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Abstract

Component-trees constitute an efficient data structure for hierarchical image modeling. In particular they are relevant
for processing and analyzing images where the structures of interest correspond either to local maxima or local minima
of intensity. This is indeed the case of functional data in medical imaging. This motivates the use of component-tree-
based approaches for analyzing Positron Emission Tomography (PET) images in the context of oncology. In this
article, we present a simple, yet efficient, methodological framework for PET image analysis based on component-
trees. More precisely, we show that the second-order paradigm of shaping, that broadly consists of computing the
component-tree of a component-tree, provides a relevant way of generalizing the threshold-based strategies classically
used by medical practitioners for handling PET images. In addition, it also allows to embed relevant priors regarding
the sought cancer lesions.

1. Introduction

The component-tree, introduced by Salembier and et al.
(1998) twenty years ago, constitutes one of the most pop-
ular hierarchical data structures for image modeling, pro-
cessing and analysis. Defined and developed in the con-
text of connected operators (Salembier and Wilkinson,
2009) —a subdomain of mathematical morphology— the
component-tree allows one to model, in a lossless way,
any grey-level image, based on the representation of the
inclusion hierarchy of connected components obtained at
the successive level sets of the image.

Its successful involvement in various application fields

mainly relies on its computational efficiency. Indeed, on
the one hand, the component-tree can be constructed in
(quasi-)linear time. Various sequential and distributed al-
gorithms were developed for that purpose; a recent sur-
vey was proposed by Carlinet and Géraud (2014). On
the other hand, the component-tree can be processed effi-
ciently either by local attribute-based strategies (i.e. node
selection, democratized by Jones (1999)) or by global op-
timization strategies (i.e. tree-cut computation, formal-
ized by Guigues and et al. (2006)), leading once again to
linear time costs.

On the one hand, the component-tree is designed for
handling grey-level images, i.e. images where values are
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organized with respect to a total ordering. In particular, it
is based either on the ≤ or the ≥ order on Z or R, leading
to the so-called max-trees or min-trees, that emphasize
regions of interest of locally maximal or locally minimal
values, respectively.

On the other hand, except for the ≤ or ≥ total order-
ing and the chosen topological structure of the image sup-
port, the component-tree is a parameter-free data struc-
ture. This implies that the construction of the component-
tree from an image deterministically leads to a unique
result. This property, together with the fact that the
component-tree is a lossless model (i.e. it allows for re-
versible, non-altering transformations from image to tree
and from tree to image), opened the way to the involve-
ment of component-trees in the design of grey-level image
processing and analysis methods and tools, in particular
in the context of antiextensive filtering and segmentation
(Salembier and et al., 1998; Jones, 1999).

Among many other application areas, the component-
tree has been involved in the field of nuclear imaging, and
more specifically Positron Emission Tomography (PET).
Indeed, based on its specific properties, it constitutes a
relevant data structure for modeling and processing func-
tional medical images, where the strength of the signal
is correlated to the intensity of the observed physiologi-
cal phenomenon. In this context, the first domain where
component-trees were involved was angiographic imag-
ing, that emphasizes the flowing blood in vascular net-
works. Various filtering, vessel enhancement and segmen-
tation methods were designed based on component-trees,
as proposed e.g. by Wilkinson and Westenberg (2001);
Caldairou et al. (2010); Dufour et al. (2013).

Relying on the fact that high metabolic activity regions
appear as hyperintense areas in PET images, methods
were designed to take advantage of the mixed spatial-
spectral organization of PET information in component-
trees to develop classification strategies (Alvarez Padilla
and et al., 2015; Grossiord and et al., 2017) or filter-
ing / segmentation methods (Urien and et al., 2017; Al-
varez Padilla and et al., 2018a,b). Indeed, PET visualizes
metabolic activity characterized by the intensity of an in-
jected radiotracer. It is routinely used in cancer imaging
for diagnosis and characterization of malignant tissues,
corresponding to hyperfixations of a tracer (expressing
e.g. the consumption of glucose by cancerous cells). The
idea is then to highlight tumours, i.e. maximal intensities

