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Introduction

In this work, we go back to the analysis of Landau damping mechanisms in kinetic equations. This effect has been brought out for the Vlasov equation of plasma physics in the pioneering work of L. Landau [START_REF] Landau | On the vibration of the electronic plasma[END_REF], and extended to gravitational models in astrophysics [START_REF] Lynden-Bell | The stability and vibrations of a gas of stars[END_REF][START_REF] Lynden-Bell | Statistical mechanics of violent relaxation in stellar systems[END_REF], where it is thought to play a key role in the stability of galaxies. It can be interpreted as a stability statement about steady solutions, leading to a decay of the self-consistent force. A complete mathematical analysis of the Landau damping for non linear Vlasov equations has been performed in [START_REF] Mouhot | On Landau damping[END_REF], and revisited later on in [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF][START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF] (see also [START_REF] Hand-Kwan | Landau damping for the screened Vlasov-Poisson system on R 3 : a lagrangian proof[END_REF]). Similar behaviors have been revealed for the 2D Euler system [START_REF] Bedrossian | Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations[END_REF]. The phenomena are surprising since they describe damping mechanisms, counter-intuitive for reversible equations which apparently do not present any dissipative process.

The starting point of this contribution comes from an original model introduced by L. Bruneau and S. De Bièvre [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF] describing the motion of a single classical particle interacting with its environment. The particle is described by its position t → q(t) ∈ R d , while the behavior of the environment is embodied into a scalar field (t, x, z) ∈ (0, ∞)×R d ×R n → ψ(t, x, z). The dynamic is modeled by the following set of differential equations      q(t) = -∇V (q(t)) -¨Rd ×R n σ 1 (q(t) -y) σ 2 (z) ∇ x Ψ(t, y, z) dy dz,

∂ 2 tt Ψ(t, x, z) -c 2 ∆ z Ψ(t, x, z) = -σ 2 (z)σ 1 (x -q(t)), x ∈ R d , z ∈ R n .
(

) 1 
It corresponds to the intuition of a particle moving through an infinite set of n-dimensional elastic membranes, one for each position x ∈ R d . The physical properties of the membranes are characterized by the wave speed c > 0. The coupling between the particles and the environment is governed by two form functions σ 1 , σ 2 , which are both non negative, smooth and radially symmetric functions; they can be seen as determining the influence domain of the particle in each direction, the direction of particle's motion and the direction of wave propagation, respectively. It is therefore relevant to assume both form functions have a compact support. The particle exchanges its kinetic energy with the vibrations of the membranes. These mechanisms eventually act like a friction force since particle's energy is evacuated in the membranes, and, depending on the shape of the external potential x → V (x), they determine the large time behavior of the particle. We refer the reader to [START_REF] Aguer | Classical motion in force fields with short range correlations[END_REF][START_REF] De Bièvre | Normal transport at positive temperatures in classical Hamiltonian open systems[END_REF][START_REF] De Bièvre | Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases[END_REF][START_REF] De Bièvre | Chaotic dynamics of a free particle interacting linearly with a harmonic oscillator[END_REF][START_REF] Lafitte | Normal transport properties in a metastable stationary state for a classical particle coupled to a non-Ohmic bath[END_REF][START_REF] Soret | Stochastic acceleration in a random time-dependent potential[END_REF] for further studies of the system [START_REF] Aguer | Classical motion in force fields with short range correlations[END_REF], that include numerical experiments and interpretation by means of random walks.

The system (1) can be generalized by considering a set of N particles going through the membranes. The mean field regime N → ∞ leads to the following PDE system

∂ t F + v • ∇ x F -∇ x (V + Φ[Ψ]) • ∇ v F = 0, t ≥ 0, x ∈ R d , v ∈ R d , ( 2a 
)
∂ 2 tt Ψ -c 2 ∆ z Ψ (t, x, z) = -σ 2 (z) ˆRd σ 1 (x -y)ρ(t, y) dy, t ≥ 0, x ∈ R d , z ∈ R n , (2b) ρ(t, x) = ˆRd F (t, x, v) dv, (2c) 
Φ[Ψ](t, x) = ¨Rd ×R n σ 1 (x -y)σ 2 (z)Ψ(t, y, z) dz dy,

t ≥ 0, x ∈ R d , ( 2d 
)
where now (t, x, v) → F (t, x, v) is interpreted as the particles distribution function in phase space, x ∈ R d being the position variable, v ∈ R d being the velocity variable.

The system (2a)-(2d) is completed by initial conditions

F t=0 = F 0 , (Ψ, ∂ t Ψ) t=0 = (Ψ 0 , Ψ 1 ). (3) 
We refer the reader to [START_REF] Goudon | Mean field limit for particles interacting with a vibrating medium[END_REF][START_REF] Vavasseur | Some models of particles interacting with their environment[END_REF] for the derivation of the N -particles system and the analysis of the mean field regime that leads to (2a)-(2d). The existence of solutions of (2a)-(2d) is investigated in [START_REF] De Bièvre | Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov-Poisson system[END_REF]. Furthermore, asymptotic issues are also discussed that reveal an unexpected connection with the gravitational Vlasov-Poisson equation. This relation with another model of statistical physics can guide the intuition to analyze further mathematical properties of (2a)-(2d). In this spirit, the existence of equilibrium states and their stability is discussed in [START_REF] Alonso | Damping of particles interacting with a vibrating medium[END_REF], adding in the kinetic model a dissipative effect with the Fokker-Planck operator, and in [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environmemt[END_REF] where a variational approach is adopted for the collisionless model, following [START_REF] Guo | Variational method for stable polytropic galaxies[END_REF][START_REF] Guo | Stable steady states in stellar dynamics[END_REF][START_REF] Wolansky | On nonlinear stability of polytropic galaxies[END_REF].

We wish to continue this analysis, adopting a different viewpoint. In [START_REF] Alonso | Damping of particles interacting with a vibrating medium[END_REF][START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environmemt[END_REF] the effect of a confining potential x → V (x) is considered, which governs the shape of the equilibrium states. Here, we change the geometry of the problem, replacing the confining assumption on the external potential, by the assumption that particles' motion holds in the d-dimensional torus T d . In such a framework, like for the usual Vlasov-Poisson system, we can find space-homogeneous stationary solutions, and we wish to investigate their stability. This question is directly reminiscient to the wellknown phenomena of damping brought out in plasma physics by L. Landau [START_REF] Landau | On the vibration of the electronic plasma[END_REF]: for the electrostatic Vlasov-Poisson system, it can be shown that the electric field of the linearized system decays exponentially fast. For gravitational interactions a similar discussion dates back to D. Lynden-Bell [START_REF] Lynden-Bell | The stability and vibrations of a gas of stars[END_REF][START_REF] Lynden-Bell | Statistical mechanics of violent relaxation in stellar systems[END_REF]. In fact, Landau's analysis [START_REF] Landau | On the vibration of the electronic plasma[END_REF] was concerned with the linearized equation only. Of course the linearization procedure is questionable and the non linear dynamics might significantly depart form the linear behavior, as pointed out in [START_REF] Backus | Linearized plasma oscillations in arbitrary electron distributions[END_REF]. A stunning analysis of the non linear problem in the analytic framework has been recently performed by C. Mouhot & C. Villani [START_REF] Mouhot | On Landau damping[END_REF][START_REF] Villani | Lectures notes for a course given in Cotonou, Benin, and in CIRM[END_REF]. A simplified analysis of the Landau damping has been proposed in [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF]; we also refer the reader to [START_REF] Faou | Landau damping in Sobolev spaces for the Vlasov-HMF model[END_REF] for results based on Sobolev regularity (with a definition of the force which involves only a finite number of Fourier modes, though) and [START_REF] Hand-Kwan | Landau damping for the screened Vlasov-Poisson system on R 3 : a lagrangian proof[END_REF] for an alternative approach that uses integration along phase-space characteristics. The Landau damping around homogeneous solutions has also been investigated in the whole space R d [START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF], thus dealing with a set of particles having an infinite mass. We wish to address these issues for the system (2a)-(2d), still when V = 0. The analysis of the non-linear equations is quite involved; it requires a complex functional framework and fine estimates in order to control the non linear effects, the so-called "plasma echoes", that can break the damping mechanisms observed on the linearized model. By the way, it has been recently shown that insufficient regularity of the perturbation can annihilate the damping mechanisms, and the proof (which, though, is very specific to the coupling with the Poisson equation; it is not clear that the argument applies for more regular convolution kernels) precisely uses the role of the plasma echoes against damping [START_REF] Bedrossian | Nonlinear echoes and Landau damping with insufficient regularity[END_REF]. Nevertheless it turns out that identifying stability conditions for the linearized problem plays a central role in the analysis of the non linear stability, see [START_REF] Mouhot | On Landau damping[END_REF]Condition (L)].

Beyond their interest for the specific model (2a)-(2d) of particles interacting with their environment, the results we are going to discuss can be thought of with some generality. Indeed, as we shall detail below, the equation for the particle distribution function can be recast as follows

∂ t F + v • ∇ x F -∇ x Φ I • ∇ v F -∇ x Φ S • ∇ v F = 0,
where the potential splits into two parts, that both induce new issues compared to the case of the "standard" Vlasov system (hereafter simply refered to as the "Vlasov equation"):

• Φ I (t, x) does not depend on F : this is a linear contribution in the equation.

The damping then relies on suitable time-decay properties, here related to the dispersion properties of the free wave equation.

• the self-consistent potential Φ S (t, x) is defined by a convolution with respect to space, combined with a half-convolution with respect to time Φ S (t, x) = -ˆt 0 ˆΣ(x -y)p c (t -s)ρ(s, y) dy ds.

Then the Landau damping relies on properties of the kernel Σ, which is quite similar to the analysis of the Vlasov case, but also on decay properties of the kernel p c .

The discussion is organized as follows. We start by checking that we can find homogeneous solutions in Section 2. We also introduce different, but complementary, ways to think of the equations. We complete this preliminary section with a series of comments explaining how the problem differs from the usual Vlasov system. In Section 3, which is the heart of this work, we turn to the linearized problem and we discuss the stability criterion. At least, it turns out that stability can be verified when c, the speed of wave propagation, is large enough. Next, we fully detail the proof of the Landau damping for the free space problem, for which the functional framework is less intricate, in Section 4. We present how the main arguments should be adapted for the torus in Section 5. This content is completed by several Appendices which have their own interest. Appendix A details the analysis of the Volterra equation associated to the linearized problem, offering a unified description of the derivation of the stability criterion for both the Vlasov and the Vlasov-Wave equation. Appendix B discusses in further details the stability criterion, in the spirit of the Penrose criterion. Quite surprisingly, we are led to an intricate expression, much more complicated than for the Vlasov model, which, nevertheless, allows us to establish some conclusions close to the gravitational Vlasov case. We also propose several interpretations of criteria that lead to (un)stable solutions. Finally, Appendix C briefly goes back to the Cauchy theory for analytic solutions of the system.

Preliminaries

In what follows, X d stands indifferently for T d or R d , and for given functions φ : x ∈ X d → φ(x) and g : v ∈ R d → g(v), we denote

ϕ X d = ˆXd ϕ(x) dx, g R d = ˆRd g(v) dv,
where dx is either the usual Lebesgue measure on X d = R d or the normalized Lebesgue measure on X d = T d . We shall also use indifferently the notation • for the Fourier coefficients of a T d -periodic function We equally use the same notation for a function φ depending on x ∈ X d and v ∈ R d ϕ(k, ξ) = ¨Xd ×R m e -ik•x e -iξ•v ϕ(x, v) dv dx, for ξ ∈ R m and either k ∈ Z d (case

ϕ : T d → R, ϕ(k) =
X d = T d ) or k ∈ R d (case X d = R d ).
In the sequel, we shall use the shorthand notation k ∈ X d to encompass these two situations.

Rewriting the equations

Due to the linearity of the wave equation, the solution of (2b) can be split into a contribution that depends only on the initial condition (Ψ 0 , Ψ 1 ) and a contribution that depends only on ρ, see [9, Eq. ( 6)- [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF]]. Accordingly, we split the potential into

Φ = Φ I + Φ S ,
where Φ I depends only on (Ψ 0 , Ψ 1 ) as follows Φ I (t, x) = 1 (2π) n ¨Rn ×X d σ 1 (x-y) Ψ 0 (y, ζ) cos(c|ζ|t) + Ψ 1 (y, ζ) sin(c|ζ|t) c|ζ| σ 2 (ζ) dy dζ (4) and the coupling term reads

Φ S (t, x) = - ˆt 0 p c (t -s)Σ ρ(s, x) ds, Σ = σ 1 σ 1 , p c (t) = ˆRn sin(c|ζ|t) c|ζ| | σ 2 (ζ)| 2 dζ (2π) n .
(
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The properties of the function t → p c (t) play a crucial role in the asymptotic analysis of (2a)-(2d).

In what follows, we shall use the following general assumptions (H1)

n ≥ 3 is odd, (H2) σ 2 ∈ C ∞ (R n ) with supp(σ 2 ) ⊂ B(0, R 2 ).
With n ≥ 3, according to [START_REF] De Bièvre | Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov-Poisson system[END_REF]Lemma 4.4], we know that p c ∈ L 1 ((0, ∞)) with

ˆ∞ 0 p c (t) dt = κ c 2 , κ = ˆRn | σ 2 (ζ)| 2 |ζ| 2 dζ.
In particular, the condition n ≥ 3 guarantees that the integral that defines κ makes sense. (Note that [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF] makes the case n = 3 the most relevant.) Finite speed of propagation and energy conservation for the wave equation can be used to deduce fundamental estimates on the function p c : the following simple observation strengthens [START_REF] De Bièvre | Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov-Poisson system[END_REF]Lemma 4.4] by taking full advantage of (H1)-(H2).

Lemma 2.1 Assume (H1)-(H2).

Then the function t → p c (t) has a compact support, included in [0, 2R 2 c ] and it satisfies

|p c (t)| ≤ C S σ 2 L 2n/(n+2) σ 2 L 2 c ,
for a certain constant C S > 0.

Proof. The kernel p c (t) can be rewritten as

p c (t) = ˆRn σ 2 (z)Υ(t, z) dz
where Υ is the solution of the wave equation with initial impulsion σ 2 :

(∂ 2 tt -c 2 ∆ z )Υ(t, z) = 0, (Υ, ∂ t Υ) t-0 = (0, σ 2 ).

With (H2), Huygens' principle implies that if ct ≥ R 2 + |z| then Υ(t, z) = 0. Therefore, see Fig. 1, when t ≥ 2R 2 c , the product σ 2 (z)Υ(t, z) vanishes, and p c (t) = 0. Next, we start with the Hölder inequality, bearing in mind n ≥ 3

|p c (t)| ≤ σ 2 L 2n/(n+2) Υ(t, •) L 2n/(n-2) .
We dominate the right hand side by making use of the Sobolev embedding, see e. g. [START_REF] Lieb | Analysis[END_REF]Lemma 8.3], Υ(t, •) L 2n/(n-2) ≤ C S ∇ z Υ(t, •) L 2 , while energy conservation for the wave equation tells us that

∇ z Υ(t, •) 2 L 2 ≤ 1 c 2 ∂ t Υ(t, •) 2 L 2 + c 2 ∇ z Υ(t, •) 2 L 2 ≤ 1 c 2 σ 2 2 L 2
holds. Hence, in this case p c / ∈ L 1 (0, ∞), there is no loss of memory at all, and numerical simulations [START_REF] Goudon | Numerical investigation of Landau damping in dynamical Lorentz gases[END_REF] indeed confirm that there is no damping phenomena. Similarly, working in the torus T n for the wave equation leads to

p c (t) = =0 | σ 2 ( )| 2 c| | sin(c| |t) + | σ 2 (0)| 2 t.
It prevents p c for being integrable over (0, ∞) and shows that there is no possible energy dispersion mechanism in this geometry. The case of R n with an even dimension is more subtle. It seems that the analysis performed on the torus uses crucially the compactness of the support of p c and this case cannot be handled. For the free space problem it is less clear whether or not the dispersion mechanisms of the wave equation in even dimensions are enough. The estimates we are using are not fine enough to handle this situation. However, the alternative proof of [START_REF] Hand-Kwan | Landau damping for the screened Vlasov-Poisson system on R 3 : a lagrangian proof[END_REF], which is less demanding in terms of regularity, could be adapted in order to extend the result in this direction.

Homogeneous solutions

Let ρ 0 > 0 and let v → M (v) be a given function such that ´Rd M (v) dv = 1. We claim that

M : (x, v) ∈ X d × R d -→ M (x, v) = ρ 0 M (v)
is a stationary solution of (2a)-(2d), associated to a spatially homogeneous potential Φ, when starting from spatially homogeneous data for the wave equation. On the torus, since M and dx are normalized, ρ 0 is the mass of the solution M . With F = M , the right hand side of the wave equation (2b) becomes

-σ 2 (z) ¨Xd ×R d σ 1 (x -y)M (y, v) dv dy = -σ 2 (z) ρ 0 σ 1 X d M R d ,
which depends only on the variable z ∈ R n . Therefore, considering space-homogeneous initial data (x, z) → (Ψ H 0 (z), Ψ H 1 (z)), the solution of the wave equation

∂ 2 tt Ψ H -c 2 ∆ z Ψ H = -σ 2 (z) σ 1 X d M R d
is given by the inverse Fourier transform of

Ψ H (t, ξ) = Ψ 0 H (ξ) cos(c|ξ|t) + Ψ 1 H (ξ) sin(c|ξ|t) c|ξ| - 1 -cos(c|ξ|t) c 2 |ξ| 2 σ 2 (ξ) σ 1 X d M R d ,
and it does not depend on the space variable x. Accordingly, the associated potential

Φ[Ψ H ](t, x) = σ 1 X d ¨Rn σ 2 (z)Ψ H (t, z) dz
does not depend on x. We obtain

(∂ t + v • ∇ x )M = 0 = ∇ x Φ[Ψ H ] • ∇ v M ,
and finally (M , Ψ H ) is a homogeneous solution of (2a)-(2d). We bring the attention of the reader to the fact that, in the case X d = R d , the homogeneous solutions have infinite mass and infinite energy.

Remark 2.3 (Stationary solutions)

A specific case of interest corresponds to stationary solutions. Let us associate to M , the function

Ψ eq (z) = 1 c 2 Γ(z) σ 1 X d M R d ,
where Γ is the solution of ∆ z Γ(z) = σ 2 (z). It defines a stationary solution Ψ eq for the wave equation (2c) (with initial data Ψ H 0 = Ψ eq and Ψ H 1 = 0). The associated potential thus reads ¨Xd ×R n σ 1 (x -y)σ 2 (z)Ψ eq (z) dx dz = σ 1 X d ˆRn σ 2 (z)Ψ eq (z) dz, which does not depend on the space variable x ∈ X d , nor on the time variable t.

Equations for the fluctuations

Given a space-homogeneous solution (M , Ψ H ), we expand the solution as

F (t, x, v) = M (v) + f (t, x, v), Ψ(t, x, z) = Ψ H (t, z) + ψ(t, x, z). ( 6 
)
The fluctuations (f, ψ) satisfy

∂ t f + v • ∇ x f -∇ x Φ[ψ] • ∇ v (M + f ) = 0, (7a) 
Φ[ψ](t, x) = ¨Xd ×R n σ 1 (x -y)σ 2 (z)ψ(t, y, z) dy dz, (7b)

∂ 2 tt ψ -c 2 ∆ z ψ = -σ 2 (z) ˆRd σ 1 (x -y) (t, y) dy, ( 7c 
) (t, x) = ˆRd f (t, x, v) dv, (7d) 
completed by the initial conditions f (0, x, v) = f 0 (x, v), (ψ(0, x, z), ∂ t ψ(0, x, z)) = (ψ 0 (x, z), ψ 1 (x, z)). [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF] As said above, it can be convenient to set ψ(t, x, z) = ψ I (t, x, z) + ψ S (t, x, z), with the contribution from the initial data ψ I (t, x, ξ) = ψ 0 (x, ξ) cos(c|ξ|t) + ψ 1 (x, ξ) sin(c|ξ|t) c|ξ| and the self-consistent contribution ψ S (t, x, ξ) = -ˆt 0 sin(c|ξ|[t -τ ]) c|ξ| σ 2 (ξ)σ 1 (τ, x) dτ.

Plugging this into the expression of the potential, we get

Φ[ψ](t, x) = σ 1 (F I (t) -σ 1 G (t)) (x),
where we have set F I (t, x) = ˆRn σ 2 (z)ψ I (t, x, z) dz and

G (t, x) = ˆt 0 p c (t -τ ) (τ, x) dτ.
Hence, the evolution equation for the fluctuation f can be recast as

∂ t f + v • ∇ x f -∇σ 1 (F I -σ 1 G ) • ∇ v (M + f ) = 0. (9) 
Finally, let us introduce g(t, x, v) = f (t, x + tv, v), which allows us to get rid of the advection operator. We remark that

∂ t g(t, x, v) = (∂ t + v • ∇ x )f (t, x + tv, v)
and

(∇ v f )(t, x + tv, v) = ∇ v f (t, x + tv, v) -t∇ x f (t, x + tv, v) = (∇ v -t∇ x )g(t, x, v).
Thus, [START_REF] De Bièvre | Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov-Poisson system[END_REF] becomes

∂ t g(t, x, v) = ∇σ 1 (F I -σ 1 G ) (t, x + tv) • (∇ v -t∇ x )(M + g)(t, x, v), (10a) g(0, x, v) = f 0 (x, v). (10b)
The following rough statement gives the flavor of the result we wish to justify.

Theorem We assume that the data σ 1 , σ 2 , ψ 0 , ψ 1 , f 0 are smooth enough. We assume, furthermore, that the analog of the (L)-condition for the Vlasov-Wave equation holds.

If, initially, the fluctuation is small enough, then, we can find an asymptotic profile g ∞ so that g(t) -g ∞ and the applied force ∇σ 1 (F I -σ 1 G ) tend to 0 as t → ∞.

The precise statements are given in Theorem 4.8 (case X d = R d ) and Theorem 5.8 (case X d = T d ) Let us make a few comments to announce the forthcoming analysis.

• The stability condition (L) (see Section 3.1 and the comments in Appendix B), like for the usual Vlasov equation, imposes that a certain symbol cannot reach the value 1. In particular, the stability condition holds provided the wave speed c is large enough, see Proposition 3.4.

• The functional framework is a bit intricate. Roughly speaking, we distinguish two types of results, depending whether we work with analytic functions and regularity measured by means of Gevrey spaces (for the torus, the result applies only in this framework), or with functions having enough Sobolev regularity (the result on R d applies in this context, and we can also establish the damping for the linearized problems in both cases

X d = R d and X d = T d ).
• Typically the smallness assumption is imposed on a certain space X (of Gevrey or Sobolev type), but the damping holds in slightly "less regular" spaces Y , with X ⊂ Y .

• The rate of convergence depends on the functional framework (Gevrey vs. Sobolev) and how far Y is from X.

• For the problem on R d , we shall need to assume d ≥ 3; the method breaks down in smaller dimensions, for reasons that already appeared for the Vlasov-Poisson system [START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF].

For the usual Vlasov equation, the main ingredients to justify the Landau damping can be recapped as follows:

• the transport operator induces a phase mixing phenomena, which is a source of decay for the macroscopic density ;

• when linearizing the system around the homogeneous solution, we observe that the Fourier modes of decouple, leading to a Volterra equation for the Fourier transform of the density. It permits us to identify a stability criterion, that depends on the homogeneous solution and on the potential so that the linear dynamics induced by the force term does not annihilate the effects of the phase mixing;

• it remains to control the non linear effects, with the plasma echoes that tend to contribute against the phase mixing.

Technically, in order to address this program, one needs a Cauchy theory (in analytic regularity for the problem on T d ) such that a control on a "weak" norm is enough to assert that the solution can be extended. Moreover, assuming the smallness of the data, the norms used in this Cauchy theory should permit us to justify uniform boundedness with respect to time, and, eventually, the Landau damping. In particular, the echoes should be controlled by means of these norms. Rewriting the potential with ( 4)-( 5), we realize that the system (2a)-(2d) substantially differs from the usual Vlasov system dealt with in [START_REF] Mouhot | On Landau damping[END_REF] and [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF][START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF] in the following aspects:

• there is an additional term

∇ x Φ I • ∇ v F,
with a force independent on the particles density. This linear perturbation could drive the solution far from the homogeneous state M ;

• the self-consistent potential Φ S involves a half-convolution with respect to the time variable, inducing a sort of memory effect. In particular, the function p c dramatically influences the expression of the stability criterion.

As we shall see, the analysis of the linearized problem, and the stability criterion, sensibly differ from the Vlasov case. Nevertheless, this linearized analysis remains at the heart of the proof of the Landau damping: once the Landau damping established for the linearized equation, the arguments of [START_REF] Mouhot | On Landau damping[END_REF] and [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF][START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF] can be adapted to handle the nonlinear problem. Furthermore, we will also bring out the analogies with the gravitational Vlasov-Poisson problem, in terms of conditions of the equilibrium profile. We address both the confined case X d = T d and the free space problem X d = R d , underlying the differences needed depending on the technical framework.

3 Analysis of the linearized Landau damping

The linearized system

In the expansion [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF], let us assume that the fluctuations f and ψ remain small, so that we neglect the quadratic term (with respect to the perturbations) ∇ x Φ[ψ] • ∇ v f in the evolution equations (note in particular that this assumes the smallness of the initial fluctuations (ψ 0 , ψ 1 )). We are thus led to the following linearized system

∂ t f + v • ∇ x f = ρ 0 ∇ x φ • ∇ v M, t ≥ 0, x ∈ X d , v ∈ R d , (11a) ∂ 2 tt ψ -c 2 ∆ z ψ (t, x, z) = -σ 2 (z) ˆXd σ 1 (x -y) (t, y) dy, t ≥ 0, x ∈ X d , z ∈ R n , ( 11b 
) (t, x) = ˆRd f (t, x, v) dv, (11c) φ(t, x) = ¨Xd ×R n σ 1 (x -y)ψ(t, y, z)σ 2 (z) dz dy, t ≥ 0, x ∈ X d . ( 11d 
)
The system is completed by initial conditions

f t=0 = f 0 , (ψ, ∂ t ψ) t=0 = (ψ 0 , ψ 1 ). ( 12 
)
The expected result can be explained as follows: let us assume that the fluctuation does not provide additional mass: ˜f (0, x, v) dv dx = 0, and, to fix ideas, ψ 0 = 0 and ψ 1 = 0. In such a case, linearized Landau damping asserts that converges strongly to 0, while f converges weakly to 0, as t → ∞. Moreover, the potential φ also vanishes for large times. We are going to establish that such a behavior holds for the system (11a)- [START_REF] De Bièvre | Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases[END_REF].

We start by applying the Fourier transform, with respect to x and v to (11a). It yields

(∂ t -k • ∇ ξ ) f (t, k, ξ) = -ρ 0 k • ξ φ(t, k) M (ξ).
The equation can be integrated along characteristics, which leads to the following Duhamel formula

f (t, k, ξ) = f 0 (k, ξ + kt) -ρ 0 ˆt 0 ξ + k(t -τ ) • k φ(τ, k) M ξ + k(t -τ ) dτ. ( 13 
)
We turn to the expression of the Fourier coefficients of the potential. We remind the reader that we can split the potential into

φ = φ I + φ S ,
where φ I depends only on (ψ 0 , ψ 1 ) as follows

φ I (t, x) = 1 (2π) n ¨Rn ×X d σ 1 (x-y) ψ 0 (y, ζ) cos(c|ζ|t) + ψ 1 (y, ζ) sin(c|ζ|t) c|ζ| = ψ I (t,y,ζ) σ 2 (ζ) dy dζ ( 14 
) and the coupling term reads

φ S (t, x) = - ˆt 0 p c (t -τ )Σ (τ, x) dτ.
Plugging the expression of φ = φ I + φ S into (13), we obtain

f (t, k, ξ) = f 0 (k, ξ + kt) -ρ 0 ˆt 0 ξ + k(t -τ ) • k φ I (τ, k) M ξ + k(t -τ ) dτ +ρ 0 | σ 1 (k)| 2 ˆt 0 ξ + k(t -τ ) • k ˆτ 0 p c (τ -ς) (ς, k) dς M ξ + k(t -τ ) dτ = f 0 (k, ξ + kt) -ρ 0 ˆt 0 ξ + k(t -τ ) • k φ I (τ, k) M ξ + k(t -τ ) dτ +ρ 0 | σ 1 (k)| 2 ˆt 0 (ς, k) ˆt ς M ξ + k(t -τ ) ξ + k(t -τ ) • k p c (τ -ς) dτ dς = f 0 (k, ξ + kt) -ρ 0 ˆt 0 ξ + k(t -τ ) • k φ I (τ, k) M ξ + k(t -τ ) dτ +ρ 0 | σ 1 (k)| 2 ˆt 0 (ς, k) ˆt-ς 0 M ξ + k(t -ς -τ ) ξ + k(t -ς -τ ) • k p c (τ ) dτ dς.
We are led to an integral equation for the (Fourier coefficients of) the macroscopic density by considering this relation for ξ = 0. Let us set

a(t, k) = f 0 (k, tk) -ρ 0 |k| 2 ˆt 0 φ I (τ, k) (t -τ ) M k(t -τ ) dτ (15) 
and

K (t, k) = ρ 0 |k| 2 | σ 1 (k)| 2 ˆt 0 (t -τ ) M k(t -τ ) p c (τ ) dτ. (16) 
Then, we obtain an integral equation for the fluctuation of the macroscopic density

(t, k) = a(t, k) + ˆt 0 K (t -ς, k) (ς, k) dς. ( 17 
)
The analysis of this relation makes use of the Laplace transform

ϕ : (0, ∞) → C, L ϕ(ω) = ˆ∞ 0 e -ωt ϕ(t) dt for ω ∈ C,
which is well defined for Re(ω) large enough. We wish to apply directly the following claim [START_REF] Villani | Lectures notes for a course given in Cotonou, Benin, and in CIRM[END_REF]Lemma 3.5], see also [START_REF] Mouhot | On Landau damping[END_REF]Lemma 3.6].

Lemma 3.1 Let a, K : (0, ∞) → C. We suppose that i) there exists α, λ > 0 such that, for any t ≥ 0, |a(t)| ≤ αe -λt ;
ii) there exists C 0 , λ 0 such that, for any t ≥ 0,

|K (t)| ≤ C 0 e -λ 0 t ; iii) there exists Λ > 0 such that L K (ω) = 1 for any ω ∈ C verifying Re(ω) ≥ -Λ. Let ϕ satisfy ϕ(t) = a(t) + ˆt 0 K (t -τ )ϕ(τ ) dτ.
Then, for any λ < min(λ, λ 0 , Λ), there exists C > 0 such that, for any t ∈ (0, ∞), we have

|ϕ(t)| ≤ C e -λ t .
Condition iii) gives rise to a stability criterion on the stationary profile M . Since the operator K involves the kernel p c the detailed condition substantially differs from the usual Vlasov case. In Eq. ( 17), the Fourier index k appears as a parameter. For applying Lemma 3.1 in order to establish the exponential decay of the potential, the time variable will be replaced by |k|t and estimates i-iii) should be satisfied uniformly with respect to k, see [28, Theorem 3.1 & Lemma 3.6] (and the constant C in the final estimate might depend on k). This requires appropriate regularity and decay assumptions on the equilibrium function, on the initial data [START_REF] De Bièvre | Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases[END_REF] and on the coefficients.

According to [START_REF] Mouhot | On Landau damping[END_REF] and [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF], it is convenient to work in the analytic setting, which amounts to introduce the following assumptions on the equilibrium M , the initial data f 0 and the form function σ 1 . Compared to the standard Vlasov equation, the model involves an additional term associated to the initial perturbation of the wave equation; for the linearized problem it appears as a new contribution in the term a(t, k) of the Volterra equation [START_REF] Goudon | Mean field limit for particles interacting with a vibrating medium[END_REF]. We thus also need to specify the assumption of ψ 0 , ψ 1 . The requirements on the data state as follows:

(H3)

we have supp(ψ 0 , ψ 1 ) ⊂ X d × B(0, R I ), for some 0 < R I < ∞, and

sup k∈X d ˆRn | ψ 1 (k, z)| 2 + c 2 |∇ z ψ 0 (k, z)| 2 dz = E I < ∞, (R1) there exists C 0 , λ 0 > 0 such that for any ξ ∈ R d , k ∈ X d we have | M (ξ)| ≤ C 0 e -λ 0 |ξ| , | f 0 (k, ξ)| ≤ C 0 e -λ 0 |ξ| , (R2) the function σ 1 : X d → (0, ∞)
is radially symmetric and real analytic, and in particular (see [START_REF] Villani | Lectures notes for a course given in Cotonou, Benin, and in CIRM[END_REF]Proposition 3.16]) there exists C 1 , λ 1 > 0 such that, for any

k ∈ X d , | σ 1 (k)| ≤ C 1 e -λ 1 |k| .
Namely, we assume analytic regularity on the data with (R1) and (R2). Note that (R2) is not a strong restriction in the present context, contrarily to what it could be for the Vlasov case, since for this model σ 1 is naturally smooth. In fact, physically the form function σ 1 would naturally be compactly supported (the support being interpreted as the "domain of influence" of the particle), which does not make sense in the analytic framework. Thus, we should here think σ 1 as a peaked bump function. We also bear in mind the fact that σ 1 is radially symmetric: its Fourier coefficients are real and we have σ

1 σ 1 (k) = | σ 1 (k)| 2 ≥ 0.
These assumptions, together with the finite speed of propagation for the wave equation, allow us to control the "initial data" contribution in [START_REF] Evans | Partial differential equations[END_REF] and the kernel [START_REF] Faou | Landau damping in Sobolev spaces for the Vlasov-HMF model[END_REF]. Let us explain the role of (H3) for the associated contribution to [START_REF] Eskin | Lectures on Linear Partial Differential Equations[END_REF] in [START_REF] Evans | Partial differential equations[END_REF]. In [START_REF] Eskin | Lectures on Linear Partial Differential Equations[END_REF], ψ I is the solution of the wave equation on R n , starting form initial data (ψ 0 , ψ 1 ). The space variable x ∈ X d appears only as a parameter in this equation. Assumption (H3) means that the Fourier transform (with respect to the parameter), of the initial data has finite and uniformly bounded energy. When X d = T d , (H3) holds under the condition

¨Xd ×R n |ψ 1 (x, z)| 2 + c 2 |∇ z ψ 0 (x, z)| 2 dz dx = E I < ∞,
which implies that the Fourier coefficients of the energy lies in 2 (Z d ), and thus in ∞ (Z d ). This assumption is quite natural since this quantity is involved in the global energy balance for (2a)-(2d), see [START_REF] De Bièvre | Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov-Poisson system[END_REF][START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environmemt[END_REF][START_REF] Vavasseur | Some models of particles interacting with their environment[END_REF]. Working in R d , this has to be replaced by condition (H3). Lemma 3.2 Assume (H1)-(H3) and (R1)-(R2). Let a(t, k) be defined by [START_REF] Evans | Partial differential equations[END_REF]. Then, there exists α, λ > 0 such that |a(t, k)| ≤ αe -λ|k|t holds for any t ≥ 0, k ∈ X d .

Proof. Assumption (R1) implies that

| f 0 (k, tk)| ≤ C 0 e -λ 0 t|k| .
Relation ( 14) can be recast as

φ I (t, x) = ˆXd σ 1 (x -y) ˆRn σ 2 (z)ψ I (t, x, z) dz dy
with ψ I the solution of the free wave equation

(∂ 2 tt -c 2 ∆ z )ψ I = 0, (ψ I , ∂ t ψ I ) t=0 = (ψ 0 , ψ 1 ).
Assumption (H1) & (H2) allow us to make use of Huygens' principle which tells us that supp(ψ

I (t, x, •)) ⊂ z ∈ R n , ct -R I ≤ |z| ≤ ct + R I .
This can be read directly on the representation formula, see e. g. [15, Section 2.4, Theorem 2]

ψ I (t, x, z) = 1 γ n ∂ t 1 t ∂ t (n-3)/2 t n-2 |z-z |=ct ψ 0 (x, z ) dS(z ) + 1 γ n 1 t ∂ t (n-3)/2 t n-2 |z-z |=ct ψ 1 (x, z ) dS(z )
where γ n = 1×3×...×(n-2). Therefore, by virtue of (H2), the product σ 2 (z)ψ I (t, x, z)

vanishes when t ≥ R I +R 2 c = S 0 , see Fig. 1, for any x ∈ X d , z ∈ R n . Hence, φ I is supported in [0, S 0 ] × X d and we can write, for t ≥ S 0 , ρ 0 |k| 2 ˆt 0 φ I (s, k) (t -s) M k(t -s) ds = ρ 0 ˆS0 0 k φ I (s, k) • k(t -s) M k(t -s) ds ≤ ρ 0 ˆS0 0 k φ I (s, k) k(t -s) M k(t -s) ds.
Assuming (R1), for any 0 < λ < λ 0 , we obtain ˆS0

0 |k|(t -s)| M (k(t -s))| ds ≤ C 0 ˆS0 0 |k|(t -s)e -λ 0 |k|(t-s) ds ≤ C 0 ˆS0 0 |k|(t -s)e -(λ 0 -λ)|k|(t-s) e -λ|k|(t-s) ds ≤ e λ|k|S 0 (λ 0 -λ)e e -λ|k|t
λ ,

where we have used the elementary inequality ue -λu ≤ 1 λe , which holds for any λ > 0, u ≥ 0. Next, we observe that

φ I (s, k) = σ 1 (k) × ˆRn σ 2 (z) ψ I (s, k, z) dz,
where

ψ I (s, k, z) satisfies (∂ 2 tt -c 2 ∆ z ) ψ I = 0, ( ψ I , ∂ t ψ I )(0, k, z) = ( ψ 0 (k, z), ψ 1 (k, z)).
Standard energy conservation for the wave equation yields, for any t ≥ 0,

ˆRn |∂ t ψ I | 2 + c 2 |∇ z ψ I | 2 (t, k, z) dz = ˆRn | ψ 1 | 2 + c 2 |∇ z ψ 0 | 2 (k, z) dz ≤ E ,
by using (H3). It follows that (mind the conditions (H1)-(H3) which allow us to make use of Sobolev's embedding, see [START_REF] Alonso | Damping of particles interacting with a vibrating medium[END_REF]Lemma 4.4] for similar reasoning)

k φ I (s, k) = |k| σ 1 (k) ˆRn σ 2 (z) ψ I (s, k, z) dz ≤ C 1 |k|e -λ 1 |k| σ 2 L 2n/(n+2) √ E ,
where we have used (R2). With λ 1 > λ > 0 we get

k φ I (s, k) ≤ C 1 |k|e -(λ 1 -λ )|k| e -λ |k| σ 2 L 2n/(n+2) √ E ≤ C 1 e(λ 1 -λ ) σ 2 L 2n/(n+2) √ E e -λ |k| .
Gathering these estimates together, we arrive at

ρ 0 |k| 2 ˆt 0 φ I (s, k) (t -s) M k(t -s) ds ≤ C 1 ρ 0 σ 2 L 2n/(n+2) √ E × e (λS 0 -λ )|k| (λ 1 -λ )λ(λ 0 -λ)e 2 e -λ|k|t .
We use this relation with λS 0 < λ < λ 1 . We conclude that a(t, k) is dominated by O(e -λ|k|t ), uniformly with respect to k, for 0 < λ < min(λ 0 , λ 1 /S 0 ). (Note that S 0 behaves like 1/c; as c becomes large, only λ 0 is relevant in this condition.) Next, with (R1), (R2) and Lemma 2.1, we can estimate as follows

|K (t, k)| = ρ 0 |k σ 1 (k)| 2 ˆ2R 2 /c 0 (t -τ ) M k(t -τ ) p c (τ ) dτ ≤ ρ 0 |k σ 1 (k)| 2 ˆ2R 2 /c 0 τ (2π) n σ 2 2 L 2 (t -τ )C 0 e -λ 0 (t-τ )|k| dτ ≤ 2ρ 0 R 2 c σ 2

Lemma 3.3 Assume (H1)-(H3) and (R1)-(R2)

. Let K (t, k) be defined by [START_REF] Faou | Landau damping in Sobolev spaces for the Vlasov-HMF model[END_REF].

