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This paper introduces an entropy based method that measures complexity in non-stationary multi-

variate signals. This method, called Mutivariate Improved Weighted Multiscale Permutation Entropy

(mvIWMPE), has two main advantages: (i) it shows lower variance for the results when applied on a wide

range of multivariate signals; (ii) it has good accuracy quantifying complexity of different recorded states

in signals and hence discriminating them. mvIWMPE is based on two previously introduced permutation

entropy algorithms, Improved Multiscale Permutation Entropy (IMPE) and Multivariate Weighted Mul-

tiscale Permutation Entropy (mvWMPE). It combines the concept of coarse graining from IMPE and the

introduction of the weight of amplitudes of the signals from mvWMPE. mvIWMPE was validated on both

synthetic and human electroencephalographic (EEG) signals. Several synthetic signals were simulated:

mixtures of white Gaussian noise (WGN) and pink noise, chaotic and convergent Lorenz system signals,

stochastic and deterministic signals. As for real signals, resting-state EEG recorded in healthy and epileptic

children during eyes closed and eyes open sessions were analyzed. Our method was compared to multi-

variate multiscale, multivariate weighted multiscale and multivariate improved multiscale permutation

entropy methods. Performance on synthetic as well as on EEG signals showed more undeviating results

and higher ability for mvIWMPE discriminating different states of signals (chaotic vs convergent, WGN vs

pink noise, stochastic vs deterministic simulated signals, and eyes open vs eyes closed EEG signals). We

herein proposed an efficient method to measure the complexity of multivariate non-stationary signals.

Experimental results showed the accuracy and the robustness (in terms of variance) of the method.

1. Introduction

Studying signals of living systems is an important step towards

better understanding the physiological and pathological function-

ing of these systems. This is particularly relevant when studying

brain signals from electroencephalography (EEG). It is widespread

in studies to apply various complexity measuring methods (includ-

ing multiscale and multivariate) on EEG signals. Examples of that

are [1–4]. Indeed, many studies reported a difference in terms of

complexity between brain signals from healthy subjects and vari-
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ous pathological conditions [5,6,7], and even between two different

physiological states for a given controlled system [8]. However,

quantifying the complexity of such signals is a very challenging task

because of their inherent properties. First, living systems’ signals

are non-stationary, and sometimes multivariate, reflecting vari-

ous underlying mechanisms. Second, these signals disclose a wide

diversity caused by the intra- and inter-subject variabilities. In this

context, our goal was also to obtain an accurate method to distin-

guish different physiological states.

A common method for studying irregularity or complexity of

time series is entropy. When a signal is regular, its entropy value

is rather low. Several algorithms have been proposed to study

entropy, such as the approximate entropy [9], sample entropy [10],

fuzzy entropy [11], and permutation entropy (PE) [12].
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PE is based on the concept of ordering the values of the sig-

nal being studied. It is characterized in being simple in terms of

parameters and fast to compute. For this reason, several studies

involved permutation entropy for its advantages [13–18]. Many of

these studies were EEG- and epilepsy-oriented as some of them

used PE to detect epilepsy and predict seizures [14,16].

PE basically can only be used to find entropy values of signals

on a single scale. In 2002, the concept of multiscale entropy was

introduced [19]. It is based on “coarse-graining” the original sig-

nal to inspect deeper temporal scales and thus calculate entropy

values across scales. This multiscale concept was extended to PE.

Multiscale permutation entropy was also used in several studies,

mainly on physiological signals [20,21]. To deal better with phys-

iological signals of systems, several approaches were proposed to

extend entropy measures to multivariate signals [22,23] measuring

within- and cross-channels dependencies. In 2012, multiscale PE

was extended to be applied on multivariate EEG signals and analyse

their complexity in the case of Alzheimer’s disease [24].