in the PET images.
In this article —which is an extended and improved

version of the conference paper by Grossiord and et al.
(2015a)— we present a simple, yet efficient, method for
carrying out PET image analysis via a component-tree-
based strategy. The novelty of this approach relies on
the use of the concept of shaping, recently introduced
by Xu and et al. (2016). Broadly speaking, shaping con-
sists of computing two layers of component-trees. A first
component-tree aims at modeling the grey-level image,
based on intensity information. A second component-
tree, built upon the first one, aims at organizing the nodes
of the first tree based on second-order information. Car-
rying out basic operations, e.g. threshold-based tree-cut,
in this second tree then allows the user to easily take into
account both low-level information on the image signal
and higher-level information on the structures of interest.
We present this paradigm in the context of PET imaging,
with the purpose of proposing a threshold-based method-
ology for detection of cancer lesions, guided by intensity
and compacity priors.

The sequel of this article is organized as follows. In
Section 2, we provide a minimal set of basic notions re-
quired to make the article self-contained. In Section 3 we
recall the concepts of component-tree and shaping, and
we emphasize the way of unifying shaping and standard
component-tree construction from an image, via the usual
graph formalism. In Section 4, we describe the method-
ological aspects of attribute-based filtering of component-
trees with shaping. In Section 5, we instantiate our frame-
work for tackling the issue of PET image analysis, and
more precisely tumoural lesion detection based on inten-
sity and compacity attributes. In Section 6, we describe
technical details, including software production and ex-
perimental works. Section 7 briefly concludes the article
by emphasizing perspective works.

2. Basic notions

Let Ω be a nonempty finite set. Let a be an adjacency
(irreflexive, symmetric) relation on Ω. The set (Ω,a) is
a (non-directed) graph. Let X ⊆ Ω be a subset of Ω.
The reflexive-transitive closure of (the restriction of) a
on X induces the connectedness relation on X. It is an
equivalence relation, and the set of the equivalence classes
of X, called connected components, is noted C[X]. In
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the sequel, we will assume that (Ω,a) is connected, i.e.
C[Ω] = {Ω}.

Let V be a nonempty finite set equipped with a total
order relation ≤. A valuation V (of Ω) is a mapping V :
Ω → V. For any x ∈ Ω, V(x) ∈ V is the value of x. The
triple G = (Ω,a,V) is called a (vertex-)valued graph.

Let X ⊆ Ω and v ∈ V. The thresholding function λv is
defined by∣∣∣∣∣∣ λv : VΩ → 2Ω

V 7→ {x ∈ Ω | V(x) ≥ v} (1)

In other words, it associates to any valuation V of Ω the
subset of the elements of Ω with a value greater than a
given threshold parameter v.

The cylinder function C(X,v) is defined by∣∣∣∣∣∣∣∣
C(X,v) : Ω → V

x 7→

{
v if x ∈ X
⊥ otherwise

(2)

where ⊥ is the minimal value (on V) for the elements
of Ω. A valuation V : Ω → V can be decomposed
into cylinder functions induced by thresholding opera-
tions and, symmetrically, V can be reconstructed by com-
position of these cylinder functions

V =
∨
v∈V

∨
X∈C[λv(V)]

C(X,v) (3)

where ∨ is the point-wise supremum on functions of VΩ.
In other words, the mapping V is obtained by combining,
for each value v of the space V and each connected com-
ponent X of each binary level-set, the contribution of the
cylinder function C(X,v) defined for the connected compo-
nent X at value v. All these contributions are combined
via a supremum paradigm, i.e. by considering the highest
values obtained pointwise.

3. Component-trees and shaping

3.1. Component-tree

The component-tree T = (Ψ,↗) of a valued graph
(Ω,a,V) is the Hasse diagram (i.e. the reflexive-transitive
reduction) of the partially ordered set (Ψ,⊆), where Ψ is

the set of all the connected components obtained from all
the successive level sets of (Ω,a,V), namely

Ψ =
⋃
v∈V
C[λv(V)] (4)

Each connected component / element of Ψ is called a
node of the component-tree. The root of the component-
tree, namely Ω is the unique connected component of
λ⊥(V); it is the maximum of (Ψ,⊆). The leaves of the
component-tree are all the nodes which are minimal ele-
ments of (Ψ,⊆).

