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Abstract

We analyse the Landau damping mechanism for variants of Vlasov equations, with
a time dependent linear force term and a self-consistent potential that involves an
additional memory effect. This question is directly motivated by a model describing
the interaction of particles with their environment, through momentum and energy
exchanges with a vibrating field. We establish the stability of homogeneous states.
We bring out how the coupling influences the stability criterion, in comparison to the
standard Vlasov case.
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1 Introduction

In this work, we go back to the analysis of Landau damping mechanisms in kinetic
equations. This effect has been brought out for the Vlasov equation of plasma physics
in the pioneering work of L. Landau [23], and extended to gravitational models in as-
trophysics [26], 27], where it is thought to play a key role in the stability of galaxies. It
can be interpreted as a stability statement about steady solutions, leading to a decay of



the self-consistent force. A complete mathematical analysis of the Landau damping for
non linear Vlasov equations has been performed in [28], and revisited later on in [6), [7]
(see also [2I]). Similar behaviors have been revealed for the 2D Euler system [5]. The
phenomena are surprising since they describe damping mechanisms, counter-intuitive
for reversible equations which apparently do not present any dissipative process.

The starting point of this contribution comes from an original model introduced
by L. Bruneau and S. De Biévre [§] describing the motion of a single classical particle
interacting with its environment. The particle is described by its position ¢t — ¢(t) €
R¢, while the behavior of the environment is embodied into a scalar field (t,z,z) €
(0,00)xRIXR™ = 9)(t, x, z). The dynamic is modeled by the following set of differential
equations

q(t) =-VVi(q(t)) — //Rd o o1(q(t) —y) o2(2) V. ¥(t,y,2)dydz,

2V(t,x,2) — AV (t, 2, 2) = —09(2)0o1(z — q(t)), r€RY 2 € R

(1)

It corresponds to the intuition of a particle moving through an infinite set of n-dimen-
sional elastic membranes, one for each position € R% The physical properties of
the membranes are characterized by the wave speed ¢ > 0. The coupling between the
particles and the environment is governed by two form functions o1, o9, which are both
non negative, smooth and radially symmetric functions; they can be seen as determin-
ing the influence domain of the particle in each direction, the direction of particle’s
motion and the direction of wave propagation, respectively. It is therefore relevant to
assume both form functions have a compact support. The particle exchanges its kinetic
energy with the vibrations of the membranes. These mechanisms eventually act like a
friction force since particle’s energy is evacuated in the membranes, and, depending on
the shape of the external potential z — V' (x), they determine the large time behavior
of the particle. We refer the reader to [1, [T}, 12} [13], 22} B2] for further studies of the
system that include numerical experiments and interpretation by means of random
walks.

The system can be generalized by considering a set of N particles going through
the membranes. The mean field regime N — oo leads to the following PDE system

OF 4+0v-V,F =V, (V4 &) -V, F=0, t>0, zeR veRY, (2a)

(R0 — AW (¢, 2, 2) = —02(2) / o1(z —y)p(t,y)dy, t >0, z €R?, z € R",

Rd
(2b)
p(t,z) = F(t,z,v)dv, (2¢)
Rd
O[V|(t,x) = //Rde" o1(x —y)oa(2)¥(t,y, z) dz dy, t>0, zeRY (2d)



where now (¢,x,v) — F(t,x,v) is interpreted as the particles distribution function in
phase space, € R? being the position variable, v € R? being the velocity variable.
The system (2d)|is completed by initial conditions

F’t:o = Fyp, (\I',at\IJ)|t:O = (Wp, ¥y). (3)

We refer the reader to [I7), B3] for the derivation of the N-particles system and the
analysis of the mean field regime that leads to|(2a)H(2d)l The existence of solutions of
(2a)H(2d)| is investigated in [9]. Furthermore, asymptotic issues are also discussed that
reveal an unexpected connection with the gravitational Vlasov-Poisson equation. This
relation with another model of statistical physics can guide the intuition to analyze fur-
ther mathematical properties of [(2a)H(2d)l In this spirit, the existence of equilibrium
states and their stability is discussed in [2], adding in the kinetic model a dissipative
effect with the Fokker-Planck operator, and in [I0] where a variational approach is
adopted for the collisionless model, following [19, 20}, [35].

We wish to continue this analysis, adopting a different viewpoint. In [2, [10] the
effect of a confining potential x — V(x) is considered, which governs the shape of
the equilibrium states. Here, we change the geometry of the problem, replacing the
confining assumption on the external potential, by the assumption that particles’ mo-
tion holds in the d—dimensional torus T?¢. In such a framework, like for the usual
Vlasov-Poisson system, we can find space-homogeneous stationary solutions, and we
wish to investigate their stability. This question is directly reminiscient to the well-
known phenomena of damping brought out in plasma physics by L. Landau [23]: for
the electrostatic Vlasov-Poisson system, it can be shown that the electric field of the
linearized system decays exponentially fast. For gravitational interactions a similar
discussion dates back to D. Lynden-Bell [26] 27]. In fact, Landau’s analysis [23] was
concerned with the linearized equation only. Of course the linearization procedure is
questionable and the non linear dynamics might significantly depart form the linear
behavior, as pointed out in [3]. A stunning analysis of the non linear problem in the
analytic framework has been recently performed by C. Mouhot & C. Villani |28, [34].
A simplified analysis of the Landau damping has been proposed in [6]; we also refer
the reader to [16] for results based on Sobolev regularity (with a definition of the force
which involves only a finite number of Fourier modes, though) and [21I] for an alter-
native approach that uses integration along phase-space characteristics. The Landau
damping around homogeneous solutions has also been investigated in the whole space
R? [7], thus dealing with a set of particles having an infinite mass. We wish to address
these issues for the system (2d)} still when V' = 0. The analysis of the non-linear
equations is quite involved; it requires a complex functional framework and fine esti-
mates in order to control the non linear effects, the so—called “plasma echoes”, that can
break the damping mechanisms observed on the linearized model. By the way, it has
been recently shown that insufficient regularity of the perturbation can annihilate the
damping mechanisms, and the proof (which, though, is very specific to the coupling
with the Poisson equation; it is not clear that the argument applies for more regular
convolution kernels) precisely uses the role of the plasma echoes against damping [4].
Nevertheless it turns out that identifying stability conditions for the linearized problem



plays a central role in the analysis of the non linear stability, see [28, Condition (L)].
Beyond their interest for the specific model|(2a)H(2d)| of particles interacting with their
environment, the results we are going to discuss can be thought of with some generality.
Indeed, as we shall detail below, the equation for the particle distribution function can
be recast as follows

OF +v- -V, F =V, 01 -V, F —V,0g -V, F =0,

where the potential splits into two parts, that both induce new issues compared to
the case of the “standard” Vlasov system (hereafter simply refered to as the “Vlasov
equation”):

o ®;(t,x) does not depend on F: this is a linear contribution in the equation.
The damping then relies on suitable time-decay properties, here related to the
dispersion properties of the free wave equation.

e the self-consistent potential ®g (¢, x) is defined by a convolution with respect to
space, combined with a half-convolution with respect to time

bs(t.) == [ [ (o= upelt = )ols. ) dyas

Then the Landau damping relies on properties of the kernel ¥, which is quite
similar to the analysis of the Vlasov case, but also on decay properties of the
kernel p..

The discussion is organized as follows. We start by checking that we can find homo-
geneous solutions in Section [2l We also introduce different, but complementary, ways
to think of the equations. We complete this preliminary section with a series of com-
ments explaining how the problem differs from the usual Vlasov system. In Section
which is the heart of this work, we turn to the linearized problem and we discuss the
stability criterion. At least, it turns out that stability can be verified when ¢, the speed
of wave propagation, is large enough. Next, we fully detail the proof of the Landau
damping for the free space problem, for which the functional framework is less intri-
cate, in Section [df We present how the main arguments should be adapted for the
torus in Section [5] This content is completed by several Appendices which have their
own interest. Appendix [A] details the analysis of the Volterra equation associated to
the linearized problem, offering a unified description of the derivation of the stability
criterion for both the Vlasov and the Vlasov-Wave equation. Appendix [B] discusses
in further details the stability criterion, in the spirit of the Penrose criterion. Quite
surprisingly, we are led to an intricate expression, much more complicated than for the
Vlasov model, which, nevertheless, allows us to establish some conclusions close to the
gravitational Vlasov case. We also propose several interpretations of criteria that lead
to (un)stable solutions. Finally, Appendix |C| briefly goes back to the Cauchy theory
for analytic solutions of the system.



2 Preliminaries

In what follows, X? stands indifferently for T¢ or R?, and for given functions ¢ : x €
X4 ¢(x) and g : v € R? + g(v), we denote

(0)ya = /de(x) dz,  (9)pa = /Rdg(v) dv,

where dz is either the usual Lebesgue measure on X¢ = R? or the normalized Lebesgue
measure on X? = T¢. We shall also use indifferently the notation = for the Fourier
coefficients of a T¢—periodic function

¢ : T - R, o(k) = /’]I‘d e~ FTy(x)dx for k e 74,
or the Fourier transform over R” (with m = d or m = n)
¢ :R™ R, o) = / e p(x) de for £ € R™,
We equally use the same notation for a function ¢ depending on z € X% and v € R?

B = [ e do do
X m

for € € R™ and either k € Z% (case X? = T9) or k € R? (case X? = R?). In the sequel,
we shall use the shorthand notation k& € X*¢ to encompass these two situations.

2.1 Rewriting the equations

Due to the linearity of the wave equation, the solution of |(2b)[ can be split into a
contribution that depends only on the initial condition (¥¢, ¥;) and a contribution
that depends only on p, see [9, Eq. (6)—(8)]. Accordingly, we split the potential into

(I)ZCI)I"i'(I)S’

where ®; depends only on (¥, ¥;) as follows

b1(t.0) = o [[L e (Tt O costelch) + Tl D ) 7300 d?:)lc
and the coupling term reads
bg(t,x) = — /tpc(t —35)X % p(s,z)ds,
0
Y =01 *01q, (5)
B sin(c|C|t) | . d¢
pelt) = [ P g

The properties of the function t — p.(t) play a crucial role in the asymptotic analysis
of |(2a)H{(2d)
In what follows, we shall use the following general assumptions



(H1) n > 3 is odd,
(H2) o9 € C(R™) with supp(oz) C B(0, R2).

With n > 3, according to [9, Lemma 4.4], we know that p. € L'((0,00)) with

< malt e [ 0P
AR I

In particular, the condition n > 3 guarantees that the integral that defines x makes
sense. (Note that [8] makes the case n = 3 the most relevant.) Finite speed of
propagation and energy conservation for the wave equation can be used to deduce
fundamental estimates on the function p.: the following simple observation strengthens
[9, Lemma 4.4] by taking full advantage of |(H1)H(H2)|

Lemma 2.1 Assume ((H1){(H2)| Then the function t — p.(t) has a compact sup-

. . 2R ; .
port, included in [0, =22] and it satisfies

g n/(n ag
|pc(t)| < CSH 2||L2 /(C+2>|| 2||L2’

for a certain constant Cg > 0.

Proof. The kernel p.(t) can be rewritten as

pelt) = [ oule)T(t2)ds
where T is the solution of the wave equation with initial impulsion oo:

(0f — ALY (¢, 2) =0,
(T.8,7)],_, = (0,09).

With [(H2)| Huygens’ principle implies that
if ¢t > Ry + |z| then Y(¢,2) = 0.

Therefore, see Fig. (1, when ¢t > %, the product o2(2)Y(¢, z) vanishes, and p.(t) = 0.
Next, we start with the Holder inequality, bearing in mind n > 3

Ipe(t)] < llo2|l p2n/eea T, )| L2n/-2) -

We dominate the right hand side by making use of the Sobolev embedding, see e. g. [25),
Lemma 8.3], || Y(t,")| 2n/m-2) < Cs||V,Y(¢,)|| 2, while energy conservation for the
wave equation tells us that

1 1
1900122 < 5 (100 )2 + PITX () < Sllo3

holds. [ ]



Figure 1: Propagation cone: the signal emanating from the ball B(0, R) cannot be felt in
this ball after time T’

Remark 2.2 Integrability of p. and Huygens’ principle play a central role in our analy-
sis and, more generally, in the qualitative properties of the model introduced in [8]: they
imply a strong dissipation mechanism of energy through the vibration of the medium.
For instance, in dimension n = 1, a direct computation by means of D’Alembert for-
mula shows that

1 —+o00 z+-ct 1
pe(t) = 20/ o3(2) (/ oa(5) ds) dz — ool > 0.

—00 —ct

Hence, in this case p. ¢ L'(0,00), there is no loss of memory at all, and numeri-
cal simulations [18] indeed confirm that there is no damping phenomena. Similarly,
working in the torus T™ for the wave equation leads to

_ 0P <Oy 2
pet) =) ] sin(c|l|t) + [o2(0)|*t.
(#0

It prevents p. for being integrable over (0,00) and shows that there is no possible energy
dispersion mechanism in this geometry.

The case of R™ with an even dimension is more subtle. It seems that the analysis
performed on the torus uses crucially the compactness of the support of p. and this
case cannot be handled. For the free space problem it is less clear whether or not
the dispersion mechanisms of the wave equation in even dimensions are enough. The
estimates we are using are not fine enough to handle this situation. However, the
alternative proof of [21], which is less demanding in terms of reqularity, could be adapted
in order to extend the result in this direction.



2.2 Homogeneous solutions

Let pg > 0 and let v — M (v) be a given function such that [pq M(v) dv = 1. We claim
that
M (z,0) € XX RE— A (z,0) = poM (v)

is a stationary solution of|(2a)H(2d)| associated to a spatially homogeneous potential ®,
when starting from spatially homogeneous data for the wave equation. On the torus,
since M and dx are normalized, pg is the mass of the solution .#. With F' = ., the
right hand side of the wave equation becomes

~02lo) [ e (g.0)dw dy = ~02(2) o) (Mg

which depends only on the variable z € R™. Therefore, considering space-homogeneous
initial data (x, z) — (U¥(2), ¥4 (2)), the solution of the wave equation

81?15‘11H - CQAZ\I’H = _02(2)<01>Xd<%>Rd
is given by the inverse Fourier transform of

o 1
g POl

and it does not depend on the space variable x. Accordingly, the associated potential

BH (1, €) = WY, (€) cos(cl¢[t) + W ()

(el (t,2) = (01)5a // oo (2) W (t, 2) dz
does not depend on x. We obtain
(O 4v- V)l =0=V,0[WH].V,.,

and finally (.#,¥) is a homogeneous solution of We bring the attention
of the reader to the fact that, in the case X% = R? the homogeneous solutions have
infinite mass and infinite energy.

Remark 2.3 (Stationary solutions) A specific case of interest corresponds to sta-
tionary solutions. Let us associate to . , the function

Weq(2) = T (0 gl g

where I is the solution of A, I'(z) = 02(2). It defines a stationary solution Weq for the

wave equation (with initial data VT = Voq and WH =0). The associated potential
thus reads

//deRn o1(x — y)o2(2)Veq(2) drdz = (01)yq /n 02(2)Weq(2) dz,

which does not depend on the space variable x € X%, nor on the time variable t.



2.3 Equations for the fluctuations

Given a space-homogeneous solution (., N2 ), we expand the solution as

F(t,z,v) = A (v)+ f(t,z,v), U(t,x,2) = U (t, 2) +o(t, z, 2).

The fluctuations (f,1) satisfy
atf +v- vxf - qu)[¢] : vv('// + f) =0,

B[](t, z) = //X @ o)ty 2) dydz,
O = A= =na(2) [ 1o =pelt.9)d.

Q(t,l’) = f(t,x,v) dv,
R4

completed by the initial conditions

f(O,%,U) = fo(a:,v), (w(O,LU,Z),atw(O,LU,Z)) = (¢0($,Z),¢1($,Z)).

As said above, it can be convenient to set ¥(t, z,z) = ¥r(t,z, 2) + ¥s(t, x, z), with the

contribution from the initial data

sin(c[¢]t)

bi(t,x,€) = Po(x, ) cos(cl€[t) + T

and the self-consistent contribution

TZS(tv%f) = —/0 Sin(di{z_ﬂ)ﬁg@)al * o(T,x)dr.

Plugging this into the expression of the potential, we get
C[Y](t, ) = o1 % (F1(t) — 01 xF,(1)) (2),

where we have set

Fi(t,x) = /n oo (2)¢r(t,x, z)dz
and .
Gyt x) = /0 pe(t — 7)o(r,z) dr.
Hence, the evolution equation for the fluctuation f can be recast as
hf+v-Vof =Norx(Fr—o01%Y,) V(M + f)=0.

Finally, let us introduce
g(t,x,v) = f(t,z +tv,v),

which allows us to get rid of the advection operator. We remark that

8tg(t,1',"l)) = (at +v- vﬂ?)f(twr + t’l}, U)

10



and
(Vo f)(t,x + tv,v) =V, {f(t, T+ tv, v)} —tVof(t,z +tv,v) = (Vy — tVy)g(t, z,v).
Thus, @ becomes

Og(t,z,v) =Vor % (Fr—o1%9,) (t,x+tv) - (Vy —tVy) (A + g)(t,z,v), (10a)
9(0,z,v) = fo(z,v).  (10b)

The following rough statement gives the flavor of the result we wish to justify.

Theorem We assume that the data o1, 09,0, U1, fo are smooth enough. We assume,
furthermore, that the analog of the (L)-condition for the Vlasov-Wave equation holds.
If, initially, the fluctuation is small enough, then, we can find an asymptotic profile
g™ so that g(t) — ¢>° and the applied force Voi x (F1 — 01 %9Y,) tend to 0 ast — 0.

The precise statements are given in Theorem (case X¢ = R%) and Theorem
(case X% = T?) Let us make a few comments to announce the forthcoming analysis.

e The stability condition (see Section and the comments in Appendix ,
like for the usual Vlasov equation, imposes that a certain symbol cannot reach
the value 1. In particular, the stability condition holds provided the wave speed
c is large enough, see Proposition (3.4

e The functional framework is a bit intricate. Roughly speaking, we distinguish
two types of results, depending whether we work with analytic functions and
regularity measured by means of Gevrey spaces (for the torus, the result applies
only in this framework), or with functions having enough Sobolev regularity (the
result on R? applies in this context, and we can also establish the damping for
the linearized problems in both cases X¢ = R? and X¢ = T9).

e Typically the smallness assumption is imposed on a certain space X (of Gevrey
or Sobolev type), but the damping holds in slightly “less regular” spaces Y, with
XCY.

e The rate of convergence depends on the functional framework (Gevrey vs. Sobolev)
and how far Y is from X.

e For the problem on R%, we shall need to assume d > 3; the method breaks down
in smaller dimensions, for reasons that already appeared for the Vlasov-Poisson
system [7].

For the usual Vlasov equation, the main ingredients to justify the Landau damping
can be recapped as follows:

e the transport operator induces a phase mixing phenomena, which is a source of
decay for the macroscopic density p;

11



e when linearizing the system around the homogeneous solution, we observe that
the Fourier modes of ¢ decouple, leading to a Volterra equation for the Fourier
transform of the density. It permits us to identify a stability criterion, that
depends on the homogeneous solution and on the potential so that the linear
dynamics induced by the force term does not annihilate the effects of the phase
mixing;

e it remains to control the non linear effects, with the plasma echoes that tend to
contribute against the phase mixing.

Technically, in order to address this program, one needs a Cauchy theory (in analytic
regularity for the problem on T%) such that a control on a “weak” norm is enough to
assert that the solution can be extended. Moreover, assuming the smallness of the data,
the norms used in this Cauchy theory should permit us to justify uniform boundedness
with respect to time, and, eventually, the Landau damping. In particular, the echoes
should be controlled by means of these norms. Rewriting the potential with |(4)H(5)]
we realize that the system substantially differs from the usual Vlasov system
dealt with in [28] and [6] [7] in the following aspects:

e there is an additional term
V@1 -V, F,

with a force independent on the particles density. This linear perturbation could
drive the solution far from the homogeneous state .#;

e the self-consistent potential ®g involves a half-convolution with respect to the
time variable, inducing a sort of memory effect. In particular, the function p.
dramatically influences the expression of the stability criterion.

As we shall see, the analysis of the linearized problem, and the stability criterion,
sensibly differ from the Vlasov case. Nevertheless, this linearized analysis remains at
the heart of the proof of the Landau damping: once the Landau damping established
for the linearized equation, the arguments of [28] and [6} [7] can be adapted to handle
the nonlinear problem. Furthermore, we will also bring out the analogies with the
gravitational Vlasov-Poisson problem, in terms of conditions of the equilibrium profile.
We address both the confined case X? = T¢ and the free space problem X?¢ = R?
underlying the differences needed depending on the technical framework.

3 Analysis of the linearized Landau damping

3.1 The linearized system

In the expansion [@], let us assume that the fluctuations f and 1 remain small, so that
we neglect the quadratic term (with respect to the perturbations) V,®[¢] -V, f in the
evolution equations (note in particular that this assumes the smallness of the initial

12



fluctuations (g,1)). We are thus led to the following linearized system

Of +v-Vauf = poVad- VoM, t>0, zeX? veR?, (11a)

(aftzp — czAzw)(t,x,z) = —09(2) / o1(x —y)o(t,y) dy, t >0, z € X4 2 eR",
Xd

(11b)

o(t,z) = f(t x,v)dv, (11c)
x) (r—y z)og(z)dz d T d d
sta)= [ o etnE)d . 20 26X (11d)

The system is completed by initial conditions

f’t:O = an 1/178t¢ |t 0 ¢07¢1) (12)

The expected result can be explained as follows: let us assume that the fluctuation
does not provide additional mass: [[ f(0,z,v)dvdz = 0, and, to fix ideas, 1o = 0 and
11 = 0. In such a case, linearized Landau damping asserts that o converges strongly
to 0, while f converges weakly to 0, as t — co. Moreover, the potential ¢ also vanishes
for large times. We are going to establish that such a behavior holds for the system

(11a){(12)

We start by applying the Fourier transform, with respect to z and v to|(11la)l It
yields R R .
(O =k - Ve)f(t,k, &) = —po k- & o(t, k) M(E).

The equation can be integrated along characteristics, which leads to the following
Duhamel formula

Ft, k&) = fok, &+ kt) — po /0 (E+k(t—7)) -k (m, k) M(E+k(t—7))dr.  (13)

We turn to the expression of the Fourier coefficients of the potential. We remind the
reader that we can split the potential into

¢ = ¢I + d)Sa
where ¢; depends only on (1, 11) as follows

sin(c|C|t)

¢1(t) Ic|

(r—y) (7/10(% ¢) cos(elClt) + 1 (v, C) )@(C) dyd(

R7 ><Xd

:wf (t,y7C)
(14)

and the coupling term reads
t
os(t, ) = —/ pelt — T % o(r ) dr.
0
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Plugging the expression of ¢ = ¢; + ¢g into|(13)| we obtain

t

Ft,k,&) = folk,& + kt) —Po/o (E+E(t—7)) &k ¢r(r,k) M(E+k(t — 7)) dr

+p0a(k>\2/0 (€+k(t—7)) -k (/OTpc(T—§)§(§,k)d§> M€+ k(t — 7)) dr
:J%(k,5+kt)—po/0 (€ k(t—7)) -k d1(r k) DI(E + k(t — 7)) dr

+po€1(k)l2/ o(s, k) (/ J\7(§+k(t—f))(§+k(t—f))‘kpc(r—c)df> d¢
0 . S
=fo(k:,£+kt)—po/0 (E+k(t — 7)) -k ¢r(r,k) M(€+ k(t — 7)) dr

T poli(k)P / @(c,m( 0 TR k(= — T (€4 k(t— < — 7)) - k pelr) dT) dc.

We are led to an integral equation for the (Fourier coefficients of) the macroscopic
density by considering this relation for & = 0. Let us set

t
aft,k) = k. th) = polbl? [ Gi(rib) (6= )Mkt =)dr  (15)
0
and .
H(t, k) = polk|? |5](k:)|2/0 (t— 7')]\7(]{(75 — 7))pe(T) dT. (16)
Then, we obtain an integral equation for the fluctuation of the macroscopic density
t
o(t, k) =al(t,k)+ / H(t—,k)o(s, k) ds. (17)
0
The analysis of this relation makes use of the Laplace transform
¢ :(0,00) = C, Zp(w) = / e “to(t)dt for w € C,
0
which is well defined for Re(w) large enough. We wish to apply directly the following

claim [34, Lemma 3.5], see also [28, Lemma 3.6].

Lemma 3.1 Let a, . # : (0,00) — C. We suppose that
i) there exists a, A > 0 such that, for any t >0, |a(t)| < ae™;
ii) there exists Co, Ao such that, for any t >0, |2 (t)| < Coe™0;
iti) there exists A > 0 such that L (w) # 1 for any w € C verifying Re(w) > —A.
Let ¢ satisfy

(t) = a(t) —l—/o H(t —T)p(T)dr.

Then, for any X' < min(\, \g, A), there exists C' > 0 such that, for any t € (0,00), we

have
p(t)] < C'e™ .
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Condition iii) gives rise to a stability criterion on the stationary profile .#. Since
the operator J# involves the kernel p. the detailed condition substantially differs from
the usual Vlasov case. In Eq. the Fourier index k appears as a parameter. For
applying Lemma [3.1] in order to establish the exponential decay of the potential, the
time variable will be replaced by |k|t and estimates i-iii) should be satisfied uniformly
with respect to k, see [28, Theorem 3.1 & Lemma 3.6] (and the constant C’ in the final
estimate might depend on k). This requires appropriate regularity and decay assump-
tions on the equilibrium function, on the initial data and on the coefficients.

According to [28] and [6], it is convenient to work in the analytic setting, which
amounts to introduce the following assumptions on the equilibrium M, the initial data
fo and the form function o;. Compared to the standard Vlasov equation, the model
involves an additional term associated to the initial perturbation of the wave equation;
for the linearized problem it appears as a new contribution in the term a(t, k) of the
Volterra equation We thus also need to specify the assumption of g, 1. The
requirements on the data state as follows:

(H3) we have supp(vo,11) C X¢ x B(0, Ry), for some 0 < R; < oo, and

sup {/n (W}\l(lﬁz)P + 02‘Vz12)\0(k57 Z)|2) dz} — & <,

keXxd
(R1) there exists Cp, A\g > 0 such that for any ¢ € R?, k € X*¢ we have
M (&) < Coe™ Bl [ fo(k,€)] < Coe

(R2) the function o7 : X% — (0,00) is radially symmetric and real analytic, and in
particular (see [34, Proposition 3.16]) there exists C1, A1 > 0 such that, for any
ke X |51 (k)| < Cre=MIkL

Namely, we assume analytic regularity on the data with [[R1)]and[[R2)} Note that
is not a strong restriction in the present context, contrarily to what it could be for
the Vlasov case, since for this model o is naturally smooth. In fact, physically the form
function o1 would naturally be compactly supported (the support being interpreted as
the “domain of influence” of the particle), which does not make sense in the analytic
framework. Thus, we should here think o as a peaked bump function. We also bear
in mind the fact that oy is radially symmetric: its Fourier coefficients are real and we
have o1 x o1(k) = |a1(k)|> > 0. These assumptions, together with the finite speed of
propagation for the wave equation, allow us to control the “initial data” contribution in
and the kernel[(16)] Let us explain the role of [(H3)|for the associated contribution
to [(14)|in |[(15)l In|(14) 17 is the solution of the wave equation on R", starting form
initial data (vg,101). The space variable z € X¢ appears only as a parameter in this
equation. Assumption means that the Fourier transform (with respect to the
parameter), of the initial data has finite and uniformly bounded energy. When X¢ = T¢,
holds under the condition

[ a2+ AVanle ) d o= 61 < ox,
XdxRn?
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which implies that the Fourier coefficients of the energy lies in ¢2(Z%), and thus in
€°°(Zd). This assumption is quite natural since this quantity is involved in the global
energy balance for see [9} 10, 33]. Working in R?, this has to be replaced by

condition [(H3)|
Lemma 3.2 Assume [(H1){(H3)| and [R1)HR2)| Let a(t,k) be defined by [(15)]

Then, there exists a, X > 0 such that |a(t, k)| < ae ¥t holds for any t >0, k € X*<.

Proof. Assumption [(R1)[implies that
| fo(k, th)| < Coe™ !k,
Relation |(14)| can be recast as

or(t,z) = /d o1(x —y) (/ oa2(2)Yr(t, x, 2) dz) dy
X n
with 7 the solution of the free wave equation

(8t2t - CQAZ)wI = 07
(1, 0cp1)|,_y = (Y0, Y1)

Assumption [(H1)| & |[(H2)| allow us to make use of Huygens’ principle which tells us
that

supp(¥r(t, @,-)) C {z € R", ¢t — Ry < |2 < ct + Ry}.

This can be read directly on the representation formula, see e. g. [I5, Section 2.4,
Theorem 2]

(n—3)/2
wl(taxvz> - iat (:ZIL:at) (tn_2 f|z_2/|zct wO(xaz,) dS(Z/)>

Tn

1 /1 (n—3)/2 )
+— <8t> " ][ Y1 (z,2")dS(2))
Tn t |z—2'|=ct

where v, = 1x3x...x(n—2). Therefore, by virtue of (H2)|, the product o2 (2)¥;(t, z, 2)
vanishes when ¢t > @ = Sp, see Fig. [1} for any z € X¢, z € R®. Hence, ¢5 is
supported in [0, Sg] x X¢ and we can write, for ¢t > S,

t _ So . —
polkf? /0 G1(s,k) (t — )M (k(t — 5)) ds| = |po /0 kbi(s, k) - k(t — )M (k(t - s)) ds

So _
< ,00/0 \kpr(s, k)| |k(t — s)M (k(t — s))| ds.