Then, there exists C, λ > 0 such that |K (t, k)| ≤ Ce -λ|k|t holds for any t ≥ 0, k ∈ X d .

We have justified that properties i) and ii) in Lemma 3.1 hold. We turn to investigate the Laplace transform of K . It reads

L K (ω, k) = ρ 0 | σ 1 (k)| 2 L p c (ω)L (|k| 2 t M (kt))(ω).
A detailed expression will be discussed in Section B below. The stability condition in Lemma 3.1-iii) should take into account the dependence with respect to the frequency: in view of the estimates in Lemma 3.2 and Lemma 3.3, we expect the decay of all modes ρ(t, k), k = 0, with an exponential rate proportional to |k|. To this end, it remains to check the "(L)-condition" in [START_REF] Mouhot | On Landau damping[END_REF]: it amounts to find κ, Λ > 0, such that inf

k∈X d \{0} 1 -L K (ω|k|, k) ≥ κ for 0 ≥ Re(ω) ≥ -Λ. (L)
In fact, for the Vlasov equation, such a property holds under a smallness assumption, see [START_REF] Mouhot | On Landau damping[END_REF]Condition (a) in Proposition 2.1]. Here, this condition can be rephrased by means of a condition on the wave speed c 1. The latter confirms the intuition that the damping is related to the ability to evacuate the particles energy through the membranes, see [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF]. (It also raises the issue to determine whether or not there exist stable equilibrium for c 1; we shall go back to this issue in Proposition B.11 and Remark B.13.) A similar smallness condition on 1/c appears in the asymptotic statements for a single particle [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF]Theorem 2,3 & 4], for the analysis of the relaxation to equilibrium for the Vlasov-Wave-Fokker-Planck model [2, Theorem 2.3], and the stability analysis in [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environmemt[END_REF]. Moreover, as mentioned in the Introduction, up to a suitable c-dependent rescaling of the coupling, the regime c → ∞ leads to the usual Vlasov system [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF]; we check accordingly that the stability criterion for large c's is consistent to the condition exhibited for the Vlasov equation, see Remark B.10. A forthcoming work investigates on numerical grounds the role of the wave speed c on the damping phenomenom [START_REF] Goudon | Numerical investigation of Landau damping in dynamical Lorentz gases[END_REF].

Proposition 3.4 (Stability criterion for large c's) Assume (H1)-(H2) and (R2).

There exists c 0 > 0 such that if c > c 0 then condition (L) is fulfilled.

Proof. Let Λ ∈ (0, λ 0 ). Let ω = α + iβ, with -λ 0 < -Λ ≤ α ≤ 0, and β ∈ R. On the one hand, we have, for k = 0,

L (|k| 2 t M (kt))(ω|k|) = ˆ∞ 0 s M k |k| s e -ωs ds ≤ C 0 ˆ∞ 0 se -λ 0 s e -αs ds ≤ C 0 ˆ∞ 0 se -(λ 0 -Λ)s ds ≤ C 0 (λ 0 -Λ) 2 .
On the other hand, Lemma 2.1 allows us to estimate as follows

L p c (ω|k|) ≤ p c L ∞ ˆ2R 2 /c 0 e -α|k|s ds ≤ C S σ 2 L 2n/(n+2) σ 2 L 2 Λ e 2Λ|k|R 2 /c c .
Owing to (R2), we obtain

| σ 1 (k)| 2 L p c (ω|k|) ≤ C 2 1 C S σ 2 L 2n/(n+2) σ 2 L 2 Λ e -2(λ 1 -ΛR 2 /c)|k| c .
We observe that the right hand side tends to 0 as c → ∞. Therefore, for any κ ∈ (0, 1), provided c is large enough, we have

sup k =0 |L K (ω|k|, k)| ≤ 1 -κ for any ω ∈ C with -λ 0 < -Λ ≤ Re(ω) ≤ 0, which implies inf k =0 |L K (ω|k|, k) -1| ≥ κ > 0.
This is exactly condition (L) in [START_REF] Mouhot | On Landau damping[END_REF]. It allows us to apply the reasoning as in [28, Theorem 3.1], which will thus imply the Landau damping for c large enough.

Linearized Landau damping: main statements

Let us collect here various statements that will be discussed for the linearized Landau damping, depending on whether

X d = T d (confined case) or X d = R d (dispersive case),
and on the decay/regularity assumptions made on the data. 

(v) = f 0 (•, v) T d while (t, x) = ´Rd f (t, x, v) dv converges strongly to ρ ∞ = ˜Td ×R d f 0 (x, v) dv dx. To be more specific, we can find 0 < µ < min(λ 0 , λ, Λ) such that for any (k, ξ) ∈ Z d × R d , there exists C > 0 (independent of k, ξ) verifying | f (t, k, ξ) -f ∞ (k, ξ)| ≤ Ce -µ|ξ+kt| , for any r ∈ N, there exists M r > 0 verifying (t, •) -ρ ∞ C r ≤ M r e -µt .
By virtue of Proposition 3.4 the damping holds provided c is large enough. Note that f ∞ depends on the velocity variable only. Therefore, we have f ∞ (k, ξ) = 0 for any k = 0. It can be natural to assume that the initial perturbation f 0 does not provide additional mass to the system; in this case ρ ∞ = 0 and the macroscopic mass fluctuation (t, •) tends to 0 exponentially fast. This statement also implies that the applied force tends to 0 as t goes to infinity, which is the essence of Landau damping. Indeed, we have seen that φ I is compactly supported with respect to the time variable while for large times, φ S casts as

φ S (t, x) = - ˆt t-2R 2 /c p c (t -s)Σ (s) ds.
The bounds on p c and on (t, x) allow us to conclude. The corresponding force

∇ x φ S (t, x) = - ˆTd ∇Σ(x -y) ˆt 0 p c (τ ) (t -τ, y) dτ dy = - ˆTd ∇Σ(x -y) ˆt 0 p c (τ ) [ (t -τ, y) -ρ ∞ ] dτ dy then satisfies ∇ x φ S (t) C r ≤ ˆTd |∇Σ(x -y)| ˆt 0 |p c (τ )| (t -τ ) -ρ ∞ C r dτ dy ≤ ∇Σ L 1 ˆt 0 |p c (τ )|M r e -µ(t-τ ) dτ ≤ M r ∇Σ L 1 ˆ2R 2 /c 0 |p c (τ )|e +µτ dτ e -µt .
We can equally state that the shifted distribution g(t, x, v) = f (t, x + tv, v) converges strongly while f (t, x, v) converges only weakly. converges almost everywhere to 0, while (t, x) = ´Rd f (t, x, v) dv converges strongly to 0. To be more specific, we can find 0 < µ < min(λ 0 , λ, Λ) such that for any

(k, ξ) ∈ R d \ {0} × R d , there exists C > 0 (independent of k, ξ) verifying | f (t, k, ξ)| ≤ Ce -µ|ξ+kt| , for any r ∈ N, there exists M r > 0 verifying (t, •) C r ≤ Mr 1+t d/2 .
The decay of the macroscopic density to 0 holds, even for an initial fluctuation that brings some mass in the system; this is a dispersion mechanism which also governs the decay rate.

We can modify the assumptions on the data. In particular, the analyticity condition can be relaxed into a polynomial decay, up to a suitable adaptation of Lemma 3.1. Namely, we can replace (R1) by (R1 ) there exists C 0 > 0 such that for any ξ ∈ R d , k ∈ X d we have, for some p > 2,

| M (ξ)| ≤ C 0 (1 + |ξ| 2 ) p/2 , | f 0 (k, ξ)| ≤ C 0 (1 + |ξ| 2 ) p/2 .
It is also possible to relax the condition on σ 1 which does not need to be an analytic function in this framework (for instance it can be assumed to be Schwartz' class; further relaxation can be especially interesting when (ψ 0 , ψ 1 ) = 0). In this framework, we slightly modify the stability condition; which now states as follows inf

k∈X d \{0} |L K (ω, k) -1| ≥ κ > 0 for any ω ∈ iR. (L )
Note that with (R1 ), L K (ω, k) is well-defined for Re(ω) ≥ 0, but it does not make sense a priori for Re(ω) < 0 contrarily to what happened in the analytic framework. In Appendix A, we will unify conditions (L) and (L ) and explain that the statements for analytic data applies with (L ) replacing (L). We warn the reader that the following result in finite regularity on T d applies only to the linearized problem. The non linear Landau damping on T d requires to work within the analytic framework, due to the echoes phenomena that cannot be controlled by the dispersive effect of the transport operator, see [START_REF] Bedrossian | Nonlinear echoes and Landau damping with insufficient regularity[END_REF] for further hints in this direction. 

(v) = f 0 (•, v) T d while (t, x) = ´Rd f (t, x, v) dv converges strongly to ρ ∞ = ˜Td ×R d f 0 (x, v) dv dx. To be more specific, for any (k, ξ) ∈ T d × R d , there exists C > 0 verifying | f (t, k, ξ) -f ∞ (k, ξ)| ≤ C(1 + |ξ| 2 + t 2 |k| 2 ) -(p-3)/2 , for any r ∈ [0, p -4 -d/2], there exists M r > 0 verifying (t, •) -ρ ∞ H r ≤ M r (1 + t 2 ) -(p-
(k, ξ) ∈ R d \ {0} × R d , there exists C > 0 verifying | f (t, k, ξ)| ≤ C(1 + |ξ| 2 + t 2 |k| 2 ) -(p-3)/2 , for any r ∈ [0, p -4 -d/2], there exists M r > 0 verifying (t, •) H r ≤ M r (1 + t 2 ) -d/4 .
As said above, it is possible to significantly relax the regularity assumption (R2) on σ 1 , for instance just assuming that σ 1 is Schwartz' class or with a sufficiently large Sobolev regularity (see Appendix A). We shall see that the analysis of the non linear equation in R d requires a restriction on the space dimension; namely the non linear Landau damping occurs when d ≥ 3. As far as we are concerned with the linearized problem, there is no such restriction on d. The statements on finite regularity can be completed by the strong convergence to 0 of the force field and the strong convergence of the shifted distribution g(t, x, v) = f (t, x + tv, v). We shall state in the forthcoming Section a different formulation of the linearized damping in finite regularity, in a fashion similar to [7, Proposition 2.2], which will be convenient to study the non linear problem, see Proposition 4.14.

We collect in Appendix A the detailed analysis of the Volterra equation [START_REF] Goudon | Mean field limit for particles interacting with a vibrating medium[END_REF], paying attention to bring out the differences with the standard Vlasov case where the potential is defined by a mere space-convolution. We also discuss in Appendix B a Penrose-like stability criterion.

Analysis of the Landau damping on R d

We shall see that the damping in R d occurs with a restriction on the space dimension: we should assume d ≥ 3. As in [START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF], the analysis in the whole space relies on dispersive phenomena attached to the free transport operator; these effects are indeed strong enough to dominate the plasma echoes when d ≥ 3.

Functional framework

We shall make use of Sobolev-type spaces. To this end, let us introduce a few notation. For x ∈ R m , m ∈ N \ {0}, we denote

x = (1 + |x| 2 ) 1/2 ,
which is the weight involved in the definition of Sobolev spaces:

H s (R m ) = u : R m → R, ˆRm x 2s | u(x)| 2 dx .
Given x and y in R d , x, y stands for the vector in R 2d that results from the concatenation of x and y. Consequently, we can set

x, y = (1 + |x| 2 + |y| 2 ) 1/2 . With α = (α 1 , . . . α d ) ∈ N d , we introduce the differential operator D α ξ = (-i∂ α 1 ξ 1 ) • • • (-i∂ α d ξ d ).
For s ≥ 0, H s stands for the standard Sobolev space. We shall make use of the norms introduced in [START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF]. We deal with functions f : (0, ∞) × R d × R d → R, and for P ∈ N, s ≥ 0, we denote

f (t) 2 H s P = α∈N d |α|≤P (x, v) → v α f (t, x, v) 2 H s = α∈N d |α|≤P ¨Rd ×R d k, ξ 2s D α ξ f (t, k, ξ) 2 dk dξ. ( 18 
) It is also convenient to consider t∇ x , ∇ v f (t) 2 H s P = α∈N d |α|≤P (x, v) → t∇ x , ∇ v v α f (t, x, v) 2 H s = α∈N d |α|≤P ¨Rd ×R d tk, ξ 2 k, ξ 2s D α ξ f (t, k, ξ)
(there is a slight abuse of notation here since the right hand side is actually equivalent to the definition of t∇ x , ∇ v f (t) 2

H s P based on [START_REF] Goudon | Numerical investigation of Landau damping in dynamical Lorentz gases[END_REF]) and

|∇ x | δ f (t) 2 H s P = α∈N d |α|≤P (x, v) → |∇ x | δ v α f (t, x, v) 2 H s = α∈N d |α|≤P ¨Rd ×R d |k| 2δ k, ξ 2s D α ξ f (t, k, ξ) 2 dk dξ.
We shall also use L ∞ -type estimate on Fourier transforms; we set

∇ x,v s f L ∞ (t) L ∞ (k,ξ) = sup t∈[0,T ] sup k,ξ∈R d k, ξ s f (t, k, ξ) . For a function (t, x) ∈ (0, ∞) × R d → (t, x) ∈ R we introduce the modified Sobolev norm ˆRd |k| k, tk 2s | (t, k)| 2 dk = A s (t) (t) L 2 (k)
, where we have set

A s (t, k) = |k| 1/2 k, tk s ,
and we shall also use

A s L 2 (k,t) = ˆT 0 ˆRd |k| k, tk 2s | (t, k)| 2 dk dt,
and

A s L ∞ (k) L 2 (t) = sup k∈R d ˆT 0 |k| k, tk 2s | (t, k)| 2 1/2 .
The norms defined on the macroscopic density equally apply to the kinetic quantity g, replacing (t, k) by g(t, k, tk).

In what follows, we shall use the notation A B, meaning that we can find a constant C > 0 such that A ≤ CB. Here, A, B are in general functions of time, space, velocity, or their associated Fourier variables; it is thus understood that C is uniform over these variables.

We go back to the formulation [START_REF] De Bièvre | Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov-Poisson system[END_REF]. Compared to the usual Vlasov equation, the expression of the potential Φ[ψ] now involves the contribution of the initial data F I , and the self-consistent part G presents a memory effect, through the kernel p c . It is convenient to think of the problem with some generality on these quantities. Thus, let us collect the hypothesis on the data of the problem: F I , p c and σ 1 . It is not obvious to translate these assumptions on the original data σ 2 , ψ 0 , ψ 1 ... Nevertheless, it can be checked that these assumptions are satisfied in the specific cases where (H1)-(H3) and (R1)-(R2) hold. (For instance we remind the reader that (H1)-(H3) imply that φ I , and thus F I , has a compact support with respect to the time variable, by virtue of Huygens' principle.) This formulation of the hypothesis has the advantage of pushing the generality of the result, both on the "linear" perturbation due to the data through F I and on the memory effects in the self-consistent potential through p c . The following claim is crucial for our purposes: roughly speaking, it explains why the situation is not very different from the Vlasov case, once the role of p c well understood, and it justifies that the approach of [START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF] is robust enough to be adapted. Note that (D1) is the assumption that makes the constants C 1 (F I ) and C 2 (F I ) below meaningful.

(D1) (t, x) → F I (t,
Proposition 4.2 Let (D1), (D2) and (H4) be fulfilled. Then for any 0 < T < ∞ and any s ≥ 0 the following three estimates hold

A s σ 1 F I -σ 1 G 2 L 2 (t) L 2 (k) C 1 (F I ) + A s 2 L 2 (t) L 2 (k) , ( 19a 
)
A s σ 1 F I -σ 1 G 2 L ∞ (k) L 2 (t) C 1 (F I ) + A s 2 L ∞ (k) L 2 (t) , ( 19b 
) sup t∈[0,T ] sup k∈R d k, tk s | σ 1 (k)| F I (t, k) -σ 1 (k) G (t, k) (19c) C 2 (F I ) + sup t∈[0,T ] sup k∈R d k, tk s | (t, k)| , with C 1 (F I ) = ˆ+∞ 0 t 2s F I (t) 2 L 1 ( dx) dt and C 2 (F I ) = sup t∈R + t s F I (t) L 1 ( dx) .
Remark 4. [START_REF] Backus | Linearized plasma oscillations in arbitrary electron distributions[END_REF] We shall use the following variant of the statement : for any polynomial k → P (k), we have

P A s σ 1 F I -σ 1 G 2 L 2 (t) L 2 (k) C 1 (F I ) + A s 2 L 2 (t) L 2 k ( 20 
)
P A s σ 1 F I -σ 1 G 2 L ∞ (k) L 2 (t) C 1 (F I ) + A s 2 L ∞ k L 2 (t) (21) 
sup

t∈[0,T ] sup k∈R d k, tk s P (k)| σ 1 (k)| F I (t, k) -σ 1 (k) G (t, k) (22) C 2 (F I ) + sup t∈[0,T ] sup k∈R d t -α k, tk s | (t, k)| .
These estimates can be justified since σ 1 lies in the Schwartz class and thus P (k) σ 1 (k) remains a function with fast decay.

Proof. In order to prove (19a), we analyse separately the contribution from F I and G as follows

A s σ 1 F I -σ 1 G 2 L 2 (t) L 2 k ˆT 0 ˆRd k |k| k, tk 2s | σ 1 (k)| 2 | F I (t, k)| 2 dk dt =I + ˆT 0 ˆRd k |k| k, tk 2s | σ 1 (k)| 4 | G (t, k)| 2 dk dt =II .
For I, by using k, tk 2 ≤ k 2 t 2 , we readily obtain

I ≤ ˆRd k |k| k 2s | σ 1 (k)| 2 dk ˆ+∞ 0 t 2s F I (t) 2 L 1 ( dx) dt .
For II we start by applying Cauchy-Schwarz' inequality

| G (t, k)| 2 = ˆt 0 p c (t -τ ) (τ, k) dτ 2 ≤ ˆt 0 |p c (t -τ )| dτ ˆt 0 |p c (t -τ )|| (τ, k)| 2 dτ .
Going back to II, we are led to

II ≤ p c L 1 ˆT 0 ˆt 0 |p c (t -τ )| ˆRd k |k| k, τ k 2s k, tk 2s k, τ k 2s | σ 1 (k)| 4 | (t, k)| 2 dk dτ dt.
A simple study of function shows that (for t ≥ τ ) sup

k∈R d k, tk 2s k, τ k 2s ≤ t 2s τ 2s . Since | σ 1 (k)| ≤ σ 1 L 1 1
, and using Fubini's theorem, we obtain

II p c L 1 ˆT 0 ˆT τ |p c (t -τ )| t 2s τ 2s A s (τ ) 2 L 2 (k) dt dτ p c L 1 ˆT 0 A s (τ ) 2 L 2 (k) ˆT -τ 0 |p c (u)| u + τ 2s τ 2s du dτ.
Since u + τ 2s u 2s τ 2s , we arrive at

II p c L 1 ˆ+∞ 0 u 2s |p c (u)| du A s 2 L 2 (t) L 2 (k)
.

It ends the proof of (19a). Estimate (19b) follows the same strategy: for k ∈ R d , we split as follows

ˆT 0 |k| k, tk 2s | σ 1 (k)| 2 F I (t, k) -σ 1 (k) G (t, k) 2 dt ≤ ˆT 0 |k| k, tk 2s | σ 1 (k)| 2 | F I (t, k)| 2 dt =J + ˆT 0 |k| k, tk 2s | σ 1 (k)| 4 | G (t, k)| 2 dt =JJ .
Proceeding as above, we obtain

J ≤ sup k∈R d |k| k 2s | σ 1 (k)| 2 ˆ+∞ 0 t 2s F I (t) 2 L 1 ( dx) dt and JJ p c L 1 ˆT 0 ˆT τ |p c (t -τ )| t 2s τ 2s |k| k, τ k 2s | (τ, k)| 2 dt dτ p c L 1 ˆ+∞ 0 u 2s |p c (u)| du ˆT 0 |k| k, τ k 2s | (τ, k)| 2 dτ .
We proceed with a slightly different approach for (19c) when dealing with the contribution involving G . For any t ∈ [0, T ] and k ∈ R d , we write

k, tk s | σ 1 (k)| F I (t, k) -σ 1 (k) G (t, k) sup k∈R d k s | σ 1 (k)| sup t∈[0,T ] t s F I (t) L 1 ( dx) + k, tk s | G (t, k)|. Since k, tk s | G (t, k)| ≤ ˆt 0 |p c (t -τ )| k, tk s k, τ k s k, τ k s | (τ, k)| dτ ˆt 0 |p c (t -τ )| t s τ s dτ sup τ ∈[0,T ] sup k∈R d k, τ k s | (τ, k)| ,
we are left with the task of showing the finiteness of the integral that involves p c :

ˆt 0 |p c (t -τ )| t s τ s dτ = t s ˆt 0 |p c (u)| 1 t -u s du = t s ˆt/2 0 |p c (u)| 1 t -u s du + t s ˆt t/2 |p c (u)| 1 t -u s du t s ˆt/2 0 |p c (u)| 1 t/2 s du + t s t/2 s ˆt t/2 t/2 s |p c (u)| du ˆt/2 0 |p c (u)| du + ˆt t/2 u s |p c (u)| du p c L 1 + ˆ+∞ 0 u s |p c (u)| du 1,
by virtue of (D2).

Let us now collect a few technical results, more or less extracted from [START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF], which will be useful for the proof of the Landau damping.

Lemma 4.4 (Trace Lemma

) Let f ∈ H s (R d ) with s > d-1
2 . Let C ⊂ R d be a submanifold with dimension larger or equal to 1. We have

f L 2 (C ) f H s .
This claim, which will be further used in the sequel, allows us to obtain the following estimates.

Lemma 4.5 Let f 0 be in H s P with P > d/2. Then, 1. we have

ˆT 0 ˆRd |A s f 0 (k, tk)| 2 dk dt = ˆT 0 ˆRd |k| k, tk 2s | f 0 (k, tk)| 2 dk dt f 0 2 H s P . ( 23 
) 2. if, moreover, (x, v) → x α f 0 (x, v) ∈ H s P , for any α ∈ N d with |α| ≤ P , we have sup k,ξ k, ξ s | f (k, ξ)| |α|≤P x α f 0 (x, v) H s P . ( 24 
) 3. if, moreover (x, v) → x α f 0 (x, v) ∈ H s+1 P
for any α ∈ N d with |α| ≤ P , we have

sup k∈R d ˆT 0 |k| k, tk 2s | f 0 (k, tk)| 2 dt α∈N d |α|≤P x α f 0 (x, v) H s+1 P . ( 25 
) Proof. Since f 0 ∈ H s P , we have (k, ξ) -→ k, ξ s f 0 (k, ξ) ∈ L 2 (k) H P (ξ) . Indeed, D α ξ ξ → k, ξ s f 0 (k, ξ) = j∈N d j≤α α j D α-j ξ (ξ → k, ξ s ) D j ξ f 0 (k, ξ) j∈N d j≤α k, ξ s D j ξ f 0 (k, ξ) yields (k, ξ) → k, ξ s f 0 (k, ξ) 2 L 2 (k) H P (ξ) = ˆRd k ξ → k, ξ s f 0 (k, ξ) 2 H P (ξ) dk α∈N d |α|≤P ˆRd k ×R d ξ k, ξ 2s D α ξ f 0 (k, ξ) 2 dk dξ = f 0 2 H s P . (26) Next, we observe that ˆT 0 A s f 0 (•, t•) 2 L 2 (k) dt = ˆRd k ˆT 0 k, tk 2s | f 0 (k, tk)| 2 |k| dt dk = ˆRd k ˆ|k|T 0 k, uk/|k| 2s | f 0 (k, uk/|k|)| 2 du dk ≤ ˆRd k sup ω∈S d-1 ˆ+∞ -∞ k, uω 2s |f 0 (k, uω)| 2 du dk.
Therefore coming back to [START_REF] Lynden-Bell | The stability and vibrations of a gas of stars[END_REF], with P > d/2, we deduce that

ξ → k, ξ s f 0 (k, ξ) 2 H P (ξ)
is finite for almost every k ∈ R d . We can apply the Trace Lemma 4.4 for almost every

k ∈ R d , which leads to ˆ+∞ -∞ k, uω 2s | f 0 (k, uω)| 2 du ξ → k, ξ s f 0 (k, ξ) 2 H P (ξ)
.

(Note that the constant in the estimate of the Trace Lemma 4.4 only depends on the submanifold C , and the estimate does not involve the parameter k.) Integrating over k we conclude that

ˆT 0 A s f 0 (•, t•) 2 L 2 (k) dt f 0 2 H s P .
For the second estimate, we remark that (x, v) → x α f 0 (x, v) ∈ H s P implies that k, ξ s+1 f 0 (k, ξ) lies in H P (k) H P (ξ) , which embeds into the space of continuous functions; the third estimate then follows immediately, see [START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF]Lemma 2.6].

The following statement will be repeatedly used for proving Proposition 4.10, see [START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF]Lemma 2.9].

Lemma 4.6 Let g 1 et g 2 be in L 2 (R d k × R d ξ ) and let r ∈ L 1 (R d n ). Then, we have ˆR3d k,ξ,n g 1 (k, ξ)r(n)g 2 (k -n, ξ -tn) dn dk dξ g 1 L 2 (k,ξ) g 2 L 2 (k,ξ) r L 1 (n) . ( 27 
)
Let

g 1 ∈ L 2 (R d k × R d ξ ), g 2 ∈ L 1 (R d k ; L 2 (R d ξ )) and r ∈ L 2 (R d n ). Then, we have ˆR3d k,ξ,n g 1 (k, ξ)r(n)g 2 (k -n, ξ -tn) dn dk dξ g 1 L 2 (k,ξ) g 2 L 1 (R d k ;L 2 (R d ξ )) r L 2 (n) . ( 28 
)
We now state an existence-uniqueness result for the Cauchy problem (10a)-(10b), in the functional spaces of interest. Again we refer the reader to [START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF] for a similar result for the screened Vlasov equation.

Proposition 4.7 Let P > d/2 be an integer. Let f 0 ∈ H s P with s > d/2 + 1.
Then, there exists T > 0 such that, for any 0 < T < T , the problem (10a)-(10b) admits a unique solution g ∈ C 0 ([0, T ];

H s P ) on [0, T ]. Moreover, if for some T ≤ T there exists s ≥ s such that lim sup t→T g(t) H s P < +∞, then, actually, T < T .
The analysis of the Landau Damping, as it is already clear for the linearized problem, relies heavily on the formulation of the problem by means of the Fourier variables. Let us collect the useful formula from which the reasoning starts. Integrating (10a)-(10b) over [0, t], we get

g(t, x, v) = f 0 (x, v)+ ˆt 0 ∇ x σ 1 (F I -σ 1 G )(τ, x+τ v)•(∇ v -τ ∇ x )(M (v)+g(τ, x, v)) dτ.
We check that

ˆR2d u(x + τ v, v)e -ik•x e -iξ•v dv dx = ˆR2d u(y, v)e -ik•y e -i(ξ-τ k)•v dv dx = u(k, ξ -τ k).
We also bear in mind that 1(v)(ξ) = δ(ξ = 0) and 1(x)(k) = δ(k = 0). We thus obtain

g(t, k, ξ) = f 0 (k, ξ) - ˆt 0 ˆR2d n σ 1 (n)( F I -σ 1 G )(τ, n)δ(ζ = τ n) • (ξ -ζ) M (ξ -ζ)δ(n = k) dn dζ dτ - ˆt 0 ˆR2d n σ 1 (n)( F I -σ 1 G )(τ, n)δ(ζ = τ n) • (ξ -ζ -τ (k -n)) g(τ, k -n, ξ -ζ) dn dζ dτ = f 0 (k, ξ) - ˆt 0 k σ 1 (k)( F I -σ 1 G )(τ, τ k) • (ξ -τ k) M (ξ -τ k) dτ - ˆt 0 ˆRd n σ 1 (n)( F I -σ 1 G )(τ, n) • (ξ -τ k) g(τ, k -n, ξ -τ n) dn dτ. (29) 
Eventually, the macroscopic density is evaluated by

(t, k) = ˆR2d f (t, x, v)e -ik•x dv dx = ˆR2d g(t, x -tv, v)e -ik•x dv dx = ˆR2d g(t, y, v)e -ik•y e -itk•v dv dy = g(t, k, tk).
Going back to [START_REF] Nirenberg | An abstract form of the nonlinear Cauchy-Kowalewski theorem[END_REF] with ξ = tk, we arrive at

(t, k) = f 0 (k, tk) = - ˆt 0 k σ 1 (k)( F I -σ 1 G )(τ, τ k) • (t -τ )k M ((t -τ )k) dτ - ˆt 0 ˆRd n σ 1 (n)( F I -σ 1 G )(τ, n) • ((t -τ )k) g(τ, k -n, tk -τ n) dn dτ. ( 30 
)

Main result

We are ready now to state the main result about the non linear Landau damping. As said above, the proof makes the constraint d ≥ 3 on the space dimension appear.

Theorem 4.8 (Landau damping in R d ) Let d ≥ 3. Suppose (

D1), (D2), (H4).

There exists universal constants

ε 0 , R 0 > 0 and r ∈ (0, R 0 ) such that if s > R 0 , α∈N d |α|≤P x α f 0 2 H s P ≤ ε 2 0 ˆ+∞ 0 t 2s F I (t) 2 L 1 ( dx) dt ≤ ε 2 0 , sup t∈R + t s F I (t) L 1 ( dx) ≤ ε 0 ,
and M ∈ H s P (R d v ) with P > d/2 and s ≥ s + 2d satisfies (L), then, the unique solution g of (10a)-(10b) is globally defined. Moreover, there exists g ∞ ∈ H r P such that

g(t) -g ∞ 2 H σ P ε 2 0 t -d-1+η 0 for 0 ≤ σ ≤ r, (31) | g(t, k, tk)| ε 0 k, tk -(r+d+2) t η 0 (32) ∇ x σ ∇σ 1 (F I (t) -σ 1 G g (t)) L ∞ ( dx) ε 0 t -d-1+η 0 for σ ≥ 0 ( 33 
)
holds where η 0 > 0 stands for a arbitrarily small positive number (but the constants might blow up as η 0 → 0).

Remark 4.9 With (D1') the statement holds with η 0 = 0. Estimate (33) holds because σ 1 is assumed to be in the Schwartz class; this assumption can be relaxed at the price of introducing constraints on the regularity exponent σ.

The proof of the Landau Damping in fact relies on a bootstrap estimate, see [7, Proposition 2.5], which states as follows.

Proposition 4.10 (Bootstrap) Let the hypothesis of Theorem 4.8 be fulfilled. Let 0 < η < 1 and 0 < δ < 1/2. There exists real numbers

2(d + 1) + 1 < s 1 < s 2 < s 3 < s 4 < s and K 1 , ..., K 5 ≥ 1 such that, for any g ∈ C 0 ([0, T ], H s P ) solution of (10a)-(10b) on the time interval [0, T ] verifying t∇ x , ∇ v g(t) 2 H s 4 P ≤ 4K 1 ε 2 t 5 , ( 34 
)
A s 4 2 L 2 (t) L 2 (k) ≤ 4K 2 ε 2 , ( 35 
)
|∇ x | δ g(t) 2 H s 3 P ≤ 4K 3 ε 2 , ( 36 
)
A s 2 2 L ∞ (k) L 2 (t) ≤ 4K 4 ε 2 T η , ( 37 
)
∇ x,v s 1 g(t) L ∞ (k,ξ) ≤ 4K 5 ε t η , ( 38 
)
for 0 < ε ≤ ε 0 small enough, the following estimates hold on [0, T ]

t∇ x , ∇ v g(t) 2 H s 4 P ≤ 2K 1 ε 2 t 5 , ( 39 
)
A s 4 2 L 2 (t) L 2 (k) ≤ 2K 2 ε 2 , ( 40 
)
|∇ x | δ g(t) 2 H s 3 P ≤ 2K 3 ε 2 , ( 41 
)
A s 2 2 L ∞ (k) L 2 (t) ≤ 2K 4 ε 2 T η , (42) ∇ x,v s 1 g(t) L ∞ (k,ξ) ≤ 2K 5 ε t η . ( 43 
)
Remark 4. [START_REF] De Bièvre | Normal transport at positive temperatures in classical Hamiltonian open systems[END_REF] We shall see within the proof how the s i 's are chosen, according to some compatibility conditions. This choice determines the possible value for R 0 that arises in Theorem 4.8 as a threshold for the Sobolev regularity in which the damping is evaluated. To be specific, Proposition 4.10 holds for s > s 4 + 2d and s i > s i-1 + 2d and in Theorem 4.8, we can set

R 0 = s 4 + 2d, r = s 1 -d -2.
The condition on ε 0 imposes a smallness constraint on the initial perturbation.

Remark 4.12 The parameter η > 0 does not arise in the analysis of the Vlasov system [START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF]. In fact, we can prove a logarithmic growth on the solution, but the proof of the Landau damping is simpler by using the algebraic decay as stated here. Looking at the details of the proof, K 4 and K 5 blow up as η goes to 0; ε should be chosen small enough, depending on all the K j 's, and it thus shrinks as η becomes smaller. When (D1') holds the statement applies with η = 0.

Remark 4.13

It might be surprising that the half-convolution with respect to time plays a relatively weak role in this statement, compared to the Vlasov case. At first sight, we would suspect that the memory effect changes a lot the control of the force terms, or that it imposes further restrictions. In fact, the heart of the proof relies on the estimates in Proposition 4.2, and the main impact of the memory term is rather on the stability condition, where it completely modifies, in a quite intricate way, the expression of the symbol L K . This can be seen as a confirmation of the robustness of the approach designed in [START_REF] Mouhot | On Landau damping[END_REF][START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF][START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF].

We now explain how the Landau damping can be justified, having at hand the bootstrap statement. The arguments follow closely the analysis performed in [START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF]. However, we think valuable to make the discussion as self-contained as possible and not to hide any difficulty, explaining in full details how we proceed to obtain the estimates.