For two nodes N1,N2 ∈ Ψ, we have N1 ↗ N2 iff N1 ⊆

N2, and there is no N3 ∈ Ψ such that N1 ⊂ N3 ⊂ N2. In
such case, we say that N1 is a child node of N2 and that N2
is the parent node of N1 (such parent node is unique, by
definition). The root is the only node without parent node.
The leaves are the only nodes without children nodes.

3.2. Component-tree of a grey-level image

A grey-level image I is composed of a finite set of
points, e.g. pixels in 2D, voxels in 3D. We note Γ this
set of points.

The points of Γ are generally organized with respect to
a neighbourhood relation, for instance the 2n- or (3n − 1)-
adjacencies classically defined in digital topology. Such
relation is indeed an adjacency relation, and is noted aΓ.
Two points x, y ∈ Γ are neighbours if we have x aΓ y.

For each point x ∈ Γ, the image provides a specific
grey-level value within a finite set K = [[⊥,>]] with >
the maximal value for the elements of Γ (without loss of
generality, we can assume K ⊂ Z). For each point x ∈ Γ,
we note I(x) this value; in other words we have I : Γ→ K.

Based on these facts, the image can be modeled as a
triple I = (Γ,aΓ, I), i.e. as a valued graph (see Sec-
tion 2). As a consequence, we can relevantly build the
component-tree TI of this image.

Basically, building a component-tree, namely either a
max-tree or a min-tree, depending on the order ≤ or ≥
chosen on the grey-level values, consists of (1) building
the binary connected components of the image and (2)
organizing these connected components from the great-
est (i.e. the root) to the lowest (i.e. the leaves) accord-
ing to the standard inclusion relation ⊆. In the case of
a max-tree (resp. min-tree), the root corresponds to the
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Figure 1: (a) A grey-level image I defined on a square subset of Γ ⊂ Z2.
Each point x ∈ Γ has a value I(x) and is equipped with the standard 4-
adjacency as neighbourhood relation aΓ. The values of the points of
the image are within the set K = [[0, 4]] ⊂ Z (from 0 in black; to 4 in
white). (c–g) The level sets λv(I) (in white) for v varying from 0 to 4.
(b) The component-tree T associated to I. The letters (A–P) in nodes
correspond to the associated connected components (c–g).

whole support Γ, obtained by a thresholding at the low-
est (resp. greatest) value, whereas the leaves are antago-
nistically obtained at the local maxima (resp. local min-
ima) of the image. Building these connected components
and ordering them in a hierarchical way can be considered
via various paradigms, for instance by flooding or Tarjan
union-find. A discussion on such construction is out of the
scope of this article, and the reader is refered to (Carlinet
and Géraud, 2014) for a comprehensive survey.

An example of component-tree for a grey-level image
is given in Figure 1.

3.3. Shaping: component-tree of a component-tree
A component-treeT = (Ψ,↗) is a data structure where

the nodes / connected components of Ψ are hierarchically
organized by ↗ with respect to the value of their level
sets, from the lowest value (at the root of the component-
tree) to the highest values (at the leaves of the component-
tree). In other words, the component-tree expresses a
value space in a spatial fashion.

A usual way to take advantage of a component-tree
consists of endowing each node N ∈ Ψ by an attribute

A(N), generally defined as a scalar valuation. For in-
stance, a very classical attribute is the size of the nodes,
i.e. their number of points A(N) = |N |. Once such at-
tribute, namely a mapping A : Ψ → V (with V being any
set isomorphic to a part of Z) has been defined, it is pos-
sible to perform node selection, i.e. to carry out filtering-
based operations.

Endowing a component-tree T = (Ψ,↗) with a valua-
tion A : Ψ → V is equivalent to defining a valued graph
T = (Ψ,↗, A). (In such a case, the non-symmetric rela-
tion↗ is considered, without loss of generality, as a sym-
metric one.) From such valued graph, it is in then possible
to build its own component-tree; this constitutes the very
paradigm of shaping.

Less formally, carrying out shaping consists of building
the component-tree of a component-tree. In general, the
first component-tree is built from a grey-level image (i.e.
with a spectral valuation) whereas the second is built by
considering an attribute on the nodes of the first (i.e. with
a semantic valuation). The second component-tree then
gathers, in a same data-structure, various kind of spatial
(nodes), spectral (first valuation) and semantic (second
valuation) information.