Assuming [(R1)] for any 0 < A < Ao, we obtain

So . s
/ |k|(t — s)|M(k(t —s))|ds < Co/ k| (t — s)ePolkl(E=9) g
0 0

IN

S
CO/ 0 |k|(t — s)e~ o= VIkI(t=9) =Alkl(t=5) g
0
eAlEISo o= ALKt
< )
— (M—ANe A
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where we have used the elementary inequality ue % < ﬁ, which holds for any A > 0,
u > 0. Next, we observe that

Br(s. k) = 71 (k) / oa(e)lr(s k 2) d,

where ¥;(s, k, z) satisfies

(Qz?t - CfAz)lzI = 0; . .
(1/117&:1#1)(077@:2) = (1/10(ka2)a¢1(k7z))-

Standard energy conservation for the wave equation yields, for any ¢ > 0,
/ (100012 + 2|V ) (8, 2) d= :/ (10117 + (Voo [?) (k, 2) dz < &,
R™ R

by using ((H3)l It follows that (mind the conditions [(H1)H(H3)| which allow us to

make use of Sobolev’s embedding, see [2, Lemma 4.4] for similar reasoning)

|kr(s, k)| = |k:]’6\1(l<:)/ 02(2)Pr(s, b, 2) dz| < Culkle™ M oa]| n/ins VE,

n

where we have used With A1 > X > 0 we get

~ _ o/ o/ C o/
’k(b[(s, k)’ < Chlkle O L P |k|HO_2HL2n/(n+2)\/g < m“agHLG/(nﬁ) VE&e N,
Gathering these estimates together, we arrive at

t ~ —~
p0|k:|2/ o1(s, k) (t—s)M(k(t—s))ds
0
e(ASo—X) k]

— Akt

<C n/(n &
< Cipol|oa| pan/ i VE X (A = N)A( Ao — >\)62e

We use this relation with ASy < A < A\;. We conclude that a(t, k) is dominated by
O(e~MNFItY uniformly with respect to k, for 0 < A < min(Xg, A\;/Sp). (Note that Sy
behaves like 1/¢; as ¢ becomes large, only \g is relevant in this condition.) [ |

Next, with [(R1)} [(R2)[and Lemma we can estimate as follows

2R2/c -
AR = pl®E] [ (6= Dkt =)ol ]
o [ ~o(t—7)[k|
< polkGi(k)] /0 ol = )Che e ar
2po R 2 2171 2(Ra N e—A1) || e Al
< CoC2|k|e2(Far e
= c HUQHL2 OCl‘ ‘6 )\()\0 _ )\)6

for 0 < A\ < A\g. We conclude that # (¢, k) is dominated by &(e~***) uniformly with

respect to k, provided 0 < A < min (Ao, %\—21)
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Lemma 3.3 Assume [(H1)H{(H3) and [R1DHR2). Let ¢ (t,k) be defined by [(16)]
Then, there exists C, A > 0 such that |# (t,k)| < CeM*It holds for anyt > 0, k € X*?,

We have justified that properties i) and ii) in Lemma hold. We turn to investi-
gate the Laplace transform of JZ". It reads

LA (w,k) = polai(k)]* Lpe(w) L (|k[*EM (kt))(w).

A detailed expression will be discussed in Section [B] below. The stability condition in
Lemma iii) should take into account the dependence with respect to the frequency:
in view of the estimates in Lemma [3.2] and Lemma [3.3] we expect the decay of all
modes p(t, k), k # 0, with an exponential rate proportional to |k|. To this end, it
remains to check the “(L)-condition” in [28]: it amounts to find &, A > 0, such that
inf |1- 2 (wk|,k)| >~ for 0> Re(w)> —A. (L)
kex+d\ {0}
In fact, for the Vlasov equation, such a property holds under a smallness assumption,
see [28, Condition (a) in Proposition 2.1]. Here, this condition can be rephrased by
means of a condition on the wave speed ¢ > 1. The latter confirms the intuition
that the damping is related to the ability to evacuate the particles energy through
the membranes, see [8]. (It also raises the issue to determine whether or not there
exist stable equilibrium for ¢ < 1; we shall go back to this issue in Proposition
and Remark ) A similar smallness condition on 1/c appears in the asymptotic
statements for a single particle [8, Theorem 2, 3 & 4], for the analysis of the relaxation
to equilibrium for the Vlasov-Wave-Fokker-Planck model [2 Theorem 2.3], and the
stability analysis in [I0]. Moreover, as mentioned in the Introduction, up to a suitable
c-dependent rescaling of the coupling, the regime ¢ — oo leads to the usual Vlasov
system [8]; we check accordingly that the stability criterion for large ¢’s is consistent
to the condition exhibited for the Vlasov equation, see Remark A forthcoming
work investigates on numerical grounds the role of the wave speed ¢ on the damping
phenomenom [I§].

Proposition 3.4 (Stability criterion for large c¢’s) Assume|(H1)H(H2) and|R2)|
There exists co > 0 such that if ¢ > co then condition is fulfilled.

Proof. Let A € (0, \9). Let w = a+ i, with —A\g < —A < a <0, and § € R. On the
one hand, we have, for k # 0,

LRI = | [T () a
o I
< Co/ se % asdsSCo/ se~(Ro=M)s g
0 0
Co
< N ANO "
— (Mo —A)?

On the other hand, Lemma [2.1] allows us to estimate as follows

lloall p2n/ms2) o]l 12 €

2A|k|Ra /e
A c '

2R2/C
| Lpe(wlk)]| < [pellz / e—olkls 45 < O
0
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Owing to [(R2)] we obtain

o1 o n/(n o e—2(M—ARz/c) k|
(R P Zpeolhl)| < Cios 1P o2l C

We observe that the right hand side tends to 0 as ¢ — oo. Therefore, for any « € (0, 1),
provided c is large enough, we have

sup | L X (wlk|, k)| <1—k
k+£0

for any w € C with —\g < —A < Re(w) < 0, which implies infyo [-Z7 (w|k|, k) — 1| >
k > 0. This is exactly condition in [28]. It allows us to apply the reasoning as in
[28, Theorem 3.1], which will thus imply the Landau damping for ¢ large enough. =

3.2 Linearized Landau damping: main statements

Let us collect here various statements that will be discussed for the linearized Landau
damping, depending on whether X¢ = T? (confined case) or X¢ = R? (dispersive case),
and on the decay/regularity assumptions made on the data.

Proposition 3.5 (Linearized Landau damping on T¢ with analytic regularity)
Let X4 = T4, Let us assume |(H1)H{(H3), (R1)[{R2) and . Then ast — +o0, the
solution of the lineam’zed problem M«@ with data converges weakly to the
mean value foo(v) = (fo(-,v))pa while o(t,x) = [pa f(t,7,v) dv converges strongly to
Poo = [[paypa fo(:L‘ v)dv dx To be more specific, we can find 0 < p < min(Ag, A, A)
such that

for any (k, &) € Z¢ x R?, there exists C > 0 (independent of k, &) verifying

|f(t7ka§) - foo(k,f” S Ce_l"‘g‘f'kt"
for any r € N, there exists M, > 0 verifying ||o(t,") — peollcr < M, e HL.

By virtue of Proposition the damping holds provided c is large enough. Note
that f. depends on the velocity variable only. Therefore, we have foo(k,f) = 0 for
any k # 0. It can be natural to assume that the initial perturbation fy does not
provide additional mass to the system; in this case poo = 0 and the macroscopic mass
fluctuation o(t,-) tends to 0 exponentially fast. This statement also implies that the
applied force tends to 0 as t goes to infinity, which is the essence of Landau damping.
Indeed, we have seen that ¢; is compactly supported with respect to the time variable
while for large times, ¢g casts as

t
ps(t,x) = —/t ) pe(t — s)X * o(s) ds.

The bounds on p. and on o(t, x) allow us to conclude. The corresponding force

Vaips(t,z) = — » Vi(z —y) </0 pe(T)o(t — 1,7) dT) dy

= — | Vi(z-—y) </ pe(7) [o(t = 7,Y) — poo] dT) dy
Td 0
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then satisfies

t
IVaps®llor < Ad [VE(z —y) </0 pe(T) lo(t = 7) = poollcr dT) dy
t
< VSl | lpe(nlMe ) ar
0
<

2R2/c
M, ||V 1 (/ pe(T)|e T d7‘> e Ht.
0

We can equally state that the shifted distribution g(t,x,v) = f(t,z + tv,v) converges
strongly while f(¢,x,v) converges only weakly.

Proposition 3.6 (Linearized Landau damping on R¢ with analytic regularity)
Let X4 = R?. Let us assume |(H1)H(H3), |(R1)H{(R2)| and . Then as t — +o0, the
Fourier transform of the solution f of the linearized problem with data
converges almost everywhere to 0, while o(t,x) = [pa f(t,2,v) dv converges strongly to
0. To be more specific, we can find 0 < p < min(Ag, A\, A) such that

for any (k,&) € R\ {0} x RY, there exists C > 0 (independent of k, &) verifying
[ (t, k. €)| < Cemrlethtl
for any r € N, there exists M, > 0 verifying | o(t,")|cr < hi\fig/?‘

The decay of the macroscopic density to 0 holds, even for an initial fluctuation that
brings some mass in the system; this is a dispersion mechanism which also governs the
decay rate.

We can modify the assumptions on the data. In particular, the analyticity condition
can be relaxed into a polynomial decay, up to a suitable adaptation of Lemma [3.1

Namely, we can replace [((R1)| by
(R1) there exists Cy > 0 such that for any ¢ € R?, k € X** we have, for some p > 2,

G
(1+|¢2)p/2’

Co

|f0(k,§)‘ < W-

IM(€)| <

It is also possible to relax the condition on ¢ which does not need to be an analytic
function in this framework (for instance it can be assumed to be Schwartz’ class;
further relaxation can be especially interesting when (19, 1) = 0). In this framework,
we slightly modify the stability condition; which now states as follows

inf | LH (w,k)—1] >k >0 for any w € iR. (L")
kex*d\ {0}

Note that with [(R1"), Z.# (w, k) is well-defined for Re(w) > 0, but it does not make
sense a priori for Re(w) < 0 contrarily to what happened in the analytic framework. In
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Appendix |Al we will unify conditions and and explain that the statements for
analytic data applies with replacing We warn the reader that the following
result in finite regularity on T% applies only to the linearized problem. The non linear
Landau damping on T¢ requires to work within the analytic framework, due to the
echoes phenomena that cannot be controlled by the dispersive effect of the transport
operator, see [4] for further hints in this direction.

Proposition 3.7 (Linearized Landau damping on T? with finite regularity) Let

X4 = T9. Let us assume |(H1)[{(H3), (R1)[{R2)| and (L'), Then as t — +oo, the
solution of the lmeamzed problem |(11a)[{ 11d! with data - )| converges weakly to the
mean value foo(v) = (fo(-,v))pa while o(t,x) = [pa f(t,2,v)dv converges strongly to
Poo = fdede fo(,I v) dv dCL‘ To be more specific,

for any (k,&) € T? x R?, there exists C > 0 verifying

[F(t5,€) = foo(k, )] < C(L+ [ + £2]R[?) P72/,
for any r € [0,p — 4 — d/2], there exists M, > 0 verifying

||Q(t, ) _ ,OooHHT < MT(l + t2)-(p-3)/2+r/2+(d+1)/4.

Proposition 3.8 (Linearized Landau damping on R? with finite regularity)

Let X% = R4, Let us assume (HIH_ H.?Z, !R1’§~I§R2) and |(L")} Then as t — o0,
the solutzon of the linearized problem[(11a)H(11d)| with data[(12)] converges weakly to O

while o(t, x) fRd f(t,x,v)dv converges strongly to 0. To be more specific,

for any (k,€) € R\ {0} x RY, there exists C' > 0 verifying

F(t k1 < CO+ [ + 2 [k[?) =272,
for any r € [0,p — 4 — d/2], there exists M, > 0 verifying

lo(t, Mlmr < My (1 4 2)=44,

As said above, it is possible to significantly relax the regularity assumption on
o1, for instance just assuming that o is Schwartz’ class or with a sufficiently large
Sobolev regularity (see Appendix . We shall see that the analysis of the non linear
equation in R¢ requires a restriction on the space dimension; namely the non linear
Landau damping occurs when d > 3. As far as we are concerned with the linearized
problem, there is no such restriction on d. The statements on finite regularity can be
completed by the strong convergence to 0 of the force field and the strong convergence
of the shifted distribution g(t,z,v) = f(t,z + tv,v). We shall state in the forthcom-
ing Section a different formulation of the linearized damping in finite regularity, in a
fashion similar to [7, Proposition 2.2], which will be convenient to study the non linear
problem, see Proposition [£.14]

We collect in Appendix the detailed analysis of the Volterra equation|(17), paying
attention to bring out the differences with the standard Vlasov case where the potential
is defined by a mere space-convolution. We also discuss in Appendix [B] a Penrose-like
stability criterion.
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4 Analysis of the Landau damping on R

We shall see that the damping in R? occurs with a restriction on the space dimension:
we should assume d > 3. As in [7], the analysis in the whole space relies on dispersive
phenomena attached to the free transport operator; these effects are indeed strong
enough to dominate the plasma echoes when d > 3.

4.1 Functional framework

We shall make use of Sobolev-type spaces. To this end, let us introduce a few notation.
For x € R™, m € N\ {0}, we denote

(&) = (1+ |2,

which is the weight involved in the definition of Sobolev spaces:

HY(R™) = {u:R™ 5 R, / (z)2 () de }.

Rm

Given x and y in R, z, y stands for the vector in R?? that results from the concatenation
of x and y. Consequently, we can set

(,y) = (1+ [2* + |y /2.
With a = (v, . .. ag) € N¢, we introduce the differential operator

D¢ = (—i@g‘ll) e (—i@?j).
For s > 0, H® stands for the standard Sobolev space. We shall make use of the norms
introduced in [7]. We deal with functions f : (0,00) x R x RY — R, and for P € N,
s > 0, we denote

15O = 3 w0 ool = X ff oDk e)f drde,

aeNd aeN? R?IxR4
la|<P |a|<P
(18)
It is also convenient to consider
1AV, Vo) fOFre = > [(z,0) = (¢Va, Vo)™ f(t 2, )|
acNd
la|<P
- ¥ // (th, €)% (k, €)% D (¢, k 5)] dk d¢
aeNd IxR4
|| <P
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(there is a slight abuse of notation here since the right hand side is actually equivalent

to the definition of ||(tV,, Vv)f(t)H%{}s) based on l and

[19:00),,, = 3 l@w) = Vol st 0l

a€Nd
la|<P

SN LR CCE

aeNd
|a|<P

~

D¢ ft.k.6)| dhae.

We shall also use L*°-type estimate on Fourier transforms; we set

f(t,k,@\}) -

For a function (¢,z) € (0,00) x R? — o(t,7) € R we introduce the modified Sobolev
norm

] = o (0 for0

LiLie  t€l0,T] \kecrd

/ K| (k, th)**[a(t, k)[* dk = [|As(£)2(®)]l 2, -
R4 (k)

where we have set
Ag(t, k) = |k|V? ke, th)®,

and we shall also use

T
1Al = / / k] Gk, 0025 3(2, K)[2 dk dt,
(k,t) 0 Rd
and

T 1/2

A2l s, = sup ([ Kl 0> 2 RE)
(k)7 (t) LeRd 0

The norms defined on the macroscopic density o equally apply to the kinetic quantity

g, replacing o(t, k) by g(t, k, tk).

In what follows, we shall use the notation A < B, meaning that we can find a
constant C' > 0 such that A < CB. Here, A, B are in general functions of time, space,
velocity, or their associated Fourier variables; it is thus understood that C is uniform
over these variables.

We go back to the formulation @ Compared to the usual Vlasov equation, the
expression of the potential ®[¢)] now involves the contribution of the initial data .7y,
and the self-consistent part ¢, presents a memory effect, through the kernel p.. It is
convenient to think of the problem with some generality on these quantities. Thus, let
us collect the hypothesis on the data of the problem: %, p. and 1. It is not obvious
to translate these assumptions on the original data o9, g, 11... Nevertheless, it can
be checked that these assumptions are satisfied in the specific cases where [(H1)H(H3)|
and [((R1)] hold. (For instance we remind the reader that [(H1)H(H3)|imply that
o1, and thus #;, has a compact support with respect to the time variable, by virtue
of Huygens’ principle.)
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(D1) (t,z) — F1(t,x) decays faster than polynomially with respect to the time vari-
able, in norms L2(R,; L'(R%)) and L>®(R,; L} (R%)): for any a > 0, we have

+oo
[;<W%%®@mm&<+wmﬂggwﬂﬁﬁmm@<+m-
+

(D2) t — pc(t) decays faster than polynomially: for any a > 0, we have

+oo
KA (19 |pe()] dt < +o0.

(H4) o1 € Z(R%): for any a > 0 we have

li k)G, (k)| = 0.
|mgw<>WNﬂ

Remark 4.1 Some results are strengthened by replacing|(D1) by the stronger assump-
tion
(D1’) 1 is compactly supported with respect to time: there exists Sy > 0 such that for
any [t| > Sy and x € R, we have F(t,z) = 0.

In particular, as observed in the proof of Lemma holds when (H3)
are fulfilled.

This formulation of the hypothesis has the advantage of pushing the generality of
the result, both on the “linear” perturbation due to the data through .%; and on
the memory effects in the self-consistent potential through p.. The following claim is
crucial for our purposes: roughly speaking, it explains why the situation is not very
different from the Vlasov case, once the role of p. well understood, and it justifies that
the approach of [7] is robust enough to be adapted. Note that is the assumption
that makes the constants C1(.%#7) and Cy(.%#) below meaningful.

Proposition 4.2 Let[(D1)], [(D2) and [(H{) be fulfilled. Then for any 0 < T < 0o
and any s > 0 the following three estimates hold

~ e ~ - 2 ~
[4@1 (Zi=0i%) |}, o S OED + AT b, (192)
~ o ~ 2 ~12
‘Mw1@%—aﬁ@mﬁﬁ%§CM§ﬂ+H@mu%%y (19b)
sup sup (k, tk)*[51 (k)| | Z1(t, k) — 51 (k)F,(t, k) (19¢)

t€[0,T] keR?

5 02(§I) + sup sup <katk>s |§(t7 k)| )
te[0,T] keRd

+oo
C1(Fr) = / (1 Z1(0) sz At and Ca(F1) = sup (") F1(1) 1)
+
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Remark 4.3 We shall use the following variant of the statement : for any polynomial
k — P(k), we have

—~ ~\ (12
HPAsal (91 - 31%))‘ 122 N S Ci(F1) + HASQHL2 L2 (20)
)7 (k)
HPA g1 (3?]—0'1%>HLOO L2 SC ( )+||ASQHL00L2> (21)
(R) (1)
sup sup (k, tk)* P(k)[51(k)| | Z1(t, k) — G1(k)F(t, )| (22)

t€[0,T] keRd

S Co(Fr) + sup sup ()~ (k. th)” |o(t, k)| .
t€[0,T] keRd

These estimates can be justified since oy lies in the Schwartz class and thus P(k)o1(k)
remains a function with fast decay.

Proof. In order to prove m we analyse separately the contribution from T 7 and
g as follows

o (7o)

2 72
L(t>L

T
5/ [ kb (3 (0L Fr e 0P dbdet [ [l )16 ) e, ) P e
0 Jre 0 Jrd

=1 =II
For I, by using (k, tk)? < (k)2(t)2, we readily obtain

400
I< </Rﬁ |E|(E)$ |51 (k)| dk) </0 (t>2s‘|ﬁ[(t)H%1(dx) dt) .

For II we start by applying Cauchy—Schwarz’ inequality

t
(/ Ipe(t — 7)) dT> (/O \pc(t—T)H@(T,k)\?dT).
Going back to II, we are led to

k, th)s N
II< Hpc|L1/ / Ipe(t —7)| (/ |k|(k, Tk)?® <<k 7k>>2 o1 (k )|4|g(t,k:)|2dk:> dr dt.

A simple study of function shows that (for ¢ > 7)
k‘, tk 2s 2s
sup < >25 — < >23
kerd (K, TK) (1)

Since |1 (k)| < ||o1]/zr £ 1, and using Fubini’s theorem, we obtain

I < el /T /T| =) A2 at) d
» c(t — T s0(T T
~ p L1 0 . p <7_>25 Q L%k)

r T=r u+T
< e [ 1oy, ([ ol ) on

t

G, (t, k)| = | pelt=Telr,
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Since (u + 7)%% < (u)?$(7)2%%, we arrive at

—+00
IS [[pell e (/0 () |pe(u )IdU) HAsglle 13

(k)

It ends the proof of m
Estimate |(19b)| m follows the same strategy: for k € R?, we split as follows

T
/ Kk, th)2*[31 () P | Z1 (8, k) — 61 (k)G (e, )|
0

T T
< / K| (K, th) > |51 (k) [*| 71 (1, k)Ith+/ K| (k, th)**[o1 (k) |* |9 (t, k)| dt .
0 0

=J =JJ
Proceeding as above, we obtain

25|~ (112 MRS 2
J< (;&&Ikl%) *151 (k)| ) </0 O NEr N7 az) dt)

T T 2s
JJ < HPCHLl/O (/ |pc(t—7)\<<i>>25\k|(k,rk>2S]§(r,k)|2dt> dr

+o00 T
S lpell </O <U)28|pc(U)|dU> (/ \k|<kﬁk>2S!§(T7k¢)l2dT>-

We proceed with a slightly different approach for m when dealing with the contri-
bution involving &,. For any t € [0,7T] and k € R?, we write

(. th)*1G1 (k)| | Z1(t, k) — 51 (k)G (1, b)|
S (Sup <k>5|31(k:)> ( sup <t>sl%(t)llu(dx)> + (ke )| G 8, K)).

keRd te[0,T

and

Since

<k,tk)5\§?g(t,k)] < / |pe(t — 7)| >> (k,TEk)*|o(T, k)| dT

A
/-
ﬁ

s

<

T>($m mp%ﬁ@ﬂaﬂmo’

r€[0,T] kcRd
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we are left with the task of showing the finiteness of the integral that involves p,:

t -7 2 T = [ U L U
[e=nitnar = @ [ g

t/2
e / pelw)

1 s [
Ry 0

7@ ) du

N

[ 1 O [ o
o [ el dut s [ 6/ ] o

AN

t/2 t
/ [pe(us)| du + / (w)*[pe(u)| du
0 7
Ipello + /0 (u)*[pe(us) du < 1,

by virtue of [(D2)| ]

Let us now collect a few technical results, more or less extracted from [7], which
will be useful for the proof of the Landau damping.

N

Lemma 4.4 (Trace Lemma) Let f € H*(R?) with s > %. Let € C R? be a
submanifold with dimension larger or equal to 1. We have

12y S Il

This claim, which will be further used in the sequel, allows us to obtain the following
estimates.

Lemma 4.5 Let fo be in Hp with P > d/2. Then,

1. we have

T T
/ / (As ok, )2 ke dt = / / Rl 002 ok )12 bt < ol
0o JRrd 0o JRrd 13(23)

2. if, moreover, (z,v) — z%fo(z,v) € HS, for any a € N¢ with |a| < P, we have

sup (6,1 Fk,O) £ 3 e fola,v)ly. (24)
. jal<P
3. if, moreover (z,v) r x% fo(x,v) € H5™ for any o € N with |a| < P, we have
T ~
sup / K B2 ol )2t S S e fo(w,0) e (25)
keR? JO aeN? r
lo|<P
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Proof. Since fo € H}, we have

(k. &) — (k,€)* ok, €) € LYy H).
Indeed,

D2 (65 .%ok ©))| = |z<> D (€ 5 (k. €)%) DLk )

jeNd
i<«

S X (k&)°

jEN
j<la

D{fo(k. )|

yields

(ks €) = (k,€)* Folk, ©) D folk. &) dkde = | follhs.

2
< 2s
i, S 5

WO aend
lo|<P

- [V 00 R ) b

(26)
Next, we observe that

T T
|1, a = [ (/ (k,tk>25|fo(k,tk)!2lk!dt) dk
0 () R \Jo

|k|T R
- /R (/0 <k"“k/\k|>251fo(/€,Uk/|k|)|2du) dk

+o00o
/ Sup/ (k, uw)®| fo(k, uw)* du | dk.
Rz weSd—1 J —co

Therefore coming back to with P > d/2, we deduce that
€= (k60" folk, Ol

IN

is finite for almost every k € R?. We can apply the Trace Lemma for almost every
k € R%, which leads to

+oo - —~
| k)™ otk wo) Pdu S 165 (0,6 Fok Ol

—0o0
(Note that the constant in the estimate of the Trace Lemma only depends on the
submanifold %, and the estimate does not involve the parameter k.) Integrating over
k we conclude that

T
| 1AGC I, dt S ol

For the second estimate, we remark that (z,v) — 2®fo(z,v) € Hj implies that
(k, &)s* fo (K, €) lies in H(I};)H(Iz), which embeds into the space of continuous functions;
the third estimate then follows immediately, see [7, Lemma 2.6]. ]

The following statement will be repeatedly used for proving Proposition see [7,
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Lemma 2.9].
Lemma 4.6 Let g; et gy be in L>(RY x Rg) and let r € LY(R%). Then, we have

/ g1(k,§)r(n)g2(k —n,& —tn)dn dkd§
RSd

k,¢,n

Let g1 € L*(R¢ x Rg), g2 € LY(RY; LZ(Rg)) and r € L2(RY). Then, we have

S . (21
S lgillee, Mo2lizz, lrllzy - (27)

N ||91||L§k )HQQHLl(R;j;B(Rg))H7°‘|L§n)- (28)

/RM g1(k,§)r(n)g2(k —n,§ —tn)dn dkd§| <

k,&n

We now state an existence-uniqueness result for the Cauchy problem |(10a)H(10b)
in the functional spaces of interest. Again we refer the reader to [7] for a similar result
for the screened Vlasov equation.

Proposition 4.7 Let P > d/2 be an integer. Let fy € Hp with s > d/2 + 1. Then,
there exists T* > 0 such that, for any 0 < T < T*, the problem |(10a)H(10b)| admits a
unique solution g € C°([0,T]; H3) on [0,T]. Moreover, if for some T < T* there exists
s > s such that
tim supllg(£) | < +20,
t—T P

then, actually, T < T*.

The analysis of the Landau Damping, as it is already clear for the linearized prob-
lem, relies heavily on the formulation of the problem by means of the Fourier variables.
Let us collect the useful formula from which the reasoning starts. Integrating |(10a)j

over [0, ], we get

g(t,x,v) = fo(x,v)+/0t Veorx(Fr—o1%9,) (1, x+710)-(Vy—7V o) (A (v)+9(T, x,v)) dT.
We check that

/de u(z 4 Tv,v)e”* e qy dr = /R?d u(y, v)efik'yefi(gfﬂc)'” dvdz = u(k, & — k).

We also bear in mind that 1/(;)(5) =6(£=0) and 1/(;)(14:) = 6(k = 0). We thus obtain

g(t, k,¢)
= fo(k,£)

//denal ]—0’1%)( n)é(¢ =1n)- (£ ). (5 ¢)d(n =k)dnd{dr
//deml n)(Fr = 519,) (7, m)6(C = mn) - (€ = ¢ = 7(k = n))g(r, k = n,€ ~ () dnd(dr
= o0.6) ~ [ KRFT — 5B k) - €~ ). AE — 7

/ /]Rd noi(n J[ 01% )(r,n) - (& —Tk)g(T,k —n,& —mn)dndr.
(29)
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Eventually, the macroscopic density is evaluated by
o(t,k) = f(t,z,v)e”**dvda = / g(t,x — tv, v)e‘ik'x dvdz
2d R2d
= f g(t,y,v)e F Ve RV dudy = G(t, k, tk).
R2d
Going back to|(29)| with £ = tk, we arrive at
ot k) = folk, th)

a1(k) (1 — 51%,) (T, 7k) - (t — kA ((t — T)K) dT

koy
/ " noi(n T — O'lg )(m,n) - ((t —T1)k)g(T, k — n,tk —Tn)dndr.
(30)

4.2 Main result

We are ready now to state the main result about the non linear Landau damping. As
said above, the proof makes the constraint d > 3 on the space dimension appear.

Theorem 4.8 (Landau damping in R?) Let d > 3. Suppose|(D1), |(D2), |(H4).
There exists universal constants €9, Ry > 0 and r € (0, Ro) such that if s > Ry,

+oo
> lalli < [ OFIF O A< s O 1F O < 20
acNd 0 teR

la|<P

and M € H{(RY) with P > d/2 and 5 > s+ 2d satisfies then, the unique solution
g of[(10a)] is globally defined. Moreover, there exists g*° € H}p such that

lg(t) — gm!l%}g < ety for0 <o <1, (31)
Gt k,th)| S eolk, th)~U D ()ymo (32)
(Va) Vo (F1(t) — o1 xGy(t) | po(ary S €0ty 4™ for 0 >0 (33)

holds where ng > 0 stands for a arbitrarily small positive number (but the constants
might blow up as nyg — 0).

Remark 4.9 With [(D1’) the statement holds with ng = 0. Estimate |(33)| holds be-
cause o1 is assumed to be in the Schwartz class; this assumption can be relaxed at the
price of introducing constraints on the reqularity exponent o.

The proof of the Landau Damping in fact relies on a bootstrap estimate, see [7,
Proposition 2.5, which states as follows.

Proposition 4.10 (Bootstrap) Let the hypothesis of Theorem be fulfilled. Let
0<n<1land0<d<1/2. There exists real numbers 2(d+ 1) +1 < s1 < s2 < 83 <
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s4 < s and Ky, ..., K5 > 1 such that, for any g € C°([0,T], H3) solution of|(10a)H(10b)

on the time interval [0, T verifying

12, Vg < K120, (34)
lAu@ll 2 < 4Kae, (35)
VLol < 4Kse? (36)
|Asdllp < AKa(T)", (37)

WV gl < AKset)”, (38)

for 0 < e <eg small enough, the following estimates hold on [0,T]

[0, Vg0 Fes < 2K1e2(0)°, (39)
lAudlls 2 < 2K, (40)
VLol < 2Kse? (41)
lAstllp < 2Ka(T)", (42)

(Vam) gl < 2Kset)". (43)

(k,©)

Remark 4.11 We shall see within the proof how the s;’s are chosen, according to
some compatibility conditions. This choice determines the possible value for Ry that
arises in Theorem [{.§ as a threshold for the Sobolev regularity in which the damping
is evaluated. To be specific, Pmpositz'on holds for s > s4 + 2d and s; > s;—1 + 2d
and in Theorem[{.8, we can set

Ry =s4+2d, r=8 —d—2.
The condition on €9 imposes a smallness constraint on the initial perturbation.

Remark 4.12 The parameter n > 0 does not arise in the analysis of the Vlasov system
[7]. In fact, we can prove a logarithmic growth on the solution, but the proof of the
Landau damping is simpler by using the algebraic decay as stated here. Looking at
the details of the proof, K4 and Ky blow up as n goes to 0; € should be chosen small
enough, depending on all the K;’s, and it thus shrinks as 1 becomes smaller. When
(D1°) holds the statement applies with n = 0.