These advances in entropy measurements still have some limi-

tations: (i) they are not robust to signals variabilities and (ii) they

show low performance discriminating different physiological or

pathological states because they lack information related to sig-

nals’ amplitudes. The objective of this paper was to introduce a

new method that can cope up with all the aforementioned short-

comings. In other terms, a multivariate (across channels) multiscale

(across time series) permutation entropy with highly robust results

and accurate discrimination ability is here proposed. The method

is called multivariate Improved Weighted Multiscale Permutation

Entropy (mvIWMPE). This method is validated on both simulated

and human EEG signals. As compared to the state of the art methods,

it shows higher performance in terms of robustness and discrim-

inability.

This paper is divided into four sections. The first section dis-

plays a background on several algorithms of permutation entropy.

The second section introduces our new algorithm. The third sec-

tion evaluates this algorithm on synthetic time series. Finally in

the last section, the algorithm is applied on EEG signals to validate

its efficiency on real physiological data.

2. Algorithms of permutation entropy

In this section, we will briefly describe the different algorithms

of PE.

2.1. Permutation entropy

Consider a time series {xi}i=1,...,N with N time points. For each

time point a vector containing d points is constructed such that

xd,l
t = {xt, xt+l, . . ., xt+(d−2)l, xt+(d−1)l} where d is the embedding

dimension and l is the time delay.

Each element of the vector xd,l
t is associated to a num-

ber from 1 to d and then ordered in increasing order to

become {xt+(j1−1)l, xt+(j2−1)l, . . ., xt+(jd−1−1)l, xt+(jd−1)l} with

xt+(jn−1)l ≤ xt+(jn+1−1)l . Since the vectors have d points there

will be d ! possible orders, �, named motifs. The relative frequency

of each motif, �i, is calculated as follows

p(�i) =
#{t|t ≤ N − d, type(xd,l

t ) = �i}
N − d + 1

, (1)

which means the number of all vectors xd,l
t across all t that, when

ordered, have the same type as �i divided by the total number of

vectors xd,l
t (# means number of elements in a set or cardinality).

Note that the condition (d + 1) ! ≤ N should be satisfied to get valid

entropy results. PE is then calculated as [12]

PEd,l
x = −

d!
∑

i=1

p(�i) ln(p(�i)), (2)

where 0 ln(0) = 0 is set as a convention. This algorithm is based on

the original concept of entropy, Shannon Entropy [25], having the

same equation.

The higher the value of d, the more data is being sorted and the

number of motifs increase in a factorial manner. This could lead

to more precise results but it will also lead to longer calculation

times and would require longer signals. Thus, in order to compen-

sate between the amount of data to be sorted and the calculation

time, d = 3 is commonly used. The value of l is commonly used as 1

[12] as the general case is the intention to study every consecutive

time point of the time series without skipping points.

The entropy value is maximum when the time series is totally

uncorrelated. In this case, the value of entropy is ln(d !). This is when

the time series is the most irregular. On the other hand, the value of

entropy reaches the minimum when the time series is monotonic.

The corresponding value is ln(1) = 0. As expected, this is when the

time series is the least irregular.

2.2. Multiscale permutation entropy

Multiscale permutation entropy (MPE) is similar to permuta-

tion entropy but includes an additional step: the coarse-graining

process [24].

Consider a time series {xi}i=1,...,N with N time points. The coarse-

grained time series will be as follows

y�
j =

1

�

j�
∑

i=(j−1)�+1

xi, (3)

where 1 ≤ j ≤ ⌊ N
� ⌋. � stands for time scale and could range from 1 to

⌊ N
(d+1)!

⌋. For each time scale �, PE of the coarse-grained time series

is calculated as mentioned in Section 2.1 ending with PEd,l
� . By this

way we obtain the value of entropy as a function of time scale.

2.3. Improved Multiscale Permutation Entropy

Improved multiscale permutation entropy (IMPE) was intro-

duced by Azami and Escudero [26] to overcome some problems of

MPE. These problems are the non-symmetry of the coarse-grained

time series and the variability of the MPE results in large time scales.

IMPE is calculated in two steps [26]:

1. For each time scale �, � different coarse-grained time series are

extracted from the original time series. The procedure is as fol-

lows

yk,�
j

=
1

�

j�+k−1
∑

i=(j−1)�+k

xi, (4)

where 1 ≤ j ≤ ⌊ N
� ⌋ and 1 ≤ k ≤ �.

