Taking into account this structure in
the estimation scheme leads to a better estimation accuracy
since it decreases the degrees of freedom in the estimation
problem [2]. In the Gaussian framework, this challenge has
been extensively studied. Notably, the Covariance Matching
Estimation Technique (COMET) has been proposed in [3].
The latter is computationally less intensive than Maximum
Likelihood (ML) estimation and still provides asymptotically
efficient CM estimates. However, COMET is based on the
Sample Covariance Matrix (SCM) estimate, thus it is sensi-
tive to outliers. In a context of robust CM estimation, the
class of circular Complex Elliptically Symmetric distributions
(CES) turns out to be particularly suitable to model spiky
radar clutter measurements [4]–[6]. Within this framework,
a distribution free estimator of the scatter matrix is derived
in [7] and referred to as Tyler’s M -estimator. Furthermore,
the normalization of zero mean CES distributed data leads to
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the common Complex Angular Elliptical (CAE) distribution.
Several robust methods have been proposed to leverage Tyler’s
estimator formulation [7] in the context of structured shape
matrices [8]–[13]. A COnvexly ConstrAined (COCA) shape
matrix estimator has been recently proposed in [10]. Iterative
Majorization-Minimization algorithms for the computation of
structured CM estimates are developped in [11] and a robust
extension of COMET, named RCOMET, has been derived in
[13]. The references [8], [9], [12] considered the problem of
robust shape matrix estimation with symmetric structures.

In this paper, we propose a Recursive version of RCOMET
(R-RCOMET) based on Tyler’s M -estimate and COMET
criterion for convexly structured shape matrices. We conduct a
theoretical analysis of the asymptotic performance of the pro-
posed estimator. We also compare the non-asymptotic behavior
with the RCOMET method. Finally, we analyse theoretically
the convergence of the recursions in the particular case of the
Hermitian persymmetric structure.

In the following, convergence in distribution and in proba-
bility are respectively denoted by L→ and P→. AT (respectively
AH and A∗) stands for the transpose (respectively conjugate
transpose and conjugate) matrix. The vec-operator vec(A)
stacks all columns of A into a vector. The identity matrix
of size m is referred to as Im. The matrix Jm denotes
the m-dimensional antidiagonal matrix, having 1 as non-
zero element. The operator ⊗ refers to the Kronecker matrix
product and finally, the subscript ”e” refers to the true value.

This paper is organized as follows. In section II, a brief re-
view on CAE distribution, Tyler’s M -estimate and RCOMET
procedure is presented. Section III focuses on the proposed
algorithm and its performance analysis. We also analyse the
convergence of the recursions in the case of the Hermitian
persymmetric structure. Some simulations results in Section
IV illustrate the theoretical analysis.

II. BACKGROUND AND PROBLEM SETUP

A. Complex Angular Elliptical Distribution

Let x ∈ Cm be a circular centered CES distributed random
vector [5] with scatter matrix M. If it exists, the covariance
matrix of x is proportional to M. The normalized vector
y =

x
‖x‖

, x 6= 0, follows a CAE distribution, denoted by



y ∼ Um (M). The probability density function of the vector y
w.r.t. spherical measure [10] reads

p(y |M) ∝ |M|−1
(
yHM−1y

)−m
(1)

where the matrix M is defined up to an arbitrary scale factor.
To avoid scaling ambiguity, M is normalized according to
Tr (M) = m. We refer to M as the shape matrix of y.

B. Tyler’s M -estimator

From a set of N i.i.d. CAE distributed data, yn ∼ Um (M),
n = 1, . . . , N with N > m, Tyler’s M -estimate is the
unstructured ML-estimate of the shape matrix, given by the
solution of the following fixed-point equation [7]:

M̂FP =
m

N

N∑
n=1

ynyHn
yHn M̂

−1
FP yn

, H
(

M̂FP

)
(2)

Existence and uniqueness up to a scale factor of the above
equation solution have been studied in [14]. In the follow-
ing, the scale ambiguity is removed by fixing in the latter
solution the same constraint as for the shape matrix, i.e.
Tr
[
M̂FP

]
= m. The solution M̂FP is obtained by an iterative

algorithm, Mk+1 = H (Mk) with the normalization on the
trace, which converges to M̂FP, for any initialization point [7],
[15]. Furthermore, M̂FP is a consistent, unbiased estimator of
M and its asymptotic distribution is given by [5], [15]:

√
Nvec

(
M̂FP −M

)
d−→ CN (0,Σ,ΣKm) (3)

with


Σ =

m+ 1

m
ΓM
(
MT ⊗M

)
ΓHM

ΓM =

(
Im2 − 1

m
vec (M) vec (Im)

H

)
where Km is the commutation matrix, which satisfies
Kmvec (A) = vec

(
AT
)

[16].