Remark 4.13 It might be surprising that the half-convolution with respect to time
plays a relatively weak role in this statement, compared to the Vlasov case. At first
sight, we would suspect that the memory effect changes a lot the control of the force
terms, or that it imposes further restrictions. In fact, the heart of the proof relies on
the estimates in Proposition [{.3, and the main impact of the memory term is rather
on the stability condition, where it completely modifies, in a quite intricate way, the
expression of the symbol L% . This can be seen as a confirmation of the robustness
of the approach designed in [28, 16, [7)].
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We now explain how the Landau damping can be justified, having at hand the boot-
strap statement. The arguments follow closely the analysis performed in [7]. However,
we think valuable to make the discussion as self-contained as possible and not to hide
any difficulty, explaining in full details how we proceed to obtain the estimates.

Proof of Landau damping. Proposition[4.7)justifies the local existence of a solution
to|(10a)H(10b); Proposition tells us that the solution is in fact globally defined and
it satisfies [(39)H(43)| over [0,00). We are going to use these estimates to analyse the
Landau Damping.

From this, |(43)| implies
|0(t, k)| < ek, th) ™ ()"

For the force term, we shall use the general estimate, for o > 0,
V)7 Pt lloecan < [ (07 F )
Next, we apply successively and we obtain
VI VRl Mo < [ WG| Fi0) = a0, )| ak

< / e, ) =1 |K[e(£)" dk
R4

< 5<t>’7‘1/ (k,tk)!=51 dk < e(t)~4-1Hn
R4

where we used to incorporate (k)? with |o1(k)| and the elementary inequality
|E[(t) < (K, tk).

It remains to show that the behavior of g(t,x,v) is driven by free transport. To
this end, we are going to define g*° as the solution of

9%, v) = fol,v)
—}—/0 Vo1 x (F1(t) — o1 x9,(t)) (x + tv) - (Vodl (v) + (Vo — tVa)g(t, z,v)) dt,

which, indeed, lies in some H}. From this, we can establish the convergence of g to
g in Hg-norm, with 0 <o <r = s; —d — 2. To this aim, we go back to and we
get

(k,€)°DEG(t, k, ) = (k, €)°DE folk,€)

- [ 87k 0) (Fi(r k) ~ (09,7 ) - DE (€ = 7). = 7F)

L(7,k,8)

- / t / {k,€)7n61(n) (F1(7,n) = 5u%y(r, ) ) - DE (& — th)G(r, k — n, € — Tn) dn dr.
0 JRd

NL(7,k,8)
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For the linear term, we combine |(19¢)| |(43), together with the elementary inequalities
(k,€)27 < (k,Tk)27(¢ — 7K)?7 and |k|[(T) < (k,Tk); we are led to

T RS O A N A

k.

‘2
x{€ —7k)>7 [Dg (¢ — k). — k)| dkde

( / (k)2 k2 (k) 2512 (7 >2”dk) ( / ()2
R4 Rg

k

A

— 2
V. (E)| df)

5} 52<7_>2Jr277/ <k’7_k_>2<7+27231 dk S €2<T>7d72+2n’
R4

where we used the assumption #Z € H f; with § > o ; the last estimate holds provided
20 +2—2s1 < —d, thatis 0 < s1 —d/2 — 1.

For the non linear term, the Cauchy-Schwarz inequality, with (k,&) < (n,™n)(k —
n,& — mn), yields

[ 87 nllorol | Zirn) = o1 )| [D T = = )|

n

1/2
< </R% |<nm|>26\n\|01 )| ’JI T,n) —a1(n )%(T,n)’ dn)

<( [ )l o)l [ Zirn) 1))

n

_— 2 1/2
x|k —n|?(k —n, & —n)> DgVyg(r, bk —n, & — Tn)‘ dn) .
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Next, combining [(19¢)} |(43)} |(41)| and |n|(r) < (n,7n), leads to
NL(7)|3
INL(IZ,

</ ( /. M\n\|al<n>| Fi(rm) — 1(m) ()| dn)

2d
k.&

<[ nrn)lnllgs ] | Fi(ron) = 1))

n

— 2
x|k = [ (k= n, & = 70)2 [DEV,g(0)(k = n,& — mn)|" dn) dk d

S (sup [ e bl | Fa(r) — 1)) dn)

_ (26
kcRd ;ﬂk n|

Hp

x ( / )7 |nl[31(n)] | Z1(7.m) = 51(m)F (7. )| dn) 191599

n

(n, ™n)? _
< Ao s1 nd
< <sup L T aplnltn, ) e dn

keRd

(k.

n

o+1—s1
554<7‘)27’_2 sup / —(n,Tn> 55— dn / (n, Tn)U'H_Sl dn
kerd Jrd |k —nl Rd

where we have used the condition s3 > o +1. Remarking that (n,7n)? = 1+ (7)2|n|? =
((r)n)?, a simple change of variable yields

n, )T 51 dn = (7) ¢ n)eti=s1qn ry—d
/M<,> a <>/<> an < (7)

R

2
S
H3

<n,rn>ff|n|<n,rn>—81e<r>"dn> 1921 9(r)]

provided o + 1 — 51 < —d, that is ¢ < s; —d — 1. Proceeding with the same change of
variable, we obtain, for any k € R¢,

/ <n77n>0+1_81 dn = <T>d+25/ <n>0+1_81 dn
re |k —n|® rd [(T)k —n|?

e (e )
Bk JCB( R [TV —nf?

1
—d+26 o+1—s
T ——=dn + / n,Tn Ldn
7) (/3(0,1) n|2 Rg< ) >

< <7_> —d+26’

~

IN

(since § < d). This is indeed bounded uniformly with respect to k. Eventually, we
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arrive at
INL(r)|3; 5 el(r)-2at2n-2420
(k,8)

The conclusion is two-fold: on the one hand, the definition of g°° is meaningful, and
it gives an element of H% for any 0 < o <r = s; —d — 2; on the other hand, for any
o€(0,s1 —d—1), we have

+00 +o0
62 <7_>—d—2+277 dr + 64 (7_>—2d+277—2+25 dr

lg(t) = 9l
62 <t§ —d—1+42n+ + 64 <t> —2d—1+5n+26+.

S
S
This ends the proof. [ |

The proof of the bootstrap property relies on fine estimates for the linearized prob-
lem. Let us state the linearized damping property in the functional framework adapted
to our purposes, see [7, Proposition 2.2]. In Appendix [A| we clarify the connection be-
tween this statement and the Propositions given in Section (3.2

Proposition 4.14 (Linearized damping on R®) Let the assumptions of Theorem
be fulfilled. We consider a family of functions {t € [0,T] = a(t, k), k € R?}. We sup-
pose that, for any k € R?,

T
/ |k|(k, tk)*%|a(t, k)|* dt < +oo,
0

holds. Then, we can find a constant Crp (which does not depend on k and T) such
that any solution (t, k) — ¢(t, k) of the system

o(t, k) = a(tk) +/0 H(t—T,k)p(T, k) dr

— alt,k)+ /0 B IE ()2 - 710 /0 "pelr — 0)olok) do )

on [0,T] satisfies the following estimate: for any k € R?

T T
/ ]k, £R) 25 (2, k)2 dt < Cup / K]k tR) % a(t, B)|2 dt.
0 0

4.3 Bootstrap analysis: proof of Proposition |4.10

As in [7], we introduce the time-response kernel

_ |k|Y2|n |2 k(t — T)
i —
(t7 T? k? n) <n>2

The following statement is crucial to the analysis of the echo phenomena. It involves
the constraint on s; involved in Proposition f.10] Technically, this statement is sub-
stantially different when X% = T? or when X? = R?. In the torus, the proof needs
analytic regularity but is free of constraint on the space dimension d. For the free

| lg(1,k — n,tk — )| .
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space problem, the argument relies on dispersion mechanisms of the transport opera-
tor which are strong enough only when d > 2; in this situation it is thus possible to
work in finite regularity.

Lemma 4.15 Let 0 < T < oo. Let s1 > 2(d+ 1) + 1. The following two estimates

hold
! 7 <k7§>81 ~
sup sup K(t,7,k,n)dndr < sup sup lg(T, Kk, &)
t€[0,7] kerd Jo JRd r€0,7] keerd (T)7
and
(k, " .
sup sup K(t,7,k,n)dkdt < sup sup lg(1,k,&)|.
r€[0,T] nerd Jr JRd re[0,7] keerd (T)"

We refer the reader to [7), Section 3] for a proof of this claim dealing with the Vlasov
equation.

Remark 4.16 The factor 1/(n)? in the kernel K comes from the convolution kernel
used in [1]. Here, since o1 is Schwartz class, this factor can be replaced by 1/{n)™ with
m € N as large as we wish.

We follow closely the arguments of [7], up to the perturbation due to .%1; as pointed

out above, the half convolution with respect to time in ¢, does not substantially modify
the analysis, owing to Proposition

4.4 Estimates on p

We start from the expression of g(t, k) in |(30)| and we apply Proposition in order
to estimate the L%t) norm of A, 0 (with i € {2,4}). We get

”Aszﬁ(vk)H%Q
(t)
T

5/0 |k<Tk,tk>25ifo(k,tk)|2dt
“
+/OT‘/Ot/Rg|k,1/2<k,tk>s4nal(n) (Z1(r,n) = 31 (r,m))

2
[t —7lkg(r, k —n,tkz—Tn)den‘ dt.

2

/t k|2 (k, th)** k51 (k) F1 (1, k) - [t — 7]k ([t — T]k) d7| dt
0

(44)
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4.4.1 Estimate of the L, L7, norm of Aj,0.
Integrating [(44)| with respect to k yields

12
||A34 QHL(?k)L?t)

T
< / / ] (&, ) 25
R2 JO
t
.
R4 Jo

T t . R
—I—/ / ‘/ kY2 (k, th)*nG 1 (n) (ﬁI(T, n) — a1(n)¥9,(t, n))
R4 JO 0 JR4 )
(t — T)kg(r, k — n,th — ) dr dn‘ dk dt.

— 2
Tolk, tk)] dk dt

2

/t k|2 (k, th)** k1 (k) Z1 (T, k) - (t — )k fO([t — 7]k) dr| dkdt
0

We denote the three terms in the right hand side as CT1, CT2 and NLT, respectively
(for “constant term 1 and 2, non linear term”). In what follows, we are going to split
the discussion according to the estimate NLT < NLTT + NLTR, where NLTT (for
transport) and NLTR (for reaction) stand for the contributions that arise from the
following decomposition

(k,tk)* < (k —n,tk —n)** + (n,Tn)%.

Estimate on CT1. Owing to the fact that

S N, ) = 2 folw,0) |3 < €%,
aeNd
|| <P

Lemma [4.5] ensures

2 2
CTLS Y |(z,v) z® fo(z, v)|[fs, < ¢
aeNd
la]<P

as well.

Estimate of CT2. This term induces new difficulties since it does not appear in the
analysis of the Vlasov equation. It is far from clear whether or not this perturbation
annihilates the Landau Damping mechanisms. With the strengthened assumption
(DT7)] we shall see that we can obtain the necessary estimates on both A, in norm
L%k)LEt) and As,0 in norm L‘(’,‘;)L%t). With only, we will be able to control the
L%k)L%t) norms, provided d > 3, but a singularity remains for the L}, L2t norm, which
will thus require a specific analysis. The former estimate holds uniformly with respect
to T', but the singularity in the latter yields the weight with 7.
Let us write

T
CT2 = / |I(t,k)|* dk dt.
0 Rd
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Since .# € H}, we have & (€. (€) € H(]g), where P > d/2, and Sobolev’s

embedding yields ]ﬁ&ﬂ < H.////\HHP (¢€)~*. By using this together with the relations
|k|(t) < (k,tk), (k,tk) < (k,7k)([t — T]k) and (k,Tk) < (k)(7), we obtain

HR] < [0t 162 (1| i ] [T (e = )| ar

{2y~ /0t<k',Tk>54+3/2!81(k)||%(7, B[t = 7]k)* dr

A

S (SHP(T>84+3/2HL%(T)HLl(d;:;)) (k)™ ¥3/2\G (k)| () 3/
7>0
t
x/ ([t — k)" dr
0

<k>s4+3/2

+oo
e————|0 —3/2 w45 du
R mIe [

A

<k>s4+3/2 R 3
S €T\01(k)\<t> 3/
where we use s4 — § < —1. When, d > 3, k — ﬁ is locally integrable. Therefore,

the singularity with 1/|k| does not raise any difficulty as far as we are interested in the
integral of the square of I with respect to k. To be more specific, we have

T <k,>254+3 T
CT2 = / |I(t, k)|? dk dt < & / s—|51(k)[* dk / t)3dt | < €2
0 JRd R4 |]‘3| 0

Of course, the quantity I(¢,k) enters in the derivation of the estimate of A,,0
in L?E)L%t) norm in |(42), just changing s4 into ss. In contrast, the singularity then

becomes an obstacle to obtain such a L‘(’,j) L%t) estimate. To treat the difficulty, we can

modify (from the passage from the first to the second estimate) the previous inequality
into
|1(t, k)| S e(k)*= 2161 (k) |(1) /2,

which is indeed bounded on R x R?, but which is not square-integrable with respect
to the time variable. This difficulty disappears when [(D1’)|is assumed. Indeed, for
t < .Sy, we have already seen that

[t k)| S e
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For t > Sy, we proceed as follows

So - _—
(LK) < /0 K2 e, )2 K132 () | Z7 (. 1)) [V ([t — 7JR)| dr

So .
7 [ )R () B = 7Ry

A

A

So o
<t)‘3/2/ (k)*2H312(7) 2 H30215, (k)| Z1 | oo, dT
; ,

< 72 <sup <k>82+3/2!&1(k>\> (S0) 22| Fllpee 1y S e(t) 22,
keRd

This estimate tells us that I is square integrable with respect to the time variable,
and uniformly bounded with respect to k, when [(D1’) holds. We shall go back to the
L?;)L%t) later on.

Estimate on NLTT. As said above, having Proposition at hand permits us to
readily adapt the arguments of [7]. The Cauchy-Schwarz inequality yields

T t
V521G (.71 (1, n) — 61(n)%, (1, n)| dr dn
NITT < /R/ (/O/Rd” Inll61 (M| Z1 (r, ) — 31 ()G, >|dd>

([ [l Fitm - 100

x|k|(k — n,tk — mn)?4|[t — Tk|*|g(7, k — n,thk — n)|> dr dn) dk dt.

Now, [(19¢)| and |(38)| ensure that
(n, 7)1 51 (n) | F1(r, ) = G1(n)Fp(r,m)| € (1+ Kz)e(r)".

Since |n|(T) < (n,Tn), we get

/ / (7520l () | F (7, m) — 31 () (7, m)| dr
0 R4

< (/Ot(7>5/2+’7 /R% [n|[(n,mn) %t dn d7'> (1+ Ks)e

400
S (/ (7)5/3n—d=1 dT) (1+ Ks5)e S (1+ Ks)e
0
where the last estimate assumes the condition 5/24+n—d—1 < —1, that isd > 5/2+n.

This is one of the constraints on the space dimension d which imply that the analysis
applies only when d > 3. Furthermore, when d = 3, we see that < 1/2 is necessary.
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Going back to NLTT we are led to (by using (|t — 7)k| < (7(k — n),tk — Tn))

st @ k9e [ sl Fm s

x (1) Ok|(k — n, th — )24 (1(k — n), tk — tn)?|g(1, k — n, tk — tn)|* d7 dn) dk dt

(1+ Ks)e /Rd/ <// VO |k|(k — n, th — Tn)?%

x(1(k —n),tk — tn)?|g(1, k — n,tk — Tn)|* dt dk)

x(r) 2 0|51 (n)| | F1 (. m) — G1(n) (. )| dndr

+oo
< (1+K5)5( sup sup (T k —n,tk — mn)**(r(k —n),tk — mn)?
0<7<T necR4 R4

x[g(r, k = n,th — n)[?|k| dt dk)

X (/Rd /0T<T>+5/2\n||31(n)| ’%(7—, n) — o1(n)%,(r, n)’ dnd7->

< (1 + Ks5)%e? < sup sup (T / |k

0<7<T neRd
+o0
/ [(7(k —n), tk — mn)(k — n, th — Tn)*4G(1, k — n, tk — mn)[* dt dk) .

With two changes of variables and by applying the Trace Lemma [4.4] as in the proof
of Proposition we obtain

+oo
/ |k|/ n),tk — mn)(k —n, th — ™n)*g(r, k — n, tk — mn)[> dt dk
+o00o k k 2
= / / (t(k —n),t— —1n)(k —n,t— — ™)**g(1,k —n,tk — )| dtdk
R J -0 14 14
+oo
< sup sup/ / n),tw + ) (k — n, tw + 2)4G(1, k —n, tw + z)|* dtdk
weSd—1geRd JRE

+oo
< sup sup / / [Tk, tw + x) (k, tw + )G (T, k — n, tw + )|* dt dk
weSd—1zeRd JRY

S IV, Vo)g(7) Iz -
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Finally, combining this with we obtain

NLTT < (1 + K5)2K, e,

Estimate on NLTR. We make the time-response kernel K appear; Cauchy-Schwarz’
inequality and Fubini’s theorem allow us to obtain

T t
NLTR:/ / </ f((t,T, k,n)(n,Tn>84|n’1/2<n>2’61(n)]
R2 JO 0 JRd

_ . 2
x ‘ﬂl(ﬂ n) — o1(n)¥9,(t, n)’ den) dk dt

T [/ ot
,S// (/ f((t,7‘,k,n)d7‘dn>
R Jo 0 JRd

(/ y K(t, 1, k,n)(n, )% |n|(n)*|51(n ‘JI T,n) —o1(n )%(T,n)’z den) dkdt

<[ sup sup/ K(t,7,k,n)drdn
t€[0,T] k€R4 R4

T T - A

_ ~ 2
% [ Z1(r.n) = 51(m)Fy(r,n)| drdn

T
< | sup sup / K(t,7,k,n)drdn sup sup / K(t,7,k,n)dtdk
te[0,T] keRd R4 7€[0,T] ncRd Jr JR4

T By N 2
x / / (n, )25 |n|(n)*|51 (n) |2 ’ff,(T, n) — 61(n)9,(r, n)‘ dr dn.
0 R4
By using and [(35)] we obtain
T ey . 2
/ / (n, 7025 ] ()1 () 2| (. m) — 51 (m)Frm)|” drdn S (14 Ko)e?
0 R4

Gathering this with Lemma and [(38), we are led to

NLTR < (1 + Ko) K2

Recap. We have shown that, if ¢ is a solution of [(10a)H(10b)|satisfying |(34)H(38)| on
[0, T, then

|4l 2 < (14 (4 Ko Ko 4+ (1+ K) K26 <2
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Let us denote C; the constant hidden in the symbol < of this estimate. Choosing
K9 > Cq and € <« 1 so that

(1+ K5)?°Kie® + (1 + Ko)K2e? <1

allows us to conclude that |[(40)| holds.

4.4.2 Estimate of the L((’Z)L%t) norm of A, 0
We start from |(44)| which allows us to write

|Asy0(-, k)l!%?t) < CT1 + CT2 + NLT.

We split again the non linear term as NLT = NLTR + NLTT based on

(k,tk)* < (n,™)** + (k — n,tk — mn)*.

Estimate on CT1. Owing to the assumptions on fy and Lemma [4.5, we have

CT1 < &2

Estimate on CT2. We have already shown in the previous Section that [(D1’)|
implies
CT2 < €2

Therefore, when [(D1’)| holds, the control of CT2 allows us to reproduce the same
arguments as in [7], using as far it is necessary the estimates [(19a)H(19c)| This is why
under [(D1’)} the Landau Damping still holds with n = 0.

When assuming only [(D1), we obtain
T
CT2 < 52/ )~ tdt < (1)
0

with 7 as small as we wish. Therefore, new difficulties arise: the force term associated
to #; can push the solution g far from the equilibrium which might lead to a loss
of control of the norms ((39)] In what follows, we should keep track carefully of
the associated contributions in order to justify that the control of the norms remains
possible: we are going to establish |(39){{(43)| from |(34)H(38)l This will imply the
damping of the force term. We should pay attention to the compatibility between the
constraints that appear from the estimates in order to verify such a control. Indeed,
we have already seen that n < 1/2 when d = 3. Therefore, we should check carefully
that the other constraints keep 7 in the range (0,1/2).
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Estimate on NLTR. The Cauchy-Schwarz inequality yields
T t P N
NLTR = / (/ / k12, 7)1 (n)] | 1 (7, m) = 61 () (7, m)|
0 0 JRd
2

x|(t = 7)k||g(r, k = n, th — 7n)| dr dn) " dt

IN

T t - ~ 2
/ ( | [l o | Zitrm) - 1)yt den>
0 0 JRd

k||t —
</ / ‘ | ‘ T2|sln|252 ‘ (T7 k — n, tk — Tn)|2 dr dn) dt.
Rd TL T’I’L

We combine [(19a)| with |(35)| and we obtain

t — - 2
[ [ ikt a0 | Firon - 510G ) dr o € 1+ Ka)e?
0 JRd
while [(38)| implies
(k —n,tk —mn)®'|g(1, k — n,tk —n)| < Kse(r)".

Hence, we get

K[t — 7|2 [n|{r)"
NITR S (1+ K K dtdrdn.
+ K>3) / / /]Rd (n,Tn)2s1=2s2(k — n, th — Tn)2 Tdn

We are left with the task of proving

k131t — 2 2n
sup sup / / / | |2‘ 5 7[*nl(m) 5. dtdrdn S 1.
T>0 keRd ra (n)4(n, ™n)2s4=252(k — n tk — tn)?s1

We postpone the proof of this estimate to Section

Estimate on NLTT. By virtue of [(19c¢)|and |[(38)] we obtain

G1(n)| [ F1(7,m) = G1(M)F(7,m)| O ke

(n)*(n, 7n)"

Since

s {r) s
(k —n,tk — )|t — 7)k| < <k—n,tk—7'n>53_52_1 (k —n,th —n)*,
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the Cauchy-Schwarz inequality allow us to obtain
T t - N
NLTT = / (/ (k112 (k = n,th = ) [n[51(n)] | Z1(r, n) = G1(n)(r, )|
0 0 JRd

x|(t — 7)k|[G(, k — n, th — 7n)| dr dn)® dt

~ Rl (n, TTL)Sl (k —n,tk — tn)ss—s2=1 |k —nl|d
x|k —n|°(k —n,tk — mn)*3 |§(r, k — n, tk — )| dr dn)th
\”\ )22 || 1
< K5) drd
S (LK) / (/ /Rd (n,mn)2s1 (k — n, tk — tn)2ss—252-2 || — p|20 ran

t
X </ Ik —n|? (k —n, th — mn)2 [g(r, k — n, thk — mn)|?* dr dn> dt.
0 JRd

Then, by the Trace Lemma (see the proof of Lemma [4.5| for more details) and |(36)}, we
have (for k # 0)

t
/ k—n|®(k —n, th — )2 [§(r, k — n, tk — m)|* dr dn
= / / n|® (n, (t — 7)k — n)?* [g(,n, (t — T)k — Tn)|* dT dn
Rd

+o0o
< sup sup / / \n\%(n, n+7k)|g(s,n,n+ Tk)]2 dndr
s€[0,TneRrd J R4 00

2
S sw |1Vl g(s) ., S Kae?
s€[0,T

Going back to NLTT we are finally led to

NLTT < (1+ Ks5)2Kset

\n\ )22 k| 1
dtdrd
/ / /Rd (n,n)2s1 (k — n,tk — Tn)2ss—252-2 || — n|20 ran

and it remains to check that the integral is uniformly bounded with respect to both k
and 7. We postpone this integral estimate to Section [4.6]
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Recap. We have shown that, if ¢ is a solution of [(10a)H(10b)|satisfying |(34)H(38)[ on
[0,T7, then

lAudlis 2 S (140" + 1+ Ka)KEE + (14 K5) Kse?) 2

~

1/2
< (1 +(1+ Ko)K2e* + (1 + K5)2K352) / e2(T)".

Let us denote Cy the constant hidden in the < symbol of this estimate. Choosing
K4 > C5 and € < 1 so that

(1+ Ko)K2e? + (1 + K5)2K3e? < 1

allows us to obtain |(42)|

4.5 Estimates on g.

We cannot apply directly the estimates coming from the linearized problem. Neverthe-
less, we are going to justify the estimates |[(39)} |(41)| and [(43)| from |(34)H(38)} To this
end, we should play with the constants K, K3 and K5 that depend themselves on K>
and K4. What is crucial is to check the compatibility of the choices of these constants,

and the consistency of the smallness assumption on &.
We begin with the equality, obtained by derivating

0(t.k.€) = Vor(k) (Zi(t. k)~ a1(K)G(t.K)) - Vool (€~ th)  (45)

+ | Voi(m) (Zi(t.n) ~a1(m)G,(t.n)) - (Vo = tV2)g(t) (k = n.€ — th) dn,
R
We remark that
1tV Vg ) Fas < OV adg(®)F72s + Vg (05720 < 20V, Vedg(8) Ty

The first inequality tells us that it suffices to estimate independently [[(V,)g(t)]| e
and [[(Vy)g(t)||gsa to get a control of H(tvx,vv>g(t)\|H;4. We combine the second
inequality with [(34)] so that

||<Vu)g(t)\|§1;4 < 8K1£%(t)°
and, moreover,
\I(Vx)g(t)\lifg < 8K1£%(t)°. (46)

Hence, we are going to handle separately the H}' norm of (V,)g(t) and (V;)g(t).
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4.5.1 Estimate of the H}' norm of (V,)g(t)

Let o € N9, |a| < M be given; we are going to estimate
I(z,0) = (Vo) g(t, @, ) |7

We postpone as far as possible the summation over a. We work on the Fourier trans-
form, and applying |(45)| leads to

1d
>

N //Rd {6 B DEGE K, (E) (k. €)DEAG(E, k. ) dk dg

x,v) <Vv>vag(t,x,v)\|%54

- //Rded<£><k,5>54ng<5><k75>54%1(1€)

x (ﬁff(t’ k) — 61(k)%y(t, k‘)) DeV . (€ — tk) dk dé
* //RR (€){k, €)**DEGE, k. ) (€) (I, )°*
xDg (5 = /Rd Voi(n) (%(t, n) — 61(n)%,(t, n)) (Vo = tV2)g(t) (k — n, € — tn) dn> dkd¢

= LT + NLT.

We split the non linear term into two parts NLT = NLT1+NLT2: in NLT'1 the operator
D¢ acts on g only while in NLT2 it acts on both g and £ — tk,

= (£ —th)DEG(tk—n,E—tn)+ > (?) JDeTG(t k=, & — tn).
=,
\J'I]=€1 j<la

The linear term LT. By using
(€)(k, €)% < () (k) (k, th)™ (€ — th)™ ™,
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and Cauchy-Schwarz’ inequality, we get

LT < (1) / (€) (K, )"

2d
Rk,g

DEG(E, b, €)| () (k)™ k][54 (k)| | Z1 (£, k) — 51 (k)G (1, )|

(€ — th)ysat ]ng/v?/(g — tk)| dk dé

1/2
S () (/de () (k, €)% Dgg(t,k,g)f dkdg)
k&

1/2
x ( / (K2 R4 K 60 ()] | F1 (1, k) — 51(R)Fy (2. B)| (€ — k)2 [DE T, (6 — th)| dkdé)
R2d

k.

1/2
< (OIT2)g(0) s ( [ 2tk PR | Zie. k) 31 (0 ) dk)

1/2
" (/Rd<£>234+2 ’DgV/J/(g}]Q d§) .

3

Let us set

1/2
B(t) = (/Rd<k>2<k,tk>254|k2|81(k)]2 ‘ﬁ,(t,k) — 51(k)%,(t, k:)‘Q dk:) .4

k

We observe that |(19a)| and |(35)| lead to
T
/ B(t)*dt < (14 Ky)e2.
0

From now on, we adopt the convention that B denotes a function which satisfies such
an estimate. Moreover .# € H7}, implies (for § large enough)

[ m peviaef ac <
Re

and we are led to (owing to |(34)))

ILT| < VK1e(t)*/ > B(¢).

Remark 4.17 This estimate is quite rough and it involves a Sobolev reqularity § higher
than sqon Vy . For the non linear term a finer approach will be necessary since we
cannot use a Sobolev reqularity beyond sq on (Vy,)g(t); a gain of one derivative with
respect to v will be necessary.
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We should pay attention not to have contradiction in the definition of the constant Kj.
To this end, we introduce &’ > 0 that can be selected as small as necessary, and we use
the following estimate

7 3
ILT| < %\/Es@)f’ﬂ X \% B(t) < 6K (1)t + BS)Z (t)3.

Using this way Young’s inequality, we make the square of B(t) appear, which is the
quantity that we are able to estimate.
The non linear term NLT1. We start by studying the operator
L] : f € CRRIXRY) v |(2,0) = Vors(Fi(t) — o1 % F,(t)) (w+10)-(Vo—tV,) f(w, ).
A simple integration by parts shows that

(£, Lilelf) 12 gueyawy = O (48)

holds for any f € C°(R? x R%). The operator £;[g], as well as the relation can
be extended to f € H'(R? x RY). If

f=F (k&) = (€)(k, ™DEGE, k,€))
then, by Fourier-transforming and owing to Plancherel’s theorem, tells us

0 = /RM <€><k,§>s4D£§(t,k,g)cmf(t,k;,g)dkdg

k.

[ O DR G n(o) (5,00 - )

k,&;n

x (€ —tn)(k —n,§ —tn)*(§ — th)Dgg(t, k —n,§ —tn) dk d§ dn.
Therefore NLT1 can be cast as

NETE = [ (006 DETERE) [€) (k. = (€ — )k =, = )

k,&,n

xn1(n) (Z1(t,n) = 51(n)G(t,n)) (€ — th)DEG(t, k — n, € — tn) dk A€ dn.
We split depending on the leading frequencies

NLT1 = — /]R3d (1‘n,tn\2|k—n7€—tn| + 1\n7tn|§|k—n,£—tn|) <’S> </€,§>84D?§(t, kvg)

k,&n
X [(€) (k&)™ = (& = tn){k —n, € —tn)™] n&1(n) (F1(t,m) — 51 (0)F,(t,n))
x (& — th)Dgg(t,k — n, & — tn) dk d¢ dn

= NLT1R + NLT1T.
We are now going to study the two terms of this splitting.
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Estimate on NLT1R. We remark that
€ — tk| < () (k —n, & —tn).
and when |n,tn| > |k — n, & — tn|, we have

[(€) (K, §)™ = (€ —tn)(k —n, & — tn)™[ S (§ — tn)(t)(n)(n, tn)™*.