In particular, it is then possible to develop filtering pro-
cedures on such component-trees.

4. Attribute-based filtering with shaping – Methodol-
ogy

4.1. The antiextensive filtering scheme

Let I = (Γ,aΓ, I) be a grey-level image. As evoked in
Section 2, this image I can be expressed as the supremum
of the nodes of its associated component-tree TI. More
precisely, Equation (3) can be rewritten as

I =
∨
K∈Ψ

C(K,vK ) (5)

where vK = max{v ∈ V | K ∈ C[λ(I)]} is the maxi-
mal value that defines K as a connected component of
the corresponding level set of the image. In particular,
Equation (5) can be seen as a simplified version of Equa-
tion (3), where only the connected components K which
are sufficiently large and with a sufficiently high value for
contributing to the definition of the image I are considered
(the other ones are indeed “hidden” below these large /
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intense components, and then useless for defining the im-
age).

Equation (5) leads to a well-defined image from Ψ, but
also from any subset of Ψ nodes. For image processing
purposes, it is possible to filter the image I by discarding
some of the nodes, and then reconstructing a resulting im-
age from the subset of preserved nodes. Each point x ∈ Γ

in the filtered image then presents a value that is lower
or equal to the initial image; the induced operators are
antiextensive.

This antiextensive filtering paradigm was formalized
by Salembier and et al. (1998); Jones (1999). It is basi-
cally composed of three successive steps, also illustrated
in Diagram (6) :

(i) construction of the component-tree T associated to
I;

(ii) reduction of Ψ, leading to a reduced component-tree
T̂ ; and

(iii) reconstruction of a filtered image Î induced by T̂ .

I
(i)

−−−−−−→ Ty y(ii)

Î ≤ I
(iii)

←−−−−−− T̂

(6)

4.2. Attribute-based node selection

By assuming that each node N ∈ Ψ is equipped with a
relevant attribute value A(N) ∈ K, the choice to preserve
or discard N depends on a Boolean predicate ρ : K →
{true, false} acting on the attribute values.

When these attribute values are monotonic along the
tree (i.e., ρ(N) is true for a given node N implies the same
for all the nodes between N and the root), they can be han-
dled similarly to the grey-level of the nodes, in the sense
where the node selection proceeds as a simple threshold-
ing.

However, most attributes are not monotonic, in general.
For instance, this is the case for shape attributes such as
elongation or compacity, or for texture descriptors. This
means that the decision for a given node does not imply
its validity for the remainder of the branch. This is not
an issue in the context of automated processing, where
the tree is fully scanned, and ad hoc pruning policies can
be applied a posteriori to homogeneize the results of the

different branches of the tree; see (Salembier and et al.
(1998); Jones (1999)) for a discussion on this topic.

However, our purpose is to carry out threshold-based
interactive segmentation from non-monotonic attributes.
To tackle this issue, we can then take advantage of the
shaping paradigm.

Indeed, let us suppose that we build a second
component-tree T ? = (Ψ?,↗?) from the first
component-tree T = (Ψ,↗), i.e. from the valued graph
T = (Ψ,↗, A). By construction, in this new tree, each
node N? ∈ Ψ? corresponds to a set of T nodes (connected
with respect to↗). In addition, for any two nodes N?

1 ,N
?
2

such that N?
1 ↗

? N?
2 , we have the following properties

N ∈ N?
1 ⇒ N ∈ N?

2 (7)

and

min{A(N) | N ∈ N?
1 } ≥ min{A(N) | N ∈ N?

2 } (8)

In other words, the attribute A is monotonic within T ?,
even if it is not within T .