2. For each k, PE of yk,� is calculated such that we obtain PEd,l
k,�

. Then

IMPE of a certain time scale, �, would be the average of all the

values of PEd,l
k,�

across all k

IMPEd,l
(�)

=
1

�

�
∑

k=1

PEd,l
k,�

. (5)
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2.4. Multivariate multiscale permutation entropy

Consider a multivariate time series {xm,i}i=1,...,N with N time

points, M channels and m representing the channel number

(1 ≤ m ≤ M). For each time scale, �, the coarse-graining process

mentioned in Section 2.2 is applied on each channel. The vec-

tors xd,l
m,t = {xm,t, xm,t+l, . . ., xm,t+(d−2)l, xm,t+(d−1)l} are extracted for

every channel. The elements of xd,l
m,t are ordered and compared with

the d ! possible orders or motifs, �m. The relative frequency of the

permutation in each channel is calculated as follows [24]

p(�m,i) =
#{t|t ≤ N − d, type(xd,l

m,t) = �m,i}
(N − d + 1)M

. (6)

Note that the relative frequency is divided here by the number of

channels, M, to maintain
∑M

m=1

∑d!

i=1
p(�m,i) = 1.

Then the marginal relative frequency of the motifs is calculated

p(�i) =
M

∑

m=1

p(�m,i). (7)

So the multivariate multiscale permutation entropy (mvMPE) is

calculated [24]

mvMPEd,l
(�)

= −
d!

∑

i=1

p(�i) ln(p(�i)). (8)

2.5. Multivariate multiscale weighted permutation entropy

Multivariate multiscale weighted permutation entropy

(mvMWPE) [6] is based on the algorithm of the weighted

permutation entropy that was introduced by Fadlallah et al. [27].

This algorithm has the advantage of including the weight of the

amplitudes for each permutation.

The steps to calculate mvMWPE are similar to those mentioned

in Section 2.4. The coarse-grained time series of the multivariate

time series is calculated for a certain scale factor, �. Then the vec-

tors xd,l
m,t = {xm,t, xm,t+l, . . ., xm,t+(d−2)l, xm,t+(d−1)l} are extracted for

every channel. The elements of these vectors are ordered and com-

pared with the d ! possible motifs, �m. The absolute frequency of

each motif of every channel is then [6]

p(�m,i) =
N−d
∑

j=1

1
v:type(v)=�m,i

(xd,l
m,j

)wj, (9)

where 1A(v) is an indicator function of the set A and is defined as

1A(v) = 0 if v /∈ A and 1A(v) = 1 if v ∈ A. wj is the weighted value of

the vector xd,l
m,j

, and is commonly taken as the variance of xd,l
m,j

.

This would result in a matrix M × d !, where M is the number

of channels. The relative frequency, p(�d,l
m,i

) of each motif will be

the absolute frequency divided by the sum of the matrix. Then the

marginal frequency is [6]

p(�i) =
M

∑

m=1

p(�m,i). (10)

Finally the mvMWPE is calculated [6]

mvMWPEd,l
(�)

= −
d!

∑

i=1

p(�i) ln(p(�i)). (11)

3. Multivariate improved weighted multiscale permutation

entropy

Improved Permutation Entropy proved to have more robust

results, in terms of variance, than other PE algorithms due to the

averaging of � entropy values of each time scale, but it lacks the

concept of considering amplitudes of the signals [26]. Moreover,

Weighted Permutation Entropy considers the amplitudes of the sig-

nals through the addition of the values of variance instead of incre-

menting the permutation count, but on the other hand it lacks the

low variance in results of the Improved Permutation Entropy [6,27].

We therefore introduce Multivariate Improved Weighted Mul-

tiscale Permutation Entropy (mvIWMPE) that combines the

advantages of both mvMWPE and IMPE, thus covering the draw-

backs that were mentioned for each algorithm.

Hence, the steps for calculating mvIWMPE are as follows.