Proof of Landau damping. Proposition 4.7 justifies the local existence of a solution to (10a)-(10b); Proposition 4.10 tells us that the solution is in fact globally defined and it satisfies (39)-( 43) over [0, ∞). We are going to use these estimates to analyse the Landau Damping. From this, (43) implies

| (t, k)| ε k, tk -s 1 t η .
For the force term, we shall use the general estimate, for σ ≥ 0,

∇ x σ F (t, •) L ∞ ( dx) ≤ ˆRd k σ | F (t, k)| dk.
Next, we apply successively (19c) and (43); we obtain

∇ x σ ∇ x Φ[ψ](t, •) L ∞ ( dx) ≤ ˆRd k σ |k|| σ 1 (k)| F I (t, k) -σ 1 (k) G (t, k) dk ˆRd k, tk -s 1 |k|ε t η dk ε t η-1 ˆRd k, tk 1-s 1 dk ε t -d-1+η
where we used (H4) to incorporate k σ with | σ 1 (k)| and the elementary inequality |k| t ≤ k, tk . It remains to show that the behavior of g(t, x, v) is driven by free transport. To this end, we are going to define g ∞ as the solution of

g ∞ (x, v) = f 0 (x, v) + ˆ+∞ 0 ∇σ 1 (F I (t) -σ 1 G (t)) (x + tv) • (∇ v M (v) + (∇ v -t∇ x )g(t, x, v)) dt,
which, indeed, lies in some H r P . From this, we can establish the convergence of g to

g ∞ in H σ P -norm, with 0 ≤ σ ≤ r = s 1 -d -2.
To this aim, we go back to (29) and we get

k, ξ σ D α ξ g(t, k, ξ) = k, ξ σ D α ξ f 0 (k, ξ) - ˆt 0 k, ξ σ k σ 1 (k) F I (τ, k) -σ 1 (k) G (τ, k) • D α ξ (ξ -τ k) M (ξ -τ k) L(τ,k,ξ) dτ - ˆt 0 ˆRd n k, ξ σ n σ 1 (n) F I (τ, n) -σ n G (τ, n) • D α ξ (ξ -tk) g(τ, k -n, ξ -τ n) dn
For the linear term, we combine (19c), ( 43), together with the elementary inequalities k, ξ 2σ k, τ k 2σ ξ -τ k 2σ and |k| τ ≤ k, τ k ; we are led to

L(τ ) 2 L 2 (k,ξ) ˆR2d k,ξ k, τ k 2σ |k| 2 | σ 1 (k)| 2 F I (τ, k) -σ 1 (k) G (τ, k) 2 × ξ -τ k 2σ D α ξ (ξ -τ k) M (ξ -τ k) 2 dk dξ ˆRd k k, τ k 2σ |k| 2 k, τ k -2s 1 ε 2 τ 2η dk   ˆRd ξ ξ 2σ ∇ v M (ξ) 2 dξ   ε 2 τ -2+2η ˆRd k k, τ k 2σ+2-2s 1 dk ε 2 τ -d-2+2η ,
where we used the assumption M ∈ H s P with s > σ ; the last estimate holds provided 2σ + 2 -

2s 1 < -d, that is σ < s 1 -d/2 -1.
For the non linear term, the Cauchy-Schwarz inequality, with

k, ξ ≤ n, τ n k - n, ξ -τ n , yields ˆRd n k, ξ σ |n|| σ 1 (n)| F I (τ, n) -σ 1 (n) G (τ, n) D α ξ ∇ v g(τ, k -n, ξ -τ n) dn ≤ ˆRd n n, τ n σ |k -n| 2δ |n|| σ 1 (n)| F I (τ, n) -σ 1 (n) G (τ, n) dn 1/2 × ˆRd n n, τ n σ |n|| σ 1 (n)| F I (τ, n) -σ 1 (n) G (τ, n) ×|k -n| 2δ k -n, ξ -τ n 2σ D α ξ ∇ v g(τ, k -n, ξ -τ n) 2 dn 1/2 .
Next, combining (19c), ( 43), (41) and |n| τ ≤ n, τ n , leads to

NL(τ ) 2 L 2 (k,ξ) ˆR2d k,ξ ˆRd n n, τ n σ |k -n| 2δ |n|| σ 1 (n)| F I (τ, n) -σ 1 (n) G (τ, n) dn × ˆRd n n, τ n σ |n|| σ 1 (n)| F I (τ, n) -σ 1 (n) G (τ, n) ×|k -n| 2δ k -n, ξ -τ n 2σ D α ξ ∇ v g(t)(k -n, ξ -τ n) 2 dn dk dξ sup k∈R d ˆRd n n, τ n σ |k -n| 2δ |n|| σ 1 (n)| F I (τ, n) -σ 1 (n) G (τ, n) dn × ˆRd n n, τ n σ |n|| σ 1 (n)| F I (τ, n) -σ 1 (n) G (τ, n) dn |∇ x | δ ∇ v g(τ ) 2 
H σ P sup k∈R d ˆRd n n, τ n σ |k -n| 2δ |n| n, τ n -s 1 ε τ η dn × ˆRd n n, τ n σ |n| n, τ n -s 1 ε τ η dn |∇ x | δ g(τ ) 2 H s 3 P ε 4 τ 2η-2 sup k∈R d ˆRd n n, τ n σ+1-s 1 |k -n| 2δ dn ˆRd n n, τ n σ+1-s 1 dn
where we have used the condition

s 3 ≥ σ + 1. Remarking that n, τ n 2 = 1 + τ 2 |n| 2 = τ n 2 , a simple change of variable yields ˆRd n n, τ n σ+1-s 1 dn = τ -d ˆRd n n σ+1-s 1 dn τ -d provided σ + 1 -s 1 < -d, that is σ < s 1 -d -1.
Proceeding with the same change of variable, we obtain, for any

k ∈ R d , ˆRd n n, τ n σ+1-s 1 |k -n| 2δ dn = τ -d+2δ ˆRd n n σ+1-s 1 | τ k -n| 2δ dn = τ -d+2δ ˆB( τ k,1) + ˆ B( τ k,1) n σ+1-s 1 | τ k -n| 2δ dn ≤ τ -d+2δ ˆB(0,1) 1 |n| 2δ dn + ˆRd n n, τ n σ+1-s 1 dn τ -d+2δ ,
(since δ < d). This is indeed bounded uniformly with respect to k. Eventually, we arrive at

NL(τ ) 2 L 2 (k,ξ) ε 4 τ -2d+2η-2+2δ .
The conclusion is two-fold: on the one hand, the definition of g ∞ is meaningful, and it gives an element of H σ P for any 0 ≤ σ ≤ r = s 1 -d -2; on the other hand, for any σ ∈ [0, s 1 -d -1), we have

g(t) -g ∞ 2 H σ P ε 2 ˆ+∞ t τ -d-2+2η dτ + ε 4 ˆ+∞ t τ -2d+2η-2+2δ dτ ε 2 t -d-1+2η+ + ε 4 t -2d-1+2η+2δ+ .
This ends the proof.

The proof of the bootstrap property relies on fine estimates for the linearized problem. Let us state the linearized damping property in the functional framework adapted to our purposes, see [START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF]Proposition 2.2]. In Appendix A we clarify the connection between this statement and the Propositions given in Section 3.2.

Proposition 4.14 (Linearized damping on R d ) Let the assumptions of Theorem 4.8 be fulfilled. We consider a family of functions

{t ∈ [0, T ] → a(t, k), k ∈ R d }. We sup- pose that, for any k ∈ R d , ˆT 0 |k| k, tk 2s |a(t, k)| 2 dt < +∞,
holds. Then, we can find a constant C LD (which does not depend on k and T ) such that any solution (t, k) → φ(t, k) of the system

φ(t, k) = a(t, k) + ˆt 0 K (t -τ, k)φ(τ, k) dτ = a(t, k) + ˆt 0 | σ 1 (k)| 2 |k| 2 (t -τ ) M ([t -τ ]k) ˆτ 0 p c (τ -σ)φ(σ, k) dσ dτ, on [0, T ] satisfies the following estimate: for any k ∈ R d ˆT 0 |k| k, tk 2s |φ(t, k)| 2 dt ≤ C LD ˆT 0 |k| k, tk 2s |a(t, k)| 2 dt.

Bootstrap analysis: proof of Proposition 4.10

As in [START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF], we introduce the time-response kernel

K(t, τ, k, n) = |k| 1/2 |n| 1/2 |k(t -τ )| n 2 | g(τ, k -n, tk -τ n)| .
The following statement is crucial to the analysis of the echo phenomena. It involves the constraint on s 1 involved in Proposition 4.10. Technically, this statement is substantially different when X d = T d or when X d = R d . In the torus, the proof needs analytic regularity but is free of constraint on the space dimension d. For the free space problem, the argument relies on dispersion mechanisms of the transport operator which are strong enough only when d ≥ 2; in this situation it is thus possible to work in finite regularity.

Lemma 4.15 Let 0 < T < ∞. Let s 1 > 2(d + 1) + 1.
The following two estimates hold

sup t∈[0,T ] sup k∈R d ˆt 0 ˆRd K(t, τ, k, n) dn dτ sup τ ∈[0,T ] sup k,ξ∈R d k, ξ s 1 τ η | g(τ, k, ξ)| and sup τ ∈[0,T ] sup n∈R d ˆT τ ˆRd K(t, τ, k, n) dk dt sup τ ∈[0,T ] sup k,ξ∈R d k, ξ s 1 τ η | g(τ, k, ξ)| .
We refer the reader to [7, Section 3] for a proof of this claim dealing with the Vlasov equation.

Remark 4.16

The factor 1/ n 2 in the kernel K comes from the convolution kernel used in [START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF]. Here, since σ 1 is Schwartz class, this factor can be replaced by 1/ n m with m ∈ N as large as we wish.

We follow closely the arguments of [START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF], up to the perturbation due to F I ; as pointed out above, the half convolution with respect to time in G does not substantially modify the analysis, owing to Proposition 4.2.

Estimates on

We start from the expression of (t, k) in (30) and we apply Proposition 4.14 in order to estimate the L 2 (t) norm of A s i (with i ∈ {2, 4}). We get

A s i (•, k) 2 L 2 (t) ˆT 0 |k| k, tk 2s i | f 0 (k, tk)| 2 dt + ˆT 0 ˆt 0 |k| 1/2 k, tk s 4 k σ 1 (k) F I (τ, k) • [t -τ ]k M ([t -τ ]k) dτ 2 dt + ˆT 0 ˆt 0 ˆRd n |k| 1/2 k, tk s 4 n σ 1 (n) F I (τ, n) -σ 1 (n) G (τ, n) •[t -τ ]k g(τ, k -n, tk -τ n) dτ dn 2 dt.
(44)

Estimate of the

L 2 (k) L 2 (t) norm of A s 4 .
Integrating (44) with respect to k yields

A s 4 2 L 2 (k) L 2 (t) ˆRd ˆT 0 |k| k, tk 2s 4 f 0 (k, tk) 2 dk dt + ˆRd ˆt 0 ˆt 0 |k| 1/2 k, tk s 4 k σ 1 (k) F I (τ, k) • (t -τ )k f 0 ([t -τ ]k) dτ 2 dk dt + ˆRd ˆT 0 ˆt 0 ˆRd |k| 1/2 k, tk s 4 n σ 1 (n) F I (τ, n) -σ 1 (n) G (τ, n) •(t -τ )k g(τ, k -n, tk -τ n) dτ dn 2 dk dt.
We denote the three terms in the right hand side as CT1, CT2 and NLT, respectively (for "constant term 1 and 2, non linear term"). In what follows, we are going to split the discussion according to the estimate NLT NLTT + NLTR, where NLTT (for transport) and NLTR (for reaction) stand for the contributions that arise from the following decomposition

k, tk s 4 k -n, tk -τ n s 4 + n, τ n s 4 .
Estimate on CT1. Owing to the fact that

α∈N d |α|≤P (x, v) → x α f 0 (x, v) 2 H s P ≤ ε 2 , Lemma 4.5 ensures CT1 α∈N d |α|≤P (x, v) → x α f 0 (x, v) 2 H s P ≤ ε 2
as well.

Estimate of CT2. This term induces new difficulties since it does not appear in the analysis of the Vlasov equation. It is far from clear whether or not this perturbation annihilates the Landau Damping mechanisms. With the strengthened assumption (D1') we shall see that we can obtain the necessary estimates on both

A s 4 in norm L 2 (k) L 2 (t) and A s 2 in norm L ∞ (k) L 2 (t)
. With (D1) only, we will be able to control the

L 2 (k) L 2 (t) norms, provided d ≥ 3, but a singularity remains for the L ∞ (k) L 2 (t)
norm, which will thus require a specific analysis. The former estimate holds uniformly with respect to T , but the singularity in the latter yields the weight with T η .

Let us write

CT2 = ˆT 0 ˆRd |I(t, k)| 2 dk dt. Since M ∈ H s P , we have ξ → ξ s M (ξ) ∈ H P (ξ)
, where P > d/2, and Sobolev's embedding yields | M (ξ)| M H P ξ -s . By using this together with the relations

|k| t ≤ k, tk , k, tk k, τ k [t -τ ]k and k, τ k k τ , we obtain |I(t, k)| ≤ ˆt 0 |k| 1/2 k, tk s 4 |k|| σ 1 (k)|| F I (τ, k)| ∇ v M ([t -τ ]k) dτ t -3/2 ˆt 0 k, τ k s 4 +3/2 | σ 1 (k)|| F I (τ, k)| [t -τ ]k s 4 -s dτ sup τ ≥0 τ s 4 +3/2 F I (τ ) L 1 ( dx) k s 4 +3/2 | σ 1 (k)| t -3/2 × ˆt 0 [t -τ ]k s 4 -s dτ ε k s 4 +3/2 |k| | σ 1 (k)| t -3/2 ˆ+∞ 0 u s 4 -s du ε k s 4 +3/2 |k| | σ 1 (k)| t -3/2
where we use

s 4 -s < -1. When, d ≥ 3, k → 1 |k| 2 is locally integrable.
Therefore, the singularity with 1/|k| does not raise any difficulty as far as we are interested in the integral of the square of I with respect to k. To be more specific, we have

CT2 = ˆT 0 ˆRd |I(t, k)| 2 dk dt ε 2 ˆRd k 2s 4 +3 |k| 2 | σ 1 (k)| 2 dk ˆT 0 t -3 dt ε 2 .
Of course, the quantity I(t, k) enters in the derivation of the estimate of

A s 2 in L ∞ (k) L 2 (t) norm in (42), just changing s 4 into s 2 .
In contrast, the singularity then becomes an obstacle to obtain such a L ∞ (k) L 2 (t) estimate. To treat the difficulty, we can modify (from the passage from the first to the second estimate) the previous inequality into

|I(t, k)| ε k s 2 +1/2 | σ 1 (k)| t -1/2 ,
which is indeed bounded on R × R d , but which is not square-integrable with respect to the time variable. This difficulty disappears when (D1') is assumed. Indeed, for t ≤ S 0 , we have already seen that

|I(t, k)| ε.
For t > S 0 , we proceed as follows

|I(t, k)| ≤ ˆS0 0 |k| 1/2 k, tk s 2 |k|| σ 1 (k)|| F I (τ, k)| ∇ v M ([t -τ ]k) dτ t -3/2 ˆS0 0 k, τ k s 2 +3/2 | σ 1 (k)|| F I (τ, k)| [t -τ ]k s 2 -s dτ t -3/2 ˆS0 0 k s 2 +3/2 τ s 2 +3/2 | σ 1 (k)| F I L ∞ τ,k dτ t -3/2 sup k∈R d k s 2 +3/2 | σ 1 (k)| S 0 s 2 +5/2 F I L ∞ (t) L 1 x ε t -3/2 .
This estimate tells us that I is square integrable with respect to the time variable, and uniformly bounded with respect to k, when (D1') holds. We shall go back to the

L ∞ (k) L 2 (t) later on.
Estimate on NLTT. As said above, having Proposition 4.2 at hand permits us to readily adapt the arguments of [START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF]. The Cauchy-Schwarz inequality yields

NLTT ≤ ˆRd ˆT 0 ˆt 0 ˆRd τ 5/2 |n|| σ 1 (n)|| F I (τ, n) -σ 1 (n) G (τ, n)| dτ dn × ˆt 0 ˆRd τ -5/2 |n|| σ 1 (n)| F I (τ, n) -σ 1 (n) G (τ, n) ×|k| k -n, tk -τ n 2s 4 |[t -τ ]k| 2 | g(τ, k -n, tk -τ n)| 2 dτ dn dk dt.
Now, (19c) and (38) ensure that

n, τ n s 1 | σ 1 (n)|| F I (τ, n) -σ 1 (n) G (τ, n)| (1 + K 5 )ε τ η . Since |n| τ ≤ n, τ n , we get ˆt 0 ˆRd τ 5/2 |n|| σ 1 (n)|| F I (τ, n) -σ 1 (n) G (τ, n)| dτ dn ˆt 0 τ 5/2+η ˆRd n |n| n, τ n -s 1 dn dτ (1 + K 5 )ε ˆ+∞ 0 τ 5/2+η-d-1 dτ (1 + K 5 )ε (1 + K 5 )ε
where the last estimate assumes the condition 5

/2 + η -d -1 < -1, that is d > 5/2 + η.
This is one of the constraints on the space dimension d which imply that the analysis applies only when d ≥ 3. Furthermore, when d = 3, we see that η < 1/2 is necessary.

Going back to NLTT we are led to (by using (|t

-τ )k| ≤ τ (k -n), tk -τ n ) NLTT (1 + K 5 )ε ˆRd ˆT 0 ˆt 0 ˆRd τ +5/2 |n|| σ 1 (n)| F I (τ, n) -σ 1 (n) G (τ, n) × τ -5 |k| k -n, tk -τ n 2s 4 τ (k -n), tk -τ n 2 | g(τ, k -n, tk -τ n)| 2 dτ dn dk dt (1 + K 5 )ε ˆRd ˆT 0 ˆT τ ˆRd τ -5 |k| k -n, tk -τ n 2s 4 × τ (k -n), tk -τ n 2 | g(τ, k -n, tk -τ n)| 2 dt dk × τ +5/2 |n|| σ 1 (n)| F I (τ, n) -σ 1 (n) G (τ, n) dn dτ (1 + K 5 )ε sup 0≤τ ≤T sup n∈R d τ -5 ˆRd ˆ+∞ -∞ k -n, tk -τ n 2s 4 τ (k -n), tk -τ n 2 ×| g(τ, k -n, tk -τ n)| 2 |k| dt dk × ˆRd ˆT 0 τ +5/2 |n|| σ 1 (n)| F I (τ, n) -σ 1 (n) G (τ, n) dn dτ (1 + K 5 ) 2 ε 2 sup 0≤τ ≤T sup n∈R d τ -5 ˆRd |k| ˆ+∞ -∞ | τ (k -n), tk -τ n k -n, tk -τ n s 4 g(τ, k -n, tk -τ n)| 2 dt dk .
With two changes of variables and by applying the Trace Lemma 4.4 as in the proof of Proposition 4.5, we obtain ˆRd |k|

ˆ+∞ -∞ | τ (k -n), tk -τ n k -n, tk -τ n s 4 g(τ, k -n, tk -τ n)| 2 dt dk = ˆRd ˆ+∞ -∞ τ (k -n), t k |k| -τ n k -n, t k |k| -τ n s 4 g(τ, k -n, tk -τ n) 2 dt dk ≤ sup ω∈S d-1 sup x∈R d ˆRd ˆ+∞ -∞ | τ (k -n), tω + x k -n, tω + x s 4 g(τ, k -n, tω + x)| 2 dt dk ≤ sup ω∈S d-1 sup x∈R d ˆRd ˆ+∞ -∞ | τ k, tω + x k, tω + x s 4 g(τ, k -n, tω + x)| 2 dt dk τ ∇ x , ∇ v g(τ ) 2 H s 4 P .
Finally, combining this with (34) we obtain

NLTT (1 + K 5 ) 2 K 1 ε 4 .
Estimate on NLTR. We make the time-response kernel K appear; Cauchy-Schwarz' inequality and Fubini's theorem allow us to obtain

NLTR = ˆRd ˆT 0 ˆt 0 ˆRd K(t, τ, k, n) n, τ n s 4 |n| 1/2 n 2 | σ 1 (n)| × F I (τ, n) -σ 1 (n) G (τ, n) dτ dn 2 dk dt ˆRd ˆT 0 ˆt 0 ˆRd K(t, τ, k, n) dτ dn × ˆt 0 ˆRd K(t, τ, k, n) n, τ n 2s 4 |n| n 4 | σ 1 (n)| 2 F I (τ, n) -σ 1 (n) G (τ, n) 2 dτ dn dk dt sup t∈[0,T ] sup k∈R d ˆt 0 ˆRd K(t, τ, k, n) dτ dn × ˆT 0 ˆRd ˆT τ ˆRd K(t, τ, k, n) dt dk n, τ n 2s 4 |n| n 4 | σ 1 (n)| 2 × F I (τ, n) -σ 1 (n) G (τ, n) 2 dτ dn sup t∈[0,T ] sup k∈R d ˆt 0 ˆRd K(t, τ, k, n) dτ dn sup τ ∈[0,T ] sup n∈R d ˆT τ ˆRd K(t, τ, k, n) dt dk × ˆT 0 ˆRd n, τ n 2s 4 |n| n 4 | σ 1 (n)| 2 F I (τ, n) -σ 1 (n) G (τ, n) 2 dτ dn.
By using (19a) and ( 35), we obtain

ˆT 0 ˆRd n, τ n 2s 4 |n| n 4 | σ 1 (n)| 2 F I (τ, n) -σ 1 (n) G (τ, n) 2 dτ dn (1 + K 2 )ε 2 .
Gathering this with Lemma 4.15 and (38), we are led to

NLTR (1 + K 2 )K 2 5 ε 4 .
Recap. We have shown that, if g is a solution of (10a)-(10b) satisfying ( 34)-(38) on [0, T ], then

A s 4 2 L 2 (k) L 2 (t) 1 + (1 + K 5 ) 2 K 1 ε 2 + (1 + K 2 )K 2 5 ε 2 ε 2 .
Let us denote C 1 the constant hidden in the symbol of this estimate. Choosing K 2 ≥ C 1 and ε 1 so that

(1 + K 5 ) 2 K 1 ε 2 + (1 + K 2 )K 2 5 ε 2 ≤ 1
allows us to conclude that (40) holds.

Estimate of the

L ∞ (k) L 2 (t) norm of A s 2
We start from (44) which allows us to write

A s 2 (•, k) 2 L 2 (t) CT1 + CT2 + NLT.
We split again the non linear term as NLT = NLTR + NLTT based on

k, tk s 2 n, τ n s 2 + k -n, tk -τ n s 2 .
Estimate on CT1. Owing to the assumptions on f 0 and Lemma 4.5, we have

CT1 ε 2 .
Estimate on CT2. We have already shown in the previous Section that (D1')

implies CT2 ε 2 .
Therefore, when (D1') holds, the control of CT2 allows us to reproduce the same arguments as in [START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF], using as far it is necessary the estimates (19a)-(19c). This is why under (D1'), the Landau Damping still holds with η = 0. When assuming only (D1), we obtain

CT2 ε 2 ˆT 0 t -1 dt ε 2 T η
with η as small as we wish. Therefore, new difficulties arise: the force term associated to F I can push the solution g far from the equilibrium which might lead to a loss of control of the norms (39)-( 43). In what follows, we should keep track carefully of the associated contributions in order to justify that the control of the norms remains possible: we are going to establish (39)-( 43) from ( 34)-( 38). This will imply the damping of the force term. We should pay attention to the compatibility between the constraints that appear from the estimates in order to verify such a control. Indeed, we have already seen that η < 1/2 when d = 3. Therefore, we should check carefully that the other constraints keep η in the range (0, 1/2).

Estimate on NLTR. The Cauchy-Schwarz inequality yields

NLTR = ˆT 0 ˆt 0 ˆRd |k| 1/2 n, τ n s 2 |n|| σ 1 (n)| F I (τ, n) -σ 1 (n) G (τ, n) ×|(t -τ )k|| g(τ, k -n, tk -τ n)| dτ dn 2 dt ≤ ˆT 0 ˆt 0 ˆRd |n| n, τ n 2s 4 n 4 | σ 1 (n)| 2 F I (τ, n) -σ 1 (n) G (τ, n) 2 dτ dn × ˆt 0 ˆRd |k| 3 |t -τ | 2 |n| n 4 n, τ n 2s 4 -2s 2 | g(τ, k -n, tk -τ n)| 2 dτ dn dt.
We combine (19a) with [START_REF] Wolansky | On nonlinear stability of polytropic galaxies[END_REF] and we obtain

ˆt 0 ˆRd |n| n, τ n 2s 4 n 4 | σ 1 (n)| 2 F I (τ, n) -σ 1 (n) G (τ, n) 2 dτ dn (1 + K 2 )ε 2 while (38) implies k -n, tk -τ n s 1 | g(τ, k -n, tk -τ n)| K 5 ε τ η .
Hence, we get

NLTR (1 + K 2 )K 2 5 ε 4 ˆT 0 ˆt 0 ˆRd |k| 3 |t -τ | 2 |n| τ 2η n 4 n, τ n 2s 4 -2s 2 k -n, tk -τ n 2s 1 dt dτ dn.
We are left with the task of proving sup

T ≥0 sup k∈R d ˆT 0 ˆt 0 ˆRd |k| 3 |t -τ | 2 |n| τ 2η n 4 n, τ n 2s 4 -2s 2 k -n, tk -τ n 2s 1 dt dτ dn 1.
We postpone the proof of this estimate to Section 4.6.

Estimate on NLTT. By virtue of (19c) and (38), we obtain

| σ 1 (n)| F I (τ, n) -σ 1 (n) G (τ, n) τ η n 2 n, τ n s 1 (1 + K 5 )ε. Since k -n, tk -τ n s 2 |(t -τ )k| ≤ τ k -n, tk -τ n s 3 -s 2 -1 k -n, tk -τ n s 3 ,
the Cauchy-Schwarz inequality allow us to obtain

NLTT = ˆT 0 ˆt 0 ˆRd |k| 1/2 k -n, tk -τ n s 2 |n|| σ 1 (n)| F I (τ, n) -σ 1 (n) G (τ, n) ×|(t -τ )k|| g(τ, k -n, tk -τ n)| dτ dn 2 dt ˆT 0 ˆt 0 ˆRd |k| 1/2 |n| τ η n 2 n, τ n s 1 τ k -n, tk -τ n s 3 -s 2 -1 1 |k -n| δ ×|k -n| δ k -n, tk -τ n s 3 | g(τ, k -n, tk -τ n)| dτ dn 2 dt (1 + K 5 ) 2 ε 2 ˆT 0 ˆt 0 ˆRd |n| 2 τ 2η+2 n 2 n, τ n 2s 1 |k| k -n, tk -τ n 2s 3 -2s 2 -2 1 |k -n| 2δ dτ dn × ˆt 0 ˆRd |k -n| 2δ k -n, tk -τ n 2s 3 | g(τ, k -n, tk -τ n)| 2 dτ dn dt.
Then, by the Trace Lemma (see the proof of Lemma 4.5 for more details) and (36), we have (for

k = 0) ˆt 0 ˆRd |k -n| 2δ k -n, tk -τ n 2s 3 | g(τ, k -n, tk -τ n)| 2 dτ dn = ˆt 0 ˆRd |n| 2δ n, (t -τ )k -τ n 2s 3 | g(τ, n, (t -τ )k -τ n)| 2 dτ dn ≤ sup s∈[0,T ] sup η∈R d ˆRd ˆ+∞ -∞ |n| 2δ n, η + τ k | g(s, n, η + τ k)| 2 dn dτ sup s∈[0,T ] |∇ x | δ g(s) 2 H s 3 K 3 ε 2
Going back to NLTT we are finally led to

NLTT (1 + K 5 ) 2 K 3 ε 4 × ˆT 0 ˆt 0 ˆRd |n| 2 τ 2η+2 n 2 n, τ n 2s 1 |k| k -n, tk -τ n 2s 3 -2s 2 -2 1 |k -n| 2δ dt dτ dn
and it remains to check that the integral is uniformly bounded with respect to both k and T . We postpone this integral estimate to Section 4.6.

Recap.

We have shown that, if g is a solution of (10a)-(10b) satisfying ( 34)-(38) on [0, T ], then

A s 2 2 L ∞ (k) L 2 (t) 1 + T η + (1 + K 2 )K 2 5 ε 2 + (1 + K 5 ) 2 K 3 ε 2 ε 2 1 + (1 + K 2 )K 2 5 ε 2 + (1 + K 5 ) 2 K 3 ε 2 1/2 ε 2 T η .
Let us denote C 2 the constant hidden in the symbol of this estimate. Choosing K 4 ≥ C 2 and ε 1 so that

(1 + K 2 )K 2 5 ε 2 + (1 + K 5 ) 2 K 3 ε 2 ≤ 1
allows us to obtain (42).

Estimates on g.

We cannot apply directly the estimates coming from the linearized problem. Nevertheless, we are going to justify the estimates (39), ( 41) and ( 43) from ( 34)-(38). To this end, we should play with the constants K 1 , K 3 and K 5 that depend themselves on K 2 and K 4 . What is crucial is to check the compatibility of the choices of these constants, and the consistency of the smallness assumption on ε.

We begin with the equality, obtained by derivating [START_REF] Nirenberg | An abstract form of the nonlinear Cauchy-Kowalewski theorem[END_REF],

∂ t g(t, k, ξ) = ∇σ 1 (k) F I (t, k) -σ 1 (k) G (t, k) • ∇ v M (ξ -tk) (45) + ˆRd n ∇σ 1 (n) F I (t, n) -σ 1 (n) G (t, n) • (∇ v -t∇ x )g(t)(k -n, ξ -tk) dn.
We remark that . We combine the second inequality with [START_REF] Villani | Lectures notes for a course given in Cotonou, Benin, and in CIRM[END_REF], so that

t∇ x , ∇ v g(t) 2 H s 4 P ≤ t 2 ∇ x g(t) 2 H s 4 P + ∇ v g(t) 2 H s 4 P ≤ 2 t∇ x , ∇ v g(t)
∇ v g(t) 2 H s 4 P ≤ 8K 1 ε 2 t 5
and, moreover,

∇ x g(t) 2 H s 4 P ≤ 8K 1 ε 2 t 3 . ( 46 
)
Hence, we are going to handle separately the H s 4 P norm of ∇ v g(t) and ∇ x g(t).

Estimate of the H s

4 P norm of ∇ v g(t)
Let α ∈ N d , |α| ≤ M be given; we are going to estimate

(x, v) → ∇ v v α g(t, x, v) 2 H s 4 .
We postpone as far as possible the summation over α. We work on the Fourier transform, and applying (45) leads to

1 2 d dt (x, v) → ∇ v v α g(t, x, v) 2 H s 4 = ¨Rd ×R d ξ k, ξ s 4 D α ξ g(t, k, ξ) ξ k, ξ s 4 D α ξ ∂ t g(t, k, ξ) dk dξ = ¨Rd ×R d ξ k, ξ s 4 D α ξ g(t, k, ξ) ξ k, ξ s 4 ∇σ 1 (k) × F I (t, k) -σ 1 (k) G (t, k) D α ξ ∇ v M (ξ -tk) dk dξ + ¨Rd ×R d ξ k, ξ s 4 D α ξ g(t, k, ξ) ξ k, ξ s 4 ×D α ξ ξ → ˆRd ∇σ 1 (n) F I (t, n) -σ 1 (n) G (t, n) (∇ v -t∇ x )g(t)(k -n, ξ -tn) dn dk dξ = LT + NLT.
We split the non linear term into two parts NLT = NLT1+NLT2: in NLT1 the operator D α ξ acts on g only while in NLT2 it acts on both g and ξ -tk,

D α ξ [ξ → (ξ -tk) g(t, k -n, ξ -tn)] = (ξ -tk)D α ξ g(t, k -n, ξ -tn) + j∈N d |j|=1 j≤α α j jD α-j ξ g(t, k -n, ξ -tn).
The linear term LT. By using

ξ k, ξ s 4 t k k, tk s 4 ξ -tk s 4 +1 ,
and Cauchy-Schwarz' inequality, we get

|LT| t ˆR2d k,ξ ξ k, ξ s 4 D α ξ g(t, k, ξ) k k, tk s 4 |k|| σ 1 (k)| F I (t, k) -σ 1 (k) G (t, k) × ξ -tk s 4 +1 D α ξ ∇ v M (ξ -tk) dk dξ t   ˆR2d k,ξ ξ 2 k, ξ 2s 4 D α ξ g(t, k, ξ) 2 dk dξ   1/2 ×   ˆR2d k,ξ k 2 k, tk 2s 4 |k| 2 | σ 1 (k)| 2 F I (t, k) -σ 1 (k) G (t, k) 2 ξ -tk 2s 4 +2 D α ξ ∇ v M (ξ -tk) 2 dk dξ   1/2 t ∇ v g(t) H s 4 P ˆRd k k 2 k, tk 2s 4 |k| 2 | σ 1 (k)| 2 F I (t, k) -σ 1 (k) G (t, k) 2 dk 1/2 ×   ˆRd ξ ξ 2s 4 +2 D α ξ ∇ v M (ξ) 2 dξ   1/2 .
Let us set

B(t) = ˆRd k k 2 k, tk 2s 4 |k| 2 | σ 1 (k)| 2 F I (t, k) -σ 1 (k) G (t, k) 2 dk 1/2 . ( 47 
)
We observe that (19a) and [START_REF] Wolansky | On nonlinear stability of polytropic galaxies[END_REF] 

lead to ˆT 0 B(t) 2 dt (1 + K 2 )ε 2 .
From now on, we adopt the convention that B denotes a function which satisfies such an estimate. Moreover M ∈ H s P implies (for s large enough)

ˆRd ξ ξ 2s 4 +2 D α ξ ∇ v M (ξ) 2 dξ 1,
and we are led to (owing to [START_REF] Villani | Lectures notes for a course given in Cotonou, Benin, and in CIRM[END_REF])

|LT| K 1 ε t 5/2+1 B(t).
Remark 4.17 This estimate is quite rough and it involves a Sobolev regularity s higher than s 4 on ∇ v M . For the non linear term a finer approach will be necessary since we cannot use a Sobolev regularity beyond s 4 on ∇ v g(t); a gain of one derivative with respect to v will be necessary.

We should pay attention not to have contradiction in the definition of the constant K 1 .

To this end, we introduce δ > 0 that can be selected as small as necessary, and we use the following estimate

|LT| √ δ t K 1 ε t 5/2 × t 3 √ δ B(t) δ K 1 ε 2 t 4 + B(t) 2 δ t 3 .
Using this way Young's inequality, we make the square of B(t) appear, which is the quantity that we are able to estimate.

The non linear term NLT1. We start by studying the operator

L t [ ] : f ∈ C ∞ c (R d ×R d ) -→ (x, v) → ∇σ 1 (F I (t) -σ 1 G (t)) (x+tv)•(∇ v -t∇ x )f (x, v) .
A simple integration by parts shows that

f, L t [ ]f L 2 ( dx⊗ dv) = 0. ( 48 
) holds for any f ∈ C ∞ c (R d × R d ). The operator L t [ ],
as well as the relation (48

), can be extended to f ∈ H 1 (R d × R d ). If f = F -1 (k, ξ) → ξ k, ξ s 4 D α ξ g(t, k, ξ) ,
then, by Fourier-transforming and owing to Plancherel's theorem, (48) tells us

0 = ˆR2d k,ξ ξ k, ξ s 4 D α ξ g(t, k, ξ) L (t) [ ]f (t, k, ξ) dk dξ = ˆR3d k,ξ,n ξ k, ξ s 4 D α ξ g(t, k, ξ) n σ 1 (n) F I (t, n) -σ 1 (n) G (t, n) × ξ -tn k -n, ξ -tn s 4 (ξ -tk)D α ξ g(t, k -n, ξ -tn) dk dξ dn. Therefore NLT1 can be cast as NLT1 = - ˆR3d k,ξ,n ξ k, ξ s 4 D α ξ g(t, k, ξ) [ ξ k, ξ s 4 -ξ -tn k -n, ξ -tn s 4 ] ×n σ 1 (n) F I (t, n) -σ 1 (n) G (t, n) (ξ -tk)D α ξ g(t, k -n, ξ -tn) dk dξ dn. We split depending on the leading frequencies NLT1 = - ˆR3d k,ξ,n 1 |n,tn|≥|k-n,ξ-tn| + 1 |n,tn|≤|k-n,ξ-tn| ξ k, ξ s 4 D α ξ g(t, k, ξ) × [ ξ k, ξ s 4 -ξ -tn k -n, ξ -tn s 4 ] n σ 1 (n) F I (t, n) -σ 1 (n) G (t, n) ×(ξ -tk)D α ξ g(t, k -n, ξ -tn) dk dξ dn = NLT1R + NLT1T.
We are now going to study the two terms of this splitting.

Estimate on NLT1R. We remark that |ξ -tk| ≤ t k -n, ξ -tn .

and when |n, tn| ≥ |k -n, ξ -tn|, we have

| ξ k, ξ s 4 -ξ -tn k -n, ξ -tn s 4 | ξ -tn t n n, tn s 4 .
Remark 4. [START_REF] Goudon | Numerical investigation of Landau damping in dynamical Lorentz gases[END_REF] This relation allows us to overcome the difficulty mentioned during the study of the linear term. In the regime |n, tn| ≥ |k -n, ξ -tn| we have been able, at the price of an extra factor t , to distribute the weights n, tn and k -n, ξ -tn on (t) and ∇ v g(t) so that their estimate does not involve Sobolev exponent larger than s 4 . This answers for NLT1R the regularity issue risen in Remark 4.17.

We apply these inequalities to NLT1R, and next we make use of Lemma C.9; we obtain

|NLT1R| t 2 ˆR3d k,ξ,n 1 |n,tn|≥|k-n,ξ-tn| ξ k, ξ s 4 D α ξ g(t, k, ξ) ξ -tn n n, tn s 4 ×|n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) k -n, ξ -tn D α ξ g(t, k -n, ξ -tn) dk dξ dn t 2   ˆR2d k,ξ ξ 2 k, ξ 2s 4 D α ξ g(t, k, ξ) 2 dk dξ   1/2 × ˆRd n n 2 n, tn 2s 4 |n| 2 | σ 1 (n)| 2 F I (t, n) -σ 1 (n) G (t, n) 2 dn 1/2 × ˆRd k   ˆRd ξ ξ 2 k, ξ 2 D α ξ g(t, k, ξ) 2 dξ   1/2 dk t 2 ∇ v g(t) H s 4 P B(t) ˆRd k   ˆRd ξ ξ 2 k, ξ 2 D α ξ g(t, k, ξ) 2 dξ   1/2 dk.
where we use again the generic notation B(t) as in (47). Let us consider in details the third term: as far as δ < d/2 (which holds since δ < 1) and s 3 is large enough (s 3 > d/2 + 2 is sufficient), the Cauchy-Schwartz inequality yields

ˆRd k |k| δ k s 3 -2 |k| δ k s 3 -2   ˆRd ξ ξ 2 k, ξ 2 D α ξ g(t, k, ξ) 2 dξ   1/2 dk ≤ ˆRd k 1 |k| 2δ k 2s 3 -4 dk 1/2   ˆR2d k,ξ |k| 2δ k 2s 3 -4 ξ 2 k, ξ 2 D α ξ g(t, k, ξ) 2 dk dξ   1/2 |∇ x | δ g(t) H s 3 P .
Next, with [START_REF] Villani | Lectures notes for a course given in Cotonou, Benin, and in CIRM[END_REF] and (36) we get

|NLT1R| K 1 K 3 ε 2 t 5/2+2 B(t).
In order to make the square of B(t) appear, we decompose the inequality as follows

|NLT1R| 1 t K 1 K 3 ε 3/2 t 5/2 × t ε 1/2 t 2 B(t) K 1 K 3 ε 3 t 4 + ε t 5 B(t) 2 .
Estimate on NLT1T. [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF] and [START_REF] Faou | Landau damping in Sobolev spaces for the Vlasov-HMF model[END_REF] where this operator already appeared for similar reasons.