Remark 4.18 This relation allows us to overcome the difficulty mentioned during the
study of the linear term. In the regime |n,tn| > |k — n,& — tn| we have been able, at
the price of an extra factor (t), to distribute the weights (n,tn) and (k —n,& —tn) on
o(t) and (Vy,)g(t) so that their estimate does not involve Sobolev exponent larger than
s4. This answers for NLT1R the regularity issue risen in Remark [{.17

We apply these inequalities to NLT1R, and next we make use of Lemma [C.9} we
obtain

INLT1R| < (t)? / Ljn tn|>k—n,g—tn] (§) (K, €)™

y DEG(. k,€)] (€ — tn) () m, )
k,En

x|n||a1(n)] ‘ﬁ](t,n) — Gl(n)%(t,n)‘ (k—n,§ —tn) ‘Dg‘ﬁ(t, k—mn,&— tn)’ dkd&dn

1/2
S (1) (/R (k€)% [Dgg(t, k) i df)

k.
X
R4

n

1/2
<[ ( | @002 pgate ko) d&) a

3

2 2841, (2|~ 2| 7 ~ ; 2 i
(n)2(n, tn) 24 n 2|61 (n) P | Z1 (8, ) = 31 ()%, (2, m)| dn)

1/2
S W2 1V9(0) s B) /R ) ( [ (200" pgate. k.0 ds) dk.

3

where we use again the generic notation B(¢) as in Let us consider in details
the third term: as far as ¢ < d/2 (which holds since 6 < 1) and s3 is large enough
(s3 > d/2+ 2 is sufficient), the Cauchy-Schwartz inequality yields

1/2
WO ea orbec e of ac) s
/Rﬁ |e|® (k)52 (/Rg<§> (k, &) ‘ng(t, ,f)‘ 3

) 1/2
: </R CRICE d"’) (/R

1
<YL g(®)l-

1/2
|| (k)>*3 (€)% (k, ) ‘D?ﬁ(t, k,g)f dk dg)

2d
L83
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Next, with |(34)| and [(36)| we get
INLT1R| < K K3e2(t)*/ Y2 B(t).

In order to make the square of B(t) appear, we decompose the inequality as follows

INLT1R| < VEIK332()°2 x [ (#)e2(4)2B(t) < K1 K3e® () + e(t)° B(t)?.

1
V()
Estimate on NLT1T. For |n,tn| < |k —n,& — tk| we have, see [7, Section 5.1.1]

(€I, €)% —(E—tn) (k—n, E—tn)** < (n,tn)? (€ —tn){(k — n, € —tm)™* ! 4 (k =, § — tn)™).

Remark 4.19 Note that we gain one order of Sobolev regularity on g, see Remark[{.17
and . Like when dealing with NLT1R, the idea is to distribute the weights (n,tn)
and (k—n,& —tn) on o(t) and (V,)g(t) in order to make estimates with Sobolev expo-
nents smaller or equal to sy appear (see the reqularity issue explained in Remark .
In the regime |k — n,& — tn| > |n,tn| we can not use an estimate as rough as for
TNLIR since all the Sobolev exponents already apply to (k — n,& — tn). We should
take advantage of cancellations between (§)(k,£)** and (§ — tn)(k —n,§ — tn)%*. This
motivates the introduction of the operator Lo], see [6] and [16] where this operator
already appeared for similar reasons.

We use this inequality for estimating NLT1T that we split according to the two terms
above. We are led to

1|n,tn\§|k—n,§—tn| <§> <k7 £>S4

et s DEg(t, k. €)|

3d
Rk,é,n

x (n,tn)? ((E —tn)(k —n, & —tn)* 1+ (k—n, € - tn>54)
x|nllgr ()| | Z1(t m) = G ()Gt )| |€ — th|[DEG(t, k — . & — )| dk g dn

= NLT1T1 + NLT1T2.
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We treat NLT1T1 by applying Lemma (and € — tk| < (t)(k —n,& — tk); we get

NLT1T1 < <t>/ (&) (k, &)™

3d
Rké,n

DEG(t, k, )| (m, tn)?[nl[31 ()] | F1(t,m) = 51 ()%, (2, )|

x (€ —tn)(k —n,& —tn)*

DEG(t,k —n & — tn)‘ dk d¢ dn

S OV (Ol gz ( /R L m)?[nl[g1 ()] | Z1(t,n) = G1(m) (8 m)| dn>

n

x ( / ()2 (k. €)%
R2d

k,n

1/2
D2G(t, k,€)|” dk ds)

< OOl ( [t nllds o) | Zr(e.m) = 31 (0) 0. dn> .

However, [(19¢)| and |(38)| lead to

| Fiteom) — s1(ate)| € O+ Ko

so that (by using |n|(t) < (n,tn))

[t 10)l | Zi ) - 32 ()]
Rd

n

s (/]Rd (n, tn)>=* dn) (14 K5)e(t)? S e(tyr 97"

We gather these estimates with|(34), and we arrive at

NLT1T1 < K2(1 + K5)e?(t)5 14,

o1



For NLT1T2 we proceed similarly by using Lemma (and remarking that |§ — tk| <
(t(k —n),& — tn) holds); we are led to

NLT1T2 < / (€)(k, €)%

3d
Rk,f,n

DEG(t, k,€)| (n, tn)2[nl[31 ()] | F1 (2, ) = 31 ()G, (2,m)|

x(t(k —n)¢ —tn)(k —n,& — tn)®

DEG(t,k —n, €& — tn)‘ dk de dn

1/2
2 2s o 2
S g (Bl ( [, (0 €02k € [Dg(e k.6 dkdg)
k,€

x /Rd<n,tn>2 x |n||&1(n)] \%(t,n) - 81(n)§¢;(t,n)‘ dn

SO P IASOI
X /d<t)(n,tn>2 x [nl[g1(n)| | Z1(t,n) = 31(n)F(t, n)| dn,
R
and we deduce that
NLT1T2 < K3 (1 + Ks5)e?(t)5tn—a-1
holds.

Estimate on NLT2. Compared to what we just did, we are concerned with a term
having less regularity (we do not have the factor £ —tk which has been derivated). The
regularity issue presented in Remark [1.17] does not hold for NLT2 and there is no need
to make use of We turn to the second step, by decomposing between low and
high frequencies

NIT2= [ () DGR €k, 1) (Fr(t.m) = 1 () 0,m)

k,&,mn

<[ 3 (j‘) DGtk —n, & —tn) | dkd¢dn
jeNd
IJ'IJ:1 jla

= /]R?”i (1|n,tn|2\k—n,§—tn\ + 1|n,tn\§\k—n,§—tn|) <£> <ka £>84D?/g\(t) k, 5)

k,&mn

x(€){k,€)*n&1(n) (F1(t,n) = 51(n)F(t,n))

| = (j‘) JDEIG(t k —n,& —tn) | dkdédn
jEN
|J'|J:1 Jj<la

= NLT2R + NLT2T.
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On the integration domain of the reaction term, we have
(&) (K, &)™ < (€ — tn)(t)(n) (n, tn)™
We apply Lemma @ to obtain

INLT2R| < (t) / iz (€5, 6)"

jENd
[7]1=1j<a

DEG(t, k,€)|

x(n) (n, tn)*|n||51 ()] | Z1(t,n) = G1(M)F(t, m)| (€ — tn) [DFTG(t, k — n, € — tn)| dk d€ dn

1/2
S D (/2d (€2 (k, &) D?f](t,k,{)‘z dk;dg)
jENd R

k€
lil=1j<a

(L

n

1/2
x/d (/d@? D g0t k,6)| d§> dk.
R¢ \ JR?

Hence it behaves like the reaction term NLTI1R, up to a factor () which does not
appear here; we can dominate the product and we get

INLT2R| < VK K3e2(t)*/ 21 B(t) < K1 K3e® (t)* + e(t)> B(t)%.
For the transport term, on the integration domain
() (k, €)% S (6 () (€ — tn){k — m, € — tn)™
holds and applying Lemme [C.9| yields

INLT2T| < (t) > / )k, €)%

jENd
[71=1 j<a

1/2
—~ ~ 2
(n)?(n, tn) 24 n 251 (n) P | Z1 (8, m) — 61 (1), ()| dn>

DEG(t, k. )| (m)|nl[51(n)| | Z1(t,n) = G1(n) (¢, )

x (& —tn)(k —n,& —tn)®

DE gtk —n, & — m)‘ dk d¢ dn

1/2
SONDY (/R (€2, €)% [Dg(E. 1, )| ak d&)

x/ () |31 (0)] | Fi(8.0) = 51 ()G (8, m) | dn
Rd

n

284
X(/Rzﬁ (k.

k,§

1/2
D¢ gt k 5)’ dkdg) .

23



We finally get
INLT2T| < K2(1 4 K5)e3(t)5 =2,

Remark 4.20 As said above, the regularity issue described in Remarks and[{.1§
does not hold with NLT2. Thus, there is no need to introduce the operator Li]p] and
we derive a better estimate for NLT2 than for NLT1. In fact, we will not use this
improved estimate. We can also observe that it would be possible to use the obvious
estimate 1 < (€ — tk), which yields

IDE[E = (€ = th)g(t k — n, € — tn)]

< ‘(5 —tk)Dgg(t,k —n,§ — tn)‘ + | Z <?> ng—ja(t, k—n,&—tn)]
jend
lil=1,j<

< |6 - thDEg(t, b —n.e —tm)| + Y (“) (& — tk) D75tk — n, & — tn).
jeNd J
lil=1,j<c
From this, NLT2 can be treated exactly like NLT1. In what follows, in similar situations
we will only focus the discussion on the most reqularity demanding terms.

Recap. We have shown that, if g is a solution of |(10a)H(10b)| satisfying moreover
(34)H(38)[ on [0, T7], then, we have

= (1 w0 = ()%l 2,0) By

(t)? :
S O Ke2 () + 7B(lt)2 + K1 K33 (1) 4 e(t)° B(t)?
+KE(1 + Ks)e3 ()5,
(note that we have used the rough estimates that consists in dominating NLT2R like

NLT1R, NLT1T2 like NLT2T and NLT2T like NLT1T1). Let C3 be the constant
hidden in the < symbol; integrating over [0, 7] and summing over «, we obtain (with

the generic notation |(47)|for B(t))

3
T s < 1(T0)9(O) s + (cgé’m @+ Tt Kz)) e

+ (CgKlKgs(T>5 + C3(1 + K)e(T) + C3K3(1 + K5)5<T>6+77_d) 2.
Since ¢g(0, z,v) = fo(x,v) and fy € Hp with s > s4, we observe that

(V) g (0725 < €.

o4



Let 0’ < 1 so that C38’ < 1/4. Once ¢’ is fixed that way, we choose Kj > 1 so that

T)3 K
107000 s + O =1+ Ka)e? < Blerys

holds. Therefore K1 depends on Ky and §’. We are left with the task of determining
€ < 1 in order to obtain

(Co 1 Kse(T)® + Cy(1 + Ka)e(T)? + C3KF(1 + K5)e(T)"H1~4) &2 < KyeX(T)°,
which eventually leads to

(V) g(T)Fpas < Kae(T)°.

4.5.2 Estimate of the H;' norm of (V,)g(t)

We proceed like in the previous section: we evaluate the time derivative of [(Vg)(Va, Vy)*40%g(t) |12,
by means of the Fourier variables, and we express 0;g with |(45) We obtain
1d

2 dt H<v1’><vxv vv>s4va9(t)”%2

= /]de (k) (k,€)**Dgg(t, k, &) (k) (k, £)* ko1 (k) (%(t, k) — 61(k)%,(t, k))
ko

xDg ((€ — th).4 (& - th)) dkdg

B /IRSd <k> <ka €>S4D?§(t7 ka f) <k> <ka §>S4n81 (’I’L) (%(n TL) - a1 (n)%(t, TL)) (5 - tk)

k.&n

xDgg(t,k —n,§ —tn)dndkd§

- X (“) /R () (k) DEGE R ) (k) (k. )01 (n) (F1(t,m) = 51(n)Fy(t,n))

jeNd J
lil=17<a

k,&,n

JDEG(t, k —n, & — tn) dndk d¢

= LT + NLT1 + NLT2.

The analysis of the the first non linear term also covers the second term, see Re-
mark 420l Thus we do not detail how to handle NLT2. Note however that similar
manipulations as above can lead to a refined estimate on NLT2, but this is not neces-
sary for our purpose.

Estimate on the linear term LT We apply the Cauchy-Schwarz inequality, up to
the observation

(k) (K, €)°t < (k) (k, th)* (€ — th)™;

95



we arrive at

L] S P2y [ 2000 P15 () [ Z30, ) = a0 0,
k,§

‘ 2

1/2

X (€ — th)* |DgV,. (¢ — tk)‘Q dk dé)

N ~ 1/2
AT O ( [ 2t PR | Zie. k)~ 310 b dk)

x ( /R (€

d
3

1/2
— 2
DV, d&)

S IKVa)g(®)ll gz B(2).

(where the assumption .# € Hj, with § > s4 + 1 has permitted us to obtain

[ e
Re
and we have used the notation [(47)|for B(t)). Again, we introduce a positive number
0", as small as we wish, and we split the product into two parts so that the constant
K, is isolated and we make the square of B(t) appear. Namely, we have

5" 2 B(t) B(t)
where we have also made use of |(46)|

Remark 4.21 Here, in contrast to the previous estimate of (V,)g(t) in norm Hp', we
make the Sobolev estimate of V.4 appear with exactly the exponent s4. Nevertheless
we are facing a similar reqularity difficulty since now we wish to estimate (V,)g(t) in
norm Hp' (instead of (Vy)g(t)). Hence, again, we need to gain one derivative. To this
end we shall adapt the strategy designed for NLT1.

eV, ()] de S,

< 0" K1 (t)? + (1)

Estimate on NLT1. We use[(48) with
f=771 (k€)= (k) (k. ©™DEG(L,k,€))

We split between the contributions of low and high frequencies, so that

NLT1 = /R&i (1|n,tn‘2|k—n,§—tn| + 1\n,tn\§|£—tn|) <k> <k? £>S4D?./g\(t7 k, g)

k,&n
() (k, € = (k = n){k = n,& — tn)*) n&1(n) (F1(t,n) = G1(n)F(t,n))
(€ — th)Dgg(t, k —n,& — tn) dndk d¢
= NLT1R + NLT1T.
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Estimate on NLT1R. On the integration domain, we have
(k) (k, &) = (k = n)(k —n,& —tn)*| S (k — n)(n)(n, tn)*.
Going back to Lemma (and owing to |§ — tk| < (t)(k —n,& — tn)), we obtain

NLTIR| < (1) / (K, €)°

DEG(t, k. ©)| Inl(n) (n. tn) |51 (n)| | Z1(t,m) = 51(n)Gy(t,m)|

x(k — n)(k —n, € — tn) ]Dgg(t,k ¢ —tn)’ dn dk d¢

S N9y B | |

d
Rk

, 1/2
[ we? peakof ) ax
3

When estimating (V,)g(t) in norm H}' we have seen that (cf. NLT1R)

1/2
/. ( | 2.2 pgate ko dg) ak < | 1V:Pg(0)
R \ /R

¢ g
Then, and ensure that

INLT1R| < K K3e2(t)3/2F 1 B(¢).
With the Young inequality we make the square of B(t) appear; we conclude that

INLT1R| < K1 K33 (t)? + e(t)3B(t)%.

Estimate on NLT1T. Again we split NLT1T = NLT1T1 + NLT1T2 by using the
fact that, on the integration domain, we have (see [7, Section 5.1.2])

(k) (K, §)** = (k = n)(k —n,§ —tn)™|
< n,tn)? ((k—n)(k —n, & —tn)s1 1+ (k —n, & — tn)*1) .

Thus, NLT1T1 stands for the term with the exponent s4 — 1. We use Lemma and
|€ — tk| < (t)(k —n,& — tn) and we obtain

NETITI S (0 [
k,&,n

DEG(t, k, )| Inlldr ()| (n, tn)? | F1(t,m) — 51 (0)F,(t, )|

x(k —n)(k —n,& —tn)**

DEG(t,k —n & — tn)’ dn dk d¢

SEOIINATG] /R Il ()| n, tn)* [ Z1(t,n) = G1(n) (¢, m) | dn

n

Since |(19¢)| and imply

][ Fitem) - araten)| § L+ ke

o7



we get (by using addionnally |n|(t) < (n,tn))

/R Inl®181 ()|, tn)? | Z1(t,m) = G1(n) (8, )| dn

S <t>”*1 (/ <n,tn>3fsl dn) (I1+K5)e< (1 +K5)5<t)’7*d*1.
Rd

Using also [(46), we thus show that
INLT1T1| < Ky (1 4 K5)ed(t)3T174,

For NLT1T2, we proceed similarly, by coming back to Lemma [C.9] but now we use
|€ — tk| < (t(k —n),& — tn); we obtain

NCTIT S [ G [DEgE k) Inls . 2 [ Fi ) — 51 (m)ytem)

k.&n

x(t(k —n),& —tn)(k —n,& — tn)*

DEG(t, k —n, & — tn)‘ dn dk d¢

S V29l g [{EVa, Vo) g ()] o
x/ In||51(n)|(n, tn)? ag‘:j(t,n) — 31(n)%:,(t,n)‘ dn.
Rd

n

Gathering |(19¢)| [(38)] [(34)[ and [(46)} this leads to

INLT1T2| < K (1 4 K5)e3(t)3tn=4,
Recap. We have shown that, if g is a solution of|(10a)H(10b)[which satisfies|(34)H(38)
on [0, 7], then we get

d 2 2,12 B(t)?
SV S SEI0 + ()
+K1K3€3<t>2 + E<t>33(t)2 + Kl(l + K5)€3<t>3+777d.
Let us denote Cy the constant hidden in the < symbol. Integrating over [0, T yields

H<V:c>g(t)H§I;4 < ||<Vx>g(0)!|?q;4 + 048" K1e*(T)? + Cu 2 e(T)

+C4K1K363<T>3 + 04(1 + K2)€3<T>3 + C4K1(1 + K5)53<T>4+77_d.

We remind the reader that K; and §’ have already been fixed at the previous step.
Possibly at the price of making ¢’ smaller, we can assume that §” = ¢’ and §'Cy < 1/4.
Next, choosing K larger if necessary, we can equally suppose that

1+ Ky K;
e Ty < ST

(729030 + C
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holds. Eventually, when £ < 1, we have
K
CuK1 K3 (T3 + Cu(1 + K2)e*(T)? + C4K1(1 + K5)e?(T)H14 < 7182<T>3,
and we have shown that
1{Va)g ()||H54 < Kie*(T)?

is satisfied.

4.5.3 Estimates of the H{} norm of |V,|°g(t).

Since s4 > s3, we can naively think that this term can be dominated by using the
estimates on g(t) and o(t) with norms based on Hj'. However, here we wish to es-
tablish estimates uniform with respect to ¢, while the H}' estimates were involving a
polynomial weight (¢)°. Therefore, we shall need refined estimates in order to make
use as less as possible of the H}' norm of (tV,, V,)g(t).

We compute the time derivative of |||k|°(k, §)*Dgg(t, k, f)HiQ , using the expres-
(k.€)

sion of 0;g in |(45)|

[ARCAREO!

i

= /R . [l €)** DEGE, F, ) k| (k, €)* Vo (k) (Fi(t, k) — 5(k)F,(t,k))
DYV, A (€ — th) dk de

‘/Rgd [kI° (k, € DEGL K ORI (k, €)**n51(n) (F1(t,m) = 5()Fy(t,m))
o (€ — th)DEG(t, k — n, & — th) dn dk €
/ rk\ B, ) DEGE b ) k)’ (k, €)nr (n) (Z1(t,n) — 5(n)F,(t,m))

jENC
l71=1;j<a

JDETIG(t K —n, & — th) dndk d¢

= LT+ NLT1 + NLT2.

We shall only detail how to handle NLT1; similar estimates apply for NLT2, see Re-
mark [4.20)

Estimate of LT. Since

(k, €)% < (k. th)™ (€ — th)™ and (t)!/2F0[k[V/240 < (k, th) /24,

29



by using the Cauchy-Schwarz inequality and s4 — s3 — 1 — /2 > 0, we get

1
< d s3
e LR

’k’1/2+6<t>1/2+6
) (k, thysa—ss

Dgg(t, k, &

x ) k2131 () | Z (2 k) = B (k)G (8, B)| (€ — th)*

DV, (€ ~ tk:)‘ dk de

1/2
1 2
< - 25 25: e~
1/2
: </ (ks )21 ][5 () | (0 ) —3(k)%(ta’f)‘2<€—tn>283 D?m(ﬁ—tk)f dkd5>
Ri,g
< s || 1900 R (O | B, ) 30 0 k)
~ <t)1/2+5 zl 9 H R ’ 1 1(t, (1,

1/2
X ( / (g)%ss ngv//\/z(g)f dg)
Rd

3

1
B Vol S yi7ars || Vel 90

S <t)1£2+5 H \V:c’ag(t)‘

HE HE B(t>

The Young inequality then yields

0 2 B(t)?
< __ v 0

B(t
6

_ 2
5 5K3€2<t>71726 + )

where we have used [(36)| for the second inequality.
Estimate of NLT1. Again, we can use|(48), where we set

f=F" (k&) = kI’ (k. DEG(t,k,9))

and we split the contributions of low and high frequencies

|NLT1| < /]RM (1\n,tn\2|k7n,§ftn| + 1\n,tn\§|k7n,£ftn|) ’k‘6<k7§>83 D?./g\(ta k7£)‘

k.&mn

X |[K|? €)% = [k =’ (k =, € — tn)™

nllG1(m)] | Z1(t,m) = () F,(t,m)|
x|€ — th] ‘Dgg(t, k—mn,&— tk)( dn dk dé¢
— NLTIR + NLTIT.
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Estimate of NLT1R. We make 4 terms appear, remarking that |n,tn| > [k —n, & —
tn| and ¢ < 1 allow us to write

[ (k. €)° — [k =l = € = tm)| < (Il + k=) (n, 1)

while |§ — tk| < [£ — tn| + t|k — n|. We get

DEG(t, k, )| [nf 2151 (n) |, tn)*

NLTIR < /Rgd k[ (K, €)* F1(t,n) = 5(n)F,(t,n)|

k.&n

x(I¢ = tn| + tlk — n|) [DEG(E, k — n, € — th)| dndkdg

kﬁk_ s3
o RS

k.&n

DEG(t, k,€)| [n |51 (n) |, tn)*

Z1(t,n) = 3(n) (1)

x|k = nl’ (1€ = tn] + t|k — nl) [DEG(L, k —n, € tk)] dn dk d¢

= Riyv+Riz+Roy+ Rz
where R; v is the term with | — tn| and R; z the term with t|k — n|.
For R; v we apply Lemma

Riy — / k[0 (K, )
R3d

k.§n

DEG(t, k, )| |n+[51 (n) | (n, tn)™

Zi(t,n) = 5(n)9,(t.n)|

x|€ — tn| ‘Dg‘ﬁ(t, k—n,¢— tk)( dn dk d¢

20 283
(/]R2d ‘k| <k’£>
k,§
1 |n|1+26<t>1+25 ~ N
it ([ g o
1/2
2
X/ (/ |f’2‘D?§(t,k,§)‘ dg) dk
R4 Rg

1/2
B /R ) ( /g 2 [peatt ko) dg) dk

where we have used the relations |n|(t) < (n,tn) and 2s4 —2s3 — 1 — 2§ > 0). We have
already seen (see the estimate of NLT1R when dealing with the norm H7' of (V,,)g(t))

that 12
R 2
/| z ( /| 6 Pt o) ds) Ak 5 | 192900

61

174N

1/2
. 2
DEg(t, k,€)| dk ds)

1/2
Fr(t,m) — 5(m)y(t.m)| dn>

S O H |Vm\59(t)‘



Using [(36)| and the Young inequality, we obtain
Riv S K23(t) 7172 4 eB(t)%
For Ry 7 we apply the second inequality in Lemma @ and we get

Pz o= tf WO Fi(t,n) ~ 3m)F(t.n)

k.&mn

DEG(t, k€| Inl"+ 161 () (n tn) ™

x|k — 7 ‘Dgg(t,k o E— tk)‘ dn dk d¢

< 01990 ( /R "G (), )

Filtn) = ()G (t, ) dn>
1/2
=N 2
x (/Rd |k—n|2‘D§g(t,k,§)‘ dk;dg) .

k&

Cauchy-Schwarz’s inequality yields

[ 1l ),y
R

- 1 / |n|1+26<t>1+26 " 1/2
~ <t>1/2+5 R% <n’tn>254—253

1/2
—~ ~ 2
X (/ ‘n|<n7tn>284‘5—1(n)‘2 ‘tgal(mn) - 31(n)g9(t7n)‘ dn) :
R4

n

~

Z1(t,n) — &(n) g(t,n)( dn

Since

|n’1+26<t>1+26 dn < / 1 dn < 1
———dn nsS ——,
Rd <n7 tn)254_253 — Rd <7’L, tn>284—233—1—26 ~ <t>d

we deduce that

JRECADICROE
R

n

Filt,n) — am)Fy(t.m)| dn S i B(D).

~ () ([d+1)/2+

Besides, we can dominate

|/

since, assuming ss large enough, with § < 1, we have

) 1/2
5 [k = n|?|Dgg(t, k. €)| ) S |1V:9(0) .

K12 = PR < [R5, )220 < (K201, )%

By applying [(36)| and the Young inequality, we end up with

Riz < 5<t>dll+25 H|VI\5g(t)’

4
os + eB(t) < K23 ()12 4 eB(t)2
P
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The expressions of Ry and Ry 7z already involve |k —n|® with Dgg(t,k—n,§—tn),
and we can reproduce similar arguments as for Ry z; we obtain

Roy S K231 4 eB(t)%

and
Ry z S K33 ()4 4 eB(t)2

Observe that among R z, Royv and Ry 7z, the worst domination is for R 7. Thus it
will guide the determination of the constants in the final estimate.

Estimate of NLT1T. We split as NLT1T = NLT1T1 + NLT1T2 noting that, on
the integration domain, see [7), Section 5.2]

K, €% = [k =l (k = € — t)

<k —nl|n, tn|(k —n, & —tn) ! + ‘\k|§ — |k — n[‘s‘ (k —n,&—tn).

Here, NLT1T1 stands for the term that involves the exponent s3 — 1). We use
Lemma and [ — tk| < (t)(k —n,& — tn)) so that

NCTITI S ) [ P09 [DER kO] Inlln 31 ()] | B ) = 31 (m) e )

k.&m

x|k —n|°(k —n, & —tn)®

DEG(t, k —n, & — tn)) dn dk d¢

S | 1ValPe)

2 —~ ~
o | Il tnl Gy )] | F1(tm) = 1 (n) ()| dn.
Hp RZ

By virtue of |(19¢)| and |(38)} we have

0| Fiteon) = armytem] < B0 K

and it follows that

[, nlin,tnligr(0)]| 73 0,m) — 62 (0} 0, )|

n

I it —2"qn
<% (/Rg} (0.t )<1+K5>s

S+ Ks)e(t)! / (n,tn)* 2 dn < (1 + Ks)e(t)T L.
R

We combine this to|(36) and we arrive at

INLT1T1| < (1 + K5)K3e3(t)7%
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We proceed similarly for NLT1T2, applying Lemma and remarking that | |k|® —
|k —n|®| < |n|® and ¢ — tk| < (t(k —n),& — tn). We get

NCTiT2l S [ kg
R34

k.&n

DEG(E, k&) [n] 2151 ()] | 71 (£ m) — 51 (n) Gyt m)|

x (t(k — n), € — tn)s3T1 \Dgg(t, k, g)\ dn dk dé¢

< [IvePo] ( /R n"F1E1 ()] | Z1(t,n) = G1 ()2, )| dn>
1/2
X (/Qd (tk, )2 (k, &)%s3 ?Q(tak7§)‘2)
Rk,é
S IVl 14872 Vdg (1) ( /R ) Zi(t,n) = 61(n)F,(t,m)| dn) .

With [(19¢)| and |(38) we show that

/ In|' 0|51 (n))| ’fff(t,n) - 31(71)54;(15,71)‘ dn < (1 4 Ks)e ()19,
d

n

which eventually leads to
INLT1T2| < VK K3(1 + K5)e?(t)>/2n=d=1=3,
Recap. We have shown that, if g is a solution of|(10a)[{(10b){ which satisfies|(34)H(38)]

on [0, 7], then we have

B(t)®
5

2 ~
|ValPg)|[, ., S IKse? ()% +

83 ~Y
Hp

3l

dt
+ K23 ()72 4 eB(1)? 4+ K23 (1)
+K3(1+K5)€3<t>77—d+ /K1K3(1+K5)53<t)5/2+”_d_1_5.

Let C5 be the constant associated to the < symbol. We integrate over [0,7]and we
bear in mind that all the exponents of (t) are strictly less than 1. We get

2 = 1+ Ky
2 2
H}SDS + C55K3€ + 05 S &g

|19elo)| .. < [[ 1P g00)

83 —_
Hp

+05K3e® + Cs(1 + Ka)e® + Cs K3e®

+C5K3(1 + K3)e® + Cs /K1 K3(1 + Ks)e>.
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First, let 6 < 1 such that 6C5 < 1/2. Second, pick K3 > 1 so that

2 1+K2 2 KB 2
= < —&”.
H;3+C'5 3 e o€

[19219(0)|

Finally, choose ¢ < 1 such that

+C5K§63 + 05(1 + K2)€3 + C5K§€3
—|—C5K3(1 + K5)€3 + Cs+/ K1K3(1 + K5)€3 < K3€2.