4.3. The shaping antiextensive filtering scheme

It is then possible to process any grey-level image in
the framework initially proposed by Salembier and et al.
(1998); Jones (1999), simply by performing node selec-
tion in the second component-tree T ?, built from the first
one T . In particular, since the attribute computed from
the nodes of T is now monotonic in T ?, we can operate
thresholding / pruning approaches. The overall procedure,
illustrated on Diagram (9), is quasi-linear in time and
space, since we only duplicate the standard component-
tree anti-extensive filtering process (Diagram (6)) to non-
monotonic attributes. More precisely, the cost of the
construction of a component-tree is quasi-linear in time,
S log S ' κ.S , where S is the size of the physical support
of the image and κ a quasi-constant value. Then, the cost
of (i) is approximately |Γ| whereas the cost of (i′) is ap-
proximately |Ψ| with |Ψ| < |Γ| (and in general |Ψ| � |Γ|).
The pruning step (ii) is carried out in linear time |Ψ?|, with
respect to the number of nodes of T ?, with |Ψ?| < |Ψ|,
(and in general |Ψ?| � |Ψ|). The reconstruction steps (iii)
and (iii′) are carried out point-wise, leading to computa-
tional costs |Ψ| and |Γ|, linear with respect to the primi-
tive elements of the graphs modeled by the corresponding
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Figure 2: The component-tree representation is compliant with all major thresholding strategies: fixed threshold (a); adaptive threshold (b);
bounding-box threshold (c). Selected subsets of nodes are depicted in red.

trees. Overall, the whole computational cost is dominated
by the size |Γ| of the support of the image, due to the first
and last steps of the process, leading to a quasi-linear cost
with respect to the size of the image. In particular, this
allows us to perform real-time threshold-based node se-
lection.

I
(i)

−−−−−−→ T
(i′)

−−−−−−→ T ?y y(ii)

Î ≤ I
(iii′)
←−−−−−− T̂ ?

(iii)
←−−−−−− T̂ ?

(9)

5. Attribute-based filtering with shaping – Applica-
tion to PET image analysis

We now instantiate a PET image lesion detection
framework based on the above-described methodology.

5.1. Adequacy of component-trees for PET image thresh-
olding

As an extrema-oriented data structure, the component-
tree is well adapted for emphasizing oncological lesions
that correspond to maximal intensity values. In particu-
lar, the best-adapted component-tree is the max-tree, or-
ganized from the lowest to the highest values. More pre-
cisely, for a given PET image, the root of its component-
tree T is the node Γ (i.e. the whole image support) ob-
tained from the lowest level set, at value ⊥ = 0. Con-
versely, the leaves of T (i.e. the nodes that are min-
imal elements for the inclusion relation ⊆) are the flat

zones of the image of (locally) maximal values; they cor-
respond to tumoural (lesions) and physiological (organs)
high metabolic activity areas.

Another strength of the component-tree is that it intrin-
sically models the space of all the potential thresholding
operations that can be carried out on a grey-level image.
This allows for the generalized processing of all the re-
gions of the PET image at once within the same struc-
ture. The choice of a solution within this data-structure
can be performed by scanning the (decreasing) grey-level
values along the branches of the tree, from its leaves to
its root. In particular, this process is compliant with the
major thresholding strategies:

• fixed thresholding (i.e., horizontal cut in the tree);

• adaptive thresholding (i.e., branch-specific cut in the
tree);

• bounding-box thresholding (i.e., explicit choice of
leaves of branches to cut in the tree).

These different strategies are illustrated in Figure 2.
Therefore, the component-tree satisfies mandatory

properties for developing interactive segmentation pro-
cesses in PET, in real-time thanks to its low space and
time cost properties.

5.2. Shaping analysis of the component-tree based on
compacity attribute

Let I be a PET image, and let us assume that we have
computed its component-tree —more precisely, its max-
tree— T (step (i) in Diagram (9). In this tree T , the nodes
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Figure 3: Illustration of the detection framework in PET, based on compacity attribute. The first component-tree T , based on the intensity level-
sets, is a max-tree. Each node N of T is then valued with a compacity attribute A(N) (in green). The second tree T ? is the min-tree of T , based on
the attribute level-sets. Each node of T ? is then valued with respect to the difference between the attribute value of the leaf and that of the node (in
red). The node selection is based here on a threshold of 0.1 in T ? with respect to this relative attribute (discarded nodes are dashed). The remaining
nodes are then propagated back from the second tree to the image support, via the first tree.

that are close to the leaves correspond to the areas of high-
est intensity; they can be either lesions or hyper-fixating
organs.

Our purpose is to develop an interactive attribute-based
procedure for identifying automatically active tumours in
I. A segmentation strategy based only on PET value
thresholding may over-segment the high intensity areas,
including true positives but also many false positives. As
a consequence, it is indeed required to choose and com-
pute a relevant attribute in order to discriminate the nodes
of interest within T .