We use this inequality for estimating NLT1T that we split according to the two terms above. We are led to

|NLT1T| ˆR3d k,ξ,n 1 |n,tn|≤|k-n,ξ-tn| ξ k, ξ s 4 D α ξ g(t, k, ξ) × n, tn 2 ξ -tn k -n, ξ -tn s 4 -1 + k -n, ξ -tn s 4 ×|n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) |ξ -tk| D α ξ g(t, k -n, ξ -tn) dk dξ dn = NLT1T1 + NLT1T2.
We treat NLT1T1 by applying Lemma C.9 (and |ξ -tk| ≤ t k -n, ξ -tk); we get

NLT1T1 t ˆR3d k,ξ,n ξ k, ξ s 4 D α ξ g(t, k, ξ) n, tn 2 |n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) × ξ -tn k -n, ξ -tn s 4 D α ξ g(t, k -n, ξ -tn) dk dξ dn t ∇ v g(t) H s 4 P ˆRd n n, tn 2 |n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) dn ×   ˆR2d k,n ξ 2 k, ξ 2s 4 D α ξ g(t, k, ξ) 2 dk dξ   1/2 t ∇ v g(t) 2 H s 4 P ˆRd n n, tn 2 |n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) dn .
However, (19c) and (38) lead to

| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) t η n, tn s 1 (1 + K 5 )ε, so that (by using |n| t ≤ n, tn ) ˆRd n n, tn 2 |n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) dn t -1 ˆRd n n, tn 3-s 1 dn (1 + K 5 )ε t η ε t η-d-1 .
We gather these estimates with [START_REF] Villani | Lectures notes for a course given in Cotonou, Benin, and in CIRM[END_REF], and we arrive at

NLT1T1 K 2 1 (1 + K 5 )ε 3 t 5+η-d .
For NLT1T2 we proceed similarly by using Lemma C.9 (and remarking that |ξ -tk| ≤ t(k -n), ξ -tn holds); we are led to

NLT1T2 ˆR3d k,ξ,n ξ k, ξ s 4 D α ξ g(t, k, ξ) n, tn 2 |n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) × t(k -n)ξ -tn k -n, ξ -tn s 4 D α ξ g(t, k -n, ξ -tn) dk dξ dn ∇ v g(t) H s 4 P   ˆR2d k,ξ tk, ξ 2 k, ξ 2s 4 D α ξ g(t, k, ξ) 2 dk dξ   1/2 × ˆRd n, tn 2 × |n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) dn ∇ v g(t) H s 4 P t∇ x ∇ v g(t) H s 4 P × ˆRd t n, tn 2 × |n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) dn,
and we deduce that

NLT1T2 K 2 1 (1 + K 5 )ε 3 t 5+η-d-1 holds.

Estimate on NLT2.

Compared to what we just did, we are concerned with a term having less regularity (we do not have the factor ξ -tk which has been derivated). The regularity issue presented in Remark 4.17 does not hold for NLT2 and there is no need to make use of (48). We turn to the second step, by decomposing between low and high frequencies

NLT2 = ˆR3d k,ξ,n ξ k, ξ s 4 D α ξ g(t, k, ξ) ξ k, ξ s 4 n σ 1 (n) F I (t, n) -σ 1 (n) G (t, n) ×      j∈N d |j|=1 j≤α α j jD α-j ξ g(t, k -n, ξ -tn)      dk dξ dn = ˆR3d k,ξ,n 1 |n,tn|≥|k-n,ξ-tn| + 1 |n,tn|≤|k-n,ξ-tn| ξ k, ξ s 4 D α ξ g(t, k, ξ) × ξ k, ξ s 4 n σ 1 (n) F I (t, n) -σ 1 (n) G (t, n) ×     j∈N d |j|=1 j≤α α j jD α-j ξ g(t, k -n, ξ -tn)     dk dξ dn = NLT2R + NLT2T.
On the integration domain of the reaction term, we have ξ k, ξ s 4 ξ -tn t n n, tn s 4 .

We apply Lemma C.9 to obtain

|NLT2R| t j∈N d |j|=1 j≤α ˆR3d k,ξ,n 1 |n,tn|≥|k-n,ξ-tn| ξ k, ξ s 4 D α ξ g(t, k, ξ) × n n, tn s 4 |n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) ξ -tn D α-j ξ g(t, k -n, ξ -tn) dk dξ dn t j∈N d |j|=1 j≤α   ˆR2d k,ξ ξ 2 k, ξ 2s 4 D α ξ g(t, k, ξ) 2 dk dξ   1/2 × ˆRd n n 2 n, tn 2s 4 |n| 2 | σ 1 (n)| 2 F I (t, n) -σ 1 (n) G (t, n) 2 dn 1/2 × ˆRd k   ˆRd ξ ξ 2 D α-j ξ g(t, k, ξ) 2 dξ   1/2 dk.
Hence it behaves like the reaction term NLT1R, up to a factor t which does not appear here; we can dominate the product and we get

|NLT2R| K 1 K 3 ε 2 t 5/2+1 B(t) K 1 K 3 ε 3 t 4 + ε t 3 B(t) 2 .
For the transport term, on the integration domain ξ k, ξ s 4 t n ξ -tn k -n, ξ -tn s 4 holds and applying Lemme C.9 yields

|NLT2T| t j∈N d |j|=1 j≤α ˆR3d k,ξ,n ξ k, ξ s 4 D α ξ g(t, k, ξ) n |n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) × ξ -tn k -n, ξ -tn s 4 D α-j ξ g(t, k -n, ξ -tn) dk dξ dn t j∈N d |j|=1 j≤α   ˆR2d k,ξ ξ 2 k, ξ 2s 4 D α ξ g(t, k, ξ) 2 dk dξ   1/2 × ˆRd n n |n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) dn ×   ˆR2d k,ξ ξ 2 k, ξ 2s 4 D α-j ξ g(t, k, ξ) 2 dk dξ   1/2 .
We finally get

|NLT2T| K 2 1 (1 + K 5 )ε 3 t 5+η-d .
Remark 4. [START_REF] Guo | Stable steady states in stellar dynamics[END_REF] As said above, the regularity issue described in Remarks 4.17 and 4.18 does not hold with NLT2. Thus, there is no need to introduce the operator L t [ ] and we derive a better estimate for NLT2 than for NLT1. In fact, we will not use this improved estimate. We can also observe that it would be possible to use the obvious estimate 1 ≤ ξ -tk , which yields

D α ξ [ξ → (ξ -tk) g(t, k -n, ξ -tn)] ≤ (ξ -tk)D α ξ g(t, k -n, ξ -tn) + j∈N d |j|=1,j≤α α j jD α-j ξ g(t, k -n, ξ -tn) ≤ (ξ -tk)D α ξ g(t, k -n, ξ -tn) + j∈N d |j|=1,j≤α α j ξ -tk D α-j ξ g(t, k -n, ξ -tn) .
From this, NLT2 can be treated exactly like NLT1. In what follows, in similar situations we will only focus the discussion on the most regularity demanding terms.

Recap. We have shown that, if g is a solution of (10a)-(10b) satisfying moreover ( 34)-(38) on [0, T ], then, we have

d dt t -→ (x, v) → ∇ v v α g(t, x, v) 2 H s 4 δ K 1 ε 2 t 4 + t 3 δ B(t) 2 + K 1 K 3 ε 3 t 4 + ε t 5 B(t) 2 +K 2 1 (1 + K 5 )ε 3 t 5+η-d .
(note that we have used the rough estimates that consists in dominating NLT2R like NLT1R, NLT1T2 like NLT2T and NLT2T like NLT1T1). Let C 3 be the constant hidden in the symbol; integrating over [0, T ] and summing over α, we obtain (with the generic notation (47) for B(t))

∇ v g(T ) 2 H s 4 P ≤ ∇ v g(0) 2 H s 4 P + C 3 δ K 1 T 5 + C 3 T 3 δ (1 + K 2 ) ε 2 + C 3 K 1 K 3 ε T 5 + C 3 (1 + K 2 )ε T 5 + C 3 K 2 1 (1 + K 5 )ε T 6+η-d ε 2 .
Since g(0, x, v) = f 0 (x, v) and f 0 ∈ H s P with s > s 4 , we observe that

∇ v g(0) 2 H s 4 P ≤ ε 2 .
Let δ 1 so that C 3 δ < 1/4. Once δ is fixed that way, we choose K 1 1 so that

∇ v g(0) 2 H s 4 P + C 3 T 3 δ (1 + K 2 )ε 2 ≤ K 1 4 ε 2 T 5
holds. Therefore K 1 depends on K 2 and δ . We are left with the task of determining ε 1 in order to obtain

C 3 K 1 K 3 ε T 5 + C 3 (1 + K 2 )ε T 5 + C 3 K 2 1 (1 + K 5 )ε T 6+η-d ε 2 ≤ K 1 ε 2 T 5 ,
which eventually leads to

∇ v g(T ) 2 H s 4 P ≤ K 1 ε 2 T 5 .

Estimate of the

H s 4 P norm of ∇ x g(t)
We proceed like in the previous section: we evaluate the time derivative of

∇ x ∇ x , ∇ v s 4 v α g(t) 2 L 2
by means of the Fourier variables, and we express ∂ t g with (45). We obtain

1 2 d dt ∇ x ∇ x , ∇ v s 4 v α g(t) 2 L 2 = - ˆR2d k,ξ k k, ξ s 4 D α ξ g(t, k, ξ) k k, ξ s 4 k σ 1 (k) F I (t, k) -σ 1 (k) G (t, k) ×D α ξ (ξ -tk) M (ξ -tk) dk dξ - ˆR3d k,ξ,n k k, ξ s 4 D α ξ g(t, k, ξ) k k, ξ s 4 n σ 1 (n) F I (t, n) -σ 1 (n) G (t, n) (ξ -tk) ×D α ξ g(t, k -n, ξ -tn) dn dk dξ - j∈N d |j|=1;j≤α α j ˆR3d k,ξ,n k k, ξ s 4 D α ξ g(t, k, ξ) k k, ξ s 4 n σ 1 (n) F I (t, n) -σ 1 (n) G (t, n) •jD α-j ξ g(t, k -n, ξ -tn) dn dk dξ = LT + NLT1 + NLT2.
The analysis of the the first non linear term also covers the second term, see Remark 4.20. Thus we do not detail how to handle NLT2. Note however that similar manipulations as above can lead to a refined estimate on NLT2, but this is not necessary for our purpose.

Estimate on the linear term LT We apply the Cauchy-Schwarz inequality, up to the observation k k, ξ s 4 ≤ k k, tk s 4 ξ -tk s 4 ;

we arrive at

|LT| ∇ x g(t) H s 4 P ˆR2d k,ξ k 2 k, tk 2s 4 |k| 2 | σ 1 (k)| 2 F I (t, k) -σ 1 (k) G (t, k) 2 × ξ -tk 2s 4 D α ξ ∇ v M (ξ -tk) 2 dk dξ 1/2 ∇ x g(t) H s 4 P ˆRd k k 2 k, tk 2s 4 |k| 2 | σ 1 (k)| 2 F I (t, k) -σ 1 (k) G (t, k) 2 dk 1/2 ×   ˆRd ξ ξ 2s 4 D α ξ ∇ v M (ξ) 2 dξ   1/2 ∇ x g(t) H s 4 P B(t).
(where the assumption M ∈ H s P with s > s 4 + 1 has permitted us to obtain ˆRd

ξ ξ 2s 4 D α ξ ∇ v M (ξ) 2 dξ 1,
and we have used the notation (47) for B(t)). Again, we introduce a positive number δ , as small as we wish, and we split the product into two parts so that the constant K 1 is isolated and we make the square of B(t) appear. Namely, we have

|LT| δ t ∇ x g(t) 2 H s 4 P + t B 2 (t) δ δ K 1 ε 2 t 2 + t B 2 (t) δ .
where we have also made use of (46).

Remark 4.21

Here, in contrast to the previous estimate of ∇ v g(t) in norm H s 4 P , we make the Sobolev estimate of ∇ v M appear with exactly the exponent s 4 . Nevertheless we are facing a similar regularity difficulty since now we wish to estimate ∇ x g(t) in norm H s 4 P (instead of ∇ v g(t)). Hence, again, we need to gain one derivative. To this end we shall adapt the strategy designed for NLT1. ,k,ξ) . We split between the contributions of low and high frequencies, so that

Estimate on NLT1. We use (48) with

f = F -1 (k, ξ) → k k, ξ s 4 D α ξ g(t
NLT1 = ˆR3d k,ξ,n 1 |n,tn|≥|k-n,ξ-tn| + 1 |n,tn|≤|ξ-tn| k k, ξ s 4 D α ξ g(t, k, ξ) ( k k, ξ s 4 -k -n k -n, ξ -tn s 4 ) n σ 1 (n) F I (t, n) -σ 1 (n) G (t, n) •(ξ -tk)D α ξ g(t, k -n, ξ -tn) dn dk dξ = NLT1R + NLT1T.
Estimate on NLT1R. On the integration domain, we have

| k k, ξ s 4 -k -n k -n, ξ -tn s 4 | k -n n n, tn s 4 .
Going back to Lemma C.9 (and owing to |ξ -tk| ≤ t k -n, ξ -tn ), we obtain

|NLT1R| t ˆR3d k,ξ,n k k, ξ s 4 D α ξ g(t, k, ξ) |n| n n, tn s 4 | σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) × k -n k -n, ξ -tn D α ξ g(t, k -n, ξ -tn) dn dk dξ t ∇ x g(t) H s 4 P B(t)    ˆRd k   ˆRd ξ k 2 k, ξ 2 D α ξ g(t, k, ξ) 2 dξ   1/2 dk   
When estimating ∇ v g(t) in norm H s 4 P we have seen that (cf. NLT1R)

ˆRd k   ˆRd ξ k 2 k, ξ 2 D α ξ g(t, k, ξ) 2 dξ   1/2 dk |∇ x | δ g(t) H s 3 P .
Then, ( 46) and (36) ensure that

|NLT1R| K 1 K 3 ε 2 t 3/2+1 B(t).
With the Young inequality we make the square of B(t) appear; we conclude that

|NLT1R| K 1 K 3 ε 3 t 2 + ε t 3 B(t) 2 .
Estimate on NLT1T. Again we split NLT1T = NLT1T1 + NLT1T2 by using the fact that, on the integration domain, we have (see [7, Section 5.1.2])

| k k, ξ s 4 -k -n k -n, ξ -tn s 4 | n, tn 2 k -n k -n, ξ -tn s 4 -1 + k -n, ξ -tn s 4 .
Thus, NLT1T1 stands for the term with the exponent s 4 -1. We use Lemma C.9 and |ξ -tk| ≤ t k -n, ξ -tn and we obtain

|NLT1T1| t ˆR3d k,ξ,n k k, ξ s 4 D α ξ g(t, k, ξ) |n|| σ 1 (n)| n, tn 2 F I (t, n) -σ 1 (n) G (t, n) × k -n k -n, ξ -tn s 4 D α ξ g(t, k -n, ξ -tn) dn dk dξ t ∇ x g(t) 2 H s 4 P ˆRd n |n|| σ 1 (n)| n, tn 2 F I (t, n) -σ 1 (n) G (t, n) dn
Since (19c) and (38) imply

| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) t η n, tn s 1 (1 + K 5 )ε,
we get (by using addionnally |n| t ≤ n, tn ) ˆRd

n |n| t | σ 1 (n)| n, tn 2 F I (t, n) -σ 1 (n) G (t, n) dn t η-1 ˆRd n n, tn 3-s 1 dn (1 + K 5 )ε (1 + K 5 )ε t η-d-1 .
Using also (46), we thus show that

|NLT1T1| K 1 (1 + K 5 )ε 3 t 3+η-d .
For NLT1T2, we proceed similarly, by coming back to Lemma C.9, but now we use

|ξ -tk| ≤ t(k -n), ξ -tn ; we obtain |NLT1T2| ˆR3d k,ξ,n k k, ξ s 4 D α ξ g(t, k, ξ) |n|| σ 1 (n)| n, tn 2 F I (t, n) -σ 1 (n) G (t, n) × t(k -n), ξ -tn k -n, ξ -tn s 4 D α ξ g(t, k -n, ξ -tn) dn dk dξ ∇ x g(t) H s 4 P t∇ x , ∇ v g(t) H s 4 P × ˆRd n |n|| σ 1 (n)| n, tn 2 F I (t, n) -σ 1 (n) G (t, n) dn.
Gathering (19c), ( 38), ( 34) and ( 46), this leads to

|NLT1T2| K 1 (1 + K 5 )ε 3 t 3+η-d .
Recap. We have shown that, if g is a solution of (10a)-(10b) which satisfies ( 34)-( 38) on [0, T ], then we get

d dt ∇ x g(t) 2 H s 4 P δ K 1 ε 2 t 2 + t B(t) 2 δ +K 1 K 3 ε 3 t 2 + ε t 3 B(t) 2 + K 1 (1 + K 5 )ε 3 t 3+η-d .
Let us denote C 4 the constant hidden in the symbol. Integrating over [0, T ] yields

∇ x g(t) 2 H s 4 P ≤ ∇ x g(0) 2 H s 4 P + C 4 δ K 1 ε 2 T 3 + C 4 1+K 2 δ ε 2 T +C 4 K 1 K 3 ε 3 T 3 + C 4 (1 + K 2 )ε 3 T 3 + C 4 K 1 (1 + K 5 )ε 3 T 4+η-d .
We remind the reader that K 1 and δ have already been fixed at the previous step.

Possibly at the price of making δ smaller, we can assume that δ = δ and δ C 4 < 1/4. Next, choosing K 1 larger if necessary, we can equally suppose that

∇ x g(0) 2 H s 4 P + C 4 1 + K 2 δ ε 2 T ≤ K 1 4 T 3 ε 2 58
holds. Eventually, when ε 1, we have

C 4 K 1 K 3 ε 3 T 3 + C 4 (1 + K 2 )ε 3 T 3 + C 4 K 1 (1 + K 5 )ε 3 T 4+η-d ≤ K 1 2 ε 2 T 3 ,
and we have shown that

∇ x g(t) 2 H s 4 P ≤ K 1 ε 2 T 3
is satisfied.

Estimates of the H s

3 P norm of |∇ x | δ g(t).
Since s 4 > s 3 , we can naively think that this term can be dominated by using the estimates on g(t) and (t) with norms based on H s 4 P . However, here we wish to establish estimates uniform with respect to t, while the H s 4 P estimates were involving a polynomial weight t 5 . Therefore, we shall need refined estimates in order to make use as less as possible of the H s 4 P norm of t∇ x , ∇ v g(t).

We compute the time derivative of |k| δ k, ξ

s 3 D α ξ g(t, k, ξ) 2 L 2 (k,ξ)
, using the expression of ∂ t g in (45):

1 2 d dt |∇ x | δ ∇ x,v s 3 v α g(t) 2 L 2 = ˆR2d k,ξ |k| δ k, ξ s 3 D α ξ g(t, k, ξ)|k| δ k, ξ s 3 ∇σ 1 (k) F I (t, k) -σ(k) G (t, k) D α ξ ∇ v M (ξ -tk) dk dξ - ˆR3d k,ξ,n |k| δ k, ξ s 3 D α ξ g(t, k, ξ)|k| δ k, ξ s 3 n σ 1 (n) F I (t, n) -σ(n) G (t, n) (ξ -tk)D α ξ g(t, k -n, ξ -tk) dn dk dξ - j∈N d |j|=1 ; j≤α ˆR3d k,ξ,n |k| δ k, ξ s 3 D α ξ g(t, k, ξ)|k| δ k, ξ s 3 n σ 1 (n) F I (t, n) -σ(n) G (t, n) jD α-j ξ g(t, k -n, ξ -tk) dn dk dξ = LT + NLT1 + NLT2.
We shall only detail how to handle NLT1; similar estimates apply for NLT2, see Remark 4.20.

Estimate of LT.

Since k, ξ s 3 k, tk s 3 ξ -tk s 3 and t 1/2+δ |k| 1/2+δ ≤ k, tk 1/2+δ , by using the Cauchy-Schwarz inequality and s 4 -s 3 -1 -δ/2 > 0, we get

|LT| 1 t 1/2+δ ˆk,ξ |k| δ k, ξ s 3 D α ξ g(t, k, ξ) |k| 1/2+δ t 1/2+δ k, tk s 4 -s 3 × k, tk s 4 |k| 1/2 || σ 1 (k)| F I (t, k) -σ(k) G (t, k) ξ -tk s 3 D α ξ ∇ v M (ξ -tk) dk dξ 1 t 1/2+δ   ˆR2d k,ξ |k| 2δ k, ξ 2s 3 D α ξ g(t, k, ξ) 2 dk dξ   1/2 ×   ˆR2d k,ξ k, tk 2s 4 |k||| σ 1 (k)| 2 F I (t, k) -σ(k) G (t, k) 2 ξ -tn 2s 3 D α ξ ∇ v M (ξ -tk) 2 dk dξ   1/2 1 t 1/2+δ |∇ x | δ g(t) H s 3 P ˆRd k k, tk 2s 4 |k||| σ 1 (k)| 2 F I (t, k) -σ(k) G (t, k) 2 dk 1/2 ×   ˆRd ξ ξ 2s 3 D α ξ ∇ v M (ξ) 2 dξ   1/2 1 t 1/2+δ |∇ x | δ g(t) H s 3 P B(t) ∇ v M H s 3 P 1 t 1/2+δ |∇ x | δ g(t) H s 3 P B(t)
The Young inequality then yields

|LT| δ t 1+2δ |∇ x | δ g(t) 2 H s 3 P + B(t) 2 δ δK 3 ε 2 t -1-2δ + B(t) 2 δ
where we have used (36) for the second inequality.

Estimate of NLT1. Again, we can use (48), where we set

f = F -1 (k, ξ) → |k| δ k, ξ s 3 D α ξ g(t, k, ξ) ,
and we split the contributions of low and high frequencies

|NLT1| ≤ ˆR3d k,ξ,n 1 |n,tn|≥|k-n,ξ-tn| + 1 |n,tn|≤|k-n,ξ-tn| |k| δ k, ξ s 3 D α ξ g(t, k, ξ) × |k| δ k, ξ s 3 -|k -n| δ k -n, ξ -tn s 3 |n|| σ 1 (n)| F I (t, n) -σ(n) G (t, n) ×|ξ -tk| D α ξ g(t, k -n, ξ -tk) dn dk dξ = NLT1R + NLT1T.
Estimate of NLT1R. We make 4 terms appear, remarking that |n, tn| ≥ |k -n, ξ -tn| and δ < 1 allow us to write

|k| δ k, ξ s 3 -|k -n| δ k -n, ξ -tn s 3 (|n| δ + |k -n| δ ) n, tn s 3 while |ξ -tk| ≤ |ξ -tn| + t|k -n|. We get NLT1R ˆR3d k,ξ,n |k| δ k, ξ s 3 D α ξ g(t, k, ξ) |n| 1+δ | σ 1 (n)| n, tn s 3 F I (t, n) -σ(n) G (t, n) ×(|ξ -tn| + t|k -n|) D α ξ g(t, k -n, ξ -tk) dn dk dξ + ˆR3d k,ξ,n |k| δ k, ξ s 3 D α ξ g(t, k, ξ) |n|| σ 1 (n)| n, tn s 3 F I (t, n) -σ(n) G (t, n) ×|k -n| δ (|ξ -tn| + t|k -n|) D α ξ g(t, k -n, ξ -tk) dn dk dξ = R 1,V + R 1,Z + R 2,V + R 2,Z
where R i,V is the term with |ξ -tn| and R i,Z the term with t|k -n|.

For R 1,V we apply Lemma C.9

R 1,V = ˆR3d k,ξ,n |k| δ k, ξ s 3 D α ξ g(t, k, ξ) |n| 1+δ | σ 1 (n)| n, tn s 3 F I (t, n) -σ(n) G (t, n) ×|ξ -tn| D α ξ g(t, k -n, ξ -tk) dn dk dξ   ˆR2d k,ξ |k| 2δ k, ξ 2s 3 D α ξ g(t, k, ξ) 2 dk dξ   1/2 × 1 t 1/2+δ ˆRd n |n| 1+2δ t 1+2δ n, tn 2s 4 -2s 3 | σ 1 (n)| n, tn 2s 4 F I (t, n) -σ(n) G (t, n) 2 dn 1/2 × ˆRd k   ˆRd ξ |ξ| 2 D α ξ g(t, k, ξ) 2 dξ   1/2 dk 1 t 1/2+δ |∇ x | δ g(t) H s 3 P B(t) ˆRd k ˆξ |ξ| 2 D α ξ g(t, k, ξ) 2 dξ 1/2
dk where we have used the relations |n| t ≤ n, tn and 2s 4 -2s 3 -1 -2δ > 0). We have already seen (see the estimate of NLT1R when dealing with the norm

H s 4 P of ∇ v g(t)) that ˆRd k   ˆRd ξ |ξ| 2 D α ξ g(t, k, ξ) 2 dξ   1/2 dk |∇ x | δ g(t) H s 3 P .
Using (36) and the Young inequality, we obtain

R 1,V K 2 3 ε 3 t -1-2δ + εB(t) 2 .
For R 1,Z we apply the second inequality in Lemma C.9 and we get

R 1,Z = t ˆR3d k,ξ,n |k| δ k, ξ s 3 D α ξ g(t, k, ξ) |n| 1+δ | σ 1 (n)| n, tn s 3 F I (t, n) -σ(n) G (t, n) ×|k -n| D α ξ g(t, k -n, ξ -tk) dn dk dξ t |∇ x | δ g(t) H s 3 P ˆRd n |n| 1+δ | σ 1 (n)| n, tn s 3 F I (t, n) -σ(n) G (t, n) dn ×   ˆRd k,ξ |k -n| 2 D α ξ g(t, k, ξ) 2 dk dξ   1/2 .
Cauchy-Schwarz's inequality yields ˆRd

n |n| 1+δ | σ 1 (n)| n, tn s 3 F I (t, n) -σ(n) G (t, n) dn 1 t 1/2+δ ˆRd n |n| 1+2δ t 1+2δ n, tn 2s 4 -2s 3 dn 1/2 × ˆRd n |n| n, tn 2s 4 | σ 1 (n)| 2 F I (t, n) -σ 1 (n) G (t, n) 2 dn 1/2 . Since ˆRd n |n| 1+2δ t 1+2δ n, tn 2s 4 -2s 3 dn ≤ ˆRd n 1 n, tn 2s 4 -2s 3 -1-2δ dn 1 t d , we deduce that ˆRd n |n| 1+δ | σ 1 (n)| n, tn s 3 F I (t, n) -σ(n) G (t, n) dn 1 t (d+1)/2+δ B(t).

Besides, we can dominate

  ˆRd k,ξ |k -n| 2 D α ξ g(t, k, ξ) 2   1/2 |∇ x | δ g(t) H s 3 P
, since, assuming s 3 large enough, with δ < 1, we have

|k| 2 = |k| 2δ |k| 2-2δ ≤ |k| 2δ k, ξ 2-2δ ≤ |k| 2δ k, ξ 2s 3 .
By applying (36) and the Young inequality, we end up with

R 1,Z 1 ε t d-1+2δ |∇ x | δ g(t) 4 H s 3 P + εB 2 (t) K 2 3 ε 3 t 1-d-2δ + εB(t) 2 .
The expressions of R 2,V and R 2,Z already involve |k -n| δ with D α ξ g(t, k -n, ξ -tn), and we can reproduce similar arguments as for R 1,Z ; we obtain 2 . Observe that among R 1,Z , R 2,V and R 2,Z , the worst domination is for R 2,Z . Thus it will guide the determination of the constants in the final estimate.

R 2,V K 2 3 ε 3 t -1-d + εB(t) 2 . and R 2,Z K 2 3 ε 3 t 1-d + εB(t)

Estimate of NLT1T.

We split as NLT1T = NLT1T1 + NLT1T2 noting that, on the integration domain, see [7, Section 5.2]

|k| δ k, ξ s 3 -|k -n| δ k -n, ξ -tn s 3 |k -n| δ |n, tn| k -n, ξ -tn s 3 -1 + |k| δ -|k -n| δ k -n, ξ -tn s 3 .
Here, NLT1T1 stands for the term that involves the exponent s 3 -1). We use Lemma C.9 and |ξ -tk| ≤ t k -n, ξ -tn ) so that

|NLT1T1| t ˆR3d k,ξ,n |k| δ k, ξ s 3 D α ξ g(t, k, ξ) |n||n, tn|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) ×|k -n| δ k -n, ξ -tn s 3 D α ξ g(t, k -n, ξ -tn) dn dk dξ t |∇ x | δ g(t) 2 H s 3 P ˆRd n |n||n, tn|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) dn.
By virtue of (19c) and (38), we have

| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) t η n, tn s 1 (1 + K 5 )ε,
and it follows that

ˆRd n |n||n, tn|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) dn 1 t ˆRd n |n| t |n, tn| t η n, tn s 1 dn (1 + K 5 )ε (1 + K 5 )ε t η-1 ˆRd n n, tn s 1 -2 dn (1 + K 5 )ε t η-d-1 .
We combine this to (36) and we arrive at

|NLT1T1| (1 + K 5 )K 3 ε 3 t η-d .
We proceed similarly for NLT1T2, applying Lemma C.9, and remarking that

| |k| δ - |k -n| δ | ≤ |n| δ and |ξ -tk| ≤ t(k -n), ξ -tn . We get |NLT1T2| ˆR3d k,ξ,n |k| δ k, ξ s 3 D α ξ g(t, k, ξ) |n| 1+δ | σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) × t(k -n), ξ -tn s 3 +1 D α ξ g(t, k, ξ) dn dk dξ |∇ x | δ g(t) H s 3 P ˆRd n |n| 1+δ | σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) dn ×   ˆR2d k,ξ tk, ξ 2 k, ξ 2s 3 D α ξ g(t, k, ξ) 2   1/2 |∇ x | δ g(t) H s 3 P t∇ x , ∇ v g(t) H s 4 P ˆRd n |n| 1+δ | σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) dn .
With (19c) and (38), we show that ˆRd

n |n| 1+δ | σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) dn (1 + K 5 )ε t η-d-1-δ ,
which eventually leads to

|NLT1T2| K 1 K 3 (1 + K 5 )ε 3 t 5/2+η-d-1-δ .
Recap. We have shown that, if g is a solution of (10a)-(10b) which satisfies ( 34)-( 38) on [0, T ], then we have

d dt |∇ x | δ g(t) 2 H s 3 P δK 3 ε 2 t -1-2δ + B(t) 2 δ +K 2 3 ε 3 t -1-2δ + εB(t) 2 + K 2 3 ε 3 t 1-d +K 3 (1 + K 5 )ε 3 t η-d + K 1 K 3 (1 + K 5 )ε 3 t 5/2+η-d-1-δ .
Let C 5 be the constant associated to the symbol. We integrate over [0, T ]and we bear in mind that all the exponents of t are strictly less than 1. We get

|∇ x | δ g(T ) 2 H s 3 P ≤ |∇ x | δ g(0) 2 H s 3 P + C 5 δK 3 ε 2 + C 5 1 + K 2 δ ε 2 +C 5 K 2 3 ε 3 + C 5 (1 + K 2 )ε 3 + C 5 K 2 3 ε 3 +C 5 K 3 (1 + K 5 )ε 3 + C 5 K 1 K 3 (1 + K 5 )ε 3 .
First, let δ 1 such that δC 5 < 1/2. Second, pick K 3 1 so that

|∇ x | δ g(0) 2 H s 3 P + C 5 1 + K 2 δ ε 2 ≤ K 3 2 ε 2 .
Finally, choose ε 1 such that

+C 5 K 2 3 ε 3 + C 5 (1 + K 2 )ε 3 + C 5 K 2 3 ε 3 +C 5 K 3 (1 + K 5 )ε 3 + C 5 K 1 K 3 (1 + K 5 )ε 3 ≤ K 3 ε 2 . We conclude that |∇ x | δ g(T ) 2 H s 3 P ≤ 2K 3 ε 2 holds.

Estimate of the L

∞ (k,ξ) norm of ∇ x,v s 1 g(t)
We go back to (29) and we write

k, ξ s 1 | g(T, k, ξ)| ≤ k, ξ s 1 | f 0 (k, ξ)| + ˆT 0 k σ 1 (k) F I (t, k) -σ 1 (k) G (t, k) • (ξ -tk) M (ξ -tk) dt + ˆT 0 ˆRd n σ 1 (n) F I (t, n) -σ 1 (n) G (t, n) (ξ -tk) g(τ, k -n, ξ -tn) dt dn = CT + LT + NLT.
We also split the non linear term NLT = NLT1 + NLT2 according to

k, ξ s 1 n, tn s 1 + k -n, ξ -tn s 1 . Estimate of CT. Since (x, v) → x α f 0 (x, v) lies in H s P , with |α| ≤ P , it satisfies | f 0 (k, ξ)|
k, ξ -s , see [START_REF] Levermore | Analyticity of solutions for a generalized Euler equation[END_REF]. Hence, assuming s ≥ s 1 , we get CT ε.

Estimate of LT. We use

k, ξ s 1 k, tk s 1 + ξ -tk s 1 ≤ k, tk s 2 ξ -tk s 1 .
The Cauchy-Schwarz inequality then leads to

LT ˆT 0 |k| k, tk 2s 2 ||k| σ 1 (k)| 2 F I (t, k) -σ 1 (k) G (t, k) 2 dt 1/2 × ˆT 0 ξ -tk 2s 1 ∇ v M (ξ -tk) 2 dt 1/2 .
For the first term, (19b) and (37) allow us to get

ˆT 0 |k| k, tk 2s 2 ||k| σ 1 (k)| 2 F I (t, k) -σ 1 (k) G (t, k) 2 dt 1/2 1 + K 4 ε T η/2 .
For the second term, since ∇ v M ∈ H s P , we can write

ξ → ξ s 1 ∇ v M (ξ) ∈ H P (ξ) .
Finally, the Trace Lemma 4.4 yields

ˆT 0 ξ -tk 2s 1 ∇ v M (ξ -tk) 2 dt ξ → ξ s 1 ∇ v M (ξ) 2 H P (ξ) ∇ v M 2 H s 1 P 1.
We have thus shown

LT 1 + K 4 ε T η/2 .
Estimate of NLT1. The Cauchy-Schwarz inequality yields

NLT1 = ˆT 0 ˆRd n n, tn s 1 |n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) |ξ -tk|| g(t, k -n, ξ -tk)| dt dn ≤ ˆRd n ˆT 0 n 4 n, tn 2s 2 |n|| σ 1 (n)| 2 F I (t, n) -σ 1 (n) G (t, n) 2 dt 1/2 × ˆT 0 |n||ξ -tk| 2 n 4 n, tn 2s 2 -2s 1 k -n, ξ -tn 2s 1 k -n, ξ -tn 2s 1 | g(t, k -n, ξ -tn)| 2 dt 1/2 dn.
Next (19b) and (37) lead to

ˆT 0 n 4 n, tn 2s 2 |n|| σ 1 (n)| 2 F I (t, n) -σ 1 (n) G (t, n) 2 dt 1/2 1 + K 4 ε T η/2 ,
and (38) ensures that

k -n, ξ -tn s 1 | g(t, k -n, ξ -tn)| K 5 ε t η .
Therefore, we get

NLT1 1 + K 4 K 5 ε 2 T η/2   ˆRd n ˆT 0 |n||ξ -tk| 2 n 4 n, tn 2s 2 -2s 1 t 2η k -n, ξ -tn 2s 1 1/2 dn   .
We are left with the task of justifying that the last integrals bounded uniformly with respect to k, ξ and T ; this will be detailed in Section 4.6 below.

Estimate of NLT2. We combine (19c) and (38) so that

| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) t η n 2 n, tn s 1 (1 + K 5 )ε.

Applying the Cauchy-Schwarz inequality (and |ξ -tk|

= |ξ -tn + t(n -k)| ≤ t k - n, ξ -tn ) we obtain NLT2 = ˆT 0 ˆRd n |n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n)) × k -n, ξ -tn s 1 |ξ -tk|| g(t, k -n, ξ -tn)| dt dn (1 + K 5 )ε ˆT 0 ˆRd n |n| t 1+η n 2 n, tn s 1 k -n, ξ -tn s 1 +1 | g(t, k -n, ξ -tn)| dt dn (1 + K 5 )ε ˆT 0 ˆRd n |n| 2 t 2+2η n 4 n, tn 2s 1 1 |k -n| 2δ dt dn 1/2 × ˆT 0 ˆRd n |k -n| 2δ k -n, ξ -tn 2s 1 +2 | g(t, k -n, ξ -tn)| 2 dt dn 1/2 .
Then, by Trace Lemma and (36), we have (for

k = 0) ˆT 0 ˆRd |k -n| 2δ k -n, tk -τ n 2s 3 | g(τ, k -n, tk -τ n)| 2 dτ dn sup s∈[0,T ] |∇ x | δ g(s) 2 H s 3 K 3 ε 2
Going back to NLT2 we are finally led to

NLT2 (1 + K 5 ) K 3 ε 2 × ˆT 0 ˆRd |n| 2 t 2+2η n 2 n, tn 2s 1 1 |k -n| 2δ dt dn 1/2
and it remains to check that the integral is uniformly bounded with respect to both k and T . Again, we postpone this estimate to Section 4.6 below.

Recap.

We have shown that, if g is a solution of (10a)-(10b) satisfying ( 34)-(38) on [0, T ], then, we have

∇ x,v g(T ) L ∞ (k,ξ) 1 + √ 1 + K 4 T η/2 + √ 1 + K 4 K 5 ε T η/2 + (1 + K 5 ) √ K 3 ε ε 1 + √ K 4 + (1 + √ K 4 )K 5 ε + (1 + K 5 ) √ K 3 ε ε T η .
Let C 6 be the constant involved in . We set K 5 1 such that C 6 (1 + √ K 4 ) ≤ K 5 and, next, we pick ε

1 so that C 6 [(1 + √ K 4 )K 5 ε + (1 + K 5 ) √ K 3 ε] ≤ K 5 . We are thus led to ∇ x,v g(T ) L ∞ (k,ξ) ≤ 2K 5 T η ε.
We have checked at all steps of the proof that the choices of the constants K i and of the parameter ε are compatible.