Considering the multivariate time series {xm,i}i=1,...,N with N

time points and M channels where m represents the channel num-

ber (1 ≤ m ≤ M):

1. For each time scale �, � different coarse-grained time series are

extracted for each channel

yk,�
m,j

=
1

�

j�+k−1
∑

i=(j−1)�+k

xm,i, (12)

where 1 ≤ j ≤ ⌊ N
� ⌋ and 1 ≤ k ≤ �.

So,

Yk,� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

yk,�
1,1 yk,�

1,2 yk,�
1,3 . . . yk,�

1,⌊
N

�
⌋

yk,�
2,1 yk,�

2,2 yk,�
2,3 . . . yk,�

2,⌊
N

�
⌋

. . . . . . . . . . . . . . .

yk,�
M,1 yk,�

M,2 yk,�
M,3 . . . yk,�

M,⌊
N

�
⌋

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

2. For each k, mvMWPE of Yk,� is calculated as mentioned in section

2.5 to obtain mvWMPEd,l
k,�

3. Then mvIWMPE at a certain time scale � will be calculated as the

average of all mvWMPEk,�
d,l

across k

mvIWMPEd,l
(�)

=
1

�

�
∑

k=1

mvWMPEd,l
k,�

. (13)

The MATLAB script for computing mvIWMPE is available upon

request.

4. Validation on synthetic data

The performance of mvIWMPE was evaluated with synthetic

data using white and pink noise, chaotic signals generated from

Lorenz system, and deterministic signals from MIX process. The

results were compared with those of mvMPE, mvMWPE, and

mvIMPE.

4.1. White and pink noise

The first test was the application of all the previously mentioned

algorithms on multivariate noise signals. Two types of noise signals

were used. The first one is the white Gaussian noise (WGN). The

second one is the pink noise, which was generated from WGN by

dividing the Fourier transform of the WGN by
√

f , thus the power

spectrum of the resulting noise would be proportional to 1
f
.
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Fig. 1. Results of the four entropy algorithms on the four different mixtures of white and pink noise signals (d = 3 and l = 1). For each algorithm, scales where significant

differences (based on Friedman test with Bonferroni correction p < 0.01) appeared between the results of the four noise mixtures were marked with ‘*’.

All the generated noise signals had 18 channels and 10000 time

points, and were made according to four different mixtures:

1. 18 white noise signals

2. 12 white noise signals and 6 pink noise signals

3. 6 white noise signals and 12 pink noise signals

4. 18 pink noise signals

Each group had 30 different realizations. Each of the four

algorithms of permutation entropy (mvMPE, mvIMPE, mvMWPE,

mvIWMPE) was applied on each of them. The time scales ranged

between 1 and 100. To test our method, we used l = 1 following

Brandt’s and Pompe’s work [12]. In order to respect the condition

of (d + 1)! ≤ ⌊ N
�max

⌋, where N = 10000 and �max = 100, the highest

embedding dimension value was d = 3. The means and standard

deviations of the resulting entropy values were calculated for each

group and are presented in Fig. 1.

To evaluate the methods, Friedman tests were applied on pairs

of results of different signal mixtures for each method. Those that

showed p-values less than 0.01 with Bonferroni correction where

considered to be significantly different. Fig. 1 marks by ‘*’, for each

method, the scales where the differences were significant between

the entropy values of all pairs of the 4 mixtures of signals. mvIMPE

shows that all 100 scales had significant differences. mvIWMPE

shows similar results with 98 scales having significant differences.

Those two methods, in comparison with mvMPE and mvMWPE that

show lower number of scales with significant differences, show bet-

ter performances. Those results show that mvIWMPE outperforms

mvMPE and mvMWPE and does not ruin the results of mvIMPE

when applied on noise signals.

4.2. Influence of number of channels

In this test, the effect of increasing the number of channels

or variates of the signals is studied. Nine groups of multivariate

WGN with 1000 samples were studied. The number of channels

ranged between 2 and 10 channels. Each group had 30 realiza-

tions. mvIMPE was applied on those groups with d = 3 and l = 1.

Fig. 2 shows that, as the number of channels increases, the val-

ues of entropy change become less decreasing and more constant

for WGN across scales. This is due to the fact that the increase of

number of channels creates more sample vectors to be sorted and

distributed across motifs, thus behaving in a manner similar to find-

ing the multiscale entropy of a univariate signal of the concatenated

signals of the channels.