C. Problem Setup and RCOMET Algorithm

Let us consider N i.i.d. CAE distributed observations,
yn ∼ Um (Me), n = 1, . . . , N with N > m. The shape matrix
belongs to the convex subset S of Hermitian positive-definite
matrices and there exists a one-to-one differentiable mapping
µ 7→ M (µ) from Rp to S . The vector µ is the unknown
parameter of interest, with exact value µe and Me = M (µe).
We recall that Tr [Me] = m. The RCOMET estimate, µ̂0, of
µe is obtained by [13]

µ̂0 = arg min
α,µ

Tr
[{(

M̂FP − αM (µ)
)

M̂
−1
FP

}2
]

(4)

= arg min
α,µ

∥∥∥Im − M̂
−1/2
FP [αM (µ)] M̂

−1/2
FP

∥∥∥2
F

with α > 0 and satisfying Tr [M (µ̂0)] = m. The minimiza-
tion of the strictly convex criterion in (4) w.r.t αM (µ) over
S is a convex problem that admits a unique solution. Finally,
the one-to-one mapping and the constraint on the trace yield
a unique solution for µ. The RCOMET estimator µ̂0 (respec-
tively M (µ̂0)) is a consistent estimator of µe (respectively

Algorithm 1 R-RCOMET
Require: N i.i.d. data, yn ∼ Um (Me) with N > m, any

K ≥ 1 given
1: Compute M̂FP from y1, . . . , yN with (2)
2: Initialize µ̂0 with (4)
3: for k = 1 to K do
4: Compute µ̂k from (6)
5: end for
6: return µ̂K

M (µe)) and asymptotically efficient and Gaussian distributed
[13]. Specifically

√
N (µ̂0 − µe)

L→ N (0,CRBCAE) (5)

where CRBCAE, denoting the Cramér-Rao Bound (CRB), is
detailled in [13].

Although asymptotically efficient, RCOMET algorithm re-
quires a substantial sample support to reach its asymptotic
regime. In this paper, we propose a recursive version of
RCOMET, for which we conduct a theoretical analysis of
its asymptotic performance; we also notice that the latter are
achieved at lower sample support. Furthermore, we analyse the
convergence behavior for a particular strucuture: the Hermitian
persymmetric one.

III. RECURSIVE RCOMET PROCEDURE

A. Algorithm
In the RCOMET objective (4), M̂FP plays both the role of a

target together with a metric specification through M̂
−1
FP . Split-

ting these roles can lead naturally to a recursive formulation
where the weighting is refined at each step. For a finite and
given number of steps, K, we obtain the R-RCOMET estimate
for µ, denoted by µ̂K and achieved at the k-th iteration by
solving for k ∈ [[1,K]]

µ̂k = arg min
α,µ

Tr
[{(

M̂FP − αM (µ)
)
M
(
µ̂k−1

)−1
}2
]

(6)

with µ̂0 given by (4) and such that Tr [M (µ̂K)] = m. The
R-RCOMET algorithm is recapped in the box Algorithm 1. In
practice, we can use a more elaborated stopping rule, e.g., a
combination of k ≤ Kmax and

∥∥µ̂k+1 − µ̂k
∥∥ ≤ εtol ‖µ̂k‖.

B. Asymptotic Analysis
First, we introduce an intermediary estimator, µ̂, of µe, for

which its asymptotic performance is studied. Then, we deal
with the R-RCOMET asymptotic performance.