We conclude that

| Ivalbg@)[) ., < 2Kae?
holds.
4.5.4 Estimate of the L ) norm of (Vm(t)

We go back to|(29) and we write

(k, €)M |G(T, K, €)] < (K, )*| ok, &)

+ /OT ]kal(k) (Z1(t, k) = 31(R)G,(t,k)) - (& — th). A (& — tk:)‘ dt

o L

= CT+ LT+ NLT.

nG1(n) (Z1(t,n) = 1), (1) ) (€ = th)G(r,k — n, & — tn)| dtdn

We also split the non linear term NLT = NLT1 + NLT2 according to

<k7 §>S1 S <77,, tn>81 + <k - Tl,f - tn>81‘
Estimate of CT. Since (z,v) — 2 fo(z,v) lies in H}, with |a| < P, it satisfies
|fo(k,&)| S (k,&)7%, see Hence, assuming s > s1, we get

CT < e.

Estimate of LT. We use
(k,6)% < (k, th)™ + (£ — k)™ < (K, th)*({ — tk)®.

The Cauchy-Schwarz inequality then leads to

. 1/2
IT < (/ V| (k, £h)252 [ () 2 ‘32](75, k) — 51(k)%,(t, k:)\2 dt)
0

X(AZ&—%V“

) 1/2
Vol (€ — th)| dt) .
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For the first term, (19b)| and |(37)| allow us to get
1/2

( / kI 82 3 00 | Bt ) — 31 00, dt) S VITH Ky Ty
0

For the second term, since V,.# € H3,, we can write
(€= (O Vo (§)) € HE).

Finally, the Trace Lemma [£.4] yields

/0 (e -y

We have thus shown

— 2 —_—
Vol (€~ th)| dt S llE = Vol © e SNVl S1

LT < 1+ Ky e(T)"2,

Estimate of NLT1. The Cauchy-Schwarz inequality yields

T
NET1= [ [ )l )] [ (e m) - 61 (0090, € — 1 b — € — th)] din
0 Jrd

< </0T<”>4<”’t“>252‘””31<">'2 Fittm) = 1y dt) :

T 2 2s 1/2
nlle =t (mmE—m
X (/0 ) lg(t,k —n,& —tn)] dt) dn.

4<n, tn>282—281 <k _ n’é' _ tn>281

Next |(19b)[and [(37)|lead to
T e N 9 1/2
(/ () (n, tn)2*2 |nl 51 ()| | F1 (£, m) — 51(n) G (¢, )| dt> <SV1+ Ky e(T)?,
0

and |(38)| ensures that
(k—n,&—tn)**|g(t,k —n,& —tn)| < Ksze(t)".

Therefore, we get

NLT1 < 1+ Ky Kse2(T)"?

T nlle - thi? ()20 172
/R% (/0 (nY4(n, tn)2s2-251 (k — n, £ — tn)251 dn| .

We are left with the task of justifying that the last integrals bounded uniformly with
respect to k, £ and T'; this will be detailed in Section below.
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Estimate of NLT2. We combine and so that

o (o
1] |[F1(t.m) 1G] S o

Applying the Cauchy-Schwarz inequality (and | — tk| = [ —tn +t(n — k)| < (t)(k —
n,& — tn)) we obtain

(1 + K5)€.

NLT2 = /OT /Rd nllgr ()] | Z1(t n) = 51(n)y(t, )

x(k —n,& —tn)*|& — tk||g(t,k —n,& —tn)|dtdn

1+n
(14 Ks)e // — L (k—n,&—tn)" MGtk —n, & —tn)|dtdn
Rd

ntn S1

1/2
P
Ks) 5 ded
L+ Ks)e </ /]Rd nthSl\k n|20 "

T 1/2
« (/ / \k—ny%(k—n,g—m>281+2|§(t,k—n,g—tn)\thdn> .
0 Jrd

Then, by Trace Lemma and |(36), we have (for k # 0)

T
-n —n,th —1mn g(t,k —n,tk —m™n Tdn
k—n|?(k k 253 15(T, k k 2 drd
Rd

< K3€2

~ ~

2
< sup ||IVal’g(s)] ..,
s€[0,T]

Going back to NLT2 we are finally led to

P V2
NLT2 < (14 K5)v/Kse? x // dtdn
Rd

(n,tn)2s1 |k — n|2®

and it remains to check that the integral is uniformly bounded with respect to both k
and T. Again, we postpone this estimate to Section [£.6] below.

Recap. We have shown that, if ¢ is a solution of [(10a)H(10b)|satisfying |(34)H(38)| on
[0,T], then, we have
KVeo)g(Dllzg,, < 1+ VIFELD)? + I+ Kakse(T)"? + (1 + Ks)VKse)e

(k,€)

< (U + VEs+ (1 + VE)Kse + (14 K5)/Kze)e(T)".

Let Cg be the constant involved in <. We set K5 > 1 such that Cs(1 + VKy) < K5
and, next, we pick ¢ < 1 so that Cs[(1 + vVK4)Kse + (1 + K5)v/Kse] < K5. We are
thus led to

(V) 9(T)l| o

n
e S 2K5<T> E.

67



We have checked at all steps of the proof that the choices of the constants K; and of
the parameter € are compatible.

4.6 Integral estimates

We collect here the estimates of the four integrals that we need to finish the proof of
the bootstrap property. Namely, we wish to control, uniformly with respect to k, &
and T the following four quantities (in the same order as they appeared within the
previous discussion)

|k[2[t — 7[*|n|(T)>"
= dtdr d
/ / /Rd (n,Tn)2sa=252(k — n, tk — tn)?s1 T dn,
\n\ )22 k| 1
dtdrd
/ //Rd nTn 281 (k—n,tk—7n|k—n]25 T an,
T 1|2 2 1/2
s [ ([ \mw th] 0 A
> <n tn>282 2s1 <k —n,&— tn>231
M—/L/ W < dt dn.
ra (n)%(n, tn 251 |k — m|20
Let us start with 14 which satisfies
T —251+2
t 1
s [ ([ ] ar
0 rd |k —n|®

Given t > 0, we have seen during the proof of Theorem that

(n, tn)~21+2 —d+26
(@d T dn S (7

holds. It follows that -
14 < / (t)72HIH g <1,
0

Next, for estimating I3, we observe that |{ — tn| < (t)(k —n, & — tn), so that

T 2421 1/2
13 < / 1 / [n[) 1 at| dn
re (N)2 \Jo (n,tn)2s2=251 (k —n, & — tn)?s1—2

1 1 1/2 T <n tn>_252+251+2+277 1/2
2 \n|+2n : dt] d
/Rd <n>2 <|n|1+277> (/0 <k — n)281—2 > n
1/2

: ! ! ! tn) 252251242 34 d
ra (n)2 [n|V/24n (k —n)si=1 \ Jy (n,tn) n.

For any n # 0 fixed, we get (with so sufficiently larger than s;)

T 1 |n|T 1
/ (1+ |n|2 + |n|2t2) s2ts1tlEn g < H/ (14 u ) sets1+1+1 q¢ < ﬂ
0 n n
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Hence, we obtain

1 1 1 1 1
13 < dn < dn < 1.
N/Rd (ny2 (k — nyo1=1 [n[1F7 ”N/Rd (nysi=1 [k — [l 7

We estimate 12 by coming back to 14; indeed, 12 can be recast as

T T 2/ \2n+2
12 :/ / / %] ar ) M L 4ran.
o Jra \J, (k—n,tk—Tn)2s3—252=2 (n)2(n,tn)2s1 |k — n|20

It thus remains to show that

—+o00 ‘k‘
/ dt
oo (k—mn,tk —Tn)2ss—2s2-2

is bounded uniformly with respect to k. To this end, let us set

k-n
n”:Wk, nJ_:n—nH.
For k # 0, we are led to
(k —n,tk —n)? = L+ |k —n >+ [nL|* + [tk — 7oy |> + [ty |?
k-nl? k-n\?2
< 14|th—7n ]2:1+‘t|k|—7 :<t|l<:]—7> ,
“ % %
It yields
+o0 k o0 k
/ || _ _dtg/ ||2_2,_2dt
o <k:—n,tk—7'n>253 259—2 e <t|k‘|—7‘k'—n> S2—283
+o0 1 I
= /_oo () 253—252=2 du 51

We finally treat 11 like 12.

5 Analysis of the Landau damping on T¢

The dispersive effect which has been used for proving the Landau damping on R¢ does
not exist on the torus. For this reason, in order to control the echoes, we shall work in
the analytic framework, following [6]. For the Vlasov-Poisson problem, the analysis of
[4] is a hint that this regularity could be necessary. As a counterpart of this regularity,

there is no restriction on the space dimension d.

The proof still relies on a bootstrap argument, see [6]. There are two main argu-
ments, like on R?: firstly, the force term Vo x (Z1(t) — 01 x %,(t)) can be controlled,
in suitable norms, by the macroscopic density o(t), and, secondly, the contribution
associated to the initial data fg Voi* Z1(r,x+ 1v) - Vo (v) dr does not perturb too
much the bootstrap property (here, we refer the reader to the remarks made when

analyzing the whole space problem).
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5.1 Functional framework

We start by introducing several Gevrey norms. Let g : (0,00); x T¢ x R — R. The
Gevrey norm || - [|gx.«is is defined by

lorme = X [ (769 g0,k O dg
3

kezd

and we also need the Gevrey norm || - || zr,0:s given by

g Fnms = > (k, th)27 e R G(¢ k)]
kezd

Let 0: Ry x T — R. The Gevrey norm || - || zx.is reads

o) | Zrow = D (k, th)27 >R 5t k)|
kezd

In what follows, we always assume A\,0 >0 and 0 < s < 1.
As a warm-up, we observe that, with ¢(t,z,v) = f(t,z + tv,v) and o(t,x) =
J f(t,z,v)dv, we have
o)l 7ross = lg(E) | Frorss-
Moreover, assuming o > d/2 we have a o—ring property: with h(t,z,v) = o(t,z +
tv)g(t,x,v), we have

1) lIgr.ess S [lo(®)l] 23055 19 () lgr.ass -

Finally, we shall also need the following Gevrey norm: for P € N, we define the norm

| - Hg})\),a;s of a function (¢,z,v) — g(t,z,v) by

S o 2
lo®) e = 32 N0) = o9t 0) [Groe = 3 3 /R (k200" |Dgg (e, k€| de.
3

acN? aeNd kezd
lo| <P lo|<P

The o—ring estimate equally applies to this norm. Note that the weight in the ex-
ponential is (k, &), instead of |k, &|; this is useful to establish the following embedding

property.
Proposition 5.1 Let A >0,0<s<1 and P € N.

i) (o-ring estimate) Let o > d/2, and set h(t,z,v) = o(t,x +tv)g(t,z,v). Then, we
have

h t g8 < t o8 t TS« 49

1h@®)ligres S lle@)lzx0sllg(®)llgae: (49)

it) (embedding) Let o > 0, and suppose P > d/2. Then, there exists C' > 0 such that

for any (t,x,v) — g(t,z,v) € g};";s, we have

lg@llFree < Clig)llgaess (50)
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Proof. Let a € N%. We remark that
(k. €7D < (G, tn)? + (k —n, € — tn)7)Mrm* Albmen)”

Denoting
N(t) = ||(t,z,v) — v*o(t,z + tv)g(t,:c,v)”ék,g;s,
5

by using the Cauchy-Schwarz inequality, we get
2

NOREEDY /R > (k,&)7MEE0(t,n) DEG(t b — n, € — tn)| &
3

d
kezd nezd

2

< / Y (n, tn)7 X, n)AETE I DGt K —n, & — tn)| dé
kezd Rg nezd
2
+ Z / Z e)‘<”’t">S§(t, n){k —n,&— tn>"e)‘<k*”’§*t”>s Dgg(t,k —n,§ —tn)| d§
kezd RZ nezd

N
]
5

’ ( > (k= n) 2 (n, tn) 272N g, n)P)
3

> Z <k —n,€— tn>2oe2)\(k—n,§—tn)s

DEG(t, k —n, & — m)f) de

v (Z (n, )22 g1 n>\2)
Rf

keZd nezd

x| S (n) 72 (k — n, € — )27 Mgt )Dgg(t, k—n,&—tn)| | de.

nezd

We conclude that i) holds since the condition o > d/2 implies that the series Y, (k —
n)~2% and ¥, (n) =27 are finite.
We turn to the proof of ii). For 0 < s < 1, we get

s . 2
> Y / D€ = (k, )7 G(t k)] dg < g ()20 (51)
aeN? keZd Rg F

la|<P

Indeed, since |0, (k,&)| = &/ (k,§)| < 1, we have
0,1 > (k,€)7XBOG(E, b, €)]| < (h, )7 (8, b, )|+ (, €)7M 0 (1, b, €)].
Repeating the argument, we establish that, for any multi-index «,

Dg[e > (k,7MPG(t,k, ©)]| S D (k. &7 DLk, ).

Jjla

‘ 2
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Going back to|(51)[shows that, g(t) being an element of g};";s, for any k € Z%, we have

Z/ ID2(E = (b, 7951, b, )| dé < +ox.

aeNd
|a|<P

In other words, & — (k,&)7eMFEO°G(t k. &) belongs to HP(REI). Since P > d/2,
Sobolev’s embedding applies: this function is continuous, and, for any k € Z% and
£ € RY, we get

1/2

(k. €07 X9 (2, k,6)| < Z/ D¢+ (k. )74,k O] dg

aeN?
|a|<P

It follows that

s 2
lg ) Znee = 3 |Ch, th) 7R G2, e, th)|
kezd

S22

keZd aeNd
|a|l<P

(k,€)7 g1, 5, )|” d€ S lg(Ol2

From now on, we assume that
o>d/2, P>d/2, 0<s<l.

We shall consider the parameter A as a function of the time variable A : t — A(t) €
(0, 00), continuous and decreasing. The estimates and adapt to this context.
In contrast to what we did for the problem on R? we do not express general
conditions on .%#; and p.. Instead, we shall use the same assumptions as in the case of
the linearized Landau damping. For the sake of convenience, let us recall them here.

(H1) n > 3 is odd,
(H2) o9 € C*°(R"™) with supp(c2) C B(0, Rs).
(H3) supp(v;) € T¢ x B(0, Rr), i = 1,2 and

& = //Td . (\1/}1(x,z)|2 + C2|Vz1/)0(x,z)|> dzdz < +o0.

(R2) o1 : T — R, is radially symmetry and analytic; in particular there exist Cy, Ay >
0 such that |51 (k)| < C;exp(—A1]k|) holds for any k € Z¢.

Note theat assumption [(R1) on .# and fy will be replaced by .Z, fy € QI’\JO’O;S.
As a consequence of|(H1)|and [(H2)|the kernel p. has a compact support: supp(p.) C
[0,2R2/c], see Lemma By virtue of [(H2)| and [(H3)| .%; is compactly supported
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too: supp(#r) C [0, (R + R.)/2], as pointed out in the proof of Lemme In what
follows, the following parameters will play an important role

2R2/C, So = (R[ + RC)/Q.

The following statement, analog for the torus of Proposition [£.2] is a crucial ingre-
dient to justify the boostrap property.

Proposition 5.2 Let [(H1){(H3)| and [(R2)| be fulfilled. Let t — A(t) > 0 be a
continuous and decreasing function. For any o > 0 and 0 < s < 1, we get

t
Vo1« (F1(6) = 012 Gyt 3 S Eilocresy + [ [pelt = 7)) Bonre
0

(52)
Consequently, the following estimates hold
t
Vo1 % (F1(t) = 01 % Go(0) | Frcone S 1+ / o) 1 F7ir) .06 AT, (53a)
0
sup [|Vo1+ (F1(7) = 01 % Go(T) | Frirroe S 1+ sup [lo(7) |55 (53b)

r€[0,1] T€[0,t]

t t
[ IV (#1(0) = 1w Gy scors 7 S 61+ [N orro dr. (530
0 0

Remark 5.3 The following observations will be useful:

i) In the specific case s = 1 we shall need a further assumption on A(0): for this

situation, we assume A(0) < C'(A1,2Rz/c,Sp) = min(A1/(Sp),2X\1/(2Rz/c)).

i) In contrast to the analysis of the Vlasov-Poisson problem, a control of [ |lo|ldr
ensures a pointwise control of the force term. This fact, which can be seen as a
kind of reqularizing effect of the half-time-convolution, simplifies the proof of the
bootstrap property.

i1i) Like for the whole space problem, the exponential decay of ¢1(k) can be used to ab-
sorb any polynomial with respect to k that arises in the estimates, see Remark[].3

Proof. We estimate separately the contributions from .#; and ¥:
Vo1 % (F1(t) — 01 % Go®) Zrroes S V01 5 F1OZe + [V % Gy(8)Encrs-
For the former, we use supp(.#;) C [0,5] x T? and the estimate (see the proof of

Lemma
[kl (31 (k)] | Z1 (8, k)| < Culkle™ M| oa | pn s v/ Er Loi<s0- (54)
We obtain
Va1 % Z1(t)]|aceoue

S (Z <katk>2‘7€wt)<k’tk>sk|2€_2A1|k|2) Erlo<i<s,
kezd

A

(Z <k‘>20<SO>2062)\(0)<]€>5<SO>5|k“2€_2/\1k2) gflOStSSo-
kezd
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When 0 < s < 1 the sum is finite; when s = 1 we should impose the additional
condition A\ > A(0)(So).
For the latter, we apply the Cauchy-Schwarz inequality, so that

I VE * Gy ()70,

2

t
= > (k, th)2 XK 12|15 (k)| / pe(t — 7)0(T, k) dr
kezd 0

IN

(/ Ipc(t—T)\dT>/ [pe(t = )| D (k, th)*7 XX O®ET g(r, k)|2> dr
0 0

kezd

= </ |pe(t — 7)| dT) / |pe(t — 7)| Z Ik<t,7')<k,Tk>20'e2)\(t)<k,7'k>s’§(7_7 k)\2> dr.
0 0

kezd
It follows that

91~ 14 SEs TR)®T o)A k) AP (hth) — (e h))
Ik(t, 7') = |k’ |O'1(k)’ W@ ’ € ’ ’ .

Therefore if Ij(t,7) is bounded uniformly with respect to k, ¢t and 7, then we get

t
2
I VEx Do) Frwos S /0 [pe(t = ) lo(T) [Foacry.oie AT

We are left with the task of justify a uniform bound on Ix(¢,7). To this end, we
remember that p. has a compact support: we can restrict the time integration to
0 <t—71 <2Ry/c. For t > 7, a simple analysis of function shows that

20 20
:ezd é:’j’];{:iQU < <<7t—>>20 < <t - T>20 < <2R2/C>2a.

Since t +— A(t) is decreasing, we have exp(2(A(t) — A(7))(k,tk)*) < 1. Finally, with
0 < s <1, we have

) — )] < (@ — )",
so that (k,tk)® —(k,7k)* < ((t—7)k)° < <%k>5 and exp(2A(7) ((k, th)® — (k, 7k)*)) <
eXp(Q)‘(OX%y(@S)- We conclude with

Ii(t,7) < CHlkPe Mk (2R, /¢)27 2N O Tan) h)*,

when 0 < s < 1, while for s = 1 we further assume 4\; > 2X(0)2Ry/c.

Note that we have used in an essential way the fact that p. is compactly supported.
In Proposition the polynomial decay was enough. This is due to the different
weight that arise in the definition of the norms used for the analysis. [ |

We turn to the estimate of the force term fot Vo1 x Z1(t,x + 1v) - Vydl (v)dr by
means of the norms involved in the bootstrap.

I

Proposition 5.4 Let |(H1){(H3)| and |(R2)| be fulfilled. Assume that 4 € QI)SO’O;S
for some integer P > d/2. Let t — A(t) > 0 be continuous, decreasing, and such that
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A(0) < Xo. Then forany o >0 and 0 < s <1, we have

i

Remark 5.5 Again, when s =1 a constraint on A(0) like A(0) < C"(A1,S0) = A1/{So)
should be imposed.

2
dt < &. (55)

t
/ Vo x Fi(r,x +71v) - Vo (v)dr
0 ]_‘)\(t),cr;s

Proof. We start with
T
/

/ S (ke th)20 PO K

0 kezd

T
</
0

and we are going to estimate I(¢,k). For any k # 0, we have (t) < (k,tk), and since A
is decreasing, we obtain

2

dt

t
/ Vo * Fi(r,x +71v) - Vo (v)dr
0 f)\(t),O';S

2
dt

//.w1 VT (7 k) - [t — T ([t — 7]k) dr

¢ . . 2
( | sty O, k)l 1] | Fi )| e = 71 1K] |7 (e~ 710 dT) dt
kezd\{0}

=I(t,k)?

t —_
I(t,k) < (8)~! /0 (e, TRYTTLAOETRY k| 5 (k)| | F1(7, k)|
x([t = 7)Ao ] |4 ([t~ 7]k)| dr.

By using (54]) and remarking that .Z € gAO’O * for P > d/2, we are led to
()] S e
(since ||€ — exp(A(€)*).A ()| gr < || || A .0 and P > d/2 allows us to make use of

the Sobolev embedding H — C?; we refer the reader to the proof of (50 . for further
details). We arrive at

I(t, k) S (8L (k)TH(Sp) 7 LM O (S0)” g = Aulk]

t
X (/ <[t—r]k>a+1e/\( W[t—T7]k) ’ THk\e (t—7]k)* dr) N

0

Since A(0) < 5\5 we have

t ~
/ ([t — 7)k)TTLAOU=TIR | — 7| k| Nolt—rlk)* qr < /<u>a+26(>\o)\(0))<u>s du < 1.
" R

Therefore, when 0 < s < 1 we obtain fOT Sk I(t, k)2 dt < & and for s = 1 we conclude
similarly at the price of a constraint like A\; > A(0)(Sp). |

We now state an existence-uniqueness result for the Cauchy problem |(10a)H(10b)
in the functional spaces of interest. We will give a complete proof of this theorem in

Appendix [C]
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Proposition 5.6 Let P > d/2 be an integer and o > d/2 be a real number. Let
M, fo € QI)QO’O;l with Xa > 0. Then, there exists T* > 0 and a continuous decreasing

function 0 < X(t) < min(ro,/\l/@()),2/\1<2~R2/c>) such that the problem
admits a unique solution g € CO([O,T*);QI);(t)’U;l) on [0,T*). Moreover, if for some
T <T*, we have
lim sup [|g(t)| gg < +00
tAT

then, actually, T < T*.

Remark 5.7 The constraint A(0) < min(Xg, A1/(So), 2A1(2Rz/c)) comes from the fact
that the proof uses Proposition [53

The analysis of the Landau Damping, as it is already clear for the linearized prob-
lem, relies heavily on the formulation of the problem by means of the Fourier variables.
Let us collect the useful formula from which the reasoning starts. Integrating |(10a)|

over [0,t], we get
t
g(t,z,v) = fo(x,v)+/0 V1% (Fr—01%9,) (1, 2+70)-(Vy—7V o) (A (v)+9g(T, 2, v)) dT.

Thus, we obtain

0.5, = foh &) = | KFI0)(F =GB, (7o) - (6 = h).AE = 7h)

= % [ ni)(Fi = 7)) - (¢ = 7RG = €~ ) o

nezd

and

t —_—

o(t, k) ZJ?o(k,tk)—/O kG1(k)(F1 — 519,) (7, k) - (¢ — )kt ((t = 7)k) dr

t —_— —
- Z / no1(n)(Fr — a1%,)(r,n) - (t — 1)k g(r,k —n,tk —n)dr.
0

nezd

5.2 Main result

That the Landau damping holds on the torus can be formulated as follows.

Theorem 5.8 (Landau damping in T¢) Suppose|(H1)H({I3)| and|(R2)| Let P >

d/2 be an integer, 0 < s <1 be a real number and A, fy € QI)QO’O;S with A > 0. There
exist a universal constant €g, such that if

HfnggW <ey ; & <el
5
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and A satisfies[(L)], then, the unique solution g of [(10a)}{(10D)] is globally defined. To

be more specific, for any 0 < X < Ao, we have g € CO(Ry;GY'%) and there exists an
asymptotic density g € GN'%% the space average of which vanishes, such that

l9() — g™ llgnon S o™ 2P0 NB° (56a)
lo(t) | v e S s0e™ 3 G020 (56b)
Vo1 x (F1(t) — o1 *gg(t))n}w,o;s S 506_%(5‘5_)‘/)@)5' (56¢)

Remark 5.9 When s = 1 the constraint on X' becomes N < min(Ag, A1/(S0), 2A1 (2R3 /c)).

Like for the problem set on R¢, the proof relies on a bootstrap argument, which, in
this context, states as follows.

Proposition 5.10 (Bootstrap) Let the assumptions of Theorem be fulfilled. Let
ap = (Ao + XN)/2 and 0 > d/2 + 6. There exists a function X : Ry — (ap, \o),
continuous and decreasing, a real § > 2 and constants K1, Ko, K3, K4 > 0 such that if

g is a solution of |(10a)H(10b)| on the time interval [0, T] verifying

9Oy < 4K (1) (57a)

Hg(t)||él>;(t)7075;s S 4K252 (57b)
T

[ e < 41 (570)
0

for 0 < e <eg small enough, then g also satisfies, on [0,T], the estimates

I9OIZ 0010 < 210072 (58a)

lg(®)Igam.o-ss < 2Kze® (58b)
T

/ o) Zri o d < 2K5e? (58¢)
0

o) s e < 2K4{1)E7 (58d)

Remark 5.11 The role of is a bit different from its analog for the Vlasov-
Poisson problem. Indeed, the interest of this estimate is to provide a pointwise control
on the force term. However, here, as said above, such a control can be obtained by
estimating [ Hg(t)H?_.A(t)ms dt. Consequently is enough to finish the proof, with-
out using and the proof slightly simplifies. Nevertheless, we keep in the
statement since it is useful to justify .

We now explain how the Landau damping can be justified, having at hand the boot-
strap statement.

Proof of Landau damping. We only detail the case 0 < s < 1 and ., fj € 91)50’0;1,
and we refer the reader to Remark [5.12] for further information.
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Step 1 : Global well-posedness. Since A , fy € g;\)O’O;l, Proposition ensures that we
can find T* > 0 and a continuously decreasing function 0 < A(t) < Ellin(j\\(;, A1/(S0),2A1(2R2/c))
such that |(10a)H(10b)| has a unique solution g € C’O([O,T*);gl);(t)’oﬂ;l) on [0,7%).
Moreover, since 0 < s < 1, this solution equally lies in CO([O,T*);Q;@’UH;S), where
now A(t) stands for the function arising from Proposition It is still possible to fix
the constants so that the estimates hold at T'= 0, and g is continuous for

the corresponding norms. Therefore, we already know that we can find T > 0 such that

(57a)H(57¢) hold on [0,T]. Proposition together with a reasoning by connectivity
ensures that |(58a)H(58d)| hold on [0,T*). Finally, |(58a)| tells us that

limsup [|g()|| yo+1 < limsup Hg(t)HgW),gH;S < 2K1<T*>752
t /T P t /T P

holds, and thus we can go back to the extension argument in Proposition [5.6] and we
conclude that 7" = +o0.

Step 2 : Convergence to 0 of o. Since the space average of g(t) vanishes: g(¢,0) =
9(t,0,0) =0, we get

HQ(t)Hzfy,o;s < HQHzfamO;se—ﬂoco—/\/)(ﬁ‘
Next |(58d)| (with o > 1/2) ensures that
. t)2 .
6O = 3 b g pps Y STeomar g pp
keZd\ {0} keZd\ {0}

< 7”9(1;)”2]:/\(15),0;5 < K452-

(t)
Since ag = (Ao + N')/2, we have proved
”Q(t)”}‘/\’,o;s < K4se_%(>‘0_)‘/)<t>s.

Step 8 : Conwvergence to 0 of the force. This result follows similar arguments. Since
the average of the force term vanishes, we have

IVoi * (Z1(t) — o1 *%(t))”?_.k,yo;s < ||Voy * (F1(t) — oy *gg(t))‘@mmom o 2(@0=N)(t)
By using |(53a)| and |(58¢c)l, we get

t
Vo1 x (Fi(t) = 01 % Go(t)) 00 S Erlo<i<s, + / lolZeac oo dT < €2,
0

we conclude by using ag = (Ao + X)/2, again.
Step 4 : Existence of the asymptotic profile. We wish to define the quantity

g™ : (z,v) — folx,v) + O+OON(g)(7')d7'.

Let us check that this makes sense as an element of Q)‘/’O:S . Next, we will show that
g(t) converges to g for large times. We start by estimating fot I N (9)(T) || 25 056 AT
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With -, we get

L 1IN @@ lgradr < [ 1N @ lgrasonadn

t
< / Vo1 % (F1(T) = o1 x Go(T)l| pxr.aa s |(Vo = 7V ) (A + g(T)) gv.ay20:d7
0 P
Since o > d/2 + 6, we have
1V =7Va) (A +9() | gyaszere S THA +9(T) | gy a2 < ATNA +9(T)ll a4

Moreover, the average of the force term vanishes so that

Vo1 % (Fr(T) = 01 x Go(T))l| pav.as21:6

< ()T Vo % (Fr(r) = 01 5 Gy(1) o

< (r) TV oy (Fr(r) = 01 % Gp(7)) | pronens
and applying |(58a){ with the Cauchy-Schwarz inequality yields

I8 @ lgrandr

< / (1)~ o+d/2+2 Vo1 x (F(1) — o1 *gg(r))H]_-A(T),U;S <H=///Hgfo,o;s + VK (7—>7/25> dr
P

0

; 1/2
S ( | IV« (F1(7) = 015 G e dT>
0

. 1/2
X (/ <T>72U+d+11 (H//ZIQ; e T K1€2> dT) )
0 G

By using |(53a)| and |(58¢)| we see that the left hand side is bounded uniformly with
respect to ¢ while the condition o > d/2 + 6 implies that the right hand side is also
bounded uniformly with respect to t. Thus ¢ is well defined in G*%. To be more
specific, we have shown that

9% = follgn o S (61 + K3e”)(1 + K1),

Since &7 < €2 it says that ¢* is at a distance at most ¢ from fo.

The convergence of g(t) towards g relies on the same manipulations. The notice-
able difference is in Step 3; using again the fact that the space average of the force
term vanishes, we get

Vo1 (Fi(7) = o1 x Go(T)) | vz

< (r) T 0T Vo % (F1(7) = 01 % Gp(T)) | peguae

< (r) TR0 Vo« (Fr(7) = 01 % Gp(7)) | oo »
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It follows that

+00
lg(t) — 9™ llgn o5 S/t [N (9)(T)ll g .0is AT

—+00
< / e~ (TN (1) T HEE |V gy % (F1(T) — 01 % Do (D)) paorons 14 + 9(7) || aorrvne AT
t P

< g~ (@0-X)(1)*

~

S/ 667(a07)\/)<t>5 .