This is supported by the results of Fig. 3. mvIWMPE with d = 3

and l = 1 was applied on 2 groups of WGN, one having a dimen-

sion of 1 × 4000 and the other 4 × 1000. This way both groups had

the same number of samples (4000). Each group had 30 realiza-

tions. The results showed that the two groups have similar values

of entropy across scales thus signifying that the two groups are

being considered as almost the same signal as if the 4 channels are

being concatenated to form a univariate signal.

4.3. Lorenz system

The Lorenz system [28] is a system of three differential equations

that could result in either chaotic or convergent signals based on

the parameters. Its equations are
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dx

dt
= �(y − x)

dy

dt
= x(� − z) − y

dz

dt
= xy − ˇz

. (14)

In our study we fixed the values of � = 10 and ˇ = 8
3 and used

different values of � to get different tri-variate chaotic and converg-

ing signals. Twenty different values for 0 ≤ � ≤ 1 resulted in twenty

different converging tri-variate signals and twenty different values

for 23 ≤ � ≤ 33 resulted in twenty different chaotic tri-variate sig-

nals [29]. The initial point was (0,5,10). All the signals were made

up of 10000 time points.

The four permutation entropy algorithms were applied on these

signals. The same parameters were used (d = 3 and l = 1). The results

in Fig. 4 show that both mvMPE and mvIMPE were not able to differ-

entiate between convergent and chaotic signals. However, the two

weighted algorithms showed high ability to differentiate between

the two types of signals. But when comparing mvMWPE with mvI-

WMPE, it is noticed that mvIWMPE has lower standard deviation

value that reaches 0 for time scales greater than 60, not to mention
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Fig. 2. Results of IWPE on WGN multivariate signals with different number of channels ranging from 2 to 10 (d = 3 and l = 1).

Fig. 3. Results of IWPE on 1 × 4000 and 4 × 1000 WGN signals (d = 3 and l = 1).

Fig. 4. Results of the four entropy algorithms (d = 3 and l = 1) on the choatic and convergent signals generated by the Lorenz System (a) mvIWMPE; (b) mvIMPE; (c) mvMWPE;

(d) mvMPE.
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Fig. 5. The generated MIX process: bidimensional (100 × 100) signals with different values of p (a) p = 0; (b) p = 0.3; (c) p = 0.6; (d) p = 1.

the smoother curve of the mvIWMPE on converging signals. These

results, in addition to the previous ones of noise signals (Section

4.1), show that mvIWMPE outperforms other methods in differ-

entiating between convergent and chaotic signals with smoother

curves across scales. mvIWMPE has also similar good performance

to mvIMPE in terms of differentiating between different noise sig-

nals.

4.4. MIX process

The last synthetic test that was applied to evaluate the algo-

rithms was their applications on MIX process signals. This is based

on the test introduced by Pincus et al. [9]. In order to test the mul-

tivariate algorithm, this test was slightly modified to become two

dimensional.

The MIX process is used to generate different levels of stochas-

tic signals that range from being purely deterministic to purely

stochastic. To generate such signals, set p as a probability with value

between 0 and 1. Define Xm,n = ˛−1/2 sin( 2�
12 (m + n)), for 1 ≤ m ≤ M

and 1 ≤ n ≤ N with ˛ being the amplitude and defined as

˛ =

∑12

i=1

∑12

j=1
sin2( 2�

12 (i + j))

144
. (15)

Define Y as an M × N matrix of independent identically distributed

real random variables having a uniform distribution in the inter-

val [−
√

3,
√

3]. Define Z as another M × N matrix of independent

identically distributed real random variables where Zm,n = 1 with

probability p defined earlier and Zm,n = 0 with probability 1 − p.

Then

MIXm,n(p) = (1 − Zm,n)Xm,n + Zm,nYm,n. (16)

So MIX(p) would be an M × N matrix that has pMN of its elements

corresponding to a random bi-dimensional signal and (1 − p)MN

elements corresponding to a periodic bi-dimensional signal. Exam-

ples of the MIX signals are shown in Fig. 5.