Lemma 1. Let µ̂ be the solution obtained by

µ̂ = arg min
α,µ

Tr
[{(

M̂FP − αM (µ)
)

M̂
−1}2

]
︸ ︷︷ ︸

d(M̂FP,M̂,αM(µ))

(7)

such that Tr [M (µ̂)] = m and where M̂ refers to any
consistent estimator of Me up to a scale factor, i.e., M̂ P→ κMe,
κ > 0. Then,

µ̂
P→ µe and

√
N (µ̂− µe)

L→ N (0,CRBCAE)



Proof. The estimate µ̂ is a function of M̂FP and M̂ that we
denote by:

µ̂ = g
(

M̂FP, M̂
)

Function g(·) satisfies g (Me, κMe) = µe since
d (Me, κMe,M(µe)) = 0 for any κ > 0. Moreover,
for a smooth parameterization M(µ), g(·) is differentiable
and thus continuous. Then, the consistency of M̂FP w.r.t Me
[15] (respectively M̂ w.r.t. κMe, for any κ > 0) and the
continuity of g imply µ̂ = g

(
M̂FP, M̂

)
P→ g (Me, κMe) = µe.

Consequently M (µ̂)
P→M (µe)

We can rewrite (7) as the following concentrated function

µ̂ = arg min
µ

η̂HFPŴ
−1/2∏⊥

Ŵ−1/2
η(µ)

Ŵ
−1/2

η̂FP︸ ︷︷ ︸
fM̂,M̂FP

(µ)

(8)

where
∏⊥

Ŵ−1/2
η(µ)

= I − Ŵ
−1/2

η (µ)η (µ)
H Ŵ

−1/2

η (µ)
H Ŵη (µ)

is

the orthogonal projector onto Ŵ
−1/2

η (µ) and with η (µ) =

vec (M (µ)), Ŵ = M̂
T
⊗M̂ and η̂FP = vec

(
M̂FP

)
. It follows

from the Delta method [17, Chapter 3] that
√
N (µ̂− µe)

L→ N (0,Γµ) (9)

where Γµ = H(µe)
−1R∞H(µe)

−H in which [18]
H(µe) = κ−2

∂2fMe,Me(µ)

∂µ∂µT

∣∣∣∣
µe

R∞ = κ−4E

 ∂fMe,M̂FP
(µ)

∂µ

∣∣∣∣∣
µe

 ∂fMe,M̂FP
(µ)

∂µ

∣∣∣∣∣
µe

H


Thus, Γµ is independent of κ. RCOMET estimator being a
particular case of the problem (7) (where M̂ = M̂FP is a
consistent estimator of Me), we finally obtain from (5) that
Γµ = CRBCAE, which concludes the proof. �

Theorem 1. Let µ̂K be the R-RCOMET estimator of µe based
on N i.i.d. observations, yn ∼ U (Me). µ̂K is consistent w.r.t.
µe, asymptotically Gaussian distributed and efficient:

√
N (µ̂K − µe)

L→ N (0,CRBCAE)

Proof. By applying Lemma 1 at each iteration, the theorem
follows immediately, since M (µ̂k)

P→Me for k ≥ 0. �

Finally, for a finite number of steps K, R-RCOMET yields
the same asymptotic performance as RCOMET. The practical
interest is that it empirically improves in most cases the
performance at low sample support, which can be intuited
by noting that the minimized norm is refined at each step.
Notice that the fixed-point iterations are heuristic as they do
not solve an underlying optimization problem when K →∞.
The estimator exists for a finite number of iterations but the
convergence of R-RCOMET when K → ∞ requires a case
by case study depending on the structure. In the following,
the convergence of R-RCOMET for Hermitian persymmetric
structure is established.

C. Convergence for Hermitian Persymmetric Structure
In this subsection, we consider the particular case of the

Hermitian persymmetric structure, i.e., matrices which belong
to the set

{
A ∈ Cm×m|A = AH and A = JmAT Jm

}
. Let us

denote Mr,s the (r, s) element of the matrix M (µ). The
natural parameterization of a Hermitian persymmetric matrix,
with the minimal number of parameters, consists in stacking
the real and imaginary parts of the elements Mr,s satisfying
s ≥ r and s ≤ m + 1 − r. The length of the vector µ is

equal to p =
m(m+ 1)

2
. Hence, there exists a full column

rank matrix J ∈ Cm2×p, which relates the vectorized matrix
M (µ) to µ as

η (µ) = vec (M (µ)) = Jµ (10)

The full column rank matrix J admits a left inverse J † =(
JHJ

)−1
JH verifying J †J = Ip [19].

Proposition 1. Let W = AT ⊗ A, where A ∈ Cm×m
is Hermitian persymmetric. Then the inverse of the matrix
JHW−1J is J †WJ †

H

.