Integral estimates

We collect here the estimates of the four integrals that we need to finish the proof of the bootstrap property. Namely, we wish to control, uniformly with respect to k, ξ and T the following four quantities (in the same order as they appeared within the previous discussion) Next, for estimating I3, we observe that |ξ -tn| ≤ t k -n, ξ -tn , so that

I1 = ˆT 0 ˆt 0 ˆRd |k| 3 |t -τ | 2 |n| τ 2η n 4 n, τ n 2s 4 -2s 2 k -n, tk -τ n 2s 1 dt dτ dn, I2 = ˆT 0 ˆt 0 ˆRd |n| 2 τ 2η+2 n 2 n, τ n 2s 1 |k| k -n, tk -τ n 1 |k -n| 2δ dt dτ dn, I3 = ˆRd ˆT 0 |n||ξ -tk| 2 n 4 n, tn 2s 2 -2s 1 t 2η k -n, ξ -tn 2s 1 dt 1/2
I3 ≤ ˆRd 1 n 2 ˆT 0 |n| t 2+2η n, tn 2s 2 -2s 1 1 k -n, ξ -tn 2s 1 -2 dt 1/2 dn ˆRd 1 n 2 1 |n| 1+2η 1/2 ˆT 0 n, tn -2s 2 +2s 1 +2+2η k -n 2s 1 -2 dt 1/2 dn ˆRd 1 n 2 1 |n| 1/2+η 1 k -n s 1 -1 ˆT 0 n, tn -2s 2 +2s 1 +2+2η dt 1/2
dn.

For any n = 0 fixed, we get (with s 2 sufficiently larger than s 1 )

ˆT 0 (1 + |n| 2 + |n| 2 t 2 ) -s 2 +s 1 +1+η dt ≤ 1 |n| ˆ|n|T 0 (1 + u 2 ) -s 2 +s 1 +1+η dt 1 |n| .
Hence, we obtain

I3 ˆRd 1 n 2 1 k -n s 1 -1 1 |n| 1+η dn ˆRd 1 n s 1 -1 1 |k -n| 1+η dn 1.
We estimate I2 by coming back to I4; indeed, I2 can be recast as

I2 = ˆT 0 ˆRd ˆT τ |k| k -n, tk -τ n 2s 3 -2s 2 -2 dt |n| 2 τ 2η+2 n 2 n, τ n 2s 1 1 |k -n| 2δ dτ dn. It thus remains to show that ˆ+∞ -∞ |k| k -n, tk -τ n 2s 3 -2s 2 -2 dt
is bounded uniformly with respect to k. To this end, let us set

n = k • n |k| 2 k, n ⊥ = n -n .
For k = 0, we are led to

k -n, tk -τ n 2 = 1 + |k -n | 2 + |n ⊥ | 2 + |tk -τ n | 2 + |τ n ⊥ | 2 ≤ 1 + |tk -τ n | 2 = 1 + t|k| -τ k • n |k| 2 = t|k| -τ k • n |k| 2 , It yields ˆ+∞ -∞ |k| k -n, tk -τ n 2s 3 -2s 2 -2 dt ≤ ˆ+∞ -∞ |k| t|k| -τ k•n |k| 2s 2 -2s 3 -2 dt ≤ ˆ+∞ -∞ 1 u 2s 3 -2s 2 -2 du 1.
We finally treat I1 like I2.

Analysis of the Landau damping on T d

The dispersive effect which has been used for proving the Landau damping on R d does not exist on the torus. For this reason, in order to control the echoes, we shall work in the analytic framework, following [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF]. For the Vlasov-Poisson problem, the analysis of [START_REF] Bedrossian | Nonlinear echoes and Landau damping with insufficient regularity[END_REF] is a hint that this regularity could be necessary. As a counterpart of this regularity, there is no restriction on the space dimension d.

The proof still relies on a bootstrap argument, see [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF]. There are two main arguments, like on R d : firstly, the force term ∇σ 1 (F I (t) -σ 1 G (t)) can be controlled, in suitable norms, by the macroscopic density (t), and, secondly, the contribution associated to the initial data ´t 0 ∇σ 1 F I (τ, x + τ v) • ∇ v M (v) dτ does not perturb too much the bootstrap property (here, we refer the reader to the remarks made when analyzing the whole space problem).

Functional framework

We start by introducing several Gevrey norms. Let g : (0,

∞) t × T d x × R d v → R. The Gevrey norm • G λ,σ;s is defined by g(t) 2 G λ,σ;s = k∈Z d ˆRd ξ k, ξ 2σ e 2λ k,ξ s | g(t, k, ξ)| 2 dξ
and we also need the Gevrey norm • F λ,σ;s given by

g(t) 2 F λ,σ;s = k∈Z d k, tk 2σ e 2λ k,tk s | g(t, k, tk)| 2 . Let : R t × T d x → R. The Gevrey norm • F λ,σ;s reads (t) 2 F λ,σ;s = k∈Z d k, tk 2σ e 2λ k,tk s | (t, k)| 2 .
In what follows, we always assume λ, σ ≥ 0 and 0 < s ≤ 1.

As a warm-up, we observe that, with g(t, x, v) = f (t, x + tv, v) and (t, x) = ´f (t, x, v) dv, we have

(t) F λ,σ;s = g(t) F λ,σ;s .
Moreover, assuming σ > d/2 we have a σ-ring property: with h(t, x, v) = (t, x + tv)g(t, x, v), we have

h(t) G λ,σ;s (t) F λ,σ;s g(t) G λ,σ;s .
Finally, we shall also need the following Gevrey norm: for P ∈ N, we define the norm

• G λ,σ;s P of a function (t, x, v) → g(t, x, v) by g(t) 2 G λ,σ;s P = α∈N d |α|≤P (x, v) → v α g(t, x, v) 2 G λ,σ;s = α∈N d |α|≤P k∈Z d ˆRd ξ k, ξ 2σ e 2λ k,ξ s D α ξ g(t, k, ξ) 2 dξ.
The σ-ring estimate equally applies to this norm. Note that the weight in the exponential is k, ξ , instead of |k, ξ|; this is useful to establish the following embedding property. Proof. Let α ∈ N d . We remark that k, ξ σ e λ k,ξ ( n, tn σ + k -n, ξ -tn σ )e λ n,tn s e λ k-n,ξ-tn s .

Denoting

N (t) = (t, x, v) → v α (t, x + tv)g(t, x, v) 2
G λ,σ;s P , by using the Cauchy-Schwarz inequality, we get

N (t) = k∈Z d ˆRd ξ n∈Z d k, ξ σ e λ k,ξ s (t, n) D α ξ g(t, k -n, ξ -tn) 2 dξ k∈Z d ˆRd ξ n∈Z d n, tn σ e λ n,tn s (t, n)e λ k-n,ξ-tn s D α ξ g(t, k -n, ξ -tn) 2 dξ + k∈Z d ˆRd ξ n∈Z d e λ n,tn s (t, n) k -n, ξ -tn σ e λ k-n,ξ-tn s D α ξ g(t, k -n, ξ -tn) 2 dξ k∈Z d ˆRd ξ   n∈Z d k -n -2σ n, tn 2σ e 2λ n,tn s | (t, n)| 2   ×   n∈Z d k -n, ξ -tn 2σ e 2λ k-n,ξ-tn s D α ξ g(t, k -n, ξ -tn) 2   dξ + k∈Z d ˆRd ξ   n∈Z d n, tn 2σ e 2λ n,tn s | (t, n)| 2   ×   n∈Z d n -2σ k -n, ξ -tn 2σ e 2λ k-n,ξ-tn s D α ξ g(t, k -n, ξ -tn) 2   dξ.
We conclude that i) holds since the condition σ > d/2 implies that the series k kn -2σ and n n -2σ are finite. We turn to the proof of ii). For 0 < s ≤ 1, we get

α∈N d |α|≤P k∈Z d ˆRd ξ D α ξ (ξ → k, ξ σ e λ k,ξ s g(t, k, ξ)) 2 dξ g(t) 2 G λ,σ;s P . ( 51 
) Indeed, since |∂ ξ i k, ξ | = |ξ i / k, ξ | ≤ 1, we have ∂ ξ i ξ → k, ξ σ e λ k,ξ s g(t, k, ξ) k, ξ σ e λ k,ξ s | g(t, k, ξ)| + k, ξ σ e λ k,ξ s |∂ ξ i g(t, k, ξ)|.
Repeating the argument, we establish that, for any multi-index α,

D α ξ ξ → k, ξ σ e λ k,ξ s g(t, k, ξ) j≤α k, ξ σ e λ k,ξ s |D j ξ g(t, k, ξ)|.
Going back to (51) shows that, g(t) being an element of G λ,σ;s P , for any k ∈ Z d , we have

α∈N d |α|≤P ˆRd ξ D α ξ (ξ → k, ξ σ e λ k,ξ s g(t, k, ξ)) 2 dξ < +∞.
In other words, ξ → k, ξ σ e λ k,ξ s g(t, k, ξ) belongs to H P (R d ξ ). Since P > d/2, Sobolev's embedding applies: this function is continuous, and, for any k ∈ Z d and ξ ∈ R d , we get k, ξ σ e λ k,ξ s g(t, k, ξ)

     α∈N d |α|≤P ˆRd ζ D α ζ ζ → k, ζ σ e λ k,ζ s g(t, k, ζ) 2 dζ      1/2 .
It follows that

g(t) 2 F λ,σ;s = k∈Z d k, tk σ e λ k,tk s g(t, k, tk) 2 k∈Z d α∈N d |α|≤P ˆRd ξ D α ξ (ξ → k, ξ σ e λ k,ξ s g(t, k, ξ)) 2 dξ g(t) 2 G λ,σ;s P .
From now on, we assume that

σ > d/2, P > d/2, 0 < s ≤ 1.
We shall consider the parameter λ as a function of the time variable λ : t → λ(t) ∈ (0, ∞), continuous and decreasing. The estimates (49) and (50) adapt to this context.

In contrast to what we did for the problem on R d , we do not express general conditions on F I and p c . Instead, we shall use the same assumptions as in the case of the linearized Landau damping. For the sake of convenience, let us recall them here.

(H1)

n ≥ 3 is odd,

(H2) σ 2 ∈ C ∞ (R n ) with supp(σ 2 ) ⊂ B(0, R 2 ). (H3) supp(ψ i ) ⊂ T d × B(0, R I ), i = 1, 2 and 
E I = ¨Td ×R n |ψ 1 (x, z)| 2 + c 2 |∇ z ψ 0 (x, z)| dx dz < +∞.
(R2) σ 1 : T d → R + is radially symmetry and analytic; in particular there exist

C 1 , λ 1 > 0 such that | σ 1 (k)| ≤ C 1 exp(-λ 1 |k|) holds for any k ∈ Z d .
Note theat assumption (R1) on M and f 0 will be replaced by M , f 0 ∈ G λ 0 ,0;s P . As a consequence of (H1) and (H2) the kernel p c has a compact support: supp(p c ) ⊂ [0, 2R 2 /c], see Lemma 2.1. By virtue of (H2) and (H3), F I is compactly supported too: supp(F I ) ⊂ [0, (R I + R c )/2], as pointed out in the proof of Lemme 3.2. In what follows, the following parameters will play an important role

2R 2 /c, S 0 = (R I + R c )/2.
The following statement, analog for the torus of Proposition 4.2, is a crucial ingredient to justify the boostrap property. Proposition 5.2 Let (H1)-(H3) and (R2) be fulfilled. Let t → λ(t) > 0 be a continuous and decreasing function. For any σ ≥ 0 and 0 < s ≤ 1, we get

∇σ 1 (F I (t) -σ 1 G (t)) 2 F λ(t),σ;s E I 1 0≤t≤S 0 + ˆt 0 |p c (t -τ )| (τ ) 2
F λ(τ ),σ;s dτ, (52) Consequently, the following estimates hold

∇σ 1 (F I (t) -σ 1 G (t)) 2 F λ(t),σ;s E I + ˆt 0 (τ ) 2 F λ(τ ),σ;s dτ, ( 53a 
) sup τ ∈[0,t] ∇σ 1 (F I (τ ) -σ 1 G (τ )) 2 F λ(τ ),σ;s E I + sup τ ∈[0,t] (τ ) 2 F λ(τ ),σ;s , ( 53b 
)
ˆt 0 ∇σ 1 (F I (τ ) -σ 1 G (τ )) 2 F λ(τ ),σ;s dτ E I + ˆt 0 (τ ) 2 F λ(τ ),σ;s dτ. ( 53c 
)
Remark 5. [START_REF] Backus | Linearized plasma oscillations in arbitrary electron distributions[END_REF] The following observations will be useful: i) In the specific case s = 1 we shall need a further assumption on λ(0): for this situation, we assume λ(0

) < C(λ 1 , 2R 2 /c, S 0 ) = min(λ 1 / S 0 , 2λ 1 / 2R 2 /c ).

ii) In contrast to the analysis of the Vlasov-Poisson problem, a control of

´ dτ ensures a pointwise control of the force term. This fact, which can be seen as a kind of regularizing effect of the half-time-convolution, simplifies the proof of the bootstrap property.

iii) Like for the whole space problem, the exponential decay of σ 1 (k) can be used to absorb any polynomial with respect to k that arises in the estimates, see Remark 4.3.

Proof. We estimate separately the contributions from F I and G :

∇σ 1 (F I (t) -σ 1 G (t)) 2 F λ(t),σ;s ∇σ 1 F I (t) 2 F λ(t),σ;s + ∇Σ G (t) 2
F λ(t),σ;s . For the former, we use supp(F I ) ⊂ [0, S 0 ] × T d and the estimate (see the proof of Lemma 3.2)

|k| | σ 1 (k)| | F I (t, k)| ≤ C 1 |k|e -λ 1 |k| σ 2 L 2n/(n+2) E I 1 0≤t≤S 0 . ( 54 
)
We obtain

∇σ 1 F I (t) 2 F λ(t),σ;s   k∈Z d k, tk 2σ e 2λ(t) k,tk s |k| 2 e -2λ 1 |k| 2   E I 1 0≤t≤S 0   k∈Z d k 2σ S 0 2σ e 2λ(0) k s S 0 s |k| 2 e -2λ 1 |k| 2   E I 1 0≤t≤S 0 .
When 0 < s < 1 the sum is finite; when s = 1 we should impose the additional condition λ 1 > λ(0) S 0 .

For the latter, we apply the Cauchy-Schwarz inequality, so that

∇Σ G (t) 2 F λ(t),σ;s = k∈Z d k, tk 2σ e 2λ(t) k,tk s |k| 2 | σ 1 (k)| 4 ˆt 0 p c (t -τ ) (τ, k) dτ 2 ≤ ˆt 0 |p c (t -τ )| dτ ˆt 0 |p c (t -τ )|   k∈Z d k, tk 2σ e 2λ(t) k,tk s | (τ, k)| 2   dτ = ˆt 0 |p c (t -τ )| dτ ˆt 0 |p c (t -τ )|   k∈Z d I k (t, τ ) k, τ k 2σ e 2λ(t) k,τ k s | (τ, k)| 2   dτ.
It follows that

I k (t, τ ) = |k| 2 | σ 1 (k)| 4 k, tk 2σ k, τ k 2σ e 2(λ(t)-λ(τ ) k,tk s e λ(τ )( k,tk s -k,τ k s ) .
Therefore if I k (t, τ ) is bounded uniformly with respect to k, t and τ , then we get

∇Σ G (t) 2 F λ(t),σ;s ˆt 0 |p c (t -τ )| (τ ) 2 F λ(τ ),σ;s dτ.
We are left with the task of justify a uniform bound on I k (t, τ ). To this end, we remember that p c has a compact support: we can restrict the time integration to 0 ≤ t -τ ≤ 2R 2 /c. For t ≥ τ , a simple analysis of function shows that sup

k∈Z d k, tk 2σ k, τ k 2σ ≤ t 2σ τ 2σ ≤ t -τ 2σ ≤ 2R 2 /c 2σ . Since t → λ(t) is decreasing, we have exp(2(λ(t) -λ(τ )) k, tk s ) ≤ 1. Finally, with 0 < s ≤ 1, we have | x s -y s | ≤ x -y s , so that k, tk s -k, τ k s ≤ (t -τ )k s ≤ 2R 2 c k s and exp(2λ(τ ) ( k, tk s -k, τ k s )) ≤ exp(2λ(0) 2R 2 c s k s ). We conclude with I k (t, τ ) ≤ C 4 1 |k| 2 e -4λ 1 |k| 2R 2 /c 2σ e 2λ(0) T M s k s , when 0 < s < 1, while for s = 1 we further assume 4λ 1 > 2λ(0)2R 2 /c.
Note that we have used in an essential way the fact that p c is compactly supported. In Proposition 4.2, the polynomial decay (D2) was enough. This is due to the different weight that arise in the definition of the norms used for the analysis.

We turn to the estimate of the force term ´t 0 ∇σ 1 F I (τ, x + τ v) • ∇ v M (v) dτ by means of the norms involved in the bootstrap.

Proposition 5.4 Let (H1)-(H3)

and (R2) be fulfilled. Assume that M ∈ G λ 0 ,0;s P for some integer P > d/2. Let t → λ(t) > 0 be continuous, decreasing, and such that λ(0) < λ 0 . Then for any σ ≥ 0 and 0 < s ≤ 1, we have

ˆT 0 ˆt 0 ∇σ 1 F I (τ, x + τ v) • ∇ v M (v) dτ 2 F λ(t),σ;s dt E I . ( 55 
)
Remark 5.5 Again, when s = 1 a constraint on λ(0) like λ(0) < C (λ 1 , S 0 ) = λ 1 / S 0 should be imposed.

Proof. We start with

ˆT 0 ˆt 0 ∇σ 1 F I (τ, x + τ v) • ∇ v M (v) dτ 2 F λ(t),σ;s dt = ˆT 0 k∈Z d k, tk 2σ e 2λ(t) k,tk s ˆt 0 k σ 1 (k) F I (τ, k) • [t -τ ]k M ([t -τ ]k) dτ 2 dt ≤ ˆT 0 k∈Z d \{0} ˆt 0 k, tk σ e λ(t) k, tk s |k| | σ 1 (k)| F I (τ, k) |t -τ | |k| M ([t -τ ]k) dτ 2 =I(t,k) 2
dt and we are going to estimate I(t, k). For any k = 0, we have t ≤ k, tk , and since λ is decreasing, we obtain

I(t, k) ≤ t -1 ˆt 0 k, τ k σ+1 e λ(τ ) k,τ k s |k| | σ 1 (k)| F I (τ, k) × [t -τ ]k σ+1 e λ(τ ) [t-τ ]k s |t -τ | |k| M ([t -τ ]k) dτ.
By using (54) and remarking that M ∈ G λ 0 ,0;s P , for P > d/2, we are led to

| M (ξ)| e -λ 0 ξ s (since ξ → exp( λ 0 ξ s ) M (ξ) H P M G λ 0 ,0;s P
, and P > d/2 allows us to make use of the Sobolev embedding H P → C 0 ; we refer the reader to the proof of (50) for further details). We arrive at

I(t, k) t -1 k σ+1 S 0 σ+1 e λ(0) k s S 0 s |k|e -λ 1 |k| × ˆt 0 [t -τ ]k σ+1 e λ(0) [t-τ ]k s |t -τ | |k|e -λ 0 [t-τ ]k s dτ E I . Since λ(0) < λ 0 we have ˆt 0 [t -τ ]k σ+1 e λ(0) [t-τ ]k s |t -τ | |k|e -λ 0 [t-τ ]k s dτ ≤ ˆR u σ+2 e -( λ 0 -λ(0)) u s du 1.
Therefore, when 0 < s < 1 we obtain ´T 0 k I(t, k) 2 dt E I and for s = 1 we conclude similarly at the price of a constraint like λ 1 > λ(0) S 0 .

We now state an existence-uniqueness result for the Cauchy problem (10a)-(10b), in the functional spaces of interest. We will give a complete proof of this theorem in Appendix C.

Proposition 5.6 Let P > d/2 be an integer and σ > d/2 be a real number. Let

M , f 0 ∈ G λ 0 ,0;1 P with λ 0 > 0. Then, there exists T > 0 and a continuous decreasing function 0 < λ(t) < min( λ 0 , λ 1 / S 0 , 2λ 1 2R 2 /c ) such that the problem (10a)-(10b) admits a unique solution g ∈ C 0 ([0, T ); G λ(t),σ;1 P

) on [0, T ). Moreover, if for some T ≤ T , we have lim sup

t T g(t) H σ P < +∞
then, actually, T < T .

Remark 5. [START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF] The constraint λ(0) < min( λ 0 , λ 1 / S 0 , 2λ 1 2R 2 /c ) comes from the fact that the proof uses Proposition 52.

The analysis of the Landau Damping, as it is already clear for the linearized problem, relies heavily on the formulation of the problem by means of the Fourier variables. Let us collect the useful formula from which the reasoning starts. Integrating (10a)-(10b) over [0, t], we get

g(t, x, v) = f 0 (x, v)+ ˆt 0 ∇ x σ 1 (F I -σ 1 G )(τ, x+τ v)•(∇ v -τ ∇ x )(M (v)+g(τ, x, v)) dτ.
Thus, we obtain

g(t, k, ξ) = f 0 (k, ξ) - ˆt 0 k σ 1 (k)( F I -σ 1 G )(τ, k) • (ξ -τ k) M (ξ -τ k) dτ - n∈Z d ˆt 0 n σ 1 (n)( F I -σ 1 G )(τ, n) • (ξ -τ k) g(τ, k -n, ξ -τ n) dτ and (t, k) = f 0 (k, tk) - ˆt 0 k σ 1 (k)( F I -σ 1 G )(τ, k) • (t -τ )k M ((t -τ )k) dτ - n∈Z d ˆt 0 n σ 1 (n)( F I -σ 1 G )(τ, n) • (t -τ )k g(τ, k -n, tk -τ n) dτ.

Main result

That the Landau damping holds on the torus can be formulated as follows.

Theorem 5.8 (Landau damping in T d ) Suppose (H1)-(H3) and (R2).

Let P > d/2 be an integer, 0 < s ≤ 1 be a real number and M , f 0 ∈ G λ 0 ,0;s P with λ 0 > 0. There exist a universal constant ε 0 , such that if

f 0 G λ 0 ,σ;s P ≤ ε 0 ; E I ≤ ε 2 0
and M satisfies (L), then, the unique solution g of (10a)-( 10b) is globally defined. To be more specific, for any 0 < λ < λ 0 , we have g ∈ C 0 (R + ; G λ ,0;s ) and there exists an asymptotic density g ∞ ∈ G λ ,0;s , the space average of which vanishes, such that

g(t) -g ∞ G λ ,0;s ε 0 e -1 2 ( λ 0 -λ ) t s , ( 56a 
) (t) F λ ,0;s ε 0 e -1 2 ( λ 0 -λ ) t s , ( 56b 
)
∇σ 1 (F I (t) -σ 1 G (t)) F λ ,0;s ε 0 e -1 2 ( λ 0 -λ ) t s . ( 56c 
)
Remark 5.9 When s = 1 the constraint on λ becomes λ < min( λ 0 , λ 1 / S 0 , 2λ 1 2R 2 /c ).

Like for the problem set on R d , the proof relies on a bootstrap argument, which, in this context, states as follows.

Proposition 5.10 (Bootstrap) Let the assumptions of Theorem 5.8 be fulfilled. Let α 0 = ( λ 0 + λ )/2 and σ > d/2 + 6. There exists a function λ : R + → (α 0 , λ 0 ), continuous and decreasing, a real β > 2 and constants

K 1 , K 2 , K 3 , K 4 > 0 such that if g is a solution of (10a)-(10b) on the time interval [0, T ] verifying g(t) 2 G λ(t),σ+1;s P ≤ 4K 1 t 7 ε 2 (57a) g(t) 2 G λ(t),σ-β;s P ≤ 4K 2 ε 2 (57b) ˆT 0 (t) 2 F λ(t),σ;s dt ≤ 4K 3 ε 2 (57c)
for 0 < ε ≤ ε 0 small enough, then g also satisfies, on [0, T ], the estimates

g(t) 2 G λ(t),σ+1;s P ≤ 2K 1 t 7 ε 2 (58a) g(t) 2 G λ(t),σ-β;s P ≤ 2K 2 ε 2 (58b) ˆT 0 (t) 2 F λ(t),σ;s dt ≤ 2K 3 ε 2 (58c) (t) 2 F λ(t),σ;s ≤ 2K 4 t ε 2 (58d)
Remark 5.11 The role of (58d) is a bit different from its analog for the Vlasov-Poisson problem. Indeed, the interest of this estimate is to provide a pointwise control on the force term. However, here, as said above, such a control can be obtained by estimating ´ (t) 2 F λ(t),σ;s dt. Consequently (58c) is enough to finish the proof, without using (58d) and the proof slightly simplifies. Nevertheless, we keep (58d) in the statement since it is useful to justify (56b).

We now explain how the Landau damping can be justified, having at hand the bootstrap statement.

Proof of Landau damping. We only detail the case 0 < s < 1 and M , f 0 ∈ G λ 0 ,0;1 P , and we refer the reader to Remark 5.12 for further information.

Step 1 : Global well-posedness. Since M , f 0 ∈ G λ 0 ,0;1 P , Proposition 5.6 ensures that we can find T > 0 and a continuously decreasing function 0 < λ(t) < min( λ 0 , λ 1 / S 0 , 2λ 1 2R 2 /c ) such that (10a)-(10b) has a unique solution g ∈ C 0 ([0, T ); G λ(t),σ+1;1 P

) on [0, T ). Moreover, since 0 < s < 1, this solution equally lies in C 0 ([0, T ); G λ(t),σ+1;s P ), where now λ(t) stands for the function arising from Proposition 5.10. It is still possible to fix the constants so that the estimates (58a)-(58c) hold at T = 0, and g is continuous for the corresponding norms. Therefore, we already know that we can find T > 0 such that (57a)-(57c) hold on [0, T ]. Proposition 5.10 together with a reasoning by connectivity ensures that (58a)-(58d) hold on [0, T ). Finally, (58a) tells us that lim sup

t T g(t) H σ+1 P ≤ lim sup t T g(t) G λ(t),σ+1;s P ≤ 2K 1 T 7 ε 2
holds, and thus we can go back to the extension argument in Proposition 5.6, and we conclude that T = +∞.

Step 2 : Convergence to 0 of . Since the space average of g(t) vanishes: (t, 0) = g(t, 0, 0) = 0, we get

(t) 2 F λ ,0;s ≤ 2 F α 0 ,0;s e -2(α 0 -λ ) t . Next (58d) (with σ > 1/2) ensures that (t) 2 F α 0 ,0;s = k∈Z d \{0} e 2α 0 k,tk s | (t, k)| 2 ≤ k∈Z d \{0} t 2σ t e 2λ(t) k,tk s | (t, k)| 2 ≤ 1 t (t) 2 F λ(t),σ;s ≤ K 4 ε 2 .
Since α 0 = ( λ 0 + λ )/2, we have proved

(t) F λ ,0;s ≤ K 4 εe -1 2 (λ 0 -λ ) t s .
Step 3 : Convergence to 0 of the force. This result follows similar arguments. Since the average of the force term vanishes, we have

∇σ 1 (F I (t) -σ 1 G (t)) 2 F λ ,0;s ≤ ∇σ 1 (F I (t) -σ 1 G (t)) 2
F α 0 ,0;s e -2(α 0 -λ ) t . By using (53a) and (58c), we get

∇σ 1 (F I (t) -σ 1 G (t)) 2 F α 0 ,0;s E I 1 0≤t≤S 0 + ˆt 0 2 F λ(t),σ;s dτ ε 2 .
we conclude by using α 0 = ( λ 0 + λ )/2, again.

Step 4 : Existence of the asymptotic profile. We wish to define the quantity

g ∞ : (x, v) -→ f 0 (x, v) + ˆ+∞ 0 N (g)(τ )dτ.
Let us check that this makes sense as an element of G λ ,0:s . Next, we will show that g(t) converges to g ∞ for large times. We start by estimating ´t 0 N (g)(τ ) F λ ,0;s dτ .

With (49), we get

ˆt 0 N (g)(τ ) G λ ,0;s dτ ≤ ˆt 0 N (g)(τ ) G λ ,d/2+1;s dτ ˆt 0 ∇σ 1 (F I (τ ) -σ 1 G (τ )) F λ ,d/2+1;s (∇ v -τ ∇ x )(M + g(τ )) G λ ,d/2+1;s P dτ.
Since σ > d/2 + 6, we have

(∇ v -τ ∇ x )(M +g(τ )) G λ ,d/2+1;s P τ M +g(τ ) G λ ,d/2+2;s P ≤ τ M +g(τ ) G λ(τ ),σ+1;s P .
Moreover, the average of the force term vanishes so that

∇σ 1 (F I (τ ) -σ 1 G (τ )) F λ ,d/2+1;s ≤ τ -σ+d/2+1 ∇σ 1 (F I (τ ) -σ 1 G (τ )) F λ ,σ;s ≤ τ -σ+d/2+1 ∇σ 1 (F I (τ ) -σ 1 G (τ )) F λ(τ ),σ;s ,
and applying (58a) with the Cauchy-Schwarz inequality yields

ˆt 0 N (g)(τ ) G λ ,0;s dτ ˆt 0 τ -σ+d/2+2 ∇σ 1 (F I (τ ) -σ 1 G (τ )) F λ(τ ),σ;s M G λ 0 ,0;s P + K 1 τ 7/2 ε dτ ˆt 0 ∇σ 1 (F I (τ ) -σ 1 G (τ )) 2 F λ(τ ),σ;s dτ 1/2 × ˆt 0 τ -2σ+d+11 M 2 G λ 0 ,0;s P + K 1 ε 2 dτ 1/2
.

By using (53a) and (58c) we see that the left hand side is bounded uniformly with respect to t while the condition σ > d/2 + 6 implies that the right hand side is also bounded uniformly with respect to t. Thus g ∞ is well defined in G λ ,0;s . To be more specific, we have shown that

g ∞ -f 0 2 G λ ,0;s (E I + K 3 ε 2 )(1 + K 1 ε 2 ). Since E I ≤ ε 2 it says that g ∞ is at a distance at most ε from f 0 .
The convergence of g(t) towards g ∞ relies on the same manipulations. The noticeable difference is in Step 3; using again the fact that the space average of the force term vanishes, we get

∇σ 1 (F I (τ ) -σ 1 G (τ )) F λ ,d/2+1;s ≤ τ -σ+d/2+1 e -(α 0 -λ ) τ ∇σ 1 (F I (τ ) -σ 1 G (τ )) F α 0 ,σ;s ≤ τ -σ+d/2+1 e -(α 0 -λ ) τ ∇σ 1 (F I (τ ) -σ 1 G (τ )) F λ(τ ),σ;s , It follows that g(t) -g ∞ G λ ,0;s ≤ ˆ+∞ t N (g)(τ ) G λ ,0;s dτ ˆ+∞ t e -(α 0 -λ ) τ s τ -σ+d/2+2 ∇σ 1 (F I (τ ) -σ 1 G (τ )) F λ(τ ),σ;s M + g(τ ) G λ(τ ),σ+1;s P dτ e -(α 0 -λ ) t s ˆ+∞ t τ -σ+d/2+2 ∇σ 1 (F I (τ ) -σ 1 G (τ )) F λ(τ ),σ;s M + g(τ ) G λ(τ ),σ+1;s P dτ εe -(α 0 -λ ) t s .
We conclude by using α 0 = ( λ 0 + λ )/2.

Remark 5.12

We conclude the proof with a couple of remarks.

• When the data M , f 0 belong to G λ 0 ,0;s , with 0 < s < 1, Step 1 is critical since it relies on Proposition 5.6 which applies for analytic data only. We use a regularization argument: we introduce a sequence M η , f η 0 η>0 of data that belong to G λ 0 ,0;1 and that converge to (M , f 0 ) in G λ 0 ,0;s as η → 0. For any η > 0, the associated solution g η is globally defined and it satisfies (58a)-(58d) on [0, +∞) (remarking that the criterion (L) is stable by such a regularisation). We can also check that the constants K 1 , . . . , K 4 can be defined independently of η and that

g η converges in C 0 ([0, +∞); L 1 (R d × R d ))
to a certain function g, which is still a solution of (10a)-(10b), see [START_REF] Vavasseur | Some models of particles interacting with their environment[END_REF] and [START_REF] De Bièvre | Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov-Poisson system[END_REF]Theorem 4 & Lemma 8]. Moreover, for any t ≥ 0, we have .

g(t) 2 G λ(t),σ+1;s P ≤ lim inf η→0 + g η (t)
Since g(t) = ḡt = gt (by uniqueness of the limit in L 1 ) almost everywhere, (58a) and (58b) still apply for g. In order to justify that (58c) and (58d) apply to g, we use the fact that, for any t, k, ξ

g η (t, k, ξ) -→ η→0 + g(t, k, ξ).
Fatou's lemma then yields

g(t) 2 F λ(t),σ;s = k∈Z d k, tk 2σ e 2λ(t) k,tk s lim inf η→0 + | g η (t, k, tk)| 2 ≤ lim inf η→0 + g η (t) 2 F λ(t),σ;s .
• When s = 1 this is still Step 1 that contains some difficulty. We can apply Proposition 5.6, but we should check the interaction between the function λ given by the bootstrap statement and the function λ arising from Proposition 5.6. Indeed, it is not a priori excluded that λ(t) < λ(t) at a certain time t > 0, which would prevent us from extending the solution in G λ(t),σ+1;1 P

, see [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF].

Like for the problem on R d , the proof of the bootstrap property relies on fine estimates for the linearized problem. We are therefore going to use the following analog to Proposition 4.14, see [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF]Lemma 4.1] and further comments in Appendix A. Proposition 5.13 (Linearized damping on T d ) Let the assumptions of Theorem 5.8 and Proposition 5.10 be fulfilled. We consider a family of functions {t ∈ [0, T ] → a(t, k), k ∈ Z d }. We suppose that

k∈Z d ˆT 0 k, tk 2σ e 2λ(t) k,tk s |a(t, k)| 2 dt < +∞,
holds. Then, we can find a constant C LD (which does not depend on k and T ) such that any solution (t, k) → φ(t, k) of the system

φ(t, k) = a(t, k) + ˆt 0 K (t -τ, k)φ(τ, k) dτ = a(t, k) + ˆt 0 | σ 1 (k)| 2 |k| 2 (t -τ ) M ([t -τ ]k) ˆτ 0 p c (τ -σ)φ(σ, k) dσ dτ, on [0, T ] satisfies the following estimate: for any k ∈ Z d ˆT 0 k, tk 2σ e 2λ(t) k,tk s |φ(t, k)| 2 dt ≤ C LD ˆT 0 k, tk 2σ e 2λ(t) k,tk s |a(t, k)| 2 dt.

Bootstrap analysis: sketch of proof of Proposition 5.10

To start with, let us make a few observations:

• Like for the problem in R d , the main difficulty relies on the treatment of the echoes. In R d , the dispersive effect of the transport operator allows us to obtain a control by means of Sobolev norms, at the price of restrictions on the space dimension d, though: in finite regularity we need to assume d ≥ 2 (the case d = 2 being critical for a different reason). On the torus, the dispersive effect does not hold, which motivates the analytic framework. As a consequence of working in such a high regularity, we get rid of the restriction on d.

• In order to adapt the arguments of [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF], when we estimate expressions that involve the force term, we make use of Proposition 5.2. It allows us to control the force term by the macroscopic density , up to a constant term, like for the Vlasov-Poisson system. The constant term is of order ε 2 , so that it does not induce new difficulties (see the proof of Proposition 4.2). Finally, when applying Proposition 5.13 in order to estimate ´T 0 2 dt, we should pay attention to the force term ´t 0 ∇σ 1 F I (τ, x + τ v) • ∇ v M (v) dτ . Proposition 5.4 provides the necessary estimates.

For the sake of brevity, let us just sketch how it is possible to obtain the estimate (58c) from (57a)-(57c), having, on the one hand, the estimates of [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF] and, on the other hand, the estimates from Propositions 5.2 and 5.4. As in the free space case, we introduce the time response kernel which contains all the difficulties concerning the control of echos terms: let

K(t, τ, k, n) = 1 n γ e (λ(t)-λ(τ )) k,tk s e cλ(τ ) k-n,tk-τ n s |(t -τ )k g(τ, k -n, tk -τ n)| 1 n =0
where c = c(s) ∈ (0, 1) is determined by the proof.

Remark 5.14 i) Since in our case the kernel σ 1 is analytic we can choose γ as large as we wish. In practice, since we use the arguments of [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF], for proving a result in Gevrey regularity class s ∈ (0, 1), we should take γ such that s > 1/(2 + γ) (so the smaller s, the larger γ).

ii) Note also that the analyticity of σ 1 allows us to replace the term n -γ in the time response kernel by exp(-γ n ). According to [START_REF] Mouhot | On Landau damping[END_REF]Section 7.1.1], this permits us to obtain better estimates on K, but it is not obvious that these improvements lead to a Landau damping effect in finite regularity on the torus. Since in our context the regularity of σ 1 is also needed to obtain the crucial estimates of Propositions 5.2 and 5.4, and since replacing n -γ by exp(-γ n ) does not improve the result, we chose the definition of the time response kernel with the n -γ factor.

For this time response kernel we will use the followings estimates (see [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF]Section 6], which are the analog in the torus of Lemma 4.15.