We conclude by using ag = (Ao + \)/2. |

Remark 5.12 We conclude the proof with a couple of remarks.

o When the data A, fo belong to G955 with 0 < s < 1, Step 1 is critical since

it relies on Proposition which applies for analytic data only. We use a reg-
ularization argument: we introduce a sequence (A", fg)n>0 of data that belong

to GO and that converge to (M, fo) in G0 as n — 0. For any n > 0, the
associated solution g" is globally defined and it satisfies on [0, +00)
(remarking that the criterion (L) is stable by such a regularisation). We can also
check that the constants Ki,..., Ky can be defined independently of n and that
g" converges in C°([0,4+00); LY (R? x R%)) to a certain function g, which is still a

solution of |(10a)H(10b)|, see [33] and [9, Theorem 4 € Lemma 8]. Moreover, for

any t > 0, we have
2 s 2
s < n .
lg(E)ligre.orne < T inf g7 ()l gao s

and
2 o <limi n 2 e
Hg(t)Hg}A)m,a—ﬂ,s > 117 (l)ﬂfHQ (t)Hg;(t),ff—ﬁ,S

Indeed, for any fized t, the sequence (g”(t))n>0 is bounded in g,ﬁ(t)’”“?s and

g}(“""ﬁ;s (owing to|(58a)| to|(58b))); thus, extracting a subsequence (which might

depend on t, but this is not an issue here), there exists g and gy such g"(t)

converges weakly to g in Q;‘,(t)’oﬂ;s (resp. to g in gﬁ,“)’“‘ﬁ;s

continuity of the norm for the weak topology, we get

). By lower-semi-

— 12 .. 2
< n »
||gt‘|g;(t),a+1,s < lggégf g (t)llggw,m,é

and
~ 12 . 2
. < liminf ||g" .
19¢llgacoo-s:e < Him i lg7 (@)l gaco.-sie

Since g(t) = gi = ¢ (by uniqueness of the limit in L') almost everywhere,
and |(58b)| still apply for g. In order to justify that|(58¢c)| and|(58d)| apply to g, we
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( / (7) T2 Vo x (Fi(7) = 01 % Go(T) | paonos |4 + g(7) lgre.osnis dT
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use the fact that, for any t, k,&

gt k) — Gtk €).
n—0+
Fatou’s lemma then yields

sty oo = k., tk)27 2AOER) i inf | gl (¢, k, tk)|? < Hminf]|g" (£)|[2ex ) oee -
19| Fr0),05 EZ:J k) m in 9" (¢, k, th)|= < m in 19" (O F20),0:

When s = 1 this is still Step 1 that contains some difficulty. We can apply Propo-
sition but we should check the interaction between the function \ given by
the bootstrap statement and the function by arising from Proposition . Indeed,
it is not a priori excluded that X(t) < A(t) at a certain time t > 0, which would

prevent us from extending the solution in glﬁ(t)"’“ﬂ, see [6].

Like for the problem on R¢, the proof of the bootstrap property relies on fine

estimates for the linearized problem. We are therefore going to use the following
analog to Proposition see [0, Lemma 4.1] and further comments in Appendix [A]

Proposition 5.13 (Linearized damping on T%) Let the assumptions of Theorem/|5.8
and Proposition be fulfilled. We consider a family of functions {t € [0,T] —
a(t k), k € Z4}. We suppose that

T
) /0 (k, th)* A OER (4, k)* dt < 400,
kezd

holds. Then, we can find a constant Crp (which does not depend on k and T') such
that any solution (t,k) — ¢(t, k) of the system

ot k) = a(t,k)+ /Ot H(t —T1,k)p(T, k) dr

_ a(t,k)—i—/o G2 (k) 2 k2 (¢t — 1) ([t — 7)) (/OTpC(T—J)(b(J,k)dU) dr,

on [0,T)] satisfies the following estimate: for any k € 7¢

T T
/ (k, tk>2062)\(t)<k,tk>s |¢(t, k)’Z dt < CLD / (k, tk>2062)\(t)<k’tk>s |a(t, k)’Z dt.
0 0

5.3 Bootstrap analysis: sketch of proof of Proposition

To start with, let us make a few observations:

e Like for the problem in R, the main difficulty relies on the treatment of the
echoes. In R%, the dispersive effect of the transport operator allows us to obtain
a control by means of Sobolev norms, at the price of restrictions on the space
dimension d, though: in finite regularity we need to assume d > 2 (the case d = 2
being critical for a different reason). On the torus, the dispersive effect does not
hold, which motivates the analytic framework. As a consequence of working in
such a high regularity, we get rid of the restriction on d.
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e In order to adapt the arguments of [6], when we estimate expressions that involve
the force term, we make use of Proposition It allows us to control the
force term by the macroscopic density g, up to a constant term, like for the
Vlasov-Poisson system. The constant term is of order 2, so that it does not
induce new difficulties (see the proof of Proposition . Finally, when applying
Proposition in order to estimate fOT || o||? dt, we should pay attention to the
force term [ ||Voy x Z (7,2 + 7v) - Vot (v)|| dT. Proposition provides the
necessary estimates.

For the sake of brevity, let us just sketch how it is possible to obtain the estimate
[(58c¢)| from |(57a)H(57c)l having, on the one hand, the estimates of [6] and, on the
other hand, the estimates from Propositions and As in the free space case,
we introduce the time response kernel which contains all the difficulties concerning the
control of echos terms: let

K(t,7,k,n) = eQAO=ADN k) A () k=nth=T0)" | (+ _ VL G(T, k — n, th — Tn)

oy | Lnzo

where ¢ = ¢(s) € (0,1) is determined by the proof.

Remark 5.14 i) Since in our case the kernel o1 is analytic we can choose 7 as large
as we wish. In practice, since we use the arguments of [6], for proving a result in
Gevrey regularity class s € (0,1), we should take v such that s > 1/(2 4+ ) (so the
smaller s, the larger ).

it) Note also that the analyticity of o1 allows us to replace the term (n)~7 in the time
response kernel by exp(—vy(n)). According to [28, Section 7.1.1], this permits us to
obtain better estimates on K, but it is not obvious that these improvements lead to
a Landau damping effect in finite reqularity on the torus. Since in our context the
reqularity of o1 is also needed to obtain the crucial estimates of Propositions and
and since replacing (n)~7 by exp(—v(n)) does not improve the result, we chose the
definition of the time response kernel with the (n)~7 factor.

For this time response kernel we will use the followings estimates (see [0, Section 6],
which are the analog in the torus of Lemma

Lemma 5.15 Under the assumptions of Proposition [5.1( the following two estimates
hold

t
sup  sup / Z K(t, 7, k,n)dr < Kae
t€[0,T] kezd\{0} JO nezZd\{0}

and

A

T
sup  sup / Z K(t, 7, k,n)dt < Kae.
7€[0,T] neZd\{0} /7 kezZd\ {0}
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We follow closely the arguments of [6]. We start from
t
ok = Falhth) =~ [ KGTRFA(rR) - (¢ - DRt~ )b dr
0
t —
/kwu>u?hk>@—ﬂm%W—T>mf
- Z noi(n 1—01%)( n)-(t—7)kg(r,k —n,tk —mn)dr
nezd ’0
= CT1(t, k) + CT2(t, k)
¢
—l—/ kloi(k)[*%,(1, k) - (t — T)ktt ((t — T)k) dT + NLT(t, k).
0

As in the free space problem (see Section, for estimating the non linear term NLT
we start by splitting it into several parts. Here this decomposition is slightly more
precise than in Section but the main idea is the same: we consider separately
contributions from high and low frequencies coming from ¢ and g: NLT =T + R +R.
The transport term T contains o’s low frequency terms and g¢’s high frequency terms;
the reaction term R contains ¢’s high frequency terms and ¢’s low frequency terms and
the remainder term R contains the other terms, those where ¢ and g have almost the
same frequency. The precise decomposition needs the introduction of the Littlewood-
Paley decomposition and the paradifferential formalism. We prefer not to detail this
aspect here. Then, we apply Proposition to obtain (by summing over k € Z4\ {0})

T T T
Amm%wsté|wnoﬁwa+A\wm@ﬁWww

T T T
[Tt [ IROB a5 [ RO

Constant terms. We estimate the first constant term CT1 as in [6] and we obtain

T
[ et 5 22
0

For the second constant term CT2 we use the Proposition [5.4] to obtain

T
(/ |CT2(8) 2y dE S &1
0

Reaction term. Following closely the argument from [6], Section 5.1.1], we are led to
the following estimate on R:

T t
/ HR(t)HQ}-A(t),a;s dt < | sup  sup /
0 te[0,T] keZA\{0} SO,z (0}

T
x | sup sup / Z K(t, 7, k,n)dt
T7€[0,TIneZd\{0} /1 keza\{0}

T
x (/ IVo1 % (F1(r) = 01 xGp(7)) | Frcrr.0 dT) -
0

K(t,1,k,n) dT)
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In order to make the kernel K appear, we have to multiply and divide by (n)Y. Hence,
we can obtain the same estimate but replacing

IVo1 % (F1(7) = 01 % Go(7)) | Frcrro

_ Z <n’ Tn>2a€2>\(7')<n,7'n>s‘n‘2’81(n)‘2 ‘%(7_7 n) 5 <n>g2;(7_7 n)‘
neZ\{0}

2

> (norm)2 O ()2 1025 (0) 2| F (r,m) = 1(n) (7, m)
neZM\{0}

‘ 2

Since o1 is analytic we can always use, without any bad consequences, a small part
of the exponential decay of its Fourier transform to absorb the (k)?-term (we already
dealt with this difficulty in the free space problem, see Remark . From now on,
we always omit this minor detail in the estimates. Then, applying Lemma [5.15| and

Proposition [5.2| with |(57a), we get
T
| IRO ot S Fae? (61 + K.
0

Transport term. We follow line by line the estimate of [6, Section 5.1.2], and we are
led to

T T
/0 \\T<t>|riﬂ<t),mdts</o Vo1 % (F1(r) — 01 * Do) [ Ercorm dr>

s —+o00 w 2042
x | sup elcDeoln) Z sup sup/ <k,|w’C—x>

720 keZa\{0} w€eZ:N{0} zeR4 J —co
2
dC)

Db, =)

J (T,k, LI w)
]

where ¢ = ¢(s) € (0,1). Then, applying Proposition with |(57c)| and the Trace

Lemma with |(57a)| (see in Section the paragraph Estimate on NLTT for a
similar reasoning) yields

T
| IOt 5 (64 Kt
0

Remainder term. The arguments of [0, Section 5.1.3] allow us to obtain the estimate
T T )
/ IR Frw.00 dE S Kre? </ Vo1 % (Fr(T) = 01 % Go(T)) [ Fa.ens dT)
0

0
T / s
« Z 62(0 —DA(7)(n,n) <T>7 dr
0

n€eZ4\{0}

84



where ¢ € (0,1). We conclude by applying Proposition with to obtain
T
| IRt S K127+ K,
0

Recap. We have shown that, if ¢ is a solution of |(10a)H(10b)| satisfying |(57a)H(57¢)
on [0, 7], then

T
/ HQ(t)H%_-)\(t)J;S dt < 2+ &+ Koe? (@@[ + K3€2>+(£]+K3E2)K152+K162((o@[—i—KgEz).
0

Since in Theorem [5.8] the smallness assumption on the fluctuation of the media is
&1 < €2, this estimate can be rewritten as

T
/ o) [Fa s At S (1 + Ko(1+ K3)e? + K1 (1 + K3)52) 2.
0

Let us denote C the constant hidden in the symbol < of this estimate. Choosing
K3 > Cy and € < 1 so that

(K1 +K2)(1 +K3)82 <1

allows us to conclude that |(58c)| holds.

The general idea. Since the structure of the Vlasov-Wave equation is close to the
structure of the Vlasov-Poisson equation, we can perform the same estimates than in
[6]. The price to be paid is to replace terms of the form | o(t)|| = by

Vo1 (Fr(t) — o1 % Z,(8))l| £ - (59)

Then all the difficulty consists in controlling by means of [|o(t)||+. Since Propo-
sition [5.2] allows us to perform this kind of estimate, we have a complete proof of the
bootstrap statement Proposition by applying this strategy. We refer the reader
to the detailed analysis performed for the free space problem. The justification of the
necessary estimates relies on the understanding of the kernel p..

A Analysis of the Volterra equation

This Section is concerned with the analysis of the system of integral equations

o) = ) + | Kt = )pn(r) dr (60)

parametrized by k € X*@\ {0} (but note that the equations are uncoupled). The
unknowns are the functions ¢ — ¢y (t), while the source aj and the kernel K, are given.
We wish to establish fine estimates on the solutions, depending on decay assumptions on
the data, in the spirit of Lemma [3.1] and keeping track on the dependence with respect
to k. The statements on the linearized problem in Section [3.2] are consequences of the
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discussion below, by virtue of the Volterra equation satisfied by the fluctuation
of the macroscopic density p. We discuss precisely the differences between the usual
Vlasov equation where the potential is defined by a mere space-convolution ® = W x o
and the Vlasov-Wave model under consideration, and in particular we bring out the
role of the time kernel p.. In order to have such a unified presentation, some arguments
slightly differ from [28] [0, [7], and we justify in full details that it suffices to satisfy the
stability criterion on the imaginary axis.

A.1 Volterra system in analytic regularity
A.1.1 The Vlasov case

For the analysis of the standard Vlasov system, one is led to the following assumptions
on the data a and the kernel K:

(A:H1) ag(t)| < e MFE

(A:H2) Ki(t) = —W(k)|k[2t.4 (tk) 1o and | (n)| < Coe=olnl,

(A:LV) There exists x > 0 such that for any k& € X*?\ {0} and any & € R, we have
|7 (Kp)([Flw) — 1] > &

Remark A.1 Hypothesis|(A:H2) ensures that the following (rescaled) Laplace trans-
form of Ky makes sense for any w € C such that Re(w) > —Xg :

“+o00
LK (w0, k) = / eIkt je, (1) di.
0

The condition |(A:LV ) is expressed by means of the Fourier transform of Ky, which

amounts to impose the behavior of the Laplace transform on the imaginary axis.

Theorem A.2 Assume|(A:H1)H{(A:LV). We can find C', N > 0 such that, for any
ke X*\ {0} and t > 0, we have

loi(t)| < Cle VML,

Let us start with two preliminary statements.

Lemma A.3 Assume [(A:HI1){(A:LV) We can find A > 0 such that for any k €
X*@\ {0} and w € C, we have

if —A <Re(w) <A then | ZK(w, k) — 1| >

| =

Proof. The Laplace transform of Kj can be cast as

+o0 o - .
LK (s + i@ k) = / st =iBIbl (7 (k)| k222 th) )
0

— +o0 ok
= —W(k)/ L /4 (Wu)udu
0
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for real s,&. It follows that

\LK(0+id,k) — LE(s +io, k)| < W]

+o0 ok
/ (1—e) e (u) du
0 ||

“+o0o
Col[W|| 1 / 1 —e e %y du — 0.
0

s—0

IN

The convergence holds by virtue of the Lebesgue theorem, uniformly with respect to k
and @: for any € > 0 there exists d. > 0 such that for any s € R,

+o0
if |s| < 0. then Co||W|| 1 / 11— e*U|e MUy du < e.
0

Choosing € = /2, ensures that A = §,; 5 is suitable. [ |

Lemma A.4 Assume|(A:H1)H{(A:LV). For any k € X*¢\ {0}, the open set

Q={weC, A<Re(w)}
contains at most a countable set of zeroes of the function w — LK (w,k) — 1.

Proof. By holomorphy under the integral, the function w — £ K (w, k) is holomor-
phic on the open set
U={weC, Re(w)>—-Xo}.

Then the uniqueness theorem for analytic functions tells us that the zeroes of w +—
ZK(w,k) — 1 are isolated. |
We turn to the proof of Theorem

Proof. Let k € X*¢\ {0}, We introduce
o) = o)X M0, A(t) = ar®)eM M KR () = Ky (t)eX M5

where we choose X' such that 0 < X' < min(\, A\g, A), with A defined as in Lemma
For any t > 0, we get

Ok (t) = Ax(t) + Kil x ox(t).
Step 1. We show that

19811220 < = 14ell 2can
Indeed, Gronwall allows us to find C'(k) > 0 such that

|6k ()] S “.

(The constant hidden in the < symbol depends on k.) For p € R, we introduce the
functions

Oru(t) = Moty Apu(t) = la(t) KR (1) = e MUE(D).

We get
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Let us Fourier-transform this relation, with u < —C(k)/|k|; for any @ € R, we obtain

(1= Z(KL)@)] 7 (61,)(@) = F(Ar,)(@).

Observe that
T (KR ) (@) = LK(=N — p+id/|k| k).
Let us set
Nj, = {& € R such that there exists s > A verifying LK (s +iw/|k|, k) = 1}.
We deduce that, for 4 < —C(k)/|k| and @ € R\ N,
T (Akp) (@)

1—ZK(-N—p+iw/|kl k)
Let vs(t) = exp(—dt2/2), wit § > 0. We write

T (k) (@) =

T (Apyp) ()
1-ZLK(=N—pu+i-/|klk)
The left hand side makes sense for any p € R and it is analytic with respect to p.
The third term in the equality makes sense provided p < min(A\g — N, A — X\) and
@ € R\ N, and it is analytic with respect to p on an open set that contains the
half-line {z < min(A\g — A, A — X)}. The second term is defined for p < —C(k)/|k| and
the equalities hold when this constraint on g is fulfilled. The uniqueness theorem for
analytic functions tells us that the equality still holds for y < min(Ag — M, A — X’). In
particular, with © = 0, we obtain, for any @ € R\ Ny

o F (AR ()
F(d76)(@) = “ RN +i- kLK)

By Lemma we know that Ny, is negligible. Thus taking the L? norm of the equality
leads to

F(Or,u15)(©0) = F (D) * F (75) (@) =

* T (75) (@)

* F (75) (@)

| Akllr2(a 2
Iosllzzan < == 752 IF 00 gy = 14wl zacan,

where the first inequality relies on Lemma with X < A. Finally, since ¢ps

converges monotonically to ¢ as § — 0, Beppo-Lévi’s theorem leads to
2
Pkl z2(ary < ;HAkHLQ(dt)-

Step 2. We go back to the equation satisfied by ¢ and we estimate the sup-norm:
Igrllree < 1wl zoo + (1B 2 [l dkll 2

2
< [[Akllze + ;HKIgHLQHAkHL?-

By the sup-norm of Aj is bounded, uniformly with respect to k, while the
L?norm of Aj, behaves like 1/|k|*/2. The expression of K}, tells us that its L?-norm
behaves like |k|'/2. Therefore, the product of the L?-norm of Aj and K9 is bounded
uniformly with respect to k. (This estimate is particularly crucial for the case X*¢ = R?
since an estimate of the order of 1/|k| would compromise the proof.) [ ]
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Remark A.5 For the analysis of the linearized Landau damping, this L° estimate on
ok is a crucial ingredient. Note that it is obtained as a consequence of an intermediate
estimate with the L?-norm, that can be recast as

e 20 |k|t 2 1 e 2) k|t 2
| Mampas 5 [ MR

When studying the non-linear problem, this L? estimate becomes the key argument.
Changing ay(t) into ar(t)lo<i<T, we can equally obtain

T ook LT ovik
| Faorar< 5 [F e a0
0 k= Jo
Similarly, with (k) = (1+k)'/2, replacing ¢i(t) by eX* dp(t) and Ap(t) by X Ay (t),

leads to - -
! 1 /
/0 2V (R HRID | (1)[2 dt < f#/o 2V (R +ID) g, (1)]2 di.

Since (k,tk) S (k) + |k|t < (k,tk), it becomes

T T
/ €2>‘,<k’tk>|g0k(t)‘2 dt < 02/ 62/\/<k,tk)|ak(t)|2 dt.
0 0

When discussing the Landau damping in finite regularity, we shall see that a polynomial
weight (that means a Sobolev correction) can be incorporated in the estimate

T T
/ <k tk)Za 2N (k,tk) |§0 ( )‘th < 02/ <k tk>2a 2N (k,tk) |a ( )’2dt.
0 0

Eventually, in order to obtain results in Gevrey-norms, it is relevant to consider frac-
tional exponential weights as well:

T T
/ <k‘ tk,>20 2N (k,tk)® |§0 ( )|2 dt < 02/ <k‘,tk>2062)\/<k’tk>5|ak(t)|2 dt
0 0

with 0 < s < 1. The proof is quite technical, and we refer the reader to [6)] for further
details on this framework.

A.1.2 The Vlasov-Wave case
Now we investigate with following assumptions on the data a and the kernel K :

(A:H1b) |a(t)| < ae kI

t
(AsH2b) Ki(t) = 03Bk | pelt = 7)redl{rk) dripso and |&n)| < Coe ™00,
0

(A:LW) There exists £ > 0 such that for any k € X*@\ {0} and any & € R

|7 (Kk)([k|0) = 1] = &,

(A:a)  supp(pc) C [0, R.] and ||pc||r~ < 400,
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(A:b)  |51(k)| < Cre Mkl

Remark A.6 For the Viasov-Wave problem, with p. defined as in holds
under assumption [(H1){(H2), see Lemma (2.1, With[(A:H2b)| and [(A:a)| we infer

the following estimate

| K5(8)] < CoRellpell o [51.(k) [* k[Pl Fe gl e~ ol

and ensures that provided Ay is large enough, |51(k)|?|k|2e kI Be is uniformiy
bounded with respect to k, which has to be compared to . In particular, we can
again introduce the (rescaled) Laplace transform of Ky, for w € C such that Re(w) >
—)\0.'
+oo
LK (w, k) = / eIkt je, (1) di.
0
We have
LK(w, k) = Lpe(w, k) LK (w, k),

where K relies on the space-convolution only and has the same properties as the kernel
of the Vlasov case.

Remark A.7 Note that the rescaling of the Laplace transform still appears through
the equilibrium .# but the kernel K also involves p., which does not have such a
homogeneity property. It induces some difficulties for the analysis.

Theorem A.8 Assume|(A:H1b)H(A:b). Then, there exists C', N > 0 such that for
any k € X*4\ {0} and any t > 0, we have

loi(t)| < Cle VML,

We start by discussing the zeroes of w — LK (w, k) — 1.

Lemma A.9 Assume[(A:HIb){(A:LW). We can find A > 0 such that for any k €
X*@\ {0} and w € C, we have

if —A <Re(w) <A then | XK (w, k) — 1] > g

Proof. With s, € R and w = s + i@, the Laplace transform of K} can be cast as

ZLK(s+iw, k) = </+OO e~wIkltp (1) dt)
0

+oo » P
x < / ¢Skl =@k \ &) (B) |2 k|t () dt)
0

+o0
— (/ e~wIklEp (1) dt)
0

+o0 ok
X |81(k)|2/ e e A (u)udu .
0 L4
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It follows that
| LK (0+iw, k) — LK(s+id, k)|

+oo +oo
< Collon |2 </ ue™ou du> </ \1 - e—slklt] Ipe(t)] dt)
0 0

+o0
+Collpell 2 |12 ( / 11— et e o du> 0
0

s—0

(61)

by virtue of the Lebesgue theorem. Notice that the second term converges to 0 uni-
formly with respect to & and k, but for the first term, it is not clear that the convergence
remains uniform with respect to & (it is uniform with respect to @). In order to treat
this difficulty, we observe that for any w € C, Re(w) > =\ > — )¢, we have

“+o00 “+o00
].,S’K(w,k)| < |31(k)’2 </ 6)\’|k|t|pc(t)’dt> (/ ue*(/\o*)\/)u du)
0 0

—+o00
181 (k) 2V e g o / we Gy ) g
0 |k| =00

when ) < A\g. The convergence holds uniformly with respect to w. Thus, it suffices to
consider for k in a bounded subset of X*¢\ {0}. When X*¢\ {0} = Z¢\ {0}, such
a subset contains a finite number of elements, and the convergence is therefore
uniform with respect to k. The case X*@\ {0} = R?\ {0} is more delicate. Let us
introduce the function

IN

+oo
g:(s,T)ERxR+»—>/ ‘1—6_57t
0

[pe(t)] dt.

By virtue of the Lebesgue theorem this function is continuous, and thus uniformly
continuous over compact sets in R x R;. Hence, for any |k| < A < oo, we have

uniformly with respect to k& (but the convergence depends on A). This ends the proof.
|
Lemma A.10 For any k € X*\ {0}, the open set
Q= {w € C such that A < Re(w)}

contains at most a countable set of zeroes of w— LK(w, k) — 1.

Proof. By holomorphy under the integral, which uses Remark the function
w— LK (w, k) is holomorphic on the open set

{w € C such that Re(w) > —Ao}.

The uniqueness theorem for analytic functions then tells us that the zeroes of w —
ZK(w, k) — 1 are isolated. |
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Proof of Theorem Lemma and together with Remark allow us
to reproduce the arguments of Section In particular the behavior of the kernel

observed in Remark [A-6] permits us to establish in the second step of the proof that
the constant C’ can be defined independently of k. [

A.2 Volterra system in finite regularity
A.2.1 The Vlasov case
The assumptions on a and K become
(A:H3) [ax(t)] < a[k[t)™™,
(AsHA) Ky (t) = =W (k) k"t 4 (th)1iz0 et .4 (n)] < Coln) ™™,
(A:Lv) There exists £ > 0 such that for any k € X*@\ {0} and any & € R
|7 (Kk) (k@) = 1] = &

We remind the reader that (k) is a shorthand notation for v/1 + k2, k being a scalar
or a vector.

Remark A.11 By|(A:H}) the (rescaled) Laplace transform Kj

“+oo
LK (w, k) = / ekt jp () dt
0

is well defined for any w € C such that Re(w) > 0.

Theorem A.12 Let m, = min(m — 1,mg — 3). There exists C > 0 such that for any
ke X*\ {0} and t > 0, we have

lor(t)] < C(|k[t) ™.

Like in the analytic framework, we need to discuss the location of the zeroes of the
function w — ZK(w, k) — 1.

Lemma A.13 Assume [(A:H3){(A:Lv), We can find A > 0 such that for any k €
X*@\ {0} and any w € C,

if 0 < Re(w) <A, then | LK (w, k) — 1| >

| =

Lemma A.14 For any k € X*\ {0}, the open set
Q= {w € C such that A < Re(w)}

contains at most a countable set of zeroes of w— L K(w, k) — 1.

The proof is completely similar to the analytic case. However, we now need an addi-
tional claim.
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Lemma A.15 The following properties hold:
(i) If B < m, then the function t — (t|k|)Pax(t) bounded uniformly with respect to k
and t;
(ii) If B <m — 1, then the function t — (t|k|)Pax(t) is square integrable and
1

¢~ kD antt)], < =

(i) If B < mg — 2, then the function t — (t|k|)°Ky(t) is square integrable and

[t~ k) K o)

SRVALLE

2~

(i) For pn < 0, let Klg,u(t) = Kp(t)e'Ht 5o, If B < mg — 3, then the function
weR— |k|f88g9’(K,gu)(d)) is bounded uniformly with respect to k and p. To be
more specific we have

—+00
(1K1°05.7 (KR,)(@)] < Col Wl / WP () ™™ du < +o0.
0

Proof. The results follow by direct computation. [ |

We turn to the proof of Theorem

Proof of Theorem Pick k € X*®\ {0} and let
For any t > 0, we have
o1 (t) = ap(t) + Kj * ¢ (t).

Step 1. We show that, for any § € [0, min(m — 1,mg — 3)] NN (we start by dealing
with integer regularity exponents, the extension to real exponents follows by standard
interpolation arguments), we have

|t = k7o)

oy S OB [t (t8)an (1)

By Gronwall lemma, we can find C'(k) > 0 such that
|or ()] Sp P
(with an evaluation constant depending on k). For p € R, let
Gep(t) = e"Migp(t),  apu(t) = e Mag(t), KR () = e"FIK(1).
We get

L2(dt)

d)k,u(t) = ak,u(t) + Kl(c),u * ¢k:,,u(t)
With p < —C(k)/|k|, we take the time-Fourier transform and we obtain, for any & € R,
F () (@) = F (an,) (@) + F (KR ) (@) F (6,) (@)

Moreover (still assuming u < —C(k)/|k|) ¢rp, arp et Klg,u all decay exponentially
fast, and thus F (¢r), F (g, et ﬁ(K,g’u) have the C*° regularity. Besides |(A:H3)
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and imply that aj and Kj decay polynomially fast, and thus .#(ay,) and
35(1(“) are of class C* for u < 0. We deduce that, for any 5 € Nand p < —C(k)/|k|

LT (1) (@) = B (ar) +Z< )aﬁ 17 (K,)(@)0.7 (61,) (&),
which can be recast as

1 - F(KD,)(@)] 0 (51 (@) = 87 () +Z ( ) 017 (KD, ()05 (61,) @),
We remark that
F (KR ,) (@) = LK (—p+id/|k], k).
Let
Ny = {@ € R such that there exists s > A verifying LK (s +iw/|k|, k) = 1}.
We conclude that, for any u < —C(k)/|k|, ® € R\ Ni and § € N,

07 (ar) (@) + Z <5> 057 F (KD, ) (@)L F (1) (@)

05T (f1) (@) = = LK (—p+io/[k], k)

We proceed by recursion over 3 to justify that for any g € [0, min(m — 1, mo — 3)], we
can find C' = C(f, k) that satisfies

¢ = k1 o)

< C(B,R) [t = {th) ar ()

L2(dt) L2(dt)
Initialisation. For any @ € R\ {Ny}, p < —C(k)/|k| and with § = 0, we get

F (ag,u) (@)
11— ZK(—p+io/lk|, k)

T (Gru)(@) =
Let vs(t) = exp(—dt2/2). We write

F(61,08) = F () * FOs)@) = = grrer s P s)(@).