Proof. See Appendix �

Corollary 1. Let µ̂K be the R-RCOMET estimate of µe.
Then,

∀K ∈ N∗ µ̂K = J †η̂FP (11)

Proof. For K = 1, the R-RCOMET estimate reads

µ̂1 ∝
(
JHŴ

−1
0 J

)−1
JHŴ

−1
0 η̂FP

where Ŵ0 = M (µ̂0)
T ⊗M (µ̂0) and µ̂0 is given by (4).

According to Proposition 1, µ̂1 can be rewritten as

µ̂1 ∝ J †Ŵ0J †
H

JHŴ
−1
0 η̂FP

∝ 1

2
J †Ŵ0 [Im2 + Jm2Km] Ŵ

−1
0 η̂FP (cf. Lemma 2)

∝ 1

2
J † [Im2 + Jm2Km] η̂FP = J †η̂FP

Hence, to verify Tr [M (µ̂1)] = m, we have necessarily

µ̂1 = J †η̂FP (12)

By recurrence, we can show that µ̂1 = . . . = µ̂K = J †η̂FP
for any K ∈ N∗. Indeed, let us assume µ̂K = J †η̂FP, then

µ̂K+1 ∝
(
JHŴ

−1
K J

)−1
JHŴ

−1
K η̂FP

where ŴK = M (µ̂K)
T ⊗M (µ̂K). According to Propo-

sition 1 and the trace constraint, we finally obtain µ̂K+1 =

J †η̂FP. Consequently, the R-RCOMET procedure for Hermi-
tian persymmetric matrices converges in only one step, i.e.,
the resulting outcome is identical for any K ≥ 1. �

J †η̂FP can be interpreted as the solution of the Euclidean
projection of Tyler’s M -estimate onto the subspace of Hermi-
tian persymmetric matrices.

J †η̂FP = arg min
α,µ
‖η̂FP − αJµ‖2 s.t. Tr [M (µ)] = m (13)



Consequently, surprisingly, the R-RCOMET procedure coin-
cides with the classical Euclidean projection of Tyler’s M -
estimate in the case of Hermitian persymmetric matrices.

IV. NUMERICAL RESULTS

In this section, we illustrate the results of the previous
theoretical analysis and compare performance with state-of-
the-art algorithms.

A. Hermitian Persymmetric Structure

First, we consider the Hermitian persymmetric structure.
For m = 8, we generate 5000 sets of N independent m-
dimensional CAE distributed samples. We compare the per-
formance of RCOMET and R-RCOMET, the Persymmetric
Fixed-Point (PFP) estimate derived in [8] and the Persymmet-
ric Sample Covariance Matrix (PSCM) estimator. The latter
is obtained by substituting Tyler’s M -estimate in the PFP
estimator with the SCM. Finally, the related CRB, CRBU ,
is drawn for the comparison [10], [20].
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Number of samples N

Tr
{M

SE
(µ̂

)}
(d

B
)

Tr (CRBU )
PFP [8]
RCOMET [13]
R-RCOMET, K = 1

R-RCOMET, K = 2

PSCM

Fig. 1. Comparison on the MSE for Hermitian persymmetric structure

From Fig. 1, we notice that the R-RCOMET estimates reach
the CRB as well as the RCOMET estimate, which reflects their
asymptotic efficiency. Furthermore, R-RCOMET estimates are
identical for 1 and 2 iterations and seems also to coincide with
the PFP estimate. The PSCM estimator does not perform well
since the SCM computed from CAE distributed data is the
normalized SCM and is biased [15].

Remark: Actually, we can show theoretically that the
R-RCOMET estimate coincides with the PFP estimate, since
µ̂PFP given in [8] can be expressed by

µ̂PFP = J †
(
TT ⊗ TH

)
vec
(
1

2

[
TM̂FPTH + T∗M̂

T

FPTT
])

=
1

2
J † [Im2 + Jm2Km] η̂FP = J †η̂FP (14)

where T ∈ Cm×m is a unitary matrix, defined in [8, Proposi-
tion 1] and verifying the relation TTT = Jm.

Again, the R-RCOMET procedure converges in one step in this
particular case and it boils down to an Euclidean projection
of Tyler’s M -estimate for Hermitian persymmetric matrices.