Lemma 5.15 Under the assumptions of Proposition 5.10 the following two estimates hold

sup t∈[0,T ] sup k∈Z d \{0} ˆt 0 n∈Z d \{0} K(t, τ, k, n) dτ K 2 ε and sup τ ∈[0,T ] sup n∈Z d \{0} ˆT τ k∈Z d \{0} K(t, τ, k, n) dt K 2 ε.
We follow closely the arguments of [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF]. We start from

(t, k) = f 0 (k, tk) - ˆt 0 k σ 1 (k) F I (τ, k) • (t -τ )k M ((t -τ )k) dτ + ˆt 0 k| σ 1 (k)| 2 G (τ, k) • (t -τ )k M ((t -τ )k) dτ - n∈Z d ˆt 0 n σ 1 (n)( F I -σ 1 G )(τ, n) • (t -τ )k g(τ, k -n, tk -τ n) dτ = CT1(t, k) + CT2(t, k) + ˆt 0 k| σ 1 (k)| 2 G (τ, k) • (t -τ )k M ((t -τ )k) dτ + NLT(t, k).
As in the free space problem (see Section 4.4.1), for estimating the non linear term NLT we start by splitting it into several parts. Here this decomposition is slightly more precise than in Section 4.4.1 but the main idea is the same: we consider separately contributions from high and low frequencies coming from and g: NLT = T + R + R.

The transport term T contains 's low frequency terms and g's high frequency terms; the reaction term R contains 's high frequency terms and g's low frequency terms and the remainder term R contains the other terms, those where and g have almost the same frequency. The precise decomposition needs the introduction of the Littlewood-Paley decomposition and the paradifferential formalism. We prefer not to detail this aspect here. Then, we apply Proposition 5.13 to obtain (by summing over

k ∈ Z d \{0}) ˆT 0 (t) 2 F λ(t),σ;s dt ˆT 0 CT1(t) 2 F λ(t),σ;s dt + ˆT 0 CT2(t) 2 F λ(t),σ;s dt + ˆT 0 T(t) 2 F λ(t),σ;s dt + ˆT 0 R(t) 2 F λ(t),σ;s dt + ˆT 0 R(t) 2 F λ(t),σ;s dt.

Constant terms.

We estimate the first constant term CT1 as in [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF] and we obtain

ˆT 0 CT1(t) 2 F λ(t),σ;s dt ε 2 .
For the second constant term CT2 we use the Proposition 5.4 to obtain

ˆT 0 CT2(t) 2 F λ(t),σ;s dt E I .
Reaction term. Following closely the argument from [6, Section 5.1.1], we are led to the following estimate on R:

ˆT 0 R(t) 2 F λ(t),σ;s dt   sup t∈[0,T ] sup k∈Z d \{0} ˆt 0 n∈Z d \{0} K(t, τ, k, n) dτ   ×   sup τ ∈[0,T ] sup n∈Z d \{0} ˆT τ k∈Z d \{0} K(t, τ, k, n) dt   × ˆT 0 ∇σ 1 (F I (τ ) -σ 1 G (τ )) 2 F λ(τ ),σ;s dτ .
In order to make the kernel K appear, we have to multiply and divide by n γ . Hence, we can obtain the same estimate but replacing

∇σ 1 (F I (τ ) -σ 1 G (τ )) 2 F λ(τ ),σ;s = n∈Z d \{0} n, τ n 2σ e 2λ(τ ) n,τ n s |n| 2 | σ 1 (n)| 2 F I (τ, n) -σ 1 (n) G (τ, n) 2 by n∈Z d \{0} n, τ n 2σ e 2λ(τ ) n,τ n s n 2γ |n| 2 | σ 1 (n)| 2 F I (τ, n) -σ 1 (n) G (τ, n) 2 .
Since σ 1 is analytic we can always use, without any bad consequences, a small part of the exponential decay of its Fourier transform to absorb the k γ -term (we already dealt with this difficulty in the free space problem, see Remark 4.3). From now on, we always omit this minor detail in the estimates. Then, applying Lemma 5.15 and Proposition 5.2 with (57a), we get

ˆT 0 R(t) 2 F λ(t),σ;s dt K 2 ε 2 E I + K 3 ε 2 .
Transport term. We follow line by line the estimate of [6, Section 5.1.2], and we are led to

ˆT 0 T(t) 2 F λ(t),σ;s dt ˆT 0 ∇σ 1 (F I (τ ) -σ 1 G (τ )) 2 F λ(τ ),σ;s dτ ×   sup τ ≥0 e (c-1)α 0 τ s k∈Z d \{0} sup ω∈Z d \{0} sup x∈R d ˆ+∞ -∞ k, ω |ω| ζ -x 2σ+2 ×e 2λ(τ ) k, ω |ω| ζ-x s g τ, k, ω |ω| ζ -x 2 dζ
where c = c(s) ∈ (0, 1). Then, applying Proposition 5.2 with (57c) and the Trace Lemma 4.4 with (57a) (see in Section 4.4.1 the paragraph Estimate on NLTT for a similar reasoning) yields

ˆT 0 T(t) 2 F λ(t),σ;s dt (E I + K 3 ε 2 )K 1 ε 2 .
Remainder term. The arguments of [6, Section 5.1.3] allow us to obtain the estimate

ˆT 0 R(t) 2 F λ(t),σ;s dt K 1 ε 2 ˆT 0 ∇σ 1 (F I (τ ) -σ 1 G (τ )) 2 F λ(τ ),σ;s dτ ×   ˆT 0 n∈Z d \{0} e 2(c -1)λ(τ ) n,τ n s τ 7 dτ  
where c ∈ (0, 1). We conclude by applying Proposition 5.2 with (57c) to obtain

ˆT 0 R(t) 2 F λ(t),σ;s dt K 1 ε 2 (E I + K 3 ε 2 ).
Recap. We have shown that, if g is a solution of (10a)-(10b) satisfying (57a

)-(57c) on [0, T ], then ˆT 0 (t) 2 F λ(t),σ;s dt ε 2 +E I +K 2 ε 2 E I + K 3 ε 2 +(E I +K 3 ε 2 )K 1 ε 2 +K 1 ε 2 (E I +K 3 ε 2 ).
Since in Theorem 5.8 the smallness assumption on the fluctuation of the media is

E I ≤ ε 2 , this estimate can be rewritten as ˆT 0 (t) 2 F λ(t),σ;s dt 1 + K 2 (1 + K 3 )ε 2 + K 1 (1 + K 3 )ε 2 ε 2 .
Let us denote C 1 the constant hidden in the symbol of this estimate. Choosing K 3 ≥ C 1 and ε 1 so that

(K 1 + K 2 )(1 + K 3 )ε 2 ≤ 1
allows us to conclude that (58c) holds.

The general idea. Since the structure of the Vlasov-Wave equation is close to the structure of the Vlasov-Poisson equation, we can perform the same estimates than in [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF]. The price to be paid is to replace terms of the form (t) F by

∇σ 1 (F I (t) -σ 1 G (t)) F . ( 59 
)
Then all the difficulty consists in controlling (59) by means of (t) F . Since Proposition 5.2 allows us to perform this kind of estimate, we have a complete proof of the bootstrap statement Proposition 5.10 by applying this strategy. We refer the reader to the detailed analysis performed for the free space problem. The justification of the necessary estimates relies on the understanding of the kernel p c .

A Analysis of the Volterra equation

This Section is concerned with the analysis of the system of integral equations

ϕ k (t) = a k (t) + ˆt 0 K k (t -τ )ϕ k (τ ) dτ, (60) 
parametrized by k ∈ X d \ {0} (but note that the equations are uncoupled). The unknowns are the functions t → ϕ k (t), while the source a k and the kernel K k are given. We wish to establish fine estimates on the solutions, depending on decay assumptions on the data, in the spirit of Lemma 3.1, and keeping track on the dependence with respect to k. The statements on the linearized problem in Section 3.2 are consequences of the for real s, ω. It follows that

|L K(0 + iω, k) -L K(s + iω, k)| ≤ W L 1 ˆ+∞ 0 1 -e -su e iωu M k |k| u du ≤ C 0 W L 1 ˆ+∞ 0 1 -e -su e -λ 0 u u du -→ s→0 0.
The convergence holds by virtue of the Lebesgue theorem, uniformly with respect to k and ω: for any ε > 0 there exists δ ε > 0 such that for any s ∈ R,

if |s| ≤ δ ε then C 0 W L 1 ˆ+∞ 0 |1 -e su | e -λ 0 u u du ≤ ε.
Choosing ε = κ/2, (A:LV) ensures that Λ = δ κ/2 is suitable.

Lemma A.4 Assume (A:H1)-(A:LV). For any

k ∈ X d \ {0}, the open set Ω = {ω ∈ C, Λ < Re(ω)} contains at most a countable set of zeroes of the function ω → L K(ω, k) -1.
Proof. By holomorphy under the integral, the function

ω → L K(ω, k) is holomor- phic on the open set U = {ω ∈ C, Re(ω) > -λ 0 } .
Then the uniqueness theorem for analytic functions tells us that the zeroes of ω → L K(ω, k) -1 are isolated.

We turn to the proof of Theorem A.2

Proof. Let k ∈ X d \ {0}, We introduce φ k (t) = ϕ k (t)e λ |k|t 1 t≥0 , A k (t) = a k (t)e λ |k|t K 0 k (t) = K k (t)e λ |k|t 1 t≥0
where we choose λ such that 0 < λ < min(λ, λ 0 , Λ), with Λ defined as in Lemma A.3. For any t ≥ 0, we get

φ k (t) = A k (t) + K 0 k φ k (t). Step 1. We show that φ k L 2 ( dt) ≤ 2 κ A k L 2 ( dt) .
Indeed, Grönwall allows us to find C(k) > 0 such that

|φ k (t)| k e C(k)t .
(The constant hidden in the symbol depends on k.) For µ ∈ R, we introduce the functions

φ k,µ (t) = e µ|k|t φ k (t) A k,µ (t) = e µ|k|t a k (t) K 0 k,µ (t) = e µ|k|t K k (t). We get φ k,µ (t) = A k,µ (t) + K 0 k,µ φ k,µ (t).
Let us Fourier-transform this relation, with µ < -C(k)/|k|; for any ω ∈ R, we obtain

1 -F (K 0 k,µ )(ω) F (φ k,µ )(ω) = F (A k,µ )(ω). Observe that F (K 0 k,µ )(ω) = L K(-λ -µ + iω/|k|, k). Let us set N k = {ω ∈ R such that there exists s > Λ verifying L K(s + iω/|k|, k) = 1} . We deduce that, for µ < -C(k)/|k| and ω ∈ R \ N k , F (φ k,µ )(ω) = F (A k,µ )(ω) 1 -L K(-λ -µ + iω/|k|, k) .
Let γ δ (t) = exp(-δt 2 /2), wit δ > 0. We write

F (φ k,µ γ δ )(ω) = F (φ k,µ ) F (γ δ )(ω) = F (A k,µ )(•) 1 -L K(-λ -µ + i • /|k|, k) F (γ δ )(ω).
The left hand side makes sense for any µ ∈ R and it is analytic with respect to µ. The third term in the equality makes sense provided µ < min(λ 0 -λ , λ -λ ) and ω ∈ R \ N k , and it is analytic with respect to µ on an open set that contains the half-line {x < min(λ 0 -λ , λ -λ )}. The second term is defined for µ < -C(k)/|k| and the equalities hold when this constraint on µ is fulfilled. The uniqueness theorem for analytic functions tells us that the equality still holds for µ < min(λ 0 -λ , λ -λ ). In particular, with µ = 0, we obtain, for any ω

∈ R \ N k F (φ k γ δ )(ω) = F (A k )(•) 1 -L K(-λ + i • /|k|, k) F (γ δ )(ω).
By Lemma A.4 we know that N k is negligible. Thus taking the L 2 norm of the equality leads to

φ k γ δ L 2 ( dt) ≤ A k L 2 ( dt) κ/2 F (γ δ ) L 1 ( dt) = 2 κ A k L 2 ( dt) ,
where the first inequality relies on Lemma A.3 with λ < Λ. Finally, since φ k γ δ converges monotonically to φ k as δ → 0, Beppo-Lévi's theorem leads to

φ k L 2 ( dt) ≤ 2 κ A k L 2 ( dt) .
Step 2. We go back to the equation satisfied by φ k and we estimate the sup-norm:

φ k L ∞ ≤ A k L ∞ + K 0 k L 2 φ k L 2 ≤ A k L ∞ + 2 κ K 0 k L 2 A k L 2 .
By (A:H1) the sup-norm of A k is bounded, uniformly with respect to k, while the L 2 -norm of A k behaves like 1/|k| 1/2 . The expression of K k tells us that its L 2 -norm behaves like |k| 1/2 . Therefore, the product of the L 2 -norm of A k and K 0 k is bounded uniformly with respect to k. (This estimate is particularly crucial for the case X d = R d since an estimate of the order of 1/|k| would compromise the proof.) Remark A. [START_REF] Bedrossian | Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations[END_REF] For the analysis of the linearized Landau damping, this L ∞ estimate on φ k is a crucial ingredient. Note that it is obtained as a consequence of an intermediate estimate with the L 2 -norm, that can be recast as ˆ+∞

0 e 2λ |k|t |ϕ k (t)| 2 dt ≤ 1 κ 2 ˆ+∞ 0 e 2λ |k|t |a k (t)| 2 dt.
When studying the non-linear problem, this L 2 estimate becomes the key argument. Changing a k (t) into a k (t)1 0≤t≤T , we can equally obtain

ˆT 0 e 2λ |k|t |ϕ k (t)| 2 dt ≤ 1 κ 2 ˆT 0 e 2λ |k|t |a k (t)| 2 dt. Similarly, with k = (1+k 2 ) 1/2 , replacing φ k (t) by e λ k φ k (t) and A k (t) by e λ k A k (t), leads to ˆT 0 e 2λ ( k +|k|t) |ϕ k (t)| 2 dt ≤ 1 κ 2 ˆT 0 e 2λ ( k +|k|t) |a k (t)| 2 dt. Since k, tk k + |k|t k, tk , it becomes ˆT 0 e 2λ k,tk |ϕ k (t)| 2 dt ≤ C 2 ˆT 0 e 2λ k,tk |a k (t)| 2 dt.
When discussing the Landau damping in finite regularity, we shall see that a polynomial weight (that means a Sobolev correction) can be incorporated in the estimate

ˆT 0 k, tk 2σ e 2λ k,tk |ϕ k (t)| 2 dt ≤ C 2 ˆT 0 k, tk 2σ e 2λ k,tk |a k (t)| 2 dt.
Eventually, in order to obtain results in Gevrey-norms, it is relevant to consider fractional exponential weights as well:

ˆT 0 k, tk 2σ e 2λ k,tk s |ϕ k (t)| 2 dt ≤ C 2 ˆT 0 k, tk 2σ e 2λ k,tk s |a k (t)| 2 dt with 0 < s ≤ 1.
The proof is quite technical, and we refer the reader to [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF] for further details on this framework.

(A:b) | σ 1 (k)| ≤ C 1 e -λ 1 |k|
Remark A. [START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF] For the Vlasov-Wave problem, with p c defined as in [START_REF] Bedrossian | Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations[END_REF]

, (A:a) holds under assumption (H1)-(H2), see Lemma 2.1. With (A:H2b) and (A:a) we infer the following estimate

|K k (t)| ≤ C 0 R c p c L ∞ | σ 1 (k)| 2 |k| 2 e λ 0 |k|Rc |t|e -λ 0 |k|t
and (A:b) ensures that provided λ 1 is large enough, | σ 1 (k)| 2 |k| 2 e λ 0 |k|Rc is uniformly bounded with respect to k, which has to be compared to (A:H1). In particular, we can again introduce the (rescaled) Laplace transform of K k , for ω ∈ C such that Re(ω) > -λ 0 :

L K(ω, k) = ˆ+∞ 0 e -|k|ωt K k (t) dt.
We have

L K(ω, k) = L p c (ω, k)L K(ω, k),
where K relies on the space-convolution only and has the same properties as the kernel of the Vlasov case.

Remark A.7 Note that the rescaling of the Laplace transform still appears through the equilibrium M but the kernel K k also involves p c , which does not have such a homogeneity property. It induces some difficulties for the analysis.

Theorem A.8 Assume (A:H1b)-(A:b).

Then, there exists C , λ > 0 such that for any k ∈ X d \ {0} and any t ≥ 0, we have

|ϕ k (t)| ≤ C e -λ |k|t .
We start by discussing the zeroes of ω → L K(ω, k) -1.

Lemma A.9 Assume (A:H1b)-(A:LW).

We can find Λ > 0 such that for any k ∈

X d \ {0} and ω ∈ C, we have if -Λ ≤ Re(ω) ≤ Λ then |L K(ω, k) -1| ≥ κ 2 .
Proof. With s, ω ∈ R and ω = s + iω, the Laplace transform of K k can be cast as

L K(s + iω, k) = ˆ+∞ 0 e -ω|k|t p c (t) dt × ˆ+∞ 0 e -s|k|t e -iω|k|t | σ 1 (k)| 2 |k| 2 t M (tk) dt = ˆ+∞ 0 e -ω|k|t p c (t) dt × | σ 1 (k)| 2 ˆ+∞ 0 e -su e -iωu M k |k| u u du . It follows that |L K(0 + iω, k) -L K(s + iω, k)| ≤ C 0 σ 1 2 L 1 ˆ+∞ 0 ue -λ 0 u du ˆ+∞ 0 1 -e -s|k|t |p c (t)| dt +C 0 p c L 1 σ 1 2 L 1 ˆ+∞ 0 1 -e -su ue -λ 0 u du -→ s→0 0 (61) 
by virtue of the Lebesgue theorem. Notice that the second term converges to 0 uniformly with respect to ω and k, but for the first term, it is not clear that the convergence remains uniform with respect to k (it is uniform with respect to ω). In order to treat this difficulty, we observe that for any ω ∈ C, Re(ω) > -λ > -λ 0 , we have

|L K(ω, k)| ≤ | σ 1 (k)| 2 ˆ+∞ 0 e λ |k|t |p c (t)| dt ˆ+∞ 0 ue -(λ 0 -λ )u du ≤ | σ 1 (k)| 2 e λ |k|Rc p c L 1 ˆ+∞ 0 ue -(λ 0 -λ )u du -→ |k|→+∞ 0.
when λ < λ 0 . The convergence holds uniformly with respect to ω. Thus, it suffices to consider (61) for k in a bounded subset of

X d \ {0}. When X d \ {0} = Z d \ {0}
, such a subset contains a finite number of elements, and the convergence (61) is therefore uniform with respect to k. The case

X d \ {0} = R d \ {0} is more delicate. Let us introduce the function g : (s, τ ) ∈ R × R + -→ ˆ+∞ 0 1 -e -sτ t |p c (t)| dt.
By virtue of the Lebesgue theorem this function is continuous, and thus uniformly continuous over compact sets in R × R + . Hence, for any |k| ≤ A < ∞, we have

g(s, |k|) -→ s→0 0
uniformly with respect to k (but the convergence depends on A). This ends the proof.

Lemma A.10 For any k ∈ X d \ {0}, the open set

Ω = {ω ∈ C such that Λ < Re(ω)} contains at most a countable set of zeroes of ω → L K(ω, k) -1.

Proof.

By holomorphy under the integral, which uses Remark A.6, the function

ω → L K(ω, k) is holomorphic on the open set {ω ∈ C such that Re(ω) > -λ 0 } .
The uniqueness theorem for analytic functions then tells us that the zeroes of ω → L K(ω, k) -1 are isolated.

Lemma A. [START_REF] Evans | Partial differential equations[END_REF] The following properties hold: (i) If β ≤ m, then the function t → (t|k|) β a k (t) bounded uniformly with respect to k and t;

(ii) If β ≤ m -1, then the function t → (t|k|) β a k (t) is square integrable and t → (t|k|) β a k (t) L 2 1 |k| ; (ii) If β ≤ m 0 -2, then the function t → (t|k|) β K k (t) is square integrable and t → (t|k|) β K k (t) L 2 |k|. (ii) For µ ≤ 0, let K 0 k,µ (t) = K k (t)e µ|k|t 1 t≥0 . If β ≤ m 0 -3, then the function ω ∈ R → |k| β ∂ β ω F (K 0 k,µ )(ω)
is bounded uniformly with respect to k and µ. To be more specific we have

|k| β ∂ β ω F (K 0 k,µ )(ω) ≤ C 0 W L 1 ˆ+∞ 0 u β+1 u -m 0 du < +∞.
Proof. The results follow by direct computation.

We turn to the proof of Theorem A.12.

Proof of Theorem A.12. Pick k ∈ X d \ {0} and let

φ k (t) = ϕ k (t)1 t≥0 , K 0 k (t) = K k (t)1 t≥0 . For any t ≥ 0, we have φ k (t) = a k (t) + K 0 k φ k (t).
Step 1. We show that, for any β ∈ [0, min(m -1, m 0 -3)] ∩ N (we start by dealing with integer regularity exponents, the extension to real exponents follows by standard interpolation arguments), we have

t → |tk| β φ k (t) L 2 ( dt) ≤ C(β, κ) t → tk β a k (t) L 2 ( dt)
.

By Grönwall lemma, we can find C(k) > 0 such that

|φ k (t)| k e C(k)t
(with an evaluation constant depending on k). For µ ∈ R, let

φ k,µ (t) = e µ|k|t φ k (t), a k,µ (t) = e µ|k|t a k (t), K 0 k,µ (t) = e µ|k|t K k (t). We get φ k,µ (t) = a k,µ (t) + K 0 k,µ φ k,µ (t) With µ < -C(k)/|k|,
we take the time-Fourier transform and we obtain, for any ω ∈ R,

F (φ k,µ )(ω) = F (a k,µ )(ω) + F (K 0 k,µ )(ω)F (φ k,µ )(ω). Moreover (still assuming µ < -C(k)/|k|) φ k,µ , a k,µ et K 0
k,µ all decay exponentially fast, and thus

F (φ k,µ ), F (a k,µ) et F (K 0 k,µ ) have the C ∞ regularity. Besides (A:H3)
and (A:H4) imply that a k and K k decay polynomially fast, and thus F (a k,µ ) and F (K 0 k,µ ) are of class C ∞ for µ < 0. We deduce that, for any β ∈ N and µ < -C(k)/|k|

∂ β ω F (φ k,µ )(ω) = ∂ β ω F (a k,µ )(ω) + β j=0 β j ∂ β-j ω F (K 0 k,µ )(ω)∂ j ωF (φ k,µ )(ω),
which can be recast as

1 -F (K 0 k,µ )(ω) ∂ β ω F (φ k,µ )(ω) = ∂ β ω F (a k,µ )(ω)+ β-1 j=0 β j ∂ β-j ω F (K 0 k,µ )(ω)∂ j ωF (φ k,µ )(ω).
We remark that

F (K 0 k,µ )(ω) = L K(-µ + iω/|k|, k). Let N k = {ω ∈ R such that there exists s > Λ verifying L K(s + iω/|k|, k) = 1} . We conclude that, for any µ < -C(k)/|k|, ω ∈ R \ N k and β ∈ N, ∂ β ω F (φ k,µ )(ω) = ∂ β ω F (a k,µ )(ω) + β-1 j=0 β j ∂ β-j ω F (K 0 k,µ )(ω)∂ j ωF (φ k,µ )(ω) 1 -L K(-µ + iω/|k|, k)
We proceed by recursion over β to justify that for any

β ∈ [[0, min(m -1, m 0 -3)]], we can find C = C(β, κ) that satisfies t → |tk| β φ k (t) L 2 ( dt) ≤ C(β, κ) t → tk β a k (t) L 2 ( dt)
.

Initialisation. For any ω ∈ R \ {N k }, µ < -C(k)/|k| and with β = 0, we get

F (φ k,µ )(ω) = F (a k,µ )(ω) 1 -L K(-µ + iω/|k|, k) .
Let γ δ (t) = exp(-δt 2 /2). We write

F (φ k,µ γ δ ) = F (φ k,µ ) F (γ δ )(ω) = F (a k,µ )(•) 1 -L K(-µ + i • /|k|, k) F (γ δ )(ω).
The left hand side is well defined for any µ ∈ R and is analytic with respect to µ. The right hand side is defined for µ ≤ 0 and any ω ∈ R \ N k ; it is analytic with respect to µ on an open set that contains the half real line {x < 0}. Finally the mid-term makes sense for µ < -C(k)/|k| and the equality holds when this constraint on µ is fulfilled. The uniqueness theorem for analytic functions implies that the left-hand-side and the right-hand-side coincide for µ < 0 :

F (φ k,µ γ δ )(ω) = F (a k,µ )(•) 1 -L K(-µ + i • /|k|, k) F (γ δ )(ω)
Owing to Lemma A.22, we know that N k is a negligible set. Hence we can take the L 2 -norm and we get, for -Λ < µ < 0,

φ k,µ γ δ L 2 ( dt) ≤ a k,µ L 2 ( dt) κ/2 F (γ δ ) L 1 ( dt) = 2 κ a k,µ L 2 ( dt) ,
the first inequality being a consequence of Lemma A.13. We let µ go to 0: the Lebesgue theorem justifies that the inequality still holds for µ = 0:

φ k γ δ L 2 ( dt) ≤ 2 κ a k L 2 ( dt) .
Since φ k γ δ converges monotonically to φ k as δ → 0, the Beppo-Lévi theorem implies

φ k L 2 ( dt) ≤ 2 κ a k L 2 ( dt) .
Recursion. Suppose β ≤ min(m -1, m 0 -3) and that for any

m ∈ [[0, β -1]] there exists C(m, κ) such that t → |tk| m φ k (t) L 2 ( dt) ≤ C(m, κ) t → tk m a k (t) L 2 ( dt) . Since ∂ β ω F (φ k,µ ) F (γ δ )(ω) = ∂ β ω (F (φ k,µ ) F (γ δ )) (ω) = ∂ β ω F (φ k,µ γ δ )(ω) we get ∂ β ω F (φ k,µ γ δ )(ω) = ∂ β ω F (φ k,µ ) F (γ δ )(ω) = ∂ β ω F (a k,µ )(•) + β-1 j=0 β j ∂ β-j ω F (K 0 k,µ )(•)∂ j ω F (φ k,µ )(•) 1 -L K(-µ + i • /|k|, k) F (γ δ )(ω).
The left hand side is well-defined for any µ ∈ R and it is analytic with respect to µ. The right hand side is defined for µ ≥ 0 and any ω ∈ R \ N k ; it is analytic with respect to µon an open set that contains the half-line {x < 0}. The full justification of this assertion uses the recursion assumption : we know that t → |t| m φ k (t) lies in L 2 for µ < 0, thus t → |t| m φ k,µ (t) belongs to L 1 and ∂ m ω F (φ k,µ ) is defined everywhere and depends analytically on µ. However, for µ = 0 this quantity is defined almost everywhere only. Finally, the mid-term makes sense for µ < -C(k)/|k| and the two equalities holds when this constraint on µ is fulfilled. The analytic uniqueness theorem shows that the left-hand-side and the right-hand-side are actually equal for any µ < 0. Since N k is negligible, we keep the equality of the L 2 -norms. Therefore, for -Λ < µ < 0 we get

∂ β ω F (φ k,µ γ δ ) L 2 ( dω) ≤ 2 κ ∂ β ω F (a k,µ ) L 2 ( dω) F (γ δ ) L 1 ( dω) + 2 κ   β-1 j=0 ∂ β-j ω F (K 0 k,µ ) L ∞ ( dω) ∂ j ω F (φ k,µ ) L 2 ( dω)   F (γ δ ) L 1 ( dω) = 2 κ ∂ β ω F (a k,µ ) L 2 ( dω) + 2 κ β-1 j=0 ∂ β-j ω F (K 0 k,µ ) L ∞ ( dω) ∂ j ω F (φ k,µ ) L 2 ( dω)
.

Multiplying by |k| β , we apply Lemma A.15-(iv) and we obtain

|k| β ∂ β ω F (φ k,µ γ δ ) L 2 ( dω) ≤ 2 κ |k| β ∂ β ω F (a k,µ ) L 2 ( dω) + 2 κ β-1 j=0 |k| β-j ∂ β-j ω F (K 0 k,µ ) L ∞ ( dω) |k| j ∂ j ω F (φ k,µ ) L 2 ( dω) ≤ 2 κ |k| β ∂ β ω F (a k,µ ) L 2 ( dω) + 2C ste κ β-1 j=0 |k| j ∂ j ω F (φ k,µ ) L 2 ( dω)
, which can be cast as

t → |tk| β φ k,µ (t)γ δ (t) L 2 ( dt) ≤ 2 κ t → |tk| β a k,µ (t) L 2 ( dt) + 2C ste κ β-1 j=0 t → |tk| j φ k,µ (t) L 2 ( dω)
.

We now let µ, and next δ, both tend to 0 and we arrive at

t → |tk| β φ k (t) L 2 ( dt) ≤ 2 κ t → |tk| β a k (t) L 2 ( dt) + 2C ste κ β-1 j=0 t → |tk| j φ k (j) L 2 ( dt) ≤ C(β, κ) t → tk β a k (t) L 2 ( dt)
Step 2. We go back to the equation satisfied by φ k ; we use the previous step to deduce the L ∞ estimate on (φ k ) k . To this end, observe that

(t|k|) β φ k (t) = (t|k|) β a k (t) + ˆ+∞ 0 [(t -τ )|k| + τ |k|] β K 0 k (t -τ )φ k (τ ) dτ = (t|k|) β a k (t) + β j=0 β j ˆ+∞ 0 |k| β-j (t -τ ) β-j K 0 k (t -τ )|k| j τ j φ k (τ ) dτ. It yields t → |tk| β φ k (t) L ∞ ( dt) ≤ t → |tk| β a k (t) L ∞ ( dt) + β j=0 β j t → |tk| β-j K 0 k (t) L 2 ( dt) t → |tk| j φ k (t) L 2 ( dt) ≤ t → |tk| β a k (t) L ∞ ( dt) + β j=0 t → |tk| β-j K 0 k (t) L 2 ( dt) t → tk j a k (t) L 2 ( dt)
.

Like in the analytic framework, we check that this estimate does not depend on k. We combine the case β = 0 and β = min(m -1, m 0 -3) and we conclude that

|ϕ k (t)| ≤ C tk min(m-1,m 0 -3) .
Remark A. [START_REF] Faou | Landau damping in Sobolev spaces for the Vlasov-HMF model[END_REF] As mentioned in the analytic case, the L ∞ estimate of ϕ k is the main argument for proving the linearized Landau damping, but it crucially relies on the preliminary L 2 estimate. The latter can be rewritten (with m = min(m -1, m 0 -3)) ˆ+∞

0 |tk| 2m |ϕ k (t)| 2 dt ≤ C(m , κ) ˆ+∞ 0 tk 2m |a k (t)| 2 dt.
This estimate becomes the main ingredient for studying the non linear problem. Modifying a k (t) into a k (t)1 0≤t≤T , we can equally obtain

ˆT 0 |tk| 2m |ϕ k (t)| 2 dt ≤ C(m , κ) ˆT 0 tk 2m |a k (t)| 2 dt.
Similarly, replacing φ k (t) by |k| 1/2 k φ k (t) and a k (t) by |k| 1/2 k a k (t) leads to

ˆT 0 |k|( k + |tk|) 2m |ϕ k (t)| 2 dt ≤ C ˆT 0 |k|( k + tk ) 2m |a k (t)| 2 dt. Since k, tk k + |k|t k, tk , it yields ˆT 0 |k| k, tk 2m |ϕ k (t)| 2 dt ≤ C ˆT 0 |k| k, tk 2m |a k (t)| 2 dt.
This estimate is at the heart of the analysis of the non linear damping.

A.2.2 The Vlasov-Wave case

Now, we assume 

(A:H3b) |a k (t)| ≤ α tk -m , (A:H4b) K k (t) = | σ 1 (k)| 2 |k| 2 ˆt 0 p c (t -τ )τ M (τ k) dτ 1 t≥0 and | M (η)| ≤ C 0 η -m 0 , ( 
(A:d) | σ 1 (k)| k -2-m 0 .
Remark A.17 Assumption (A:d) is the analog in finite regularity of (A:b). We point out however that in this framework p c is not necessarily supposed to be compactly supported: a slow decay, related to the regularity of the equilibrium state M , is enough.

Remark A. [START_REF] Goudon | Numerical investigation of Landau damping in dynamical Lorentz gases[END_REF] Like for the analytic case, the assumptions (A:H4b), (A:c) and (A:d) ensures that the behavior of the kernel K k remains close to the pure Vlasov case; namely, we have

|K k (t)| ≤ C 0 | σ 1 (k)| 2 |k| 2 ˆt 0 |p c (τ )||t -τ | (t -τ )k -m 0 dτ ≤ C 0 | σ 1 (k)| 2 |k| 2 t ˆt/2 0 |p c (τ )| (t -τ )k -m 0 dτ + ˆt t/2 |p c (τ )| dτ ≤ C 0 | σ 1 (k)| 2 |k| 2 t × tk/2 -m 0 ˆt/2 0 |p c (τ )| dτ + tk/2 -m 0 ˆt t/2 |p c (τ )| tk/2 m 0 dτ C 0 | σ 1 (k)| 2 |k| 2 t tk -m 0 ˆt/2 0 |p c (τ )| dτ + ˆt t/2 |p c (τ )| τ k m 0 dτ . Since τ k m 0 1 + (τ |k|) m 0 τ k m 0 , we are led to ˆt/2 0 |p c (τ )| dτ + ˆt t/2 |p c (τ )| τ k m 0 dτ ≤ ˆ+∞ 0 dτ + ˆ+∞ 0 |p c (τ )| τ m 0 k m 0 .

We conclude with (A:c)-(A:d).

As a matter of fact, the (rescaled) Laplace transform of K k is well defined, for any ω ∈ C tel que Re(ω) ≤ 0 :

L K(ω, k) = ˆ+∞ 0 e -|k|ωt K k (t) dt.
We remind the reader that

L K(ω, k) = L p c (ω, k)L K(ω, k),
with K similar to the pure Vlasov case.

Remark A. [START_REF] Guo | Variational method for stable polytropic galaxies[END_REF] For the Vlasov-Wave problem, the data a k is the sum of two contributions

a k (t) = f 0 (t, tk) -|k| 2 ˆt 0 φ I (τ, k)(t -τ ) M ((t -τ )k) dτ
with φ I defined from the solution of the free wave equation

φ I (t, k) = σ 1 (k) ˆRn σ 2 (ζ) ψ I (t, k, ζ) dζ.
With (H1), (H2) and (H3), t → φ I (t, k) is compactly supported and uniformly dominated with respect to t and k. In particular, we get

|a k (t)| ≤ α tk -m ,
see Lemma 3.2 and its proof.

B Penrose criterion

For the usual Vlasov equation, a "practical " condition on the equilibrium M , the Penrose criterion, see [START_REF] Mouhot | On Landau damping[END_REF]Condition (c) in Proposition 2.1], can be exhibited to ensure the linearized stability. Hence, by following a similar approach, we expect to find a criterion with the same flavor on the equilibrium M and the coefficients of the problem, for the Vlasov-Wave system.

B.1 Towards a Landau-Penrose criterion

The stability criterion (L) is absolutely crucial for justifying the Landau damping; however, it is not easy to check it in practice. We already know that a large wave speed guarantees the damping, see Proposition 3.4. For the Vlasov equation, a practical criterion, referred to as the Penrose criterion can be devised: the real and imaginary parts of L K decouple which leads to a simple way of checking that L K remains far from 1. We will discuss a similar criterion for the Vlasov-Wave problem; however the real/imaginary splitting is not that simple, due to the role of the convolution with respect to time with p c . As a preliminary, we detail why it suffices to check that L (ω, k) does not reach 1 on the imaginary axis.

B.1.1 The Vlasov case

Throughout this Section, we assume that (A:H4) since it covers more general cases than (A:H2). This asymptotic behavior follows from the Riemann-Lebesgue Lemma; it is uniform with respect to ω. Since u → M (ku/|k|)u lies in L 1 , the Riemann-Lebesgue Lemma also implies Proof. The Riemann-Lebesgue Lemma yields

|L K(iω, k)| ≤ W L 1 ˆ+∞ 0 e -iωu M k |k| u u du -→
|L K(iω, k)| ≤ | W (k)|C 0 ˆ+∞ 0 u -m 0 u du -→ |k|→+∞ 0,
uniformly with respect to ω. Hence we can restrict to a bounded subset of k ∈ R d \{0}.

Like in the previous proof, we obtain

|L K(iω, k)| ≤ W L 1 ˆ+∞ 0 e -iωu M k |k| u u du -→ |ω|→+∞ 0.
However, now, we cannot conclude directly that this convergence holds uniformly with respect to k. In order to handle this difficulty we introduce the function

g : (ω, ζ) ∈ R × S d-1 -→ ˆ+∞ 0 e -iωu M (ζu)u du.
We already know that, for any ζ ∈ S d-1 , we can find R ζ > 0 such that, for any ω ∈ R,

we have if |ω| ≥ R ζ then W L 1 |g(ω, ζ)| ≤ 1 4 .
By using the Lebesgue Theorem, we check that g is continuous. Actually, the continuity with respect to ζ is uniform with respect to ω. Indeed, this follows from the inequality 

|g(ω, ζ 1 ) -g(ω, ζ 2 )| ≤ ˆ+∞ 0 M (ζ 1 u) -M (ζ 2 u) u
S d-1 ⊂ J i=1 B(ζ i , δ ε ).
Then let R = max i=1,...,J R ζ i . For any ω ∈ R, |ω| ≥ R and any ζ ∈ S d-1 , we get

W L 1 |g(ω, ζ)| ≤ W L 1 (|g(ω, ζ) -g(ω, ζ i 0 )| + |g(ω, ζ i 0 )|) ≤ ε W L 1 + 1 4 ≤ 1 2 .
We have shown that L K(iω, k) remains far from 1 for large enough ω ∈ R, uniformly with respect to k; to be specific, we have just found R > 0 such that, for any |ω| ≥ R and any k ∈ X d , we have

|L K(iω, k)| ≤ W L 1 |g(ω, k/|k|)| ≤ 1/2. Therefore we can restrict to a compact set of ω ∈ R. Since the function (ω, k) → W (k)g(ω, k/|k|) is continuous R × R d \ {0}, for any compact set K ⊂ R × R d \ {0}, we have inf (ω,k)∈K |L K(iω, k) -1| > 0.
We end the proof by arguing by contradiction. Suppose that inf

(ω,k)∈R×R d \{0} |L K(ω, k) -1| = 0.
Then, we can find a sequence ωn , k n n∈N in R × R d \ {0} such that L K(iω n , k n ) tends to 1 as n → +∞. The previous step tells us that the sequence ωn n∈N is bounded in R while k n n∈N tends to 0. Possibly at the price of extracting a subsequence, we can suppose that

ωn -→ n→+∞ ω∞ k n -→ n→+∞ 0, k n |k n | -→ n→+∞ ζ ∞ .
By continuity, it yields

1 = lim n→+∞ L K(iω n , k n ) = -W (0)g(ω ∞ , ζ ∞ ),
which is known to differ form 1, a contradiction.