Our working hypothesis, that is in particular valid in the
case of lymphoma —where the number of lesions is high
and their shape is compact (similar to a sphere), compared
to physiological uptakes (e.g., heart, kidneys, etc.)— is
that a compacity criterion, in addition to the intensity cri-
terion, could allow us to better discriminate the active le-
sions, especially in the thorax.

Consequently, we define an attribute A : 2Γ → [0, 1]
that associates to any connected subset of Γ, a numerical
value describing how the corresponding shape is compact.
This attribute is computed from the eigenvalues λ1 ≥ λ2 ≥

λ3 associated to the eigenvectors of the 3 × 3 matrix of
inertia of the (binary) shapes N ⊆ Γ. In particular, we
define

A(N) = λ3/λ1 (10)

namely, the ratio between the lowest and highest eigen-
values, lying in [0, 1]. If A(N) is close to 1, then λ3 and
λ1 (and thus λ2) present similar values, and N then has
a compact shape. When A(N) decreases toward 0, N be-
comes more elongated.

This attribute A is indeed non-monotonic. In par-
ticular, it is impossible to interactively process T in a
threshold-based fashion, based on the information carried
by A. In order to tackle this issue, we rely on the shaping
paradigm.

A second component-tree T ? is then built from the tree
T = (Ψ,↗), i.e. from the valued graph T = (Ψ,↗, A)
(step (i′) in Diagram (9)).

Contrary to T , that was a max-tree based on ≤, this
second tree T ? is a min-tree, based on ≥. Indeed, the root
is the node of greatest value for A (i.e. with the highest
compacity), whereas the leaves are those of locally lowest
values (i.e. with the lowest compacity). The nodes that
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are close to the leaves then correspond to the sets of con-
nected components of Γ that are of least relevance, and
should then be removed preferentially.

In order to segment the active lesions versus the hy-
perfixating organs (step (ii) in Diagram (9)), two distinct
strategies can be considered:

• the first is an absolute thresholding along the
branches of T ?, thus pruning the distal parts of
the tree, composed of the nodes that have a com-
pacity value A lower than a chosen threshold value
t ∈ [0, 1]. This strategy enables to filter out nodes
that are the least likely to be part of the expected
shape, by assuming that their attribute values are in
a common interval. However, it can be difficult to
achieve an optimal result with a unique threshold;

• the second is a relative thresholding that consid-
ers the “gap” between the compacity value A(N)
of a node N and the value A(L) of the leaf of its
branch. This gap A(N) − A(L) still varies monotoni-
cally within [0, 1] along the branches, with 0 values
at the leaves. This strategy consists of comparing
each node with its neighbourhood in terms of shape,
by taking the leaf nodes as references, namely the
nodes that are the least likely to correspond to the
criterion. Nodes with a shape similar to the leaf
(i.e. elongated structure in this case) in each branch
are associated with low difference values, and can
be eliminated in that way. On the contrary, nodes
corresponding to the expected shape (i.e. compact
shape) are kept thanks to larger gaps in attribute val-
ues. This strategy is more flexible, since it does
not require to find the optimal compacity threshold,
and relies on local information. However, it can be
associated with a larger variability in attribute val-
ues of preserved/eliminated nodes within the differ-
ent branches, and therefore a possibly higher shape
variability, compared to the absolute strategy. For in-
stance, there is a risk of eliminating compact nodes,
corresponding to branch leaves or near leaves, if
there is no more elongated nodes in the branch.

In the following, the first strategy was adopted. Once
the nodes of T ? have been selected, the resulting image
has to be computed. Each selected node N? of T ? is in-
deed a connected component of Ψ nodes. In order to re-

trieve the subset Ψ̂ ⊆ Ψ of selected nodes within Ψ, from
the subset Ψ̂? ⊆ Ψ? of selected nodes of T ? (step (iii)
in Diagram (9)), we can simply proceed by union, i.e. by
setting Ψ̂ =

⋃
Ψ̂? =

⋃
{N̂ ∈ Ψ | ∃N̂? ∈ Ψ̂?, N̂ ∈ N̂?}.

In other words, a node N is preserved in T if it appears at
least once in a preserved node N? of Ψ? (keeping in mind
that such node N generally appears in many nodes N?).