B. Hermitian Toeplitz Structure

Secondly, we examine the Hermitian Toeplitz structure. In
this case, the minimal parameterization consists in stacking
the real and imaginary parts of the first row of the matrix
M (µ). Furthermore, there exists a full column rank matrix
J 1 ∈ Cm2×p with p = 2m−1, which relates M (µ) to µ as
vec (M (µ)) = J 1µ. It is worth noting that the matrix J 1 for
Hermitian Toeplitz matrices differs from J for Hermitian per-
symmetric matrices since the minimal number of parameters is
different on these cases. For m = 8, we generate 5000 sets of
N independent m-dimensional CAE distributed samples. We
compare the performance of RCOMET and R-RCOMET for
different numbers of recursions K, the Euclidean projection
of Tyler’s M -estimate as well as the COCA shape estimator
introduced in [10]. The standard semi-definite program solver,
CVX, is used to compute this estimator [21]. The related CRB,
CRBU , is also drawn for the comparison [13].
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Fig. 2. Comparison on the MSE for Hermitian Toeplitz structure

From Fig. 2, we verify that the R-RCOMET estimates reach
the CRB as well as the RCOMET estimate. As already stated,
we observe that the CRB is reached faster with R-RCOMET
than RCOMET, especially when the number of recursions, K
increases. However, in this case R-RCOMET does not coincide
with the Euclidean projection of Tyler’s M -estimate, which is
not asymptotically efficient. Finally, COCA estimator is con-
sistent (as shown in [10]) but not asymptotically efficient. This
estimator shows its interest at low sample support, however it
suffers from a heavy computational cost. R-RCOMET allows
for an interesting performance-computational cost trade-off in
this context. Indeed, with the simulations running in Matlab
R2017a on E3-1270 v5 CPU, the average calculation time



is 50.40s for COCA (respectively 0.17s for R-RCOMET) for
N = 1000.

V. CONCLUSION

In this paper, we have introduced a recursive version of
RCOMET for convexly structured shape matrix estimation.
We have shown that the proposed R-RCOMET method is
consistent, asymptotically unbiased, efficient and Gaussian
distributed. In addition, the latter empirically performs better
at lower sample support than RCOMET. In the particular
case of the Hermitian persymmetric structure, we studied the
convergence of the recursions and we related R-RCOMET to
the classical Euclidean projection of Tyler’s M -estimate.

VI. APPENDIX

This appendix presents the proof of Proposition 1, which
requires the following lemma.

Lemma 2. Let J ∈ Cm2×p be the matrix defined in (10).
Its left inverse is the matrix J † ∈ Cp×m2

such that J † =(
JHJ

)−1 JH and J †J = Ip. Then, we have the equality

JJ † = 1

2
(Im2 + Jm2Km) (15)

Proof. Let us introduce PJ = JJ † and Q =
1

2
(Im2 + Jm2Km). On the one hand, PJ is a projection

matrix onto the image of J and has a rank equal to p =
m(m+ 1)

2
. On the other hand, Q is also a projection matrix

onto the image of J . Furthermore, we have QPJ = PJ . To
conclude that Q = PJ , we need to show that rank (Q) = p.
Since Km is full rank, we have

rank (Q) = rank (QKm) = rank (Km + Jm2)

Let us analyse the columns of the matrix B = Km + Jm2 ∈
Rm2×m2

. To this end, let be ei the i-th column unit vector
of order m2. Thus, for (k, `) ∈ [[1;m]]2, we have for i =
k + (`− 1)m ∈ [[1;m2]]

Bei = e`+(k−1)m + em2−i+1 = e`+(k−1)m + em(m−`)+m−k+1

The columns of B have either only one non-zero coordinate,
equal to 2 (m different possibilities), or only two non-zero

coordinates, equals to 1

(
m(m− 1)

2
different possibilities

)
.

Finally, we obtain rank (Q) = rank (B) = m+
m(m− 1)

2
= p,

hence the relation (15). In addition, by right multiplying (15)
with J , we obtain J = Jm2KmJ . �

Proof of Proposition 1. Let us introduce X = JHW−1J and
Y = J †WJ †

H

. We must show that XY = YX = Ip. First
according to Lemma 2, we have

XY = JHW−1JJ †WJ †
H

=
1

2
JH [Im2 + W−1Jm2KmW

]
J †

H

Then, it is easy to show that the matrix W−1 is persymmetric
thus W−1Jm2KmW = Jm2Km. Finally, we obtain

XY =
1

2
JH [Im2 + Jm2Km]J †

H

= Ip = YX.

�
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