B.1.2 The Vlasov-Wave case

We consider the set of assumptions Proof. The proof involves a few modifications compared to the Vlasov case. We can restrict to a finite set of k ∈ Z d \ {0} since

|L K(iω, k)| ≤ | σ 1 (k)| 2 p c L 1 C 0 ˆ+∞ 0 u -m 0 u du -→ |k|→+∞ 0,
as a consequence of the Riemann-Lebesgue Lemma. The convergence holds uniformly with respect to ω. Since u → M (ku/|k|)u is integrable, the Riemann-Lebesgue Lemma also leads to

|L K(iω, k)| ≤ σ 1 2 L 1 p c L 1 ˆ+∞ 0 e -iωu M k |k| u u du -→ |ω|→+∞ 0.
The convergence holds uniformly with respect to k since k/|k| takes only a finite number of values when k spans Z d \ {0}. We can equally restrict to a compact set for ω ∈ R.

With the Lebesgue Theorem, we conclude that ω ∈ R → L K(iω, k) is continuous. Proof. The half convolution with p c requires some adaptations from the Vlasov case. The Riemann-Lebesgue Lemma yields

Proposition B.6 (Free space problem) Let X d \ {0} = R d \ {0}. Suppose that L K(iω, k) = 1 for any k ∈ R d \ {0} and ω ∈ R. Moreover suppose that | σ 1 (0)| 2
|L K(iω, k)| ≤ | σ 1 (k)| 2 p c L 1 C 0 ˆ+∞ 0 u -m 0 u du -→ |k|→+∞ 0,
where the convergence holds uniformly with respect to ω. Thus we can restrict to a bounded set of k ∈ R d \ {0}. Next, we obtain

|L K(iω, k)| ≤ σ 1 2 L 1 p c L 1 ˆ+∞ 0 e -iωu M k |k| u u du -→ |ω|→+∞ 0.
That the convergence holds uniformly with respect to k is not direct, but we can reproduce the arguments of the Vlasov case to justify this property. It allows us to restrict to a compact set of ω ∈ R. The application

(ω, k) → | σ 1 (k)| 2 ˆ+∞ 0 e -iω|k|t p c (t) dt ˆ+∞ 0 e -iωu u M k |k| u du is continuous over R × R d \ {0}. Therefore, for any compact set K ⊂ R × R d \ {0}, we get inf (ω,k)∈K |L K(iω, k) -1| > 0.
Suppose that inf

(ω,k)∈R×R d \{0} |L K(ω, k) -1| = 0.
Then, we can find a sequence ωn

, k n n∈N in R × R d \ {0} such that L K(iω n , k n ) → 1
as n → +∞. We infer that ωn n∈N is bounded in R while k n n∈N converges to 0. Extracting a subsequence if necessary, we can suppose that

ωn -→ n→+∞ ω∞ k n -→ n→+∞ 0 k n |k n | -→ n→+∞ ζ ∞ .
By continuity, we are led to

1 = lim n→+∞ L K(iω n , k n ) = | σ 1 (0)| 2 ˆ+∞ 0 p c (t) dt ˆ+∞ 0 e -iω∞u u M (ζ ∞ u) du ,
which is known to be different from 1, a contradiction.

B.2 Computations of Laplace transform for the Penrose criterion

In order to find an expression for the stability criterion, we compute L K (ω|k|, k) on the imaginary axis: namely, with β ∈ R, we consider

L K (iβ|k|, k) = lim α→0 α>0 L K ((α + iβ)|k|, k) = ρ 0 | σ 1 (k)| 2 lim α→0 α>0 L p c ((α + iβ)|k|) × lim α→0 α>0 L (|k| 2 t M (kt))((α + iβ)|k|).
We write, for Re(ω) > 0,

L K (ω|k|, k) = ρ 0 | σ 1 (k)| 2 L p c (ω|k|) × L (|k| 2 t M (kt))(ω|k|).
There are several useful expressions for this quantity

L (|k| 2 t M (kt))(ω) = ˆ∞ 0 |k|t M (kt)e -ωt |k| dt = ˆ∞ 0 s M k |k| s e -ωs/|k| ds = ˆ∞ 0 ˆRd M (v)se -i k |k| s•v e -ωs/|k| dv ds.
We use the change of variable

v = r k |k| + v ⊥ , with v ⊥ • k = 0, so that L (|k| 2 t M (kt))(ω) = ˆ∞ 0 ˆR ˆv⊥ •k=0 M r k |k| + v ⊥ dv ⊥ i d dr e
-irs e -ωs/|k| dr ds.

Let us set

r -→ µ k/|k| (r) = ˆv⊥ •k=0 M r k |k| + v ⊥ dv ⊥ .
We arrive at

L (|k| 2 t M (kt))(ω) = -i ˆ∞ 0 ˆR e -irs e -ωs/|k| µ k/|k| (r) dr ds. ( 62 
)
It yields

L (|k| 2 t M (kt))((α + iβ)|k|, k) = -i ˆR µ k/|k| (r)
ˆ∞ 0 e -i(r+β)s-αs ds dr

= -i ˆR µ k/|k| (r) α + i(r + β) dr = - ˆR µ k/|k| (r) (r + β) -iα dr.
Next, the Laplace transform of p c can be determined by using the classical result [31, Formula (VI,2;13)]

L (1 t≥0 sin(θt))(ω) = θ ω 2 + θ 2 ,
for Re(ω) > 0.

For α > 0, β ∈ R, we thus get

L p c ((α + iβ)|k|) = 1 (2π) n ˆRn | σ 2 (ζ)| 2 dζ (α + iβ) 2 |k| 2 + c 2 |ζ| 2 .
Since σ 2 is radially symmetric, its Fourier transform is radially symmetric too and we can write

L p c ((α + iβ)|k|) = |S n-1 | (2π) n ˆ∞ 0 (r ) n-1 | σ 2 (r )| 2 dr (α 2 -β 2 )|k| 2 + c 2 |r | 2 + 2iαβ|k| 2 .
In order to find the expression of the Laplace transform on the imaginary axis, we shall need the following claims.

Lemma B.7 (Plemelj formula) Let

f : R → R be in L 1 ∩ W 1,∞ (R). Then, we have lim λ→0 ˆR f (x) x + κ -iλ dx = P.V. ˆR f (x) x + κ dx + iπf (-κ).
We refer the reader for instance to [START_REF] Eskin | Lectures on Linear Partial Differential Equations[END_REF]Example 5.2]. An adaptation of the proof leads to the following useful statement.

Lemma B.8

Let n ≥ 3. Let f : R → R be Schwartz class. We have

lim λ→0 ˆ∞ 0 r n-1 f (r) r 2 -κ 2 + iλ + λ 2 dr = P.V. ˆ∞ 0 r n-1 f (r) r 2 -κ 2 dr -i π 2 κ n-2 f (κ).
Proof. Let us denote by I(λ) the quantity under consideration and f (r) = g(r 2 ); with the change of variable u = r 2 we get

I(λ) = 1 2 ˆ+∞ 0 u n/2-1 g(u) u -κ 2 + iλ + λ 2 du.
We adapt the computations that lead to Plemelj's formula. Let γ(u) = u n/2-1 g(u). It is crucial to remark that

γ(0) = 0, γ ∈ L p ((0, ∞)) for some p < 2. ( 63 
)
(At worst, γ (u) has the same singularity as 1/ √ u as u → 0.) We start with

I(λ) = 1 2 ˆ+∞ 0 γ(u) (u -κ 2 + λ 2 ) 2 + λ 2 (u -κ 2 + λ 2 ) du - iλ 2 ˆ+∞ 0 γ(u) (u -κ 2 + λ 2 ) 2 + λ 2 du.
Setting v = u -κ 2 + λ 2 , and v/λ = w, the second term recasts as

- i 2 ˆ+∞ -κ 2 +λ 2 γ(v + κ 2 -λ 2 ) (v/λ) 2 + 1 dv λ = - i 2 ˆ+∞ -κ 2 /λ+λ γ(λw + κ 2 -λ 2 ) w 2 + 1 dw which tends to - i 2 γ(κ 2 ) × π if κ = 0, π/2 if κ = 0,
as λ → 0. Since γ(0) = 0 we can actually use a single formula. Similarly, we consider

J(λ) = ˆ+∞ -κ 2 +λ 2 γ(v + κ 2 -λ 2 ) v 2 + λ 2 v dv.
We start with the case κ = 0. Owing to (63), we have 0 ≤ γ(u) = ´u 0 γ (y) dy ≤ γ L p |u| 1-1/p so that the function v → vγ(v) v 2 lies in L 1 ((0, ∞)). It allows us to apply the Lebesgue theorem and to conclude that

lim λ→0 ˆ+∞ λ 2 γ(v -λ 2 ) v 2 + λ 2 v dv = ˆ∞ 0 γ(v) v dv.
Next, let κ = 0. Since λ is intended to tend to 0, we can consider κ 2 λ 2 > 0 Given 0 < δ < κ 2 -λ 2 , we split into 2 parts

J(λ) = ˆ|v|>δ ... dv + ˆ+δ -δ ... dv = J δ (λ) + J δ (λ).
First, we show that J δ (λ) tends to 0 as δ → 0, uniformly with respect to λ. Indeed, since v → v v 2 +λ 2 is odd, we have

|J δ (λ)| = ˆ+δ -δ γ(v + κ 2 -λ 2 ) -γ(κ 2 -λ 2 ) v 2 + λ 2 v dv ≤ γ L p ˆ+δ -δ dv |v| 1/p ---→ δ→0 0.
By dominated convergence, we get

lim λ→0 J δ (λ) = ˆ|v|>δ 1 v≥-κ 2 γ(v + κ 2 ) v dv = ˆ-δ -κ 2 γ(v + κ 2 ) -γ(κ 2 ) v dv + ˆκ2 δ γ(v + κ 2 ) -γ(κ 2 ) v dv + ˆ+∞ κ 2 γ(v + κ 2 ) v dv
The same reasoning shows that this quantity admits a limit as δ goes 0, that we write with the shorthand notation

lim δ→0 lim λ→0 J δ (λ) = P.V. ˆ∞ -κ 2 γ(v + κ 2 ) v dv.
We now come back to the explicit computation of L K (ω|k|, k) on the imaginary axis. On the one hand, we get lim

α→0 α>0 L (|k| 2 t M (kt))((α + iβ)|k|, k) = -P.V. ˆR µ k/|k| (r) r + β dr -iπµ k/|k| (-β).
For the latter, we use Lemma B.7, which eventually leads to lim

α→0 α>0 L p c ((α + iβ)|k|) = |S n-1 | (2π) n P.V. ˆ∞ 0 (r ) n-1 | σ 2 (r )| 2 c 2 |r | 2 -β 2 |k| 2 dr - iπ 2c 2 |βk| c n-2 σ 2 |βk| c 2 .
Remark B.9 In the case β = 0 a direct application of the dominated convergence theorem allows us to obtain

lim α→0 α>0 L p c (α|k|) = 1 (2π) n ˆRn | σ 2 (ξ)| 2 dξ c 2 |ξ| 2 = κ c 2 .
Therefore, we obtain the following expression for L K (iβ|k|, k) which identifies the real and imaginary parts

L K (iβ|k|, k) = |S n-1 | (2π) n R(β|k|, k) + iI (β|k|, k) , R(β|k|, k) = -ρ 0 | σ 1 (k)| 2 P.V. ˆR µ k/|k| (r) r + β dr × P.V. ˆ∞ 0 (r ) n-1 | σ 2 (r )| 2 c 2 |r | 2 -β 2 |k| 2 dr + π 2 2c 2 µ k/|k| (-β) × |βk| c n-2 σ 2 |βk| c 2 I (β|k|, k) = πρ 0 | σ 1 (k)| 2 1 2c 2 |βk| c n-2 σ 2 |βk| c 2 × P.V. ˆR µ k/|k| (r) r + β dr -µ k/|k| (-β) × P.V. ˆ∞ 0 (r ) n-1 | σ 2 (r )| 2 c 2 |r | 2 -β 2 |k| 2 dr . Proposition B.11 Let X d = R d with d ≥ 3.
Let M be a spatially homogeneous and radially symmetric equilibrium. Then, there exists a threshold for the wave speed c 0 (M , σ 1 , σ 2 ) > 0 such that for any 0 < c < c 0 (M , σ 1 , σ 2 ), M in an unstable equilibrium state.

Proof. We find k and β such that L K (iβ|k|, k) = 1. To this end, we use the fact that L p c (iβ|k|) belongs to R for β = 0 and the radial symmetry of M which implies that L (|k| 2 t M (tk))(iβ|k|, k) is real too when β = 0:

L K (0, k) = -ρ 0 | σ 1 (k)| 2 P.V. ˆR µ k/|k| (r) r dr κ c 2 . ( 64 
)
Moreover, the symmetry of M (and the condition on the dimension d, see Remark B.12 below) also ensures (except for M = 0, but 0 is obviously a stable state)

-P.V. ˆR µ k/|k| (r) r dr > 0.
Now let us pick a vector k 0 such that σ 1 (k 0 ) = 0. As far as c is small enough, we have

L K (0, k 0 ) > 1. Next, L K (0, λk 0 ) -→ λ→+∞ 0
and the continuity of λ ∈ R → σ 1 (λk 0 ) (observe that λk 0 /|λk 0 | does not depend on λ and thus only σ 1 depends on λ in the expression of L K (0, λk 0 )), allow us to exhibit a λ 0 ∈ R such that L K (0, λ 0 k 0 ) = 1. be the periodic potential defined on

Remark

T d L = (R/(2πL Z)) d by σ (L) 1 (x) = k∈Z d σ 1 (x + 2πL k).
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Observing that σ

(L) 1 (k) = σ 1 (k/L), (64) becomes L K (0, k) = -ρ 0 L 2α |k| 2α P.V. ˆR µ k/|k| (r) r dr κ c 2 ,
where L has a role similar to 1/c. In particular, for any spatially homogeneous equilibrium M , there exists a critical length L J beyond which the equilibrium can be unstable, this defines Jeans' length.

Remark B.14 Denoting M = ρ 0 M , with M being normalized, we can equally say (with the same arguments) that, for any fixed wave speed c we can find a mass threshold m 0 (M, c, σ 1 , σ 2 ) > 0 such that for any ρ 0 > m 0 (M, c, σ 1 , σ 2 ), M is unstable. Nevertheless we point out that, for c fixed, the mass 0 of the profile M is not the unique quantity that governs the stability of M , as indicated by the following claim Proposition B. [START_REF] Evans | Partial differential equations[END_REF] Let M be a spatially homogeneous equilibrium. We can find two positive constants

C 1 = C 1 (c, σ 1 , σ 2 ) and C 2 = C 2 (c, σ 1 , σ 2 ) such that if, for any ω ∈ S d , we have ˆ+∞ 0 u M (uω) du ≤ C 1 (c, σ 1 , σ 2 ), then M is stable, if there exists ω ∈ S d such that ˆ+∞ 0 u M (uω) du ≥ C 2 (c, σ 1 , σ 2 ), then M is unstable.
This statement can be interpreted as follows. For fixed c, σ 1 and σ 2 there always exist stable spatially homogeneous equilibria with an arbitrarily large mass (resp. kinetic energy), and there always exist unstable spatially homogeneous equilibria with an arbitrarily small mass (resp. kinetic energy). This comes from the fact that the constant C 1 and C 2 in Proposition B.15 are left invariant by the rescaling M → M λ (v) = λ d-2 M (λv), while the associated mass (resp. kinetic energy) is invariant for the scaling M → λ d M (λv) (resp. M → λ d+2 M (λv)). These findings will be investigated on numerical grounds in [START_REF] Goudon | Numerical investigation of Landau damping in dynamical Lorentz gases[END_REF].

Proof. The first part of the statement is a direct consequence of Proposition 3.4, which tells us that a given profile M is stable provided c is large enough. The second part of the statement is a direct consequence of Proposition B.11 and it comes from the formula

L (|k| 2 t M (tk))(0, k) = P.V. ˆR µ k/|k| (r) r dr = ˆ+∞ 0 u M (uω) du.

C Analytic Cauchy theory for the Vlasov-Wave system

In this Section, we go back to the Cauchy problem, addressed in the functional framework of Section 5. We are going to justify Theorem 5.6. The discussion is based on general arguments presented in [START_REF] Levermore | Analyticity of solutions for a generalized Euler equation[END_REF][START_REF] Nirenberg | An abstract form of the nonlinear Cauchy-Kowalewski theorem[END_REF][START_REF] Nishida | A note on a theorem of Nirenberg[END_REF]. Throghout this section we suppose (H1)-(H3) and (R2).

C.1 Local analysis

We write the problem in the form

∂ t g(t, x, v) = N (g)(t, x, v) g(0, x, v) = f 0 (x, v) (66) 
where

N (g)(t, x, v) = ∇σ 1 (F I + σ 1 G ) (t, x + t v) • (∇ v -t ∇ x )(M + g)(t, x, v), (t, x) = ˆRd g(t, x -tv, v) dv.
We start with an abstract statement about the local existence of analytic solutions for (66).

Theorem C.1 Let P > d/2 be an integer and let σ > d/2. For any M , f 0 ∈ G λ 0 ,σ;1 P with λ 0 < min(λ 1 / 2R 2 /c , 2λ 1 / S 0 ), there exists ε > 0 such that, for any 0 < T < ε the mapping

Φ : g -→ t → f 0 + ˆt 0 N (g)(τ )dτ
admits a fixed point in the set B λ 0 T , made of functions (t, x, v) → g(t, x, v) such that . Up to choosing a smaller λ 0 (or, equivalently, working with larger wave speeds c), we can still suppose that λ 0 < min(λ 1 / 2R 2 /c , 2λ 1 / S 0 ) is satisfied. In what follows, we will always assume implicitly this condition.

g B λ 0 T := sup 0<λ<λ 0 sup t∈[0,T (λ 0 -λ)) 1 - t T (λ 0 -λ) g(t) G λ,

Remark C.3

The proof of this statement provides further information: there exists R > 0 such that for any 0 < λ < λ 0 and t ∈ [0, T (λ 0 -λ)), we have

g(t) -f 0 G λ,σ;1 P ≤ R.
Before starting the proof, let us explain why it is somehow natural to deal with the spaces B λ 0 T . First of all, remark that the operator N involves first order derivatives with respect to space and velocity, and thus the mapping Φ does not map G λ 0 ,σ;1 P into itself, but has its range in G λ,σ;∞ P with 0 < λ < λ 0 , possibly arbitrarily close to λ 0 . For this reason, we work instead with a space that involves all the norms G λ,σ;1 P for λ ∈ (0, λ 0 ). However, Lemma C.5 suggests that N (g)(t) G λ,σ;1 P blows up as λ λ 0 , and this viewpoint is not sufficient. We should also take advantage of the time integration in order to control this blow up. This leads to incorporate a suitable weight with respect to time w(t) = 1 -t T (λ 0 -λ) and then to consider the supremum over t ∈ [0, T (λ 0 -λ)). These norms are a bit unusual, nevertheless the following claim shows that most of the analysis can be performed in more natural functional spaces.

Corollary C. [START_REF] Bedrossian | Nonlinear echoes and Landau damping with insufficient regularity[END_REF] Let P > d/2 be an integer and let σ > d/2. For any M , f 0 ∈ G λ 0 ,0;1 P , there exists T > 0 and a function 0 < λ(t) < λ 0 , continuous and decreasing, such that (66) has a unique solution g in C 0 ([0, T ); G λ(t),σ;s P ). Moreover, if for some 0 < T ≤ T , we have

     lim sup t T g(t) G λ(t),σ;1 P < +∞ lim t T λ(t) > 0, then T < T .
The proof of Theorem C.1 uses the estimates (49), ( 50) and (53a) (see Section 5) together with the following claim.

Lemma C.5 Let g = g(t, x, v) ∈ G λ,σ;s P . The, for any 0 ≤ λ < λ, the function (∇ v -t ∇ x )g(t) defines an element of G λ ,σ;s P ; we have

(∇ v -t ∇ x )g(t) G λ ,σ;s P t (λ -λ ) 1/s g(t) G λ,σ;s P . ( 67 
) Proof. Since (∇ v -t ∇ x )g(t) 2 G λ ,σ;s P = α∈N d |α|≤P k∈Z d ˆRd ξ k, ξ 2σ e 2λ k,ξ s D α ξ (ξ → (ξ -tk) g(t, k, ξ)) 2 dξ t 2 α∈N d |α|≤P j∈N d j≤α ; |j|≤1 k∈Z d ˆRd ξ k, ξ 2σ e 2λ k,ξ s D α-j ξ g(t, k, ξ) 2 k, ξ 2 e -2(λ-λ ) k,ξ s dξ,
we are led to identify the supremum over [0, ∞) of the function x → x 2 exp(-2(λλ )x s ). It is reached at 1/(s[λ -λ ]) 1/s and its value is exp(-2/s)/(s[λ -λ ]) 2/S . This ends the proof.

Proof of Theorem C.1. We split the proof into three steps.

• Step 1. Fix R > 0. We introduce the subset E λ 0 T,R of B λ 0 T defined by E λ 0 T,R := g ∈ B λ 0 T s.t. ∀λ ∈ (0, λ 0 ), ∀t ∈ [0, T (λ 0 -λ)), g(t) -f 0 G λ,σ;1 P ≤ R .
If g lies in E λ 0 T,R , then Φ(g) belongs to B λ 0 T . To be more specific, we have

Φ(g) B λ 0 T ≤ f 0 G λ 0 ,σ;1 P +C 1 T T λ 0 E I + R + f 0 G λ 0 ,σ;1 P M G λ 0 ,σ;1 P + g B λ 0 T . • Step 2. If g and h belong to E λ 0 T,R , then, we have Φ(g) -Φ(h) B λ 0 T ≤ C 2 T T λ 0 T λ 0 M G λ 0 ,σ;1 P + R + f 0 G λ 0 ,σ;1 P g -h B λ 0 T +C 3 T T λ 0 E I + R + f 0 G λ 0 ,σ;1 P g -h B λ 0 T .
With these estimates, we cannot apply directly the standard Banach-Picard fixed point theorem since the range of E λ 0 T,R by Φ is not necessarily included in E λ 0 T,R . However, for any 0 < T < T , we have Φ(E λ 0 T,R ) ⊂ E λ 0 T ,R . We are going to exploit this observation to construct a fixed point.

• Step 3. We introduce the following sequence of times

T k = δ k j=0 1 - 1 (j + 2) 2
(where δ > 0 can be chosen arbitrarily small), and we define a sequence of functions by the recursion formula

     g 0 = f 0 g k+1 = f 0 + ˆt 0 N (g k )(τ )dτ = Φ(g k ).
Provided δ is small enough, we can show that, for any k ∈ N, we have a)

g k ∈ E λ 0 T k ,R . b) µ k := g k+1 -g k B λ 0 T k ≤ Cδ 1 (k+3) 4
where C > 0 is a certain constant that will be made precise later on.

Consequently, (g

k ) k∈N is a Cauchy sequence in B λ 0 δT ∞ (with T ∞ = +∞ k=0 (1 -(k + 2) -2 ) > 0) and it converges to g in B λ 0
δT ∞ , which is a fixed point of Φ. Let us now detail the justification of each of these steps.

Step 1. Remark that

Φ(g)(t) G λ,σ;1 P ≤ f 0 G λ,σ;1 P + ˆt 0 N (g)(τ ) G λ,σ;1 P dt.
Then, we are going to estimate N (g)(τ ) G λ,σ;1 P . We use the σ-ring property (49), the estimate (53b) and the embedding (50) for the left hand side, and Lemma C.5 for the right hand side. We obtain, for any 0 < λ < λ < λ 0 and 0 ≤ τ ≤ t < T (λ 0 -λ):

N (g)(τ ) G λ,σ;1 P ∇σ 1 (F I (τ ) -σ 1 G (τ )) F λ,σ;1 (∇ v -τ ∇ x )(M + g(τ )) G λ,σ;1 P E I + sup τ ∈[0,T (λ 0 -λ)) g(τ ) G λ,σ;1 P τ λ -λ M + g(τ ) G λ ,σ;1 P .
Moreover, since g lies in E λ 0 T,R and possibly by adapting the choice of λ as a function of τ , we get

N (g)(τ ) G λ,σ;1 P E I + R + f 0 G λ 0 ,σ;1 P T λ 0 λ (τ ) -λ M + g(τ ) G λ (τ ),σ;1 P .
Consequently, for any 0 < λ < λ 0 and t ∈ [0, T (λ 0 -λ)), we are led to

1 - t T (λ 0 -λ) Φ(g)(t) G λ,σ;1 P 1 - t T (λ 0 -λ) f 0 G λ,σ;1 P + 1 - t T (λ 0 -λ) ˆt 0 N (u)(τ ) G λ,σ;1 P dτ f 0 G λ 0 ,σ;1 P + T λ 0 E I + R + f 0 G λ 0 ,σ;1 P 1 - t T (λ 0 -λ) × ˆt 0 M + g(τ ) G λ (τ ),σ;1 P λ (τ ) -λ dτ.
Let λ (τ ) = (λ 0 -τ /T + λ)/2 so that both conditions λ < λ (τ ) < λ 0 and τ ≤ T (λ 0 -λ (τ )) sare satisfied for 0 ≤ τ ≤ t < T (λ 0 -λ), we can make use of the assumption g ∈ B λ 0 T and we obtain

ˆt 0 M + g(τ ) G λ (τ ),σ;1 P λ (τ ) -λ dτ ≤ ˆt 0 1 - τ T (λ 0 -λ (τ )) M + g(τ ) G λ (τ ),σ;1 P (λ (τ ) -λ) 1 - τ T (λ 0 -λ (τ )) dτ ≤ ˆt 0 M G λ 0 ,σ;1 P + g B λ 0 T (λ (τ ) -λ) 1 - τ T (λ 0 -λ (τ )) dτ. Finally, since λ (τ ) -λ = 1 2T [T (λ 0 -λ) -τ ] and T (λ 0 -λ (τ )) = 1 2 [T (λ 0 -λ) + τ ] ≤ 1 2 [T (λ 0 -λ) + t] ≤ T (λ 0 -λ), we arrive at 1 - t T (λ 0 -λ) ˆt 0 1 (λ (τ ) -λ) 1 - τ T (λ 0 -λ (τ )) dτ = 1 - t T (λ 0 -λ) ˆt 0 T (λ 0 -λ (τ )) (λ (τ ) -λ) [T (λ 0 -λ (τ )) -τ ] dτ ≤ 1 - t T (λ 0 -λ) ˆt 0 T (λ 0 -λ) 1 4T [T (λ 0 -λ) -τ ] 2 dτ = 4T [T (λ 0 -λ)] ˆt 0 1 [T (λ 0 -λ) -τ ] 2 dτ = 4T t T (λ 0 -λ) ≤ 4T.
It allows us to conclude that

Φ(g) B λ 0 T f 0 G λ 0 ,σ;1 P + 4T T λ 0 E I + R + f 0 G λ 0 ,σ;1 P M G λ 0 ,σ;1 P + g B λ 0 T .
Step 2. Like in Step 1, we introduce two real numbers 0 < λ < λ < λ 0 , two times 0 ≤ τ ≤ t < T (λ 0 -λ) and we estimate

N (g)(t) -N (h)(t) G λ,σ;1 P ≤ (x, v) → ∇Σ G g -h (τ, x + τ v) • (∇ v -τ ∇ x ) (M (v) + g(τ, x, v)) G λ,σ;1 P + (x, v) → ∇σ 1 * (F I -σ 1 G h )(τ, x + τ v) • (∇ v -τ ∇ x )(g(τ, x, v) -h(τ, x, v)) G λ,σ;1 P .
The second term can be treated as in Step 1. For the first term, we apply (49) again, with (53b) and (50) combined to Lemma C.5, and we obtain

(x, v) → ∇Σ G g -h (τ, x + τ v) • (∇ v -τ ∇ x ) (M (v) + g(τ, x, v)) G λ,σ;1 P ˆτ 0 g(s) -h(s) 2 G λ,σ;1 P ds 1/2 T λ 0 λ (τ ) -λ M + g(τ ) G λ (τ ),σ;1 P . Since 0 ≤ s < T (λ 0 -λ), we can appeal to the assumption g, h ∈ B λ 0 T , so that ˆτ 0 g(s) -h(s) 2 G λ,σ;1 P ds = ˆτ 0 1 - s T (λ 0 -λ 2 g(s) -h(s) 2 G λ,σ;1 P 1 - s T (λ 0 -λ 2 ds ≤ g -h 2 B λ 0 T ˆτ 0 1 1 - s T (λ 0 -λ 2 ds = g -h 2 B λ 0 T T 2 (λ 0 -λ) 2 T (λ 0 -λ) -τ - T 2 (λ 0 -λ) 2 T (λ 0 -λ) ≤ g -h 2 B λ 0 T T 2 (λ 0 -λ) 2 T (λ 0 -λ) -τ .
Moreover, still with λ (τ ) = (λ 0 -τ /T + λ)/2 (the conditions λ < λ (τ ) < λ 0 and τ ≤ T (λ 0 -λ (τ )) are thus fulfilled for 0 ≤ τ ≤ t < T (λ 0 -λ)), we make use of the

assumption g ∈ E λ 0 T,R which yields M + g(τ ) G λ (τ ),σ;1 P ≤ M G λ 0 ,σ;1 P + R + f 0 G λ 0 ,σ;1 P .
Therefore, this discussion leads to

(x, v) → ∇Σ G g -h (τ, x + τ v) • (∇ v -τ ∇ x ) (M (v) + g(τ, x, v)) G λ,σ;1 P g -h B λ 0 T T (λ 0 -λ) T (λ 0 -λ) -τ T λ 0 λ (τ ) -λ M G λ 0 ,σ;1 P + R + f 0 G λ 0 ,σ;1 P
Integrating over [0, t] and multiplying by (1

-t/[T (λ 0 -λ)]), we get 1 - t T (λ 0 -λ) ˆt 0 (x, v) → ∇Σ G g -h (τ, x + τ v) • (∇ v -τ ∇ x )(M (v) + g(τ, x, v) G λ,σ;1 P dτ T λ 0 M G λ 0 ,σ;1 P + R + f 0 G λ 0 ,σ;1 P [T (λ 0 -λ) -t] ˆt 0 2T [T (λ 0 -λ) -τ ] 3/2 dτ g -h B λ 0 T T λ 0 M G λ 0 ,σ;1 P + R + f 0 G λ 0 ,σ;1 P [T (λ 0 -λ) -t] 2T T (λ 0 -λ) -t - 2T T (λ 0 -λ) g -h B λ 0 T T λ 0 M G λ 0 ,σ;1 P + R + f 0 G λ 0 ,σ;1 P 2T T (λ 0 -λ) -t g -h B λ 0 T . We conclude with Φ(g) -Φ(h) B λ 0 T 2T T λ 0 T λ 0 M G λ 0 ,σ;1 P + R + f 0 G λ 0 ,σ;1 P g -h B λ 0 T +4T T λ 0 E I + R + f 0 G λ 0 ,σ;1 P g -h B λ 0 T . Step 3. Let R > 0, δ 0 > 0 and introduce C = C(R, δ 0 , E I , M , f 0 ) > 0 such that        C 1 δ 0 λ 0 E I + f 0 G λ 0 ,σ;1 P M G λ 0 ,σ;1 P + f 0 G λ 0 ,σ;1 P ≤ C 1 3 4 , δ 0 λ 0 C 2 δ 0 λ 0 + C 3 E I + M G λ 0 ,σ;1 P + R + f 0 G λ 0 ,σ;1 P ≤ C.
(The C j 's are the constants that appear in the estimates established in the first two steps.) We introduce the sequences defined by

T k = δ k j=0 1 - 1 (j + 2) 2 ; g 0 = f 0 g k+1 = Φ(g k ) ; µ k = g k+1 -g k B T k
where δ > 0 is such that

               δ ≤ δ 0 , Cδ +∞ k=0 1 (k + 3) 2 ≤ R, Cδ sup x≥0 x + 4 x + 3 4 ≤ 1.
We are going to show that, with this definition of δ, we have, for any k ∈ N,

g k ∈ E λ 0 T k ,R et µ k ≤ Cδ 1 (k + 3) 4 (68) 
We start by establishing that the sequence (T k ) k∈N is decreasing and that

δT ∞ ≤ T k ≤ T 0 < δ 0 .
Initialisation. Since g 0 = f 0 ∈ G λ 0 ,σ;1 P does not depend on time, we obviously have

g 0 ∈ E λ 0 T 0 ,R .
Step 1 tells us that g 1 = Φ(g 0 ) ∈ B λ 0 T 0 . More precisely, we have

g 1 -g 0 B λ 0 T 0 = Φ(g 0 )-f 0 B λ 0 T 0 ≤ C 1 δ δ 0 λ 0 E I + f 0 G λ 0 ,σ;1 P M G λ 0 ,σ;1 P + f 0 G λ 0 ,σ;1 P .
The definition of C ensures that

µ 0 ≤ Cδ 1 (0 + 3) 4 .
Recursion. Suppose that (68) holds up to a certain step N . Then, for any 0 < λ < λ 0 and t ∈ [0, T N +1 (λ 0 -λ)], we get

g N +1 (t) -f 0 G λ,σ;1 P ≤ 1 - t T N (λ 0 -λ) 1 - t T N (λ 0 -λ) g N +1 (t) -g N (t) G λ,σ;1 P + g N (t) -f 0 G λ,σ;1 P ≤ 1 1 - t T N (λ 0 -λ) µ N + g N (t) -f 0 G λ,σ;1 P ≤ 1 1 - T N +1 T N µ N + g N (t) -f 0 G λ,σ;1 P ≤ N k=0 µ k 1 - T k+1 T k + g 0 -f 0 G λ,σ;1 P = N k=0 (k + 3) 2 µ k ≤ N k=0 (k + 3) 2 Cδ 1 (k + 3) 4 ≤ Cδ +∞ k=0 1 (k + 3) 2 .
The definition of δ implies

g N +1 (t) -f 0 G λ,σ;1 P ≤ R. Since g N +1 = Φ(g N ) and g N ∈ E λ 0 T N ,R ,
Step 1 and the previous computation show that g N +1 ∈ E λ 0 T N +1 ,R . Applying Step 2, we obtain (owing to the definition adopted for C)

µ N +1 = Φ(g N +1 ) -Φ(g N ) B λ 0 T N +1 ≤ Cδ g N +1 -g N B λ 0 T N +1 ≤ µ N ≤ Cδ Cδ N +4 N +3 4 1 (N +4) 4 .
Finally, the constraints imposed on δ are such that

µ N +1 ≤ Cδ 1 (N + 4) 4 ,
which ends the proof.

Step 4: Conclusion. Let g denote the limit of the sequence (g

k ) k∈N in B λ 0 δT ∞ . Let us show that g ∈ E λ 0 δT ∞ ,R . Let 0 < λ < λ 0 and t ∈ [0, δT ∞ (λ 0 -λ)).
Of course, we have, for any N ∈ N,

g(t) -f 0 G λ,σ;1 P ≤ 1 1 - t δT ∞ (λ 0 -λ) g -g N B λ 0 δT ∞ + g N (t) -f 0 G λ,σ;1 P .
Let ε > 0. There exists N ∈ N (that depends on t, λ and ε) such that

g -g N B λ 0 δT ∞ ≤ 1 - t δT ∞ (λ 0 -λ) ε.
Using this in the previous estimate yields

g(t) -f 0 G λ,σ;1 P ≤ ε + R,
which thus holds for any ε > 0. We conclude that g ∈ E λ 0 δT ∞ ,R , by letting ε go to 0. Next, we can apply Step 2 and we conclude that g is a fixed point of Φ:

g -Φ(g) B T ≤ g -g k B T + g k -Φ(g k ) B T + Φ(g k ) -Φ(g) B T g -g k B T + g k -g k+1 B T + g k -g B T -→ k→+∞ 0.
Proof of Corollary C.4. Since f 0 , M ∈ G λ 0 ,0;1 P , for 0 < λ 0 < λ 0 arbitrarily close to λ 0 , we have f 0 , M ∈ G λ 0 ,σ;1 P , too. Therefore, we can appeal to Theorem C.1: there exist T > 0 and g ∈ B λ 0 T solution of (66). We also know that there exists R > 0 such that g ∈ E λ 0 T,R . We are going to show that g ∈ C 0 ([0, T (λ 0 -λ)); G λ,σ;1 P ) for any 0 < λ < λ 0 . By using an argument of composition of continuous functions, it follows that we can work with λ = λ(t) such that 0 ≤ t < T (λ 0 -λ(t)) on a time interval [0, T f ], and we have g ∈ C 0 ([0, T f ]; G λ(t),σ;1 P

). Let us pick 0 < λ < λ 0 and a time t ∈ [0, T (λ 0 -λ)). Remark that, for any h > 0 with t + h < T (λ 0 -λ),we can find λ < λ < λ 0 verifying t + h < T (λ 0 -λ ) and we can choose λ (depending on h : λ = λ h ) so that λ h does not converge to λ as h tends to 0. Going back to the beginning of the proof of Theorem C.1, we get Since τ ≤ t + h < T (λ 0 -λ ) and g ∈ E λ 0 T,R , we are led to g(t+h)-g(t) G λ,σ;1

P E I + R + f 0 G λ 0 ,σ;1 P T λ 0 λ -λ M G λ 0 ,σ;1 P + R + f 0 G λ 0 ,σ;1 P h -→ h→0 0.
Let us end the discussion with a few hints on the extension criterion. We are going to show that, if g ∈ C 0 ([0, T ); G λ(t),σ;1 P ) (with 0 < λ(t) ≤ λ 0 continuous and decreasing) is a solution of (66) such that ).