The left hand side is well defined for any € R and is analytic with respect to p. The
right hand side is defined for 4 < 0 and any @ € R\ Ng; it is analytic with respect to
w1 on an open set that contains the half real line {z < 0}. Finally the mid-term makes
sense for yu < —C(k)/|k| and the equality holds when this constraint on y is fulfilled.
The uniqueness theorem for analytic functions implies that the left-hand-side and the
right-hand-side coincide for p < 0 :

Fbe0)@) = el 25 @)
- 1= ZK(—pi+i- /I K)
Owing to Lemma we know that Nj is a negligible set. Hence we can take the
L?-norm and we get, for —A < p < 0,

H k. (dt
||¢k,u%||L2(dt) < T)HJWJ)HLI dt) *HakuHL? (dt)>

the first inequality being a consequence of Lemma[A-T3] We let 11 go to 0: the Lebesgue
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theorem justifies that the inequality still holds for p = 0:

2
lorvsllL2(ary < ;”akHLQ(dt)'

Since ¢xys converges monotonically to ¢y as & — 0, the Beppo-Lévi theorem implies
2
Pkl z2(ary < ;H%HL?(dt)-
Recursion. Suppose # < min(m — 1, mg — 3) and that for any m € [0, 5 — 1] there

exists C'(m, k) such that
It [ k()] 2y < COmo ) (18 (k)™ ax(B)]| 2 ap) -
Since
(5.7 (0)) * F(15)(w) = 05 (F (dr,)  F (1)) (w) = B2 (Hr70) ()

we get,

BT (D) @) = (95T (@) 7 (35)(@)

B o A g B—3 g (70 i o
057 (aku) () + 2 ( O F (K ) ()L (Pr,) ()

_ e * 7 (3) (@)

The left hand side is well-defined for any p € R and it is analytic with respect to pu.
The right hand side is defined for 1 > 0 and any @ € R\ Ni ; it is analytic with
respect to pon an open set that contains the half-line {x < 0}. The full justification
of this assertion uses the recursion assumption : we know that t +— [¢t|™ ¢ (t) lies in L?
for p < 0, thus t — [t|™ ¢y, (t) belongs to L' and 927 (¢y,,) is defined everywhere
and depends analytically on u. However, for p = 0 this quantity is defined almost
everywhere only. Finally, the mid-term makes sense for u < —C(k)/|k| and the two
equalities holds when this constraint on p is fulfilled. The analytic uniqueness theorem
shows that the left-hand-side and the right-hand-side are actually equal for any p < 0.
Since N}, is negligible, we keep the equality of the L?-norms. Therefore, for —A < 1 < 0
we get,

027 (#45)] ., )

< % Hagy(akw)

£2(dw) |’y(75)||L1(dw)

5-1
2 (Rl i

Lz(dw)) 17 (36 21 )

= 2|82 (x|

L2(dw)

B—1
PR ol R N L
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Multiplying by |k|?, we apply Lemma (iv) and we obtain

167027 (61.75)] < 2 |wPassar,)

L2(dw) L2(dw)

51
+% z% |05 F U e 07 610
p

Cste

i O] .

IN

2w o7 (e

L2(dw) dw)’

which can be cast as

27 i e ek g0

= Ht > [tk s (t)]

Ht - ‘tk’ﬁﬁbk,u(t)%i(t)‘

L2(dt) - L2(dt) L2(dw)

We now let p, and next 4, both tend to 0 and we arrive at

Cste B 1

L2(dt) +

[t 1ek170n() 2 e terlPanco)]

S ||t ttkP ()]

L2(dt) L2(dt)

j=0

< CB,R) ||t (th) (o)

L2(dt)

Step 2. We go back to the equation satisfied by ¢; we use the previous step to deduce
the L>° estimate on (¢ )x. To this end, observe that

+oo
(tlK)) on(t) = (t\kl)ﬁak(t)Jr/o [(t = 7)Ik| + 7[k[)7 KQ(t = 7)¢x(7) dT

B 8 +oo ) ) o
= (kD) ar(t) + > <]> /0 k[P (¢ — 1) T KRt = 7) k[T gp(7) dT

j=0
It yields

o kP00

< ’t > [tk [P a(t) ‘ Z < ) Ht = |tk PR (¢ )HLQ(dt) Ht — Itklj%(t)‘ L2(an
5

< ’t = |tk|Pax(t) ‘Lw(dt) +2 Ht ~ ‘tk,ﬁ_jK’g(t)‘ L2(db) Ht = (k) ax(?) L2(dt)
=0

Like in the analytic framework, we check that this estimate does not depend on k. We
combine the case f = 0 and = min(m — 1,mg — 3) and we conclude that

|k (t)] < C(tk)mintn—Limo=3),
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Remark A.16 As mentioned in the analytic case, the L*° estimate of @ is the main
argument for proving the linearized Landau damping, but it crucially relies on the
preliminary L* estimate. The latter can be rewritten (with m, = min(m — 1,my — 3))

+00 +00
| 0P de < ) [ R o) at
0 0

This estimate becomes the main ingredient for studying the non linear problem. Modi-
fying ax(t) into ar(t)lo<i<T, we can equally obtain

T T
/ |tk ™ | (1) |2 dt < C/(my, n)/ (tE)2™ |ay,(2)? dt.
0 0

Similarly, replacing ¢i(t) by |k|V2(k)or(t) and ay(t) by |k|Y/?(k)ay(t) leads to

T T
‘AMMM+MWmeWwSCA\W%H#Mmeth

Since (k,tk) < (k) + |kt < (k,tk), it yields

T T
/\M%wWMMNW&SC/\M%wWW%WPﬁ
0 0

This estimate is at the heart of the analysis of the non linear damping.

A.2.2 The Vlasov-Wave case
Now, we assume

(A:H3Db) |ak(t)| < altk)™™,
t — —
(A:H4b) K (t) = |31(1€)|2|kl2/ Pe(t — 7)7M (Tk) dT11>0 and [.# ()| < Co(n)~™°,
0
(A:Lvw) There exists x > 0 such that for any k € X*@\ {0} and any & € R

|7 Ku(Kl@) - 1] > r,

+oo
(A:c)  For any « € [0, mg], we have / (t)¥pe(t)| dt < 400 and ||pe||pe < 400,
0
(Axd)  [G1(K)] S (k)27
Remark A.17 Assumption |(A:d)| is the analog in finite regularity of [(A:b). We

point out however that in this framework p. is not necessarily supposed to be compactly
supported: a slow decay, related to the reqularity of the equilibrium state A, is enough.
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Remark A.18 Like for the analytic case, the assumptions |(A:H4b), [(A:c) and
ensures that the behavior of the kernel Kj remains close to the pure Viasov
case; namely, we have

K1) < Colan (k) /K[ / e[t = TI{(t — 7)) dr
0
t/2 t
< Colal(k)l2!kl2t</0 pe(PI((t — 7)) ™ dr + /t/2|pc<f>|df)
< Cole1 (k) |k|*

t/2 t
X <<tk‘/2>_'mU /0 lpe(T)[dT + (th/2)~™° /t B lpe(T)[(tk/2)™ dT)

t

t/2
< Colon (k)P Ikf2tek) </0 per e | |pc<f>|<fk>m0d7>.

Since (Tk)™ S 14 (7|k])™ < (1k)™0, we are led to

t/2 3 +0c0 +o0
/0 [pe(r) dr + /W\pcmw 0d7g</0 dr+ / pe(r)](7) ) ()™,

We conclude with ((A:d). As a matter of fact, the (rescaled) Laplace transform
of Ky, is well defined, for any w € C tel que Re(w) <0 :

+oo
LK (w, k) = / eIkt je, (1) di.
0

We remind the reader that
LK (w, k) = Lpe(w, k) LK (w, k),
with K similar to the pure Vlasov case.

Remark A.19 For the Viasov-Wave problem, the data ay is the sum of two contribu-
tions

ap(t) = fo(t, tk) — |i<?|2/0 Gr(r k)(t = 7)A((t = 7)k) dr

with ¢r defined from the solution of the free wave equation

~

61(t.0) = 51(k) [ 500k C) .

With|(H1)|, [(H2)| and|(H3), t — ¢1(t, k) is compactly supported and uniformly dom-
inated with respect to t and k. In particular, we get

lar ()] < alth)™™,

see Lemma[5.9 and its proof.
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Theorem A.20 Assume|(A:H3b)H(A:d). Let m, = min(m — 1, mo—3).Then, there
exists C > 0 such that for any k € X*¢\ {0} and any t > 0, we have

lor ()] < C(Jk|t) ™.

Let us collect the necessary preliminary statements about the locations of the zeroes
of ZK(w, k) — 1.

Lemma A.21 Assume|(A:H3b)H(A:d). There exists A > 0 such that, for any k €
X*@\ {0} and w € C,

if 0 < Re(w) <A, then | LK (w, k) — 1] >

N =

Proof. The proof is an adaptation of the analytic case, where, again, we need to pay
attention that the obtained constant A does not depend on k. [ |

Lemma A.22 For any k € X*\ {0}, the open set
Q= {w € C such that A < Re(w)}

contains at most a countable set of zeroes of w— L K(w, k) — 1.

Lemma A.23 The following assertions hold.

(i) If B < m, then the function t — (t|k|)Pay(t) is bounded uniformly with respect to
k and t;

(i) If B < m — 1, then the function t — (t|k|)Pax(t) is square integrable and

1

[~ kD an®)], <~

(iii) If B < mg — 2, then the function t — (t|k|)?Ky(t) is square integrable and

|t = k) K t)

SRVALIE

2"

(iv) For p < 0, let K,gu(t) = Kp(t)eMH 159, If B < mg — 3, then the function
weR— ]k\‘a@gf(K,gu)(@) is bounded uniformly with respect to k and j1; namely

+00
167927 (K0,)(@)| < Clor.p0) / W ()™ du < foo.
0

Proof. The statement follows by direct evaluation. As a matter of fact, properties
(7i7) and (iv) on the kernel K}, are consequences of the obervations in Remark [ |

Having these statements at hand we can repeat the arguments of the Vlasov case.
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B Penrose criterion

For the usual Vlasov equation, a “practical ” condition on the equilibrium .#, the
Penrose criterion, see [28, Condition (c) in Proposition 2.1], can be exhibited to ensure
the linearized stability. Hence, by following a similar approach, we expect to find a
criterion with the same flavor on the equilibrium .# and the coefficients of the problem,
for the Vlasov-Wave system.

B.1 Towards a Landau-Penrose criterion

The stability criterion is absolutely crucial for justifying the Landau damping;
however, it is not easy to check it in practice. We already know that a large wave
speed guarantees the damping, see Proposition[3.4] For the Vlasov equation, a practical
criterion, referred to as the Penrose criterion can be devised: the real and imaginary
parts of ZK decouple which leads to a simple way of checking that .Z K remains far
from 1. We will discuss a similar criterion for the Vlasov-Wave problem; however the
real/imaginary splitting is not that simple, due to the role of the convolution with
respect to time with p.. As a preliminary, we detail why it suffices to check that
Z(w, k) does not reach 1 on the imaginary axis.

B.1.1 The Vlasov case

Throughout this Section, we assume that [(A:H4)| since it covers more general cases
than [(A:F12)

Proposition B.1 (Periodic framework) Let X*\ {0} = Z?\ {0}. Suppose that
LK (i@, k) # 1 for any k € Z¢\ {0} and @ € R. Then, there exists k > 0 such that

| LK (i0, k) — 1| > K
holds for any k € Z*\ {0} and © € R
Proof. It suffices to consider a finite set of k € Z?\ {0} since

LK (i, k)| < \W(k:)\CO/ W) oudy —s 0.
0 |k|—+o00
This asymptotic behavior follows from the Riemann-Lebesgue Lemma; it is uniform
with respect to @. Since u — . (ku/|k|)u lies in L', the Riemann-Lebesgue Lemma

also implies
+o0 o/ k
/ /4 (u) udu
0 k|

uniformly with respect to k since k/|k| takes a finite number of values when k spans
73\ {0}. This observation equally permits us to restrict to a compact set for @ € R.
The Lebesgue Theorem shows that @ € R — Z K (iw, k) is continuous, which allows
to conclude. |

— 0
|&| =400

LK (i, k)| < [W]|ps
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Proposition B.2 (Free space problem) Let X*\ {0} = R?\ {0}. Suppose that
LK (i, k) # 1 for any k € R\ {0} and @ € R. Moreover, suppose that

—W(O) /O+oo e*i‘:’“///l\(g‘u)u du # 1,

for any ¢ € S*! and any & € R. Then, there exists k > 0 such that
| LK (iw, k) = 1] = &,
holds for any k € Z4\ {0} and & € R

Remark B.3 With X*\{0} = RN\ {0}, k can be arbitrarily close to 0, which motivates
the additional condition. It would be tempting to write £ K (iw,0) # 1, but this quantity
s not well defined. Thus, we obtain the condition by letting k go to 0, for fized &: with
(k”)neN converging to 0 and (kp/|kn|)n converging to a certain ¢ € ™1, we have

—~ too
lim ZK(iw, k) = —W(O)/ e " (Cu)udu.
0

n—oo

Proof. The Riemann-Lebesgue Lemma yields
LK. 0) <[ FRIC [ () " oudu — 0,
0 k[ =00

uniformly with respect to @. Hence we can restrict to a bounded subset of k € R\ {0}.
Like in the previous proof, we obtain

[ e (g
e "t (u) udu
0 ||

However, now, we cannot conclude directly that this convergence holds uniformly with
respect to k. In order to handle this difficulty we introduce the function

|- K (iv, k)| < [|W]| — 0.

|&| =400

too
g:(@0,0) eRx S / e " (Cu)udu.
0

We already know that, for any ¢ € S*1, we can find R¢ > 0 such that, for any © € R,
we have

o~ - 1
if 2] > Re then |1V]]1:]9(@, 0)| < 7.

By using the Lebesgue Theorem, we check that g is continuous. Actually, the continuity
with respect to ( is uniform with respect to @w. Indeed, this follows from the inequality

+o0 —~ —
9(@.6) = 9@, G) < [ [ A6 = AGaw)

which holds for any @ € R and (1, € S¥!. The integrand is a continuous function
of the variable (, that can be dominated independently of { by an integrable function.
Since S~ is compact, by virtue of Heine’s theorem, we conclude that, for any ¢ > 0
there exists d. > 0 such that for any (i, ¢ € S? satisfying |1 — (| < 6. we have

/0+00 ‘//?\(Qlu) - ////\(Cgu)’ udu < e.
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From the covering S4~1 C Ucesa-1 B(C, 6c), we can extract a finite covering

Je
st c | B(¢i, 6.
i=1
Then let Re = max;—,.. j. Re,. For any @ € R, |©| > R, and any ( € St we get
- - N . 1 1
19 2al(@, )1 < W21 (19(@,€) — 9@, o)l + lo(@, Go)I) < W s + 7 < 5.
We have shown that £ K (i@, k) remains far from 1 for large enough @ € R, uniformly
with respect to k; to be specific, we have just found R > 0 such that, for any |©| > R
and any k € X%, we have | ZK (i@, k)| < ||W||11lg(@, k/|k])| < 1/2.
__ Therefore we can restrict to a compact set of @ € R. Since the function (@, k) —
W (k)g(@,k/|k|) is continuous R x R%\ {0}, for any compact set K C R x R\ {0}, we
have
inf | ZK(io,k)—1|>0.
(0,k)eK
We end the proof by arguing by contradiction. Suppose that

inf | LK@, k) — 1] =0.
(@,k) ERXRA {0}
Then, we can find a sequence (@, kn)nEN in R x R%\ {0} such that ZK (i@, k,) tends

to 1 as n — +oo. The previous step tells us that the sequence (d)n)n is bounded in

eN
R while (kn)n N tends to 0. Possibly at the price of extracting a subsequence, we can
suppose that

. kn

Wy — Woo kn, — 0, — — (oo
n—-+oo n—-+4oo ‘kn| n—-+4oo

By continuity, it yields
1= lim LK (i@, kn) = =W (0)g(@e0, (o)

n—-+o0o

which is known to differ form 1, a contradiction. [ |

B.1.2 The Vlasov-Wave case

We consider the set of assumptions [(A:H4b)| |(A:c)| |[(A:d)| which are more general
than [((A:H3b)| |[(A:a)] [(A:b)|

Remark B.4 In fact |(A:c) and|(A:d) can be slightly relaxed, for instance dealing
with p. € L'(dt) with o1,Vo, € L'(dx), which are enough to ensure that Ky is
integrable for k € X*¥\ {0}) and

LK (i, k) = |51 (k)2 ( /O T iy, () dt) < /0 T i 7 (’:‘u) du> .

102



Proposition B.5 (Periodic framework) Let X*\ {0} = Z4\ {0}. If LK (iw, k) #
1, for any k € Z¢\ {0} and any & € R, then there exists k > 0 such that

holds for any k € Z¢\ {0} and & € R.
Proof. The proof involves a few modifications compared to the Vlasov case. We can
restrict to a finite set of k € Z?\ {0} since

+o0
LK (i, k)| < |51(K)|1pell 12 Co / (W) udu — 0,
0 |k| =00

as a consequence of the Riemann-Lebesgue Lemma. The convergence holds uniformly

o~

with respect to @. Since u — . (ku/|k|)u is integrable, the Riemann-Lebesgue Lemma

also leads to
400 o/ k
/ e "t o (u) wdu
0 k|

The convergence holds uniformly with respect to k since k/|k| takes only a finite number
of values when k spans Z%\ {0}. We can equally restrict to a compact set for & € R.
With the Lebesgue Theorem, we conclude that © € R — Z K (i, k) is continuous. ®

LK (i, k)] < llot [ llpell 1 —

|&]—+o0

Proposition B.6 (Free space problem) Let X*@\ {0} = R%\ {0}. Suppose that
LK (i, k) # 1 for any k € R\ {0} and & € R. Moreover suppose that

—+o00 —+o00 P
31(0)]? ( [ dt) ( / e—““//z(cwudu) A1,

holds for any ¢ € S* and any & € R. Then, there exists k> 0 such that
| LK (iw, k) — 1| > K
holds for any k € R4\ {0} and any & € R.

Proof. The half convolution with p. requires some adaptations from the Vlasov case.
The Riemann-Lebesgue Lemma yields

+00
| LK (i, k)| < !31(k)\2llpcllLlCo/ (W)™ udu —
0 |k| =00

where the convergence holds uniformly with respect to @. Thus we can restrict to a
bounded set of & € R%\ {0}. Next, we obtain

400 o/ k
e U o <u> wdu
/0 k|

That the convergence holds uniformly with respect to k is not direct, but we can
reproduce the arguments of the Vlasov case to justify this property. It allows us to
restrict to a compact set of @ € R. The application

(@, k) — |51(k)|? (/OJFOO e~ @lklty (1) dt) </O+OO em“u////\(élqo du)
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is continuous over R x R%\ {0}. Therefore, for any compact set K C R x R%\ {0}, we
get

inf | ZK(iw,k)—1|>0.

(@0,k)eK

Suppose that

inf |.ZK(©,k) — 1] = 0.

(@,k)eERxR4\{0}

Then, we can find a sequence (@y, kn),,  in R x R4\ {0} such that LK (&, ky) — 1

as n — +o0o. We infer that (@”)nEN is bounded in R while (k)
Extracting a subsequence if necessary, we can suppose that

N - kn,
Wn 7 Woo kn, ?
n—-+oo n—-+oo |k ’ n—>+oo

neny converges to 0.

(oo

By continuity, we are led to

+Cx> +w .~ —
1= lim ZK(iin, kn) = |61(0) (/ pe(t) dt) (/ e "tu ((ou) du) ,
n—-+00 0 0

which is known to be different from 1, a contradiction. [ |

B.2 Computations of Laplace transform for the Penrose
criterion

In order to find an expression for the stability criterion, we compute .Z.# (wl|k|, k) on
the imaginary axis: namely, with 8 € R, we consider

HBIKLE) = lim LA (0 + i), k)
= polai(0)P lim Lpe((c+iB)K]) x lim LKA (k) (0 +i8) k).

a>0 a>0

We write, for Re(w) > 0,
LA (wk|, k) = polai (k) Lpe(wlk]) x L (kLM (kt))(w]k]).

There are several useful expressions for this quantity

L(|k2tM (kt)) (w) = /Ooo|kt]T/[\(kt)e°"t|k|dt

= /000 S]\/J(’k’s)e_ws/kl ds

- / M (v 15V e~ws/Ikl 4y ds.
Rd

We use the change of variable v = r% + vy, with v; -k =0, so that

k od o
k tM kt)) / / / r——i—m_ dv| |i—e s e~ws/lIkl qr ds.
et ( M gy o) e i
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Let us set .
rr—>uk/|k|(r)—/ M( k +’UJ_)d’UJ_
vy k=0 ‘ |

We arrive at
L(|kPtM (kt)) / / s emes /Wy () drds. (62)

It yields

LK) (o + i), K) = —i/RM;c/k(T) (/Oweiwmsast) .

[

ra+i(r+5) r (r+ ) —ia
Next, the Laplace transform of p. can be determined by using the classical result [31
Formula (VI,2;13)]

6

Z (Lizosin(08))(w) = —5——5,

for Re(w) > 0.

For a > 0, f € R, we thus get

. 1 72()[* d¢
Zrella+ Bk = o /Rn (a+z|'ﬁ§§|k):||2+c2|4|2'

Since o9 is radially symmetric, its Fourier transform is radially symmetric too and we
can write

’ sn— 1‘ (7,/>n71’&2(74/)’2 dr’

(2m)" ( 2= BAEP + r'? + 2iaplk[>

Lpe((o+if)|k]) =

In order to find the expression of the Laplace transform on the imaginary axis, we shall
need the following claims.

Lemma B.7 (Plemelj formula) Let f : R — R be in L' NWH°(R). Then, we have

lim /(@)

A=0 Jgp x+ K — A

dz =P.V. /R m dz +irf(—kK).

We refer the reader for instance to [I4, Example 5.2]. An adaptation of the proof leads
to the following useful statement.

Lemma B.8 Letn > 3. Let f: R — R be Schwartz class. We have

i [0 by, /OO ) g s K2 f ().
0 2

A0 Jo 12— K2 40N+ N2 r2 — g2
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Proof. Let us denote by I()\) the quantity under consideration and f(r) = g(r?); with

the change of variable u = r? we get

) = 1/+oo un/2flg<u) du
2 )0 u—rZHIN+AZ

We adapt the computations that lead to Plemelj’s formula. Let v(u) = v/ g(u). Tt
is crucial to remark that

7(0) =0, 7 € LP((0,00)) for some p < 2. (63)

(At worst, 7/ (u) has the same singularity as 1/y/u as u — 0.) We start with

1 [t v(u) 2 2 iA [T v(w)
IO = - - _n .
() 2/0 (=Rt aTE g TR T A du 2/0 (=24 a2 12 U

Setting v = u — k% + A%, and v/\ = w, the second term recasts as

i/+°° v+ K2 =A%) dv i/+°° yYAw + K2 — \2)

_5 —K24)\2 (U/)\)2—|—1 T __5 _52/)\_‘_)\ ’LU2+1

9 7r if K #0,
V(H)X{ /2 if k=0,

dw

which tends to

as A — 0. Since v(0) = 0 we can actually use a single formula. Similarly, we consider

+o00 2 )\2
T\ = / WX o,
ZK2422 v2 4+ A

We start with the case x = 0. Owing to (63)] we have 0 < ~v(u) = [;'7/(y)dy <
17 || e |u|'~1/P so that the function v — ”Z}# lies in L'((0,00)). It allows us to apply

the Lebesgue theorem and to conclude that

+oo R W [e’¢)
77(1) A )vdv —/ 7(v) dwv.
0

v

lim

A—0 A2 1)2 =+ AQ

Next, let x # 0. Since A is intended to tend to 0, we can consider x? > A\? > 0
Given 0 < § < k2 — A2, we split into 2 parts

+4

J(\) :/||>6...dv+/_5 wodv = JO(N) + J5(N).

First, we show that Js(\) tends to 0 as 6 — 0, uniformly with respect to A. Indeed,

since v MLXZ is odd, we have

[N =

+6 2 NN (2 42
[,
-5 v? + A2

e [ -2
T | s o[7e 550

IN



By dominated convergence, we get

2
lim J°(\) = / 1o, pICRE
A—0 |v|>68 - v

/4vw+n%—vm%dv+/*ww+m%—vm%d
- g

12 v v

400 2
+/ Vo +r7)

v

2 v

The same reasoning shows that this quantity admits a limit as ¢ goes 0, that we write
with the shorthand notation

o] 2
lim Jim 20) =Py, [ 20D G,

6—0A—0 _ K2 v
|

We now come back to the explicit computation of .Z.# (wl|k|, k) on the imaginary
axis. On the one hand, we get

M;/\k\(r)

iig%)z(w?tM(kt))((a+w)yk|,k) = —P.v./IR 4B

a>0

dr —im i (—5).

For the latter, we use Lemma [B.7], which eventually leads to

lim Zp.((a +iB)|k)

a>0 sr—1 e} - =~ (]2 , Bk n—2 5k 2
_ ‘(27r)”| (P.v,/o (') lmdr 202(| ! I) ’ 2(ICI)‘ )

Remark B.9 In the case § = 0 a direct application of the dominated convergence
theorem allows us to obtain

tim L0 (elk) = oo [ 19O g = 5

2
a>0 (27'(')" ¢

Therefore, we obtain the following expression for .Z.# (if|k|, k) which identifies the
real and imaginary parts

Sn 1
z%www>=&%ﬂ(wwm+MWMM)
_ _ Hie/ 11 (7) PR N 0
2, |Bk|N"=2 . /|Bk|\|2
+27T?Mk/|k\(_6) X (7) ‘02(7)‘ }
. 1 /|BKk|Nn=2 | /|Bk|\ 2 1311 ()
S (Bk|, k) - 7Tp0|01(k:)|2{202(|c|) ]@(M)\ xP.V./]Rmdr
2
ol 0) <P ) 3%$(%M“W}
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(Note that the formula applies for § = 0 as well.) It leads to the Penrose stability
criterion, hereafter denoted (P):

If
Bk[\m=2 | /|Bk|\ 2 Hre/ 11 (7)
2z (5 () <y [ B oy
y P [ |
_Mk/lkl(ﬂ) ><P.V./O (r") —02|r’|2—52]k|2 dr’,
then

TL 1 / (7") [e’s) -~ N2
2 IS o/ |k / mne1 o2(r)] ,
— P.V. =~ d P.V. — = 7. d
ol (k)| <w>n{ V/R rop PV L G e O

= () (B 1

C

When X? = R?, the Penrose criterion (P) has to be completed with the following
criterion (hereafter denoted (P?)):

Ha(r)

if 41, (8) = 0 then —py \81(0)|2P.V./ 3 dr # 1,

RT—
(for all w € S9).

We conclude that, when (P) (resp. (P) and (P’)) is satisfied, then holds,
which, in turn, implies that the decay properties stated for the linearized problem in
Section [3] hold. This criterion is much more involved than the Penrose criterion for the
Vlasov equation, because the memory term p. completely changes the evaluation of the
symbol Z.%# and does not keep a simple separation between the real and imaginary
parts.

Remark B.10 Let us rescale the problem as in [9]: roughly speaking, it amounts to
replace the wave equation by

O2p — A = —cPog o1 * p.

Letting ¢ run to oo, the problem looks like the Viasov equation where the self-consistent
potential is defined by the convolution —koy * o1 x p. According to [28], the stability
criterion for this limiting problem reads

Foe iy (7)
if g (B) = 0, then — por|on(k) 2Pv/ k/ikl dr £ 1,

which corresponds to the limit ¢ — oo in the rescaled version of (P). In particular,
mind the minus sign in front of the coefficient poloi(k)|?: it makes the situation very
similar to those of the attractive Viasov-system.

B.3 Stable and unstable states

The criterion (P) is a bit ugly and not that practical. Nevertheless, some relevant
information can be extracted from the formula, showing again the similarity with the
attractive Vlasov-Poisson equation.
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Proposition B.11 Let X? = R? with d > 3. Let .# be a spatially homogeneous
and radially symmetric equilibrium. Then, there exists a threshold for the wave speed
co(A ,01,09) > 0 such that for any 0 < ¢ < co( M ,01,02), A in an unstable equilib-
rium state.

Proof. We find k and 8 such that £ (i8|k|,k) = 1. To this end, we use the fact
that Zpc(if|k|) belongs to R for f = 0 and the radial symmetry of .# which implies
that £ (|k|*tM (tk))(iB|k|, k) is real too when B = 0:

K11 ()
LA, k) = —po |51(k)[? <P.V./ k”ﬁ'dr) c% (64)
R
Moreover, the symmetry of .# (and the condition on the dimension d, see Remark
below) also ensures (except for .#Z = 0, but 0 is obviously a stable state)

- (P.V./ Wdr) > 0.
R T

Now let us pick a vector kg such that 1 (ko) # 0. As far as ¢ is small enough, we have
LA (0,kg) > 1. Next,
LA (0, \kg) — 0

A—+00
and the continuity of A € R +— 71(Akg) (observe that Ako/|\ko| does not depend on A
and thus only 71 depends on A in the expression of £ 7 (0, \kg)), allow us to exhibit
a Ao € R such that 2.2 (0, \oko) = 1. [ |

Remark B.12 The condition d > 3 ensures that all marginals of a non negative
radially symmetric function 4 are non increasing function of |v|, see [28, Remark 2.2],

which yields
i 1 (T
- <P.V./ k/|k|()dr> > 0. (65)
R r

When d = 1 or d = 2 this does not hold in full generality. Nevertheless, Proposi-

tion still holds provided |(65)| is fulfiilled.

Remark B.13 When X¢ = T?, the same proof shows that, for any spatially homoge-
neous and radially symmetric equilibrium, we can find some wave speed ¢ such that A
is unstable. However, since k € Z%, it is not clear that we can exhibit a non trivial
interval [0, co(.#)] such that instability occurs. To identify a threshold on c determin-
ing whether or not the stability criterion holds can be interpreted by means of Jeans’
criterion, a standard criterion for the Viasov-Poisson system, see [28, Proposition 2.1
& Remark 2.2]). To be more specific, let us consider a form function o1 defined on
R, the Fourier transform of which has a singularity at &€ = 0: typically 51(k) = |k|~
for some a > 1. Of course, such singular potential are beyond the analysis detailed
in this paper; we only use this assumption to establish a parallel with the usual Jeans’
criterion. Let agL) be the periodic potential defined on T¢ = (R/(2rLZ))?* by

o @)=Y o1(z+2nLk).
kezd
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Observing that agL)(k) = 01(k/L), |(64)| becomes

LHOK) = —po i <P.V. / Wdr) ~
R

_PO|k’2a r ?7

where L has a role similar to 1/c. In particular, for any spatially homogeneous equilib-
rium M , there exists a critical length Ly beyond which the equilibrium can be unstable,
this defines Jeans’ length.