Finally, the last step that consists of embedding the se-
lected nodes N of Ψ̂ back to Γ (step (iii′) in Diagram (9))
can be conducted the same way: the subset Γ̂ of detected
points of the image I can be defined as Γ̂ =

⋃
Ψ̂ =

⋃
{x̂ ∈

Γ | ∃N̂ ∈ Ψ̂, x̂ ∈ N̂}. (Note that associated grey-level
information can also be retrieved by simply using Equa-
tion (5), substituting Ψ̂ to Ψ.)

An application of the proposed framework is exempli-
fied in Figure 3.

6. Practical aspects

6.1. Implementation
Our proposed framework is open-source1 and relies on

the LibTIM2 library, developed in C++ under GPL 3.0
License, which allows for the efficient construction, ma-
nipulation and processing of morphological hierarchies.

As part of the work on PET lymphoma tumour detec-
tion and segmentation, our framework has been also inte-
grated into the Beth Israel Plugin3 for Fiji developped by
Kanoun and et al. (2016), which is a free and open-source
software (also under GPL 3.0 License), plugin4 of ImageJ
that is dedicated to PET/CT (X-ray Computed Tomogra-
phy) image visualization and processing. The purpose of
this tool is to provide a collaborative PET/CT platform
that is able to integrate research work. This software,
developed in Java, is provided as a Fiji / ImageJ plugin.
The viewer handles PET and CT visualization and fusion,
maximum intensity projection display and a quantifica-
tion tool, which now integrates the previously described
shapings algorithm for detection / segmentation purpose.
Our framework is integrated as a module5, provided as an

1https://github.com/egrossiord
2https://github.com/bnaegel/libtim
3https://github.com/ilan/fijiPlugins
4http://petctviewer.org
5http://petctviewer.org/index.php/feature/

autosegementation
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executable called by Fiji. It takes the PET exam as an
input and provides as output a segmentation mask with
labeled lesions.

6.2. Proof of concept: experiments on phantom images

To obtain a first validation of our approach, we used
the NEMA 2007 IEC image phantom. This phantom con-
tains six spherical areas modeling lesions, with diameters
10, 13, 17, 22, 28 and 37 mm. These spheres were filled
with varying 18F concentrations to three different signal-
to-background ratios (SBRs), namely 2.59:1, 5.06:1 and
8.40:1. Data were acquired on a Philips GEMINI TF
Time-of-Flight PET/CT scanner. The PET images were
obtained with the 3D LOR-RAMLA reconstruction and
CT-based attenuation correction. They present a spatial
resolution of 2.0 mm (Figure 4, first row).

For comparison, all images were registered to the high-
est contrast image. Reference segmentation was obtained
by closest interactive thresholding to the known geometry
on this image. The ROC curves of Figure 5 measure the
set differences between the reference segmentation and
our shaping result. It illustrates the impact of the signal
loss on the segmentation results. The obtained results are
near perfect for the image with a very high SBR of 8.40:1.
In addition, even for more realistic SBRs, including that
of value 2.59:1, which is low with respect to real cases,
the obtained results remain satisfactory, thus underlining
the relevance of the shapings approach.

6.3. Clinical validation – Lymphoma tumour segmenta-
tion

6.3.1. Automated lymphoma tumour segmentation frame-
work

Finally, we evaluated our method in the context of
lymphoma tumours detection on clinical data. The di-
rect usage of the proposed shapings framework on PET
lymphoma images, converted into SUV, leads to the au-
tomated localization / identification of lesions over the
whole-body. More precisely, when lesions are homo-
geneous, the detected volumes match the entire lesions;
however for heterogeneous ones, the most active compact
regions within them are detected. Therefore, it is neces-
sary for clinical purpose to combine this detection frame-
work with a segmentation process to retrieve accurate tu-
mour contours and obtain final tumour volumes.

(a) SBR = 8.40:1

(b) SBR = 5.06:1 (c) SBR = 2.59:1

Figure 4: First row: phantom PET images, with three different SBRs.
Second row: segmentation results. MIP visualization.

Figure 5: ROC curves for the relative thresholding based on attribute-
based approach, for various SBRs (see Figure 4).