To this end, we apply Theorem C.1 with g(t) as initial data for any t ∈ [0, T ). For each of these data, there exists T t and a solution of (66) in B λ(t) T t . But the proof of Theorem C.1 shows that T t depends (among other things) on the norm G λ,σ;1 P of the initial data and on the coefficient λ (see the role of the constants C and δ). Here, we know that there exists A > 0 such that, for any t ∈ [0, T ), g(t) G λ(t),σ;1 P ≤ A holds, and λ(t) ≤ λ 0 . Hence, the times T t can be chosen independently of the data g(t): T t = T . Furthermore, we also know that there exists a constant a > 0 such that, for any t ∈ [0, T ), λ(t) ≥ a. Thus, there also exists t > 0 such that t + T λ(t) > T holds for any t ∈ [t , T ). This allows us to extend the solution; we refer the reader to Fig. 2 and Fig. 3 for guiding the intuition.

C.2 Extension of the strong analycity property

We wish to prove Proposition 5.6. To this end, we are going to combine Corollary C.4 to the following statement. ) is a solution of (66) on [0, T ) that satisfies lim sup 

= -k σ 1 (k)( F I (t, k) -σ 1 (k) G (t, k)) • D α ξ ξ → (ξ -tk) M (ξ -tk) - n∈Z d n σ 1 (n)( F I (t, n) -σ 1 (n) G (t, n)) • D α ξ (ξ → (ξ -tk) g(t, k -n, ξ -tk)) .
Next we split I(α) as follows

I(α) = - k∈Z d ˆRd ξ k, ξ 2σ e 2 λ(t) k,ξ D α ξ g(t, k, ξ)k σ 1 (k)( F I (t, k) -σ 1 (k) G (t, k)) •D α ξ ξ → (ξ -tk) M (ξ -tk) dξ - k,n∈Z d ˆRd ξ k, ξ 2σ e 2 λ(t) k,ξ D α ξ g(t, k, ξ)n σ 1 (n)( F I (t, n) -σ 1 (n) G (t, n))
•D α ξ (ξ → (ξ -tk) g(t, k -n, ξ -tk)) dξ = I 1 (α) + I 2 (α). Therefore we should pay attention to the following facts

• λ(0) depends on T . In particular, as T tends to +∞, λ(0) should not converge to 0 (since we need λ(0) > 0);

• the constant K 1 depends on λ(0). In what follows, we should check that λ(0) can be chosen independently of the value of K 1 (T, λ(0)). × n, tn ( n, tn σ + k -n, ξ -tn σ ) e λ(t) n,tn e λ(t) k-n,ξ-tn For all J 1 (α, β) we apply Lemma C.9 and we arrive at .

×|n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) D α ξ (ξ → (ξ -
J 1 (α, β) (x, v) → v α g(t, x, v) H σ (x, v) → v β g(t, x, v) H σ ×   n∈Z d n 2σ |n| 2 | σ 1 (n)| 2 n, tn 2σ F I (t, n) -σ 1 (n) G (t, n) 2   1/2
Eventually, we turn to J 3 (α, β). We write k -n, ξ -tn σ+1 ≤ k, ξ 1/2 n, tn 1/2 k -n, ξ -tn σ+1/2 and we apply Lemma C.9 128

J 3 (α, β) (x, v) → v α g(t,
Proof of Proposition C.6. We wish to apply Lemma C.8. However, the function g does not satisfy the required assumptions; we thus need to introduce a regularization g ε (t) = χ ε g(t) avec χ ε (k, ξ) = e -ε|k,ξ| 2 , so that, for any λ > 0, g ε (t) ∈ G λ,σ+1/2;1 P

. We still cannot apply Lemma C.8 to g ε since g ε is not a solution of (66). Nevertheless, we can write where the constants C i do not depend on ε. Let us introduce the function

Y ε (t) = g ε (0) 2 G µ 0 ,σ;1 P + 1 + 2 ˆt 0 1 + θ ε (τ ) dτ,
where µ 0 > 0 will be precised later on. We apply Lemma C.8 to g ε with λ(t) = λ ε (t) defined by

λ ε (t) = λ ε (0) exp    - ˆt 0   C 1 T 2 E I + ˆt 0 Y ε (τ ) dτ 1/2      . ( 71 
)
We are led to It is worth commenting the value of λ ε (0). We remind the reader that we wish to take the limit ε → 0; hence, we should choose λ ε (0) so that lim ε→0 λ ε (0) > 0 (beware that C 3 depends on λ ε (0), and thus C 3 can now we considered as a function of ε; we should check that C 3 remains bounded as ε → 0). The constraints on λ ε (0) issued from the proof of Lemma C.8 do not depend on ε, it is therefore possible to choose λ ε (0) independently of ε. Observe that the definition (71) involves C 3 (and thus λ ε (0)) in the argument of the exponential, but this does not impose further constraint on λ ε (0). In what follows, we thus fix this quantity as to be independent on ε; from now on it is denoted µ 0 (and the issue of the dependence of C 3 with respect to ε is equally answered). We conclude by observing that 

θ ε (t) -→ ε→0 + θ(t) = C 2 T

  ˆTd e -ik•x ϕ(x) dx for k ∈ Z d , or the Fourier transform over R m (with m = d or m = n) ϕ : R m → R, ϕ(ξ) = ˆRm e -ix•ξ ϕ(x) dx for ξ ∈ R m .

Figure 1 :Remark 2 . 2

 122 Figure 1: Propagation cone: the signal emanating from the ball B(0, R) cannot be felt in this ball after time T
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 35 Linearized Landau damping on T d with analytic regularity) Let X d = T d . Let us assume (H1)-(H3), (R1)-(R2) and (L). Then as t → +∞, the solution of the linearized problem (11a)-(11d) with data (12) converges weakly to the mean value f ∞
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 37 Linearized Landau damping on T d with finite regularity) Let X d = T d . Let us assume (H1)-(H3), (R1 )-(R2) and (L ). Then as t → +∞, the solution of the linearized problem (11a)-(11d) with data (12) converges weakly to the mean value f ∞

  A:Lvw) There exists κ > 0 such that for any k ∈ X d \ {0} and any ω ∈ R|F K k (|k|ω) -1| ≥ κ,(A:c)For any α ∈ [0, m 0 ], we haveˆ+∞ 0 t α |p c (t)| dt < +∞ and p c L ∞ < +∞,

Proposition B. 1 (

 1 Periodic framework) Let X d \ {0} = Z d \ {0}. Suppose that L K(iω, k) = 1 for any k ∈ Z d \ {0} and ω ∈ R. Then, there exists κ > 0 such that |L K(iω, k) -1| ≥ κ holds for any k ∈ Z d \ {0} and ω ∈ R Proof. It suffices to consider a finite set of k ∈ Z d \ {0} since |L K(iω, k)| ≤ | W (k)|C 0 ˆ+∞ 0 u -m 0 u du -→ |k|→+∞ 0.

Proposition B. 2 (

 2 to k since k/|k| takes a finite number of values when k spans Z d \ {0}. This observation equally permits us to restrict to a compact set for ω ∈ R. The Lebesgue Theorem shows that ω ∈ R → L K(iω, k) is continuous, which allows to conclude. Free space problem) LetX d \ {0} = R d \ {0}. Suppose that L K(iω, k) = 1 for any k ∈ R d \ {0}and ω ∈ R. Moreover, suppose that -W (0) ˆ+∞ 0 e -iωu M (ζu)u du = 1, for any ζ ∈ S d-1 and any ω ∈ R. Then, there exists κ > 0 such that |L K(iω, k) -1| ≥ κ, holds for any k ∈ Z d \ {0} and ω ∈ R Remark B.3 With X d \{0} = R d \{0}, k can be arbitrarily close to 0, which motivates the additional condition. It would be tempting to write L K(iω, 0) = 1, but this quantity is not well defined. Thus, we obtain the condition by letting k go to 0, for fixed ω: with k n n∈N converging to 0 and (k n /|k n |) n converging to a certain ζ ∈ S d-1 , we have lim n→∞ L K(iω, k n ) = -W (0) ˆ+∞ 0 e -iωu M (ζu)u du.

4 2 ˆ+∞ 0 e 0 e -iωu u M k |k| u du . Proposition B. 5 (

 42005 In fact (A:c) and (A:d) can be slightly relaxed, for instance dealing withp c ∈ L 1 ( dt) with σ 1 , ∇σ 1 ∈ L 1 ( dx), which are enough to ensure that K k is integrable for k ∈ X d \ {0}) and L K(iω, k) = | σ 1 (k)| -iω|k|t p c (t) dt ˆ+∞ Periodic framework) Let X d \ {0} = Z d \ {0}. If L K(iω, k) = 1, for any k ∈ Z d \ {0}and any ω ∈ R, then there exists κ > 0 such that |L K(iω, k) -1| ≥ κ, holds for any k ∈ Z d \ {0} and ω ∈ R.

e

  -iωu M (ζu)u du = 1, holds for any ζ ∈ S d and any ω ∈ R. Then, there exists κ > 0 such that |L K(iω, k) -1| ≥ κ holds for any k ∈ R d \ {0} and any ω ∈ R.

E

  g(t + h) -g(t) G λ,σ;1 P = Φ(g)(t + h) -Φ(g)(t) G λ,σI + R + f 0 G λ 0 ,σ;1 P τ λ -λ M + g(τ ) G λ ,σ;1 P dτ.

  at the price of replacing λ(t) by another function λ(t) such that 0 < λ(t) ≤ λ(t) on [0, T ), we can extend g into a solution of (66) on [0, T ) , with g ∈ C 0 ([0, T ); G λ(t),σ;1 P

Proposition C. 6

 6 Let P > d/2 be an integer and let σ > d/2 be a real number. If g ∈ C 0 ([0, T ); G λ(t),σ;1 P

Estimate of I 1 2 ξ

 12 (α). With the Cauchy-Schwarz inequality we obtain the rough inequalityI 1 (α) k∈Z d ˆRd ξ k, ξ σ D α ξ g(t, k, ξ) k, tk σ e 2 λ(t) k,tk |k|| σ 1 (k)| F I (t, k) -σ 1 (k) G (t, k) × ξ -tk σ e 2 λ(t) ξ-tk D α ξ ξ → (ξ -tk) M (ξ -tk) dξ   k∈Z d ˆRd ξ k, ξ 2σ D α ξ g(t, k, ξ) 2σ e 4 λ(t) k,tk |k| 2 | σ 1 (k)| 2 F I (t, k) -σ 1 (k) G (t, k) -tk 2σ e 4 λ(t) ξ-tk D α ξ ξ → (ξ -tk) M (ξ -tk)

2 k∈Z d k 2σ t 2σ e 4 2 kI 1 10

 242110 λ(0) k t |k| 2 | σ 1 (k)| 2 E I 1 0≤t≤S 0 + k∈Z d k, tk 2σ e 4 λ(0) k T |k| 2 | σ 1 (k)| 4 | G (t, k)| 2σ e 4 λ(0) S 0 k |k| 2 e -2λ 1 |k|   E I + sup n∈Z d e 4 λ(0) T n |n| 2 e -4λ 1 |n| k∈Z d k, tk 2σ | G (t, k)| 2 and k∈Z d k, tk 2σ | G (t, k)| 2 ˆt 0 |p c (t-τ )| t-τ 2σ   k∈Z d k, τ k 2σ | (τ, k)| 2 (α) ≤ K 1 (T, λ(0)) g(t)H σ P That K 1 remains finite make some constraints on λ(0) appear:2 λ(0) < λ 0 ; 4 λ(0) S 0 < 2λ 1 et 4 λ(0) T < 4λ 1 .

Estimate of I 2

 2 (α). Applying (48) leads toI 2 (α) = k,n∈Z d ˆRd ξ k, ξ σ e λ(t) k,ξ D α ξ g(t, k, ξ) k, ξ σ e λ(t) k,ξ -k -n, ξ -tn σ e λ(t) k-n,ξ-tn ×n σ 1 (n) F I (t, n) -σ 1 (n) G (t, n) • D α ξ (ξ → (ξ -tk) g(t, k -n, ξ -tn)) dξ ≤ k,n∈Z d ˆRd ξ k, ξ σ e λ(t) k,ξ D α ξ g(t, k, ξ) k, ξ σ e λ(t) k,ξ -k -n, ξ -tn σ e λ(t) k-n,ξ-tn ×|n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) D α ξ (ξ → (ξ -tk) g(t, k -n, ξ -tn))dξ. Next, we apply the following statement (for further details, we refer the reader to [24,Lemma 9]).Lemma C.11For any r, τ, x, y ≥ 0, we have|x r e τ x -y r e τ y| ≤ c(r)|x -y| |x -y| r-1 + |y| r-1 + τ [|x -y| r + |y| r ] e τ |x-y| e τ |y| . Set r = σ, τ = λ(t), x = k, ξ and y = k -n, ξ -tn . We obtain (remark that |x -y| ≤ n, tn ) I 2 (α) k,n∈Z d ˆRd ξ k, ξ σ e λ(t) k,ξ D α ξ g(t, k, ξ) n, tn n, tn σ-1 + k -n, ξ -tn σ-1 ×|n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) D α ξ (ξ → (ξ -tk) g(t,k -n, ξ -tn)) dξ + λ(t) k,n∈Z d ˆRd ξ k, ξ σ e λ(t) k,ξ D α ξ g(t, k, ξ)

Proposition 3.6 (Linearized Landau damping on R d with analytic regularity)

  

	Let X d = R d . Let us assume (H1)-(H3), (R1)-(R2) and (L). Then as t → +∞, the
	Fourier transform of the solution f of the linearized problem (11a)-(11d) with data (12)

Proposition 3.8 (Linearized Landau damping on R d with finite regularity)

  

	3)/2+r/2+(d+1)/4 .
	Let X d = R d . Let us assume (H1)-(H3), (R1 )-(R2) and (L ). Then as t → +∞,
	the solution of the linearized problem (11a)-(11d) with data (12) converges weakly to 0 while (t, x) = ´Rd f (t, x, v) dv converges strongly to 0. To be more specific,
	for any

(D1') holds when (H1)-(H3) are fulfilled.

  x) decays faster than polynomially with respect to the time variable, in norms L 2 (R + ; L 1 (R d x )) and L ∞ (R + ; L 1 (R d x )): for any α ≥ 0, we have ˆ+∞

		0	t α F I (t) 2 L 1 ( dx) dt < +∞ and sup t∈R +	t α F I (t) L 1 ( dx) < +∞.
	(D2)	t → p c (t) decays faster than polynomially: for any α ≥ 0, we have
			ˆ+∞
			t α |p c (t)| dt < +∞.
			0
	(H4)	σ 1 ∈ S (R d ): for any α ≥ 0 we have
			lim |k|→+∞	k α | σ 1 (k)| = 0.
	Remark 4.1 Some results are strengthened by replacing (D1) by the stronger assump-
	tion		
	(D1')	F I is compactly supported with respect to time: there exists S 0 > 0 such that for
		any |t| ≥ S 0 and x ∈ R d , we have F I (t, x) = 0.
	In particular, as observed in the proof of Lemma 3.2,

  For |n, tn| ≤ |k -n, ξ -tk| we have, see [7, Section 5.1.1]ξ k, ξ s 4 -ξ-tn k-n, ξ-tn s 4 n, tn 2 ξ -tn k -n, ξ -tn s 4 -1 + k -n, ξ -tn s 4 .

Remark 4.

[START_REF] Guo | Variational method for stable polytropic galaxies[END_REF] 

Note that we gain one order of Sobolev regularity on g, see Remark 4.17 and 4.18. Like when dealing with NLT1R, the idea is to distribute the weights n, tn and k -n, ξ -tn on (t) and ∇ v g(t) in order to make estimates with Sobolev exponents smaller or equal to s 4 appear (see the regularity issue explained in Remark 4.17). In the regime |k -n, ξ -tn| ≥ |n, tn| we can not use an estimate as rough as for TNL1R since all the Sobolev exponents already apply to k -n, ξ -tn . We should take advantage of cancellations between ξ k, ξ s 4 and ξ -tn k -n, ξ -tn s 4 . This motivates the introduction of the operator L t [ ], see

  but this is not an issue here), there exists ḡt and gt such g η (t) converges weakly to ḡt in G

					2
					λ(t),σ+1;s P G
	and			
		g(t) 2 G P λ(t),σ-β;s	≤ lim inf η→0 +	g η (t) 2 G P λ(t),σ-β;s
					λ(t),σ+1;s P	and
	G P λ(t),σ-β;s	(owing to (58a) to (58b)); thus, extracting a subsequence (which might
	depend on t, λ(t),σ+1;s P	(resp. to gt in G P λ(t),σ-β;s	). By lower-semi-
	continuity of the norm for the weak topology, we get
		ḡt	2 G P λ(t),σ+1;s		≤ lim inf η→0 +	g η (t) 2 G P λ(t),σ+1;s
	and			
		gt	2 G P λ(t),σ-β;s	≤ lim inf η→0 +	g η (t) 2 G P λ(t),σ-β;s

. Indeed, for any fixed t, the sequence g η (t) η>0 is bounded in G

  du, which holds for any ω ∈ R and ζ 1 , ζ 2 ∈ S d-1 . The integrand is a continuous function of the variable ζ, that can be dominated independently of ζ by an integrable function. Since S d-1 is compact, by virtue of Heine's theorem, we conclude that, for any ε > 0 there exists δ ε > 0 such that for any ζ 1 , ζ 2 ∈ S d satisfying |ζ 1 -ζ 2 | < δ we have ˆ+∞ From the covering S d-1 ⊂ ζ∈S d-1 B(ζ, δ ε ), we can extract a finite covering

  T 1 = t 1 + λ(t 1 )T < T T = t + λ(t )T = T T 2 = t 2 + λ(t 2 )T > TFigure 2: Analycity radius, as a function of the time variable and the constant C i do not depend on g. The proof provides an explicit formula for λ. In particular, it justifies that λ(T ) > 0. The proof of Theorem 5.6 then follows readlily form Corollary C.4 and Proposition C.6. Let us start by establishing the following a priori estimate. Let P > d/2 be an integer and let σ > d/2 be a real number. If g ∈ Figure 3: Analycity radius, as a function of the time variable: critical case with T depending on tThe proof uses in several places the following claim. (We do not detail its proof, which reduces to repeated applications of the Cauchy-Schwarz inequality.) 2σ e 2 λ(t) k,ξ D α ξ g(t, k, ξ)D α ξ ∂ t g(t, k, ξ) dξ

	λ λ with g(t), ∂ t g(t)	G P λ(t),σ;1	=	α∈N d	k∈Z d ˆRd			,
							|α|≤P			
											:=I(α)
	we fix α ∈ N d , |α| ≤ P and estimate I(α). Let us write
	D α ξ ∂ t g(t, k, ξ) = D α ξ N (g)(t, k, ξ)		
									•		
										•	
									•		
										•	•
											•	• •
												•
		0 0							t 1 t 1	t t 2	t 2 T 1 T t 3 t 4	T	T 2	t t
	1 2	d dt	g(t) 2 G P λ(t),σ;1	≤		d dt	G P 2 λ(0),σ;1 λ(t),σ+1/2;1 P G λ(t) g(t) 2	E I +	ˆt 0	g(τ ) 2 H σ P	dτ	1/2 (69) g(t) H σ P .
	t T then, there exists a function λ(t) > 0 continuous and decreasing such that g ∈ C 0 [0, T ); G g(t) H σ P < +∞, P λ(t),σ;1 and, for any t ∈ [0, T ), w ehave g(t) 2 G λ(t),σ;1 P ≤ g(0) 2 G λ(0),σ;1 P + 1 + 2 1 + θ(τ ) dτ + λ(t)C 1 T 2 E I + 1/2 ˆt 0 g(τ ) 2 G λ(τ ),σ;1 P dτ g(t) 2 + θ(t) λ(t),σ+1/2;1 G P where θ(t) is defined by (69). Lemma C.9 For any σ > d/2, we have Remark C.7 Lemma C.8 C 0 ([0, T ); G λ(t),σ+1/2;1 P ) is a solution of(66) on [0, T ) such that lim sup t T g(t) H σ P < +∞, f (k, ξ) g(n) h(k -n, ξ -tn) dξ f L 2 x,v   n 2 σ | g(n)| 2   1/2 h L 2 x,v . k,n∈Z d ˆRd ξ n∈Z d Proof of Lemma C.8. Since ˆt 0 1 2 d dt g(t) 2 G λ(t),σ;1 P = d dt λ(t) g(t) 2 G λ(t),σ+ 1 2 ;1 P + g(t), ∂ t g(t) λ(t),σ;1 G P	,

where θ(t) depends on g only through the following Sobolev norms

θ(t) = C 2 T g(t) H σ P + C 3 (T, λ(0)) ∇ v M

where 0 < λ(t) is derivable and decreasing function, then, for any t ∈ [0, T ), we have ξ k, ξ

  (x, v) → v α g(t, x, v) H σ ∇σ 1 (F I (t) -σ 1 G (t)) F 2 λ(t),σ;1 v → v α ∇ v MBy using (54), we get∇σ 1 (F I (t) -σ 1 G (t)) 2 , tk 2σ e 4 λ(t) k,tk |k| 2 | σ 1 (k)| 2 F I (t, k) -σ 1 (k) G (t, k)

	F 2 λ(t),σ;1		
	=		
	k∈Z d		
			G 2 λ(t),σ;1
	g(t) H σ P ∇σ 1 (F I (t) -σ 1 G (t))	F 2 λ(t),σ;1 ∇ v M	2 λ(0),σ;1 P G
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  tk) g(t, k -n, ξ -tn)) dξ = I 21 (α) + λ(t)I 22 (α). D α ξ g(t, k, ξ) n, tn n, tn σ-1 + k -n, ξ -tn σ-1 ×|n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) D α ξ (ξ → (ξ -tk) g(t, k -n, ξ -tn)) dξ + λ(t) k,n∈Z d ˆRd ξ k, ξ σ+1 e λ(t) k,ξ D α ξ g(t, k, ξ) n, tn n, tn σ-1 + k -n, ξ -tn σ-1 ×|n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) D α ξ (ξ → (ξ -tk) g(t, k -n, ξ -tn)) dξ = I 211 (α) + λ(t)I 212 (α). D α ξ g(t, k, ξ) n, tn n, tn σ-1 + k -n, ξ -tn σ-1 ×|n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) t k -n, ξ -tn D β ξ g(t, k -n, ξ -tn) dξ D α ξ g(t, k, ξ) n, tn σ k -n, ξ -tn σ ×|n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) D β ξ g(t, k -n, ξ -tn) dξ

	for dealing with I 21 (α); we get It allows us to obtain	
	I 21 (α) ≤ I 211 (α)		
	|β|≤P k,n∈Z d ˆRd β∈N d k,n∈Z d ˆRd	
	T	β∈N d	k,n∈Z d ˆRd	
		|β|≤P		
	= T			
		β∈N d		
	Observe that |β|≤P	
		k, ξ	n, tn j∈N d	α j	jD α-j
			j≤α |j|=1	
	Then, we have	
	D α			
					(70)
	Next, we use	
			k, ξ σ e λ(t) k,ξ ≤ k, ξ σ 1 + λ(t) k, ξ e λ(t) k,ξ
			124 125	

ξ k, ξ σ σ-1 + k -n, ξ -tn σ-1 ( n, tn + k -n, ξ -tn ) n, tn σ-1 + k -n, ξ -tn σ-1 n, tn σ + k -n, ξ -tn σ .

Hence I 212 (α) I 22 (α) and thus I 2 (α) I 211 (α) + λ(t)I 22 (α). Estimate of I 211 (α). We remind the reader that

D α ξ (ξ → (ξ -tk) g(t, k -n, ξ -tn)) = (ξ -tk)D α ξ g(t, k -n, ξ -tn) + ξ g(t, k -n, ξ -tn). ξ (ξ → (ξ -tk) g(t, k -n, ξ -tn)) t k -n, ξ -tn β∈N d |β|≤P D β ξ g(t, k -n, ξ -tn) . ξ k, ξ σ ξ k, ξ σ J 1 (α, β).

  Estimate of I 22 (α). Again, we apply (70). We obtainI 22 (α) σ e λ(t) k,ξ D α ξ g(t, k, ξ) n, tn ( n, tn σ + k -n, ξ -tn σ ) e λ(t) n,tn ×e λ(t) k-n,ξ-tn |n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) k -n, ξ -tn D α ξ g(t, k -n, ξ -tn) dξ σ e λ(t) k,ξ D α ξ g(t, k, ξ) n, tn σ+1 k -n, ξ -tn e λ(t) n,tn ×e λ(t) k-n,ξ-tn |n|| σ 1 (n)| F Since n∈Z d n 2 σ |n| 2 | σ 1 (n)| 2 n, tn 2σ+2 e 2 λ(t) n,tn F I (t, n) -σ 1 (n) G (t, n) 2 σ |n| 2 |e -2λ 1 |n| n 2σ+2 e 2 λ(0) n S 0

										2
	T	β∈N d |β|≤P S 0 2σ+2 k,n∈Z d ˆRd  					  E I
					n∈Z d				
		T T 2 E I + β∈N d |β|≤P k,n∈Z d ˆRd + T 2 sup k∈Z d ˆt 0 g(τ ) 2 P G λ(τ ),σ;1	k 2 σ |k| 2 | σ 1 (k)| 2 k 2 dτ ,	n∈Z d	n, tn 2σ e 2 λ(t) n,tn G (t, n)	2
	we are led to					
		β∈N d	k,n∈Z d ˆRd J 2 (α, β)	T E I +	ˆt 0	g(τ ) 2 G P λ(t),σ;1	dτ	1/2	g(t) 2 G P λ(t),σ+1/2;1
		|β|≤P							
										2
										G λ(t),1;1		
		S 0 E I + 2σ ˆt 0 	n∈Z d g(τ ) 2 n 2σ |n| 2 | σ 1 (n)| 2 n 2σ H σ P dτ, n∈Z d  × 	 E I + sup k∈Z d	k 2σ |k| 2 | σ 1 (k)| 2		n∈Z d	 n, tn 2σ | G (t, n)| 2 2  1/2 
	we are led to	I 211 (α)	T E I +	ˆt 0	g(τ ) 2 H σ P	dτ	1/2	g(t) 2 H σ P	.
										126

.

Since n∈Z d n 2σ |n| 2 | σ 1 (n)| 2 n, tn 2σ F I (t, n) -σ 1 (n) G (t, n) ξ k, ξ ξ k, ξ I (t, n) -σ 1 (n) G (t, n) D α ξ g(t, k -n, ξ -tn) dξ + T ξ k, ξ σ e λ(t) k,ξ D α ξ g(t, k, ξ) n, tn k -n, ξ -tn σ+1 e λ(t) n,tn ×e λ(t) k-n,ξ-tn |n|| σ 1 (n)| F I (t, n) -σ 1 (n) G (t, n) D α ξ g(t, k -n, ξ -tn) dξ = T β∈N d |β|≤P J 2 (α, β) + T β∈N d |β|≤P J 3 (α, β).

We estimate J 2 (α, β) by using Lemma C.9, again. We get

J 2 (α, β) (x, v) → v α g(t, x, v) G λ(t),σ;1 (x, v) → v β g(t, x, v) n 2 σ |n| 2 | σ 1 (n)| 2 n, tn 2σ+2 e 2 λ(t) n,tn F I (t, n) -σ 1 (n) G (t, n) n

  We have found constants C 1 , C 2 et C 3 (T, λ(0)) such that g(t), ∂ t g(t) λ(t) ≤ C 1 T 2 E I +

									G λ(t),σ+1/2;1
									 1/2
	×								2		.
			n∈Z d					
	We obtain							
	J 3 (α, β)	E I +	ˆt 0	g(τ ) 2 G P λ(t),σ;1	dτ	1/2	g(t) 2 G P λ(t),σ+1/2;1	.
	It follows that							
	I 22 (α)	T 2 E I +	ˆt 0	g(τ ) 2 G P λ(t),σ;1	dτ	1/2	g(t) 2 G P λ(t),σ+1/2;1
						ˆt 0	g(τ ) 2 G P λ(t),σ;1	dτ	1/2	g(t) 2 G P λ(t),σ+1/2;1	+ θ(t)
	with							
	θ(t) = C 2 T g(t) H σ P + C 3 (T, λ(0)) ∇ v M	G P 2 λ(0),σ;1	E I +	ˆt 0	g(τ ) 2 H σ P	dτ	1/2	g(t) H σ P .

x, v) G λ(t),σ+1/2;1 (x, v) → v β g(t, x, v) n 2 σ |n| 2 | σ 1 (n)| 2 n, tn 3 e 2 λ(t) n,tn F I (t, n) -σ 1 (n) G (t, n) .

Recap.

  + g ε (t), ∂ t g ε .Next, ∂ t g ε can be cast as∂ t g ε (t, k, ξ) = χ(k, ξ)∂ t g(t, k, ξ) (k) χ(k, tk) F I (t, k) -χ(k, tk) σ 1 (k) G (t, k) (t) = C 2 T g ε (t) H σ P + C 3 (T, λ(0)) ∇ v M ε

	holds, we go back to the proof of Lemma C.8 and we conclude that
	1 2	d dt	g ε (t) 2 G P λ(t),σ;1	≤	d dt	λ(t) g ε (t) 2 G P λ(t),σ+1/2;1
			1 2	d dt	g ε (t) 2 G P λ(t),σ;1 + λ(t)C 1 T 2 E I + = d dt λ(t) g ε (t) 2 ˆt 0 g ε (τ ) 2 G P λ(τ ),σ;1 G λ(t),σ+1/2;1 P < d dt λ(t) g ε (t) 2 λ(t),σ+1/2;1 G P	dτ	1/2	g ε (t) 2 G P λ(t),σ+1/2;1	+ θ ε (t)
	= -holds with χ(k, tk) χ(ξ -tk) χ(k, ξ) k σ 1 -+ λ(t)C 1 T 2 E I + n∈Z d χ(k, ξ) χ(n, tn) χ(k -n, ξ -tn) n∈Z d χ(k, ξ) χ(n, tn) χ(k -n, ξ -tn) n σ 1 (n) χ(n, tn) F I (t, n) -σ 1 (n) ˆt 0 g ε (τ ) 2 G λ(τ ),σ;1 P dτ ˆt 0 1/2 χ(n, tn) g ε (t) 2 G P λ(t),σ+1/2;1 χ(n, τ n) n σ -θ ε G 2 λ(0),σ;1 P E I + 1/2 ˆt 0 g ε (τ ) 2 H σ P dτ g ε (t) H σ + 1 + θ ε (t) P .
	Remarking that			
				χ(k, ξ) ≤ 1,		χ(k, tk) χ(k, τ k)	≤ 1 and	χ(k + n, ξ + ζ) χ(k, ξ) χ(n, ζ)	≤ 1,
								129

•(ξ -tk) χ(ξ -tk) M (ξ -tk) 1 (n) χ(n, tn) F I (t, n) -χ(n, tn) σ 1 (n) G (t, n) •(ξ -tk) χ(k -n, ξ -tn) g(t, k -n, ξ -tn) = -χ(k, ξ) χ(k, tk) χ(ξ -tk) k σ 1 (k) χ(k, tk) F I (t, k) -σ 1 (k) ˆt 0 p c (t -τ ) χ(k, tk) χ(k, τ k) ε (τ, k) dτ •(ξ -tk) M ε (ξ -tk) ε (τ, n) dτ

•(ξ -tk) g ε (t, k -n, ξ -tn).

  g(t) H σ P + C 3 (T, λ(0)) ∇ v M

									× E I +	ˆt 0	2 λ(0),σ;1 P G g(τ ) 2 H σ P dτ	1/2	g(t) H σ P ,
	Y ε (t) -→ ε→0 +	Y (t) = g(0) 2 G P µ 0 ,σ;1	+ 2	ˆt 0	θ(τ ) dτ,
	λ ε (t) -→ ε→0 +	λ(t) = µ 0 exp	  	-	ˆt 0	  C 1 T 2 E I +	ˆt 0	Y (τ ) dτ	1/2	    	.
	By applying Fatou's lemma we finally obtain	
	g(t) 2 G P λ(t),σ;1	≤ lim inf ε→0 +	g ε (t) 2 G P λε(t),σ;1	≤ lim inf ε→0

+ Y ε (t) = Y (t).

dk dξ

NL(τ,k,ξ)dτ.

M (ζ

u) -M (ζ

u) u du ≤ ε.
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discussion below, by virtue of the Volterra equation [START_REF] Goudon | Mean field limit for particles interacting with a vibrating medium[END_REF] satisfied by the fluctuation of the macroscopic density . We discuss precisely the differences between the usual Vlasov equation where the potential is defined by a mere space-convolution Φ = W and the Vlasov-Wave model under consideration, and in particular we bring out the role of the time kernel p c . In order to have such a unified presentation, some arguments slightly differ from [START_REF] Mouhot | On Landau damping[END_REF][START_REF] Bedrossian | Landau damping: paraproducts and Gevrey regularity[END_REF][START_REF] Bedrossian | Landau damping in finite regularity for unconfined systems with screened interactions[END_REF], and we justify in full details that it suffices to satisfy the stability criterion on the imaginary axis.

A.1 Volterra system in analytic regularity

A.1.1 The Vlasov case

For the analysis of the standard Vlasov system, one is led to the following assumptions on the data a and the kernel K:

(A:LV)

There exists κ > 0 such that for any k ∈ X d \ {0} and any ω ∈ R, we have

The condition (A:LV) is expressed by means of the Fourier transform of K k , which amounts to impose the behavior of the Laplace transform on the imaginary axis.

Theorem A.2 Assume (A:H1)-(A:LV).

We can find C , λ > 0 such that, for any k ∈ X d \ {0} and t ≥ 0, we have

Let us start with two preliminary statements.

Lemma A.3 Assume (A:H1)-(A:LV). We can find

Proof. The Laplace transform of K k can be cast as

A.1.2 The Vlasov-Wave case

Now we investigate (60) with following assumptions on the data a and the kernel K :

Proof of Theorem A.8. Lemma A.9 and A.10, together with Remark A.6 allow us to reproduce the arguments of Section A.1.1. In particular the behavior of the kernel observed in Remark A.6 permits us to establish in the second step of the proof that the constant C can be defined independently of k.

A.2 Volterra system in finite regularity

A.2.1 The Vlasov case

The assumptions on a and K become

(A:Lv) There exists κ > 0 such that for any k ∈ X d \ {0} and any ω ∈ R

We remind the reader that k is a shorthand notation for √ 1 + k 2 , k being a scalar or a vector.

Remark A.11 By (A:H4) the (rescaled) Laplace transform

is well defined for any ω ∈ C such that Re(ω) ≥ 0.

Theorem A.12 Let m = min(m -1, m 0 -3). There exists C > 0 such that for any k ∈ X d \ {0} and t ≥ 0, we have

Like in the analytic framework, we need to discuss the location of the zeroes of the function ω → L K(ω, k) -1.

Lemma A.13 Assume (A:H3)-(A:Lv).

We can find Λ > 0 such that for any k ∈ X d \ {0} and any ω ∈ C,

Lemma A. [START_REF] Eskin | Lectures on Linear Partial Differential Equations[END_REF] For any k ∈ X d \ {0}, the open set

The proof is completely similar to the analytic case. However, we now need an additional claim.

Theorem A.20 Assume (A:H3b)-(A:d).

Let m = min(m -1, m 0 -3).Then, there exists C > 0 such that for any k ∈ X d \ {0} and any t ≥ 0, we have

Let us collect the necessary preliminary statements about the locations of the zeroes of L K(ω, k) -1.

Lemma A.21 Assume (A:H3b)-(A:d).

There exists Λ > 0 such that, for any k ∈ X d \ {0} and ω ∈ C,

Proof. The proof is an adaptation of the analytic case, where, again, we need to pay attention that the obtained constant Λ does not depend on k.

Lemma A. [START_REF] Lafitte | Normal transport properties in a metastable stationary state for a classical particle coupled to a non-Ohmic bath[END_REF] For any k ∈ X d \ {0}, the open set

Lemma A. [START_REF] Landau | On the vibration of the electronic plasma[END_REF] The following assertions hold. 

is bounded uniformly with respect to k and µ; namely

Proof. The statement follows by direct evaluation. As a matter of fact, properties (iii) and (iv) on the kernel K k are consequences of the obervations in Remark A.18.

Having these statements at hand we can repeat the arguments of the Vlasov case.

(Note that the formula applies for β = 0 as well.) It leads to the Penrose stability criterion, hereafter denoted (P):

When X d = R d , the Penrose criterion (P) has to be completed with the following criterion (hereafter denoted (P')):

(for all ω ∈ S d ).

We conclude that, when (P) (resp. (P) and (P')) is satisfied, then (L) holds, which, in turn, implies that the decay properties stated for the linearized problem in Section 3 hold. This criterion is much more involved than the Penrose criterion for the Vlasov equation, because the memory term p c completely changes the evaluation of the symbol L K and does not keep a simple separation between the real and imaginary parts. [START_REF] De Bièvre | Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov-Poisson system[END_REF]: roughly speaking, it amounts to replace the wave equation by

Remark B.10 Let us rescale the problem as in

Letting c run to ∞, the problem looks like the Vlasov equation where the self-consistent potential is defined by the convolution -κσ 1 σ 1 ρ. According to [START_REF] Mouhot | On Landau damping[END_REF], the stability criterion for this limiting problem reads if µ k/|k| (β) = 0, then -ρ 0 κ| σ 1 (k)| 2 P.V.

ˆR µ k/|k| (r) r -β dr = 1, which corresponds to the limit c → ∞ in the rescaled version of (P). In particular, mind the minus sign in front of the coefficient ρ 0 | σ 1 (k)| 2 : it makes the situation very similar to those of the attractive Vlasov-system.

B.3 Stable and unstable states

The criterion (P) is a bit ugly and not that practical. Nevertheless, some relevant information can be extracted from the formula, showing again the similarity with the attractive Vlasov-Poisson equation.