To test our algorithm, four values of p were used, p = 0.1, p = 0.3,

p = 0.6, and p = 0.9. For each value, 30 different 18 × 10000 signals

were generated. Each of the four algorithms of permutation entropy

was applied on these signals. The embedding dimension and the lag

were unified for all the algorithms as d = 3 and l = 1. The time scales

ranged between 1 and 100. The means and standard deviations of

the resulting entropy values were calculated for each group and

represented as in Fig. 6. The results show that, again, mvIWMPE

has the highest differentiation among signals especially for the first

ten scales where mvMWPE and mvMPE give very similar results for

p = 0.1 and p = 0.3. It also shows the highest robustness in terms of

variance of entropy results for a given type of signal, which can be

confirmed by the smaller error bars.

5. Evaluation on real EEG signals

Our new algorithm was also tested on real EEG signals.

5.1. Dataset 1: healthy children

Twenty minutes EEG recording from 6 healthy children

at rest (four females and two males, age: 8.8 ± 2.11 years)

were acquired in the Department of Neuropediatrics, Christian-

Albrechts-University, Kiel, Germany. These recordings were

approved by the Medical Ethics Committee of the Christian-

Albrechts-University, Kiel, Germany, agreement code “D 460/15”.

Subjects were lied down comfortably and rest brain activity

was recorded both during eyes open where the subject looked at a

fixed picture and eyes closed. The EEG activity was recorded by 128

electrodes (Electrical Geodesics, Inc.) with the Cz electrode as a ref-

erence. The sampling rate of all the acquisitions was 1000 Hz. Eyes

movements were recorded by two frontal electrodes of the EEG net

(E1 and E32) in order to detect drowsiness, and epochs with slow

horizontal eyes oscillations were removed from the analysis.

5.2. Dataset 2: epileptic patients

The EEG data of 3 epileptic patients recorded in Université Libre

de Bruxelles; Hôpital Erasme (agreement of local ethical commit-

tee P2015/242) were analyzed. Patient 1 (10 years old male) was

diagnosed with epilepsy with CSWS. The epileptic focus was clini-

cally localized on T5 (10–20 system). Patient 2 (8 years old female)

was diagnosed with atypical benign childhood epilepsy with cen-

trotemporal spikes (BECTS) with the focus being on C3 (10–20

system). Patient 3 (9 years old male) was diagnosed with BECTS

with the focus being on C3 (10–20 system).

All patients had their resting-state EEG recorded while they

were lying down for around 20 minutes and alternating between

eyes open and eyes closed every minute. The acquisition was done

using high density EEG (HD-EEG) with 256 electrodes (Electrical

Geodesics, Inc.). The reference was the Cz electrode and the sam-

pling frequency was 1000 Hz.

5.2.1. Preprocessing

The acquired signals were filtered by a bandpass FIR filter of

a transition bandwidth of 0.22 Hz obtained by an order of 15,000.

The cut-off frequencies of the filter were 0.5 Hz and 45 Hz. Indepen-

dent component analysis (ICA) [30] was applied on each subject

individually to remove artifacts caused by blinking or movement.

For dataset 1, 30 epochs of 10 s for each case (eyes open and eyes

closed) were extracted from each subject. Some of these epochs in

some subjects were overlapping (maximum of five seconds over-

lap).

For dataset 2, 40 non-overlapping epochs of 1 s for each case

(eyes open and eyes closed) were extracted from each subject. The

reason for choosing only 1 s epochs is the appearance of spikes, or

interictal epileptiform discharges (IED) and we are interested in

epochs without those spikes.

Previous studies showed that the main difference between eyes

open and eyes closed in terms of EEG is the presence of the alpha

rhythm in the occipital region during the eyes closed case [31].

For this reason, the analysis was performed for that region only.

We defined the set of electrodes for each EEG net that covered the
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Fig. 6. Results of the four entropy algorithms (d = 3 and l = 1) on the different MIX process signals generated by 4 different values of p (a) mvIWMPE; (b) mvIMPE; (c) mvMWPE;

(d) mvMPE.