A complete procedure combining the shaping detec-
tion framework with a standard SUV-based segmentation
strategy is available in the Beth Israel Plugin for Fiji soft-
ware. It works as follows. Considering the detected le-
sions mask (i.e. the detection framework output), the first
step of the segmentation process is to produce automati-
cally a larger region of interest (ROI) encompassing each
detected high-intensity region, in order to reproduce the
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bounding boxes commonly defined manually in local ap-
proaches. To do so, we adopt a region-growing based ap-
proach using as seeds/markers the compact high-intensity
regions automatically identified with the detection proce-
dure. Each new voxel is added to the ROI if its SUV is
closer to the seed intensity (i.e. the mean intensity of all
the voxels detected and/or iteratively aggregated to the re-
gion) compared to the background (i.e. the mean intensity
of the voxels that are not included in the mask). To avoid
unlimited growing of low contrast uptake and reduce time
/ memory consumption, we considered intensity values
from a modified SUV-based PET image in which SUV
intensities below 2.5 are set to 0 (background). At this
stage, a manual correction is possible to remove physi-
ological uptakes and / or add missing regions (with low
contrast or which do not fulfill the compacity shape crite-
rion). Then any SUV-based segmentation method can be
applied in these automatically defined ROIs to produce fi-
nal tumour contours, such as 41% SUVmax lesion based
threshold (Meignan and et al., 2014), which is currently
integrated in Fiji.

6.3.2. Ongoing clinical evaluation
Introduced as a relevant tumour burden quantification

on baseline PET and an additional prognostic factor to
predict patient outcome (Cheson and et al., 2014; Ka-
noun and et al., 2014; Cottereau and et al., 2018), the to-
tal metabolic tumour volume (TMTV) has never reached
clinical application due to the lack of a fast and user-
friendly automated determination. In this context, our
shaping-based software tool could offer a fast, automatic
and reproducible setting for tumours detection and help
reduce intra- and inter-user variability for tumour bur-
den assessment. This tool could thus encourage the im-
plementation of TMTV in clinical routine for patients’
risk assessment in lymphomas. To this end, a large-scale
multi-center clinical study is ongoing, evaluating the vari-
ability, accuracy and computation time of TMTV calcu-
lation between a standard fully-manual approach and our
method.

In particular, in (Cottereau and et al., 2019), our method
has been used to demonstrate that the TMTV was a strong
predictor of the progressions of the disease and deaths in
a prospective series of 301 patients with diffuse large B
cell lymphomas. In this study the volume has been com-
puted by two independent observers. In a test set of 25

patients, the Lin concordance correlation coefficient was
0.998 (95% CI 0.997–0.999). The inter-observer agree-
ment on the dichotomization of patients in low and high
TMTV groups for survival prediction, based on a TMTV
cutoff of 200 cm3, was excellent with a Cohen’s κ = 1.

7. Conclusion

This article has proposed a methodological scheme for
analyzing PET images with the paradigm of shaping, i.e.
by computing and processing the component-tree of the
component-tree of an image. In this context, we observed
that it was possible to embed high-level prior information
(here, a compacity attribute; but any other scalar feature
may also be considered) whereas preserving the ability
to carry out simple, interactive thresholding procedures
on the data. In particular, this allows the medical practi-
tioners to effectively act on the method / tool, and easily
understand its behaviour.

From a methodological point of view, the perspectives
of this work are twofold. First, they can consist of con-
sidering no longer one image, but many. Indeed, in the
context of nuclear imaging, PET images are generally
coupled with X-ray Computed Tomography data. This
opens the way to the developement of shaping on hier-
archical models designed for multivalued data. In par-
ticular, preliminary studies involving component-graphs
have been proposed (Grossiord and et al., 2015b, 2019).
More generally, many kinds of hierachical models de-
signed to handle multivalued images may also be consid-
ered, and involved in shaping approaches. Other perspec-
tives could be to enrich the priors guiding the segmenta-
tion. A unique criterion, combining intensity and compac-
ity priors, may not be sufficiently specific and representa-
tive for all lymphoma lesions. Therefore, considering ma-
chine (Grossiord and et al., 2017) or deep learning proce-
dures on morphological hierarchy models could help rely
on relevant image descriptors that capture physiological
phenomena more comprehensively.
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