Remark B.14 Denoting 4 = poM, with M being normalized, we can equally say
(with the same arguments) that, for any fized wave speed ¢ we can find a mass threshold
mo(M, c,01,02) > 0 such that for any po > mo(M,c,o01,02), A is unstable. Never-
theless we point out that, for ¢ fixed, the mass oo of the profile M is not the unique
quantity that governs the stability of A , as indicated by the following claim

Proposition B.15 Let .# be a spatially homogeneous equilibrium. We can find two
positive constants C; = Cy(c,01,02) and Cy = Co(c,01,02) such that

—

+oo
if, for any w € S, we have / u ’//l(uw)‘ du < Ci(c,01,02), then A is stable,
0

+oo
if there exists w € ST such that / uMl (uw) du > Ca(c, 01,02), then A is unstable.
0

This statement can be interpreted as follows. For fixed ¢, o1 and oy there always
exist stable spatially homogeneous equilibria with an arbitrarily large mass (resp. ki-
netic energy), and there always exist unstable spatially homogeneous equilibria with an
arbitrarily small mass (resp. kinetic energy). This comes from the fact that the con-
stant C7 and C5 in Proposition are left invariant by the rescaling M — M) (v) =
=24 (\v), while the associated mass (resp. kinetic energy) is invariant for the scal-
ing M — X (\v) (resp. M — X2,/ (\v)). These findings will be investigated on
numerical grounds in [18§].

Proof. The first part of the statement is a direct consequence of Proposition [3.4
which tells us that a given profile .# is stable provided c is large enough. The second
part of the statement is a direct consequence of Proposition [B:11] and it comes from
the formula

L(|k[PM (t))(0, k) = P.V./ i (") g /+OO w Ml (uw) du.
R r 0

C Analytic Cauchy theory for the Vlasov-Wave
system

In this Section, we go back to the Cauchy problem, addressed in the functional frame-
work of Section [f] We are going to justify Theorem [5.6l The discussion is based
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on general arguments presented in [24] 29, B0]. Throghout this section we suppose

(Hl)H(H3) and [(R2)]

C.1 Local analysis

We write the problem in the form

{8tg(tax7v) = N(g)(t,x,v)
g(O,.T,’U) - fQ(CE,’U)

where

N(g)(t,z,v) =Vorx (Fr+o1*%,) (t,x+tv)  (Vy, —t V) (A + g)(t, z,v),

o(t,x) = / g(t,z — tv,v) dv.
R4

We start with an abstract statement about the local existence of analytic solutions for

(66)

Theorem C.1 Let P > d/2 be an integer and let o > d/2. For any A4, fo € g]*;”"?l
with A\g < min(A1/(2Ra/c),2X1/(Sy)), there exists € > 0 such that, for any 0 < T < ¢
the mapping

t
D:g+—> <t — fo —i—/ N(g)(T)dT>
0
admits a fized point in the set B:)F‘O, made of functions (t,x,v) — g(t,x,v) such that

t

— ||g<t>||g¢,m1>

llgll ,xo := sup sup [1 —
Br" T 0ea<re \te[0.7(Ag—\)) T(A
is finite.

Remark C.2 The constraint on A9 comes from the fact that the proof uses Proposi-

tion[5.4 When Ao > min(\/(2Rz2/c),2X1/(So)), we can still conclude that ® admits

a fized point, which now lies in B?m()‘l/<2R2/c>’2>‘1/<so>). Up to choosing a smaller

Ao (or, equivalently, working with larger wave speeds c), we can still suppose that
Ao < min(A\1/(2Ra/c),2X1/(So0)) is satisfied. In what follows, we will always assume
implicitly this condition.

Remark C.3 The proof of this statement provides further information: there exists
R > 0 such that for any 0 < X\ < Xgand t € [0,T(Ag — X)), we have

Hg(t) - fOHg]f\DaU;l < R.

Before starting the proof, let us explain why it is somehow natural to deal with the
spaces B%O. First of all, remark that the operator A involves first order derivatives with

respect to space and velocity, and thus the mapping ® does not map Q;;O’J;l into itself,
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but has its range in gﬁ;"m with 0 < A < Ao, possibly arbitrarily close to Ag. For this
reason, we work instead with a space that involves all the norms Gy for A € (0, Ao).

However, Lemma suggests that [|N(g)(t )Hg“ﬂ blows up as A 7 Ao, and this

viewpoint is not sufficient. We should also take advantage of the time integration in
order to control this blow up. This leads to incorporate a suitable weight with respect

to time
t

T(Xo— )
and then to consider the supremum over ¢ € [0,7(A\g — A)). These norms are a bit

unusual, nevertheless the following claim shows that most of the analysis can be per-
formed in more natural functional spaces.

w(t)=1-—

Corollary C.4 Let P > d/2 be an integer and let o > d/2. For any A, fo € gAO’O !
there exists T* > 0 and a function 0 < )\( ) < Xo, continuous and decreasing, such that

(66)| has a unique solution g in C°([0, T*); gp(”"”s). Moreover, if for some 0 < T < T,
we have

limsup [|g(0)]| 5.0 <+
tAT Gp

lim A(t) >0
t T

then T < T™.

The proof of Theorem uses the estimates |(49)} |(50)| and |(53a)| (see Section
together with the following claim.

Lemma C.5 Let g = g(t,z,v) € QAO'S. The, for any 0 < X < X, the function
(Vy —tVy)g(t) defines an element of gA 7% we have

{t)

— . R n A— T35 .
1V =t Va)g )l gy s S o A/)l/ng(t)Hgl’\; : (67)

Proof. Since

(Vo =t Vg0 = 3 Z/ (k, €)% 9" [Dg (€ s (€~ th)a(E, k)| de

aeN? kezd
|a|<P

Z Z Z/kgzoz,\kg

acN?  jeN?  keZd
|a|<P j<a; l71<1

DTG0t k)| (k)% 200" d

we are led to identify the supremum over [0,00) of the function x — 22 exp(—2(A —
MN)z®). Tt is reached at 1/(s[A — N'])Y/* and its value is exp(—2/s)/(s[A — N'])?/S. This
ends the proof. m

Proof of Theorem We split the proof into three steps.
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Step 1. Fix R > 0. We introduce the subset E%?R of Br}‘o defined by

Bty i= {9 € BYY sit. YA€ (0.00). ¥ € [0.700 = V), [l9(6) = follgyes < B}

If ¢ lies in E%?R, then ®(g) belongs to B%O. To be more specific, we have

19030 < oll gy +Cr T (614 R+ fallgggen ) (1o + Dol )
Step 2. If g and h belong to E%?R, then, we have

I2(6) = ©Wll o < CoTTANTa ([l gaen + R+ ol groon ) g = bl

Gy (TN (81 + Bt [ follgron ) g = Wl

With these estimates, we cannot apply directly the standard Banach-Picard fixed
point theorem since the range of E%OR by ® is not necessarily included in E%OR.

However, for any 0 < 7" < T, we have @(E%?R) C Ei\f) r- We are going to exploit
this observation to construct a fixed point.

e Step 3. We introduce the following sequence of times

5H< J+2))

(where § > 0 can be chosen arbitrarily small), and we define a sequence of func-
tions by the recursion formula

90 = fo
t
s = fot [ Ng)()dr = 2(g0),
0
Provided § is small enough, we can show that, for any k& € N, we have
a) gr € E:;\ﬂgyR
b) k= |lgk+1 — gk”B;: < Cém where C' > 0 is a certain constant that will
be made precise later on.
Consequently, (gx)ren is a Cauchy sequence in Bg\%oo (with T>° = H+°°(1 —(k+
2)72) > 0) and it converges to ¢ in B(?:%OO, which is a fixed point of ®.

Let us now detail the justification of each of these steps.
Step 1. Remark that

t
1% lgyen < follgyen + [ 1N @ gy dt

Then, we are going to estimate || /\/'(g)(T)ng,g;l. We use the o-ring property the
P
estimate and the embedding |(50)| for the left hand side, and Lemma for the
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right hand side. We obtain, for any 0 < A < XN < pand 0 <7 <t <T(Ag— \):
IV (@) (Mligren S IIVor# (Z1(7) = o1 x Go(T) | pron|(Vo = 7 Vi) (A + g(7)) | gron
()

< &1+ sup g()|| .04 M+ g(T loil
( Te[o,mo—x))” Dlgyr ) 7 =3 Mlgy.on

Moreover, since g lies in E:),‘,?R and possibly by adapting the choice of X as a function
of 7, we get
(T'Xo)

IN @ gyen 5 (64 R+ 1olges ) 07

Consequently, for any 0 < A < A\g and ¢t € [0,T' (Ao — A)), we are led to

t

1 | 1P@ Ol

|- + g oo
P

<[t oo Wolsger + 1= mpg | [ 1@ lgper ar

t
S follgroon + (T A0) (5, +R+ |yf0||g;0,a;1> [1 _ T}

(Ao —A)
Al «///JFQ(T)Hgg’(r),o;l 1
« /0 e .

Let (1) = (Ao — 7/T + X)/2 so that both conditions A < N(7) < A9 and 7 <
T(Xo — N(7)) sare satisfied for 0 < 7 < ¢t < T(A\o — A), we can make use of the
assumption g € B%O and we obtain

dr

o)A+ ()| o
P
s

dr.

1 - % % '(1),0; o}
g /t [ To—X (T))} | +g(T)Hg;( )il i < /t ||///Hg£0, 1+ ”9”3;0
0 VO =N L ) 0 V(D) =N 1= 7oy

Finally, since

and

T~ X(r)) = 5T = ) 471 < [T~ N) +1 < T ~ ),

N | =
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we arrive at

{1 N T(Aot— A)} /ot (N(1) = A) [11 o) "

o ‘ T(Mo — N(1)) ]
! T(AO—AM NOED TR GIEG N

t t T\ =) B B t 1 -
<[ 7o) ] I00—n) 7 &7 = T 0| woe—n
t
= 4Tm < A4T.

It allows us to conclude that
12(6) 30 5 ollgaoens +4T@A) (&5 + Rt Wolggpon ) (I g + sl o ).
T P P P T

Step 2. Like in Step 1, we introduce two real numbers 0 < A < X < \g, two times
0<7<t<T(N — ) and we estimate

IV(9)(®) = N (1) (D)l g
< (@, v) = VEX Gy, g, (1,2 +70) - (Vo = 7Ve) (A (0) + 9(7, 2, 0)) || gron
(2, v) = Vo« (F1 = 01 Gy, )(r, 2+ 70) - (Vo = 7Va)(9(7,2,0) = AT, 2,0)) | gt

The second term can be treated as in Step 1. For the first term, we apply again,
with |(53b)| and combined to Lemma and we obtain

(2, v) = VE*G,, o, (T, +TV) - (Vy —TVy) (A (v) + g(T,2,0)) ng;f’%l

V2 (Tho)
S ([ hot6) = hEye ds) s + 0 gy

Since 0 < s < T'(A\g — A), we can appeal to the assumption g, h € B%O, so that

/ lo(5) — A(5) 2o ds

2
1= =] 19(s) = Ao .
- / 2 = ds S ”g - h’HQB)\o/ —2d8
0 1 o) T 1= i)
g = B2 [ o= T T = NE — P, T2 =N
BTN =7 T =N |~ PT0o— N — 7

Moreover, still with X' (1) = (Ao — 7/7 + X)/2 (the conditions A < N(7) < A\p and
7 < T(XNo — N(7)) are thus fulfilled for 0 < 7 <t < T'(A\g — \)), we make use of the
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assumption g € E%ORWhiCh yields
| A+ g(T)|| v ryon < | A | grown + B+ ([ foll gro.ot-
g g o
Therefore, this discussion leads to

|(z,v) = VE*Y,, o, (1,2 +TV) - (Vy = TVy) (M (v) + g(7,2,0))

Hg;;ml

TN —N) (T'\o) ( )
Sllg—nh o1+ R o5
~ Hg HB;O /T()\O — )\) —r )\/(7_) _ )\ ” %Hgl);ov ;1 + + Hfng;:\)O’ 31
Integrating over [0,¢] and multiplying by (1 —¢/[T' (Ao — N)]), we get

t t
- T(AO—AJ /0 () > VS %%y, g, (1,7 +70) - (Vo = 792)(A () + g(r, 7, 0) |y T

(T30} (I gyt + Rt Moyt ) 00 = 3) =1
' 2T
</0 [T(Mo — A) — 7]3/2 dT) lg — hHB;o

S (020) (- gros + B+ follgroen ) (MO0 = 3) =1

2T 27 .
VTOo =N —t T(ho-N lg = hll g

S 020 (12 gnes + R+ 1l gron ) 27T 00 =2 = llg = bl .

We conclude with

12(6) = ¥Wl o S 2TTANT 0 (|- gpan + R+ ol groo ) g = bl
T P P T

HT@A) (84 R+ [follges ) g = Bl

Step 3. Let R > 0, 09 > 0 and introduce C' = C(R, do, &7, 4, fo) > 0 such that

1
€600} (61 + [ follgrocn ) (1o + 1 folgapon ) < O,

{60A0) (Cz\/ doAo + C's) (51 + |l %Hg;()v”?l + R+ ||f0||g;o,o;1) <C.

(The Cj’s are the constants that appear in the estimates established in the first two
steps.) We introduce the sequences defined by

k
1 g0 = fo
T =6 [] (1— : ) ; { ik = 91 — 9&llB
=0 (J+2)? gr+1 = P(gr) o
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where 6 > 0 is such that
0 S 507
“+o0o

1
C6> ———5 <R,
= (k+3)?

- x+4 4
(0F) < 1.
awp (13) <

We are going to show that, with this definition of §, we have, for any k € N,
1
(k+3)%
We start by establishing that the sequence (7})ren is decreasing and that
0T < T, < Ty < .

gk € B et py, < C6 (68)

Initialisation. Since gy = fo € Q’I);O’U;l does not depend on time, we obviously have
go € E%g r- Step 1 tells us that g = ®(go) € B%g More precisely, we have

1=l 530 = 1@(g0)~fol 30 < €1 8(6030} (&1 + Ifollgao ) (1141 gros + ol groen )
Ty Ty P P P
The definition of C ensures that

1
<Céd——F=
(0+3)*

Recursion. Suppose that holds up to a certain step N. Then, for any 0 < A < Ay
and t € [0,Tn11(Ao — A)], we get

_ /\7
lgn+1(t) = follgron < 1AHQ]\/H@) N (Bl gren + lgn (®) = follgaon
"  Tn(o—A) P S
1
< T v = Rollgyen < pa +llon(®) ~ follgyes
TN(/\()—)\) e
- Mk N
<Y 5 +llgo = follgren =D (k+3)%u
1 — +1 >
k=0 T =0

k+3 <Cé —_—
et k+3)4 = (k+3)2

The definition of § implies
lgn+1() = follgron < R.
P

Since gny+1 = P(gn) and gy € E%j‘v r> Step 1 and the previous computation show that
gN+1 € Er}gﬂy r- Applying Step 2, we obtain (owing to the definition adopted for C)

pv+r = ([Plgv+1) = Plan)llgro < Collgn+1 = gnll g

4N+ TN+1
< ny<cs|os(3)'] ot

(N+4)%-
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Finally, the constraints imposed on § are such that
1
<Cd———77

which ends the proof.

Step 4: Conclusion. Let g denote the limit of the sequence (gi)ken in Bg‘%m. Let us
show that g € Eg‘joﬂoo’R. Let 0 < A < Ao and ¢ € [0,07°°(Ng — A)). Of course, we have,
for any N € N,

1
1—,:”9 = gnligo  +llgn (@) = follgren-
~ SO0 N a7 P

l9(t) = follgnes <
5
Let ¢ > 0. There exists N € N (that depends on ¢, A and ¢) such that
t
_ <1
Using this in the previous estimate yields

lg(®) = follgyen < e+ R,

E.

which thus holds for any € > 0. We conclude that g € Eg\q(loo r> by letting € go to 0.
Next, we can apply Step 2 and we conclude that g is a fixed point of ®:

lg—=2(llBr < Nlg = gkllBr + llgr — ®(gx) B + [[®(9x) — P(9)l| B,

AN

lg — grllBr + gk — gr+1llBr + llgx — 9llB: o O
—+00

Proof of Corollary [C.4. Since fy, # € g};”oﬂ, for 0 < Ay < E\VO arbitrarily close
to /\No, we have fy, # € Q;;O’U;l, too. Therefore, we can appeal to Theorem [C.1} there
exist 7' > 0 and g € B%O solution of [(66) We also know that there exists R > 0 such
that g € E%?R.

We are going to show that g € C°([0,T(\g — A));g};”;l) for any 0 < A < A\g. By
using an argument of composition of continuous functions, it follows that we can work
with A = A(t) such that 0 <t < T'(Ag — A(t)) on a time interval [0,T%], and we have
g€ CO[0, Ty G5,

Let us pick 0 < A < Ap and a time ¢ € [0,7 (Ao — A)). Remark that, for any h > 0
with ¢t +h < T'(Ao — A),we can find A < X < Ag verifying ¢t + h < T'(A\g — \') and we
can choose ' (depending on h : A = \}) so that A}, does not converge to A as h tends
to 0. Going back to the beginning of the proof of Theorem [C.I], we get

t+h
lg(t +h) = g(®)llgyen = 12(9)(t +h) = (9 @)l gron = /t IV(9)(T)llgren dT

t+h <7_>
< g | —— ! o
S [ (6 Bt Mlggpen ) 51 + a7y dr
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Since 7 <t+h<T(Ao—XN)and g€ E%OR, we are led to

TX
o+ 1) -9(Olgyes 5 (6 + R+ ol ) 120

Let us end the discussion with a few hints on the extension criterion. We are going
to show that, if g € C°([0,T); g“” 7 1) (with 0 < A(t) < Ao continuous and decreasing)
is a solution of |(66)| such that

(I-#groen + R+ lfollgroe ) 1 i 0

limsup ||g(t )H o1 < +00
tAT
I
A0 >0
then, possibly at the price of replacing A(¢) by another function X( t) such that 0 <

X(t) < A(t) on [0,T), we can extend g into a solution of on [0,7") , with g €
(0.7 G5,

To this end, we apply Theorem with g(¢) as initial data for any ¢ € [0,7"). For
each of these data, there exists 7] and a solution of |(66)| in B)‘(t). But the proof of
Theorem |C.1| shows that T} depends (among other things) on the norm glﬁ"’l of the

initial data and on the coefficient A (see the role of the constants C' and ¢§). Here, we
know that there exists A > 0 such that, for any ¢ € [0,7),

la@®llgrw.on < A

holds, and A(t) < A\g. Hence, the times Tt can be chosen independently of the data
g(t): T/ = T'. Furthermore, we also know that there exists a constant a > 0 such that,
for any ¢t € [0,T), A(t) > a. Thus, there also exists t* > 0 such that ¢t + T'\(t) > T
holds for any t € [t*,T"). This allows us to extend the solution; we refer the reader to
Fig. 2] and Fig. 3] for guiding the intuition. [ ]

C.2 Extension of the strong analycity property

We wish to prove Proposition [5.6] To this end, we are going to combine Corollary [C.4]
to the following statement.

Proposition C.6 Let P > d/2 be an integer and let o > d/2 be a real number. If
g € C°[0,T); g}}”’”ﬂ) is a solution of |(66)| on [0,T) that satisfies

limsup [|lg(¢) | zg, < 400,
PAT

then, there exists a function X(t) > 0 continuous and decreasing such that g € C° ([ T); g“t 7 1>
and, for any t € [0,T), w ehave

t
1915 < MO+ 142 [ 107 dr
gr®-es gpOes 0
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Tll = tl + )\(tl)T, < T
T =t,+ At)T' =T
TQI == tQ + )\(tg)T’ > T

Figure 2: Analycity radius, as a function of the time variable

where O(t) depends on g only through the following Sobolev norms

. 1/2
o(t) = <02<T>||g(t)||Hg +C3(T,X(0))\Vv//lllgﬁ(o),m> <5I+/0 lg ()7 dT) lg(®) |-

(69)
and the constant C; do not depend on g.

Remark C.7 The proof provides an explicit formula for X In particular, it justifies
that X(T') > 0. The proof of Theorem then follows readlily form Comllary and

Proposition [C-6
Let us start by establishing the following a priori estimate.

Lemma C.~8 Let P > d/2 be an integer and let o > d/2 be a real number. If g €
Cco([o,T); glé(t)"’“/z;l) is a solution of(66)| on [0,T) such that

lim sup [lg(t) |15, < +o0,
tAT
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0 ty to t3 ty T t

Figure 3: Analycity radius, as a function of the time variable: critical case with 7" depending
ont

where 0 < X(t) is derivable and decreasing function, then, for any t € [0,T), we have

3O < (530) 19015

' 1/2
RO (T (& + [l dT) POl
0 G gttt/

where 0(t) is defined by[(69)]

The proof uses in several places the following claim. (We do not detail its proof,
which reduces to repeated applications of the Cauchy-Schwarz inequality.)

Lemma C.9 For any ¢ > d/2, we have

1/2
S Az, (Z<n>2"\§(n)!2) 7]z, -

nezd

> /Rd F(k,€)g(n)h(k —n,€ — tn) dé
3

knezd
Proof of Lemma Since

1d d~
39O = (3O ) 19Oy + R {g(0) 00(0) 5.
P

I
G
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with
R (9(t); g (t) Groen > ?RZ/ (k, )27 OO DGR T )D2A,G(1, k, €) de,

a€eN?  kezd
|a|<P

=I(a)
we fix a € N9, |a| < P and estimate I(a). Let us write
Dot k,§) = DN(g)(t k,¢)

Next we split I(«) as follows

Ifa) = R / (k, €)% X ORO DG T, ket () (F1(t, k) — 51 (k) (1, k)
kezd

Dg (& (& — th)A (& — th)) dg

R > / (k, €)% e20(kE) 25t k, E)nai(n)(F1(t,n) — 71(n)G,(t,n))
k,nezd
D (= (€ —tk)g(t, k —n,§ — tk)) d§

= 11(04) + IQ(O{).
FEstimate of I («). With the Cauchy-Schwarz inequality we obtain the rough inequality

Z/ks (8.1

kezd

o~

G(t, b, )| (e, th)7 X ORI |75 (k)| | F (1, k) — i (k)

Gt
x (€ — th)7 PO Dg (& o (6 — k)A€ — th))| de

1/2
} : 20'
(kezd/ ' S t ' 5)‘ dé)

e ~ 2
> / (ke th)27 DO W | 2[5 ) 2| (1, k) — 1 (6) Gt K)|
kezd ) RE

(& — th)2 N OEH) D (& s (¢ — th).A(E — k)] dg) v

S (@, 0) = 0%g(t 2, 0) || e [Vor x (Fr(t) — o1 x Gy()) | v =0V, A

_F2;\'(t),0;1 | g2;:(t),o;1

S gOlag VoL (Fr(t) — o1 x Do) | oxyoa Vo2l

gIZD/\(O),o';l .
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By using |(54), we get
HVJl * (9}(75) — 01 *gg(t» Hi_—g}(ﬁ),g;l

= 3 (e th) 27O K2 5 (1) 2| F (8 k) — 51(k) Gyt )
kezd

‘ 2

S N (k)2 ()2 e OB D 215, (k) [P ErLo<i<s,
kezd -
+ Y (k, th)* PN OED 215, (k)[4 G, (¢, k)|
kezd

S <<So>20 Z <k>2ge4x(0)<30><k>|k’262/\1k) &

kezd
tsup (BOD el ) 5 (1 1) (1, )

n€ezd kezd
and
¢ t
5 (et G R)E S [ Ipelt—r)] e (Z (k. 7h)> o, k)!?) ar s [ llo(r) By dr.
kezd 0 kezd 0

We deduce that

N ' 1/2
Li(a) < K (T, AM0) 198 [|g <<?1 +/0 lg(m) 1135, dT) Vot 50,
P

Remark C.10 That K; remains finite make some constraints on X(O) appear:
2X(0) < Xo ; 4X(0)(Sp < 2A1 et AN(ONT) < 4\;.
Therefore we should pay attention to the following facts

° X(O) depends on T'. In particular, as T tends to +oo, X(O) should not converge
to 0 (since we need A\(0) > 0);

e the constant K, depends on X(0). In what follows, we should check that X0) can
be chosen independently of the value of Ki(T,A(0)).
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Estimate of Io(a). Applying |(48)|leads to
I(a) =

—-R Z / ]{2 g 0 >\ kE (t L 5) {<k7£>an(t)<k,§> _ <k —n,&— tn>an(t)<k—n,§—tn>]

k,neZd
xn1(n) (F1(t,n) = 51(n)G,(t,n)) - DE (& (€ — th)g(t,k — n, & — tn)) de

< > / (k,&)° A D(kE) ’D (t k,{)( ‘(k,g)"ex(txk:@ —(k—n,¢ _tn>UeX(t)(k7n,£ftn>

kneczd

x[nl|G1 ()] | Z1(t,n) = G1(n)G(t,m)| [DE (€1 (€ = th)G(t, k — n, € — tn))] de.

Next, we apply the following statement (for further details, we refer the reader to [24],
Lemma 9]).

Lemma C.11 For any r,7,z,y > 0, we have

|[z"e™ —y"ey| < c(r)|z — y| (|x —y"r Y T =y + [yl ele—y\eTIy\) :

Set r =0, T = X(t), x = (k&) and y = (k — n,{ — tn) . We obtain (remark that
lz —y| < (n,tn))

IQ(OZ) <

~

3 / (k, €)7 MNOEE) ‘D“Atkf)’mtn)(mtn)”l (k= n,& —tn)7 ")

knezd

x[nl[51(n)| | Z1(¢,m) = 51 (n)Gy(t, )| [DE (€ = (€ = th)g(t k=, & — tn))| d¢

21D / (k, €)X Deg(t, k. €)|

k,nezd
x(n,tn) ((n,tn)? + (k —n,& — tn)?) AN (ntn) A () (k= E—tn)
x[nl |1 (n)] | Z1(t,n) = G1(n)%,(t, )| [DE (€ > (€ = th)G(t, k — n, € — tn))| de

= Ipy () + A(t)Ioa().

Next, we use

(1€)X < (1,67 (14 X(t)(h, X%
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for dealing with 51 («); we get
I () <

S [ et

knezd

g(t, k 5)‘ (n,tn) ((n,tn)”‘l +(k—n,&— tn}"_l)

x[nl[51(n)| | Z1(t,m) = 51(n)Gy(t,m)| D (€ = (& = th)gt k —n, & — tn)| d¢

Y / (. €)1 O®E) (DG, k, )| (. tn) ((n, 1) + (K — n, & — tm)7)

knGZd
x[nl|G1 ()] | Z1(t,n) = 61 ()G, (t,n)| [DE (€ = (€ — th)g(t, k — . € — tn))| dg

= 1211(0() + X(t)]zlg(a).
Observe that

(k&) ((n, )+ (k—n, € — tn>a—1>

< ((n,tn) + (k —n,& — tn)) ((n,tn)a_l +(k—n,&— tn)U_l)

S (nytn)? + (k—n, & —tn)°.

Hence 1212(04) 5 _[22(0[) and thus Ig(a) S 1211(01) + X(t)fgg(a).
Estimate of Is11(a). We remind the reader that

D? (5 = (g - tk)./g\(tak - nv& - tn))

= (§ —th)Dgg(t, k —n,§ —tn) + Z <(;>jD?j§(t7k—n,§—tn).
jSJaEErzl

Then, we have

[DE (& = (€ = th)glt k —n, € —tn))| S (k=& —tn) Y Dtk —n,& —tn).

BEN
|BI<P

(70)
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It allows us to obtain
(o) S

Z Z / (k,&)° ‘D tkf’ntn>((n,tny’*l+<k_n,§_tn>a71>

BeN? kneZd
fi<p N ~
X[nl[61(n)| | Z1(t,m) = 51 ()G (8, )| (8)(k — € — tn) |DZG(t, k=, & — tn)| d¢
WYY / (k, €)° ]D (t,k, €) ) n, tn)° (k — n, € — tn)®
BeN? kneZd
BI<P - R
x[n |1 (n)| [ Z1(t,n) = G1(n)%, (1, )| [DLG(t, b —n, & —tn)| dg
::CT> E: Lh(a
BeNd
Bl<P

For all Ji(a, ) we apply Lemma and we arrive at
Ji(e, 8) S [I(x,0) = v®g(t, 2, 0) | e || (2, 0) = 0P g(t, 2, 0)|| e

1/2
x (Z (n)27 nf2(G1 (n) A, 1) | Z 1t m) = G1 ()G, n)f) .

nezd
Since
2,12~ 2 2 | 7 ~ 7 2
> ¥l (n)Pin, tn)*7 | F1(t,n) — 51(M)F,(t, )
nezd

< (S0)* (Z <n>2~"!n!2|31(n)|2<n>2“) &1+ (sup <k>2}|’f!2|31(k)!2> (Z <n,tn>2”!e‘?g(t7n)\2>

nezad kezd nezd

t
Sér+ [ ol ar
we are led to

1/2
Io1i () S (T) (5’1+/H9 HH"dT> gz
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FEstimate of Iza(a). Again, we apply |(70)l We obtain
In(a) S

OIS 1/1<k,£V%5““h9]D?ﬁaak,fﬂ<n,nw(<n,nw”-+<k——n,£—-mw”)ex““”¢@
BeNd knezd I RE
|BI<P

x NOW=Et0) 1) 3 ()] | F (1) = 51 ()G (t,m)| (s — m, & — tn) [DEG(t, b — n, € — tn)|

S Y Y /d<k,£>”€“t)<’“f> ‘D?ﬁ(t,k,{)‘<n’tn>a+1<k_njg_tme)\(t)(n,tn)
BeN? knezd ” Re
|BI1<P

x X OE=E) 3] 5 ()| | F (1) — 51 ()G (t, )| [DEA(L,E —n.& — tn)| d

HT) D Y / (, £)7NO®E) [D2G(t, b, )| (n, tn) (ke — n, € — tn) LA D mtn)
BeNd knezd /R
|BI<P

x MOE=E=t) 015 ()| | F (1) — 51 (m)F(t, m)| [DEG(E K —n.€ — tn)] de

= <T> Z JQ(QHB) + <T> Z J3(CY,,8).
BEN? BENT
|BI<P 1Bl<P

We es