Fig. 7. The occipital region of interest on the (a) 256-channels EEG net and on the (b) 128-channels EEG net.

occipital region with the help of a neurophysiologist. Fig. 7 shows

the occipital region for each net used.

All of the preprocessing was done using the EEGLAB [32] toolbox

for Matlab R2016b.

5.3. Results of EEG signals evaluation

The goal of this evaluation was to see whether mvIWMPE main-

tains higher ability of differentiation between two states when

applied to real EEG signals, which in our case are eyes open and eyes

closed. The four multivariate algorithms of permutation entropy

were then applied on the epoched signals of each subject in each

dataset, with d = 3 and l = 1 in a time scale ranging from 1 to 40.

In general, all the curves had a common form which is similar to

that of the chaotic signals of the Lorenz system (a decaying increase

of entropy value with respect to time scale) (Fig. 4). However it is

worth mentioning that each subject behaved differently in a certain

normal range and resulted in different curves that differentiated

eyes open from eyes closed entropy values. Thus, averaging the

results across subjects would diminish this differentiation for such

relatively small number of subjects. For this reason, each subject

was studied separately.

The results for all subjects showed that entropy values were

lower in the case of eyes closed, for scales less than 30. This was

expected since, as mentioned in Section 5.2.1, the eyes closed state

is characterized by the alpha waves that makes the recorded EEG

signals more periodic and thus less complex. The reason behind

having 30 as the maximum scale where the entropy of eyes closed

signal was less than the entropy of eyes open signals is that the

coarse-graining window becomes larger than the alpha oscillation

at this scale.

For all subjects in both datasets, Friedman tests were applied on

the results of the eyes open and eyes closed condition to evaluate

whether we have significant differences between the two results.

Scales with Bonferroni corrected p-values less than 0.01 were con-

sidered to be significantly different. Only significant differences of

scales less than 30 were considered. Figs. 8 and 9 summarize the

results of the Friedman tests for both datasets. Scales labeled in red

had the entropy values of eyes open significantly higher than those

of eyes closed. The total number of scales in red is given for each

subject or patient and for each method in each dataset. For dataset

1, both mvIMPE and mvIWMPE had the highest number of scales

in red (151) showing that both have good ability in differentiating

between signals of eyes open and eyes closed states. For dataset 2,

mvIWMPE had the highest number of scales in red (25) showing the

best ability in differentiating between the two cases of EEG signals.

It worth mentioning that dataset 1 had epochs of 10 seconds

while dataset 2 had epochs of 1 second. This is the reason the results

7



Fig. 8. Results of Friedman tests with Bonferroni correction on the results of the 4 permutation entropy methods on Dataset 1. Scales that had corrected p-values less than

0.01 were considered to have eyes open entropy value to be significantly higher than that of eyes closed and labeled in red while others are labeled in blue. The total number

of scales with significant differences for each subject and for each method is given at the end of each row.

Fig. 9. Results of Friedman tests with Bonferroni correction on the results of the 4 permutation entropy methods on Dataset 2. Scales that had corrected p-values less than

0.01 were considered to have eyes open entropy value to be significantly higher than that of eyes closed and labeled in red while others are labeled in blue. The total number

of scales with significant differences for each patient and for each method is given at the end of each row.

of dataset 1 have much higher number of scales in red as for longer

signals each method gave more precise results due to the increase in

the number of embedding vectors to be grouped into motifs. This

also highlights the fact that for shorter signals mvIWMPE shows

better performance as shown in Fig. 9.

6. Conclusion

We proposed a multiscale permutation entropy-based method

to compute irregularity of multivariate complex signals. This

method, called mvIWMPE has the advantages of being robust and

able to discriminate between different states in a single signal. The

efficiency of mvIWMPE was proven in synthetic and human EEG

signals.

It would be interesting, in the future, to apply mvIWMPE on

EEG signals of patients suffering from neurological diseases to

see whether it could be a biomarker of the disease by showing

decreased entropy values in patients compared to control subjects.

Moreover, this method could contribute to assess the efficacy of

a treatment in comparing EEG signals obtained before and after a

therapeutic intervention.
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