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Recently developed techniques to visualize immunostained tissues in 3D and in large

samples have expanded the scope of microscopic investigations at the level of the whole

brain. Here, we propose to adapt voxel-based statistical analysis to 3D high-resolution

images of the immunostained rodent brain. The proposed approach was first validated

with a simulation dataset with known cluster locations. Then, it was applied to

characterize the effect of ADAM30, a gene involved in the metabolism of the amyloid

precursor protein, in a mouse model of Alzheimer’s disease. This work introduces

voxel-based analysis of 3D immunostained microscopic brain images and, therefore,

opens the door to localized whole-brain exploratory investigation of pathological markers

and cellular alterations.

Keywords: voxel-based, 3D, immunohistochemistry, microscopy, rodent, Alzheimer’s disease

1. INTRODUCTION

Microscopic investigation of brain tissue architecture and composition plays an essential role in
understanding the mechanisms underpinning brain function and disease. Classically, the brain
microstructure is studied post mortem via histological processing. However, this results in the loss of
brain 3D structure. Recently, a wealth of techniques have been proposed for optical 3Dmicroscopic
imaging of the entire rodent brain, or large portions thereof. Proposed techniques fall into three
main categories: tissue clarification followed by light sheet microscopy (Dodt et al., 2007; Ertürk
et al., 2012; Chung et al., 2013; Ke et al., 2013; Susaki et al., 2014; Hama et al., 2015; Renier et al.,
2016), serial optical tomography (Ragan et al., 2012; Wang et al., 2014; Wu et al., 2014) and 3D
histology (Ourselin et al., 2001; Lein et al., 2007; Grand’maison et al., 2013; Vandenberghe et al.,
2016). Already, these techniques have been useful to describe the mouse brain gene expression
spatial distribution (Lein et al., 2007), cyto-architecture (Silvestri et al., 2015), connectome (Oh
et al., 2014; Zingg et al., 2014) and functional activation patterns (Vousden et al., 2015). Besides
neuroanatomical studies, a promising application of 3D microscopic imaging is to quantitatively
analyze immunostained markers in experimental studies. Immunohistochemistry (IHC) is the
method of choice to reveal the presence of a protein of interest in a tissue sample. Voxel-based
analysis of 3D IHC imaging could allow to detect microstructural and cellular modifications
induced by experimental conditions, such as genetic interventions or drug administrations.
Nevertheless, an important remaining challenge consists in how to infer the location and nature
of changes affecting IHC markers between cohorts of animals. In previous works, changes between
groups of 3D whole-brain histology images were detected by segmenting the marker of interest
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and by using a 3D digital brain atlas to delineate regions of
interest wherein the marker load was compared between groups
(Grand’maison et al., 2013; Vandenberghe et al., 2016). However,
this approach supposes that differences between groups can be
detected at the regional level which may not hold when the
differences are located in very limited areas or when opposite
effects take place within the same anatomical region (Dubois
et al., 2010).

Voxel-based analysis is an attractive alternative to region-
based analysis to detect local differences between sets of brain
images (Friston et al., 1990). To our knowledge, voxel-based
analysis of 3D IHC imaging has not been achieved yet. Two main
challenges prevent the direct application of voxel-based analysis
to 3D IHC imaging. Firstly, IHC images are typically captured at
a microscopic resolution. At such a high resolution, direct voxel-
to-voxel comparisons are pointless because intrinsic variability
between subject exceeds the variability that can be reasonably
expected from experimental interventions. Secondly, voxel-based
analysis applies to continuous signal while IHC staining is a
qualitative indicator of the presence of a protein of interest.

Here, we propose a novel approach to extend voxel-based
statistical analysis to 3D immunostained brain imaging in
rodents. Our approach consists in extracting quantitative signal
from high-resolution 3D IHC images and then to summarize
it in the form of lower-resolution 3D parametric maps that
can be readily compared at the voxel level. We evaluated the
accuracy of several methods for parametric map generation using
simulation experiments where synthetic segmented IHC images
are generated with Boolean-Poisson processes. Voxel-based
analysis was then applied in a 3D histology study investigating
the impact of the over-expression of the ADAM30 gene on Aβ

plaque deposition in a transgenic mouse model of Alzheimer’s
disease (Letronne et al., 2016). We show that compared to our
initial investigation using an region-based approach, voxel-based
analysis enables more sensitive and spatially resolved detection of
Aβ plaque deposition changes due to ADAM30 over-expression.

2. MATERIALS AND METHODS

2.1. Datasets
This subsection describes the simulation dataset used for
benchmarking and method validation as well as the dataset
to study the effect of ADAM30 on the Aβ plaque deposition
transgenic mice.

2.1.1. Simulation Dataset
Aβ plaques are typically round objects that can vary in size. To
account for these properties, simulations were performed with a
Boolean-Poisson model, a spatial stochastic process introducing
randomness at two levels: object location and object shape
(Baddeley et al., 2004). The simulated segmented marker was
modeled as disks which radii were drawn from a Gaussian
distribution with mean radius r = 7 pixels and a standard
deviation of 2 pixels. Seven pixels is a typical radius for an
Aβ plaque in an image with a pixel-size of 5 µm. Disk centers
correspond to the realization of a Poisson point process in two
dimensions. Simulation images had a size of 2,560× 2,560 pixels.

Accordingly to the definition of a Poisson point process, the
probability of an Aβ plaque being seeded at coordinates x of a
simulation image is:

P(seed(x)) = λ(x)e−λ(x) (1)

where λ(x) is a piecewise-constant intensity function of seeds
(and is also a 2D image). Also, µx, the true marker load was
calculated as the probability that a voxel of an image at location x
is part of a disk. The mean squared error was calculated between
the true marker load and the marker load as estimated from the
realizations of the Boolean-Poisson process.

Two types of images were generated to model individuals
drawn from a control population and an exacerbated population
where disks are more frequent in spatially defined clusters.
Generated images were composed of a background with constant
rate λ0 and four square regions with constant rate λ1, λ2, λ3,
λ4. In the control group, images were such that λ0 = λ1 =

λ2 = λ3 = λ4, while in the exacerbated group they were such
that λ1 = 20λ0, λ2 = 10λ0, λ3 = 5λ0 and λ4 = 2.5λ0.
The control and the exacerbated group consisted of 10 images
each, which is a realistic sample size for animal studies. Three
different experiments were carried out with various disk basal
density conditions (Figure 1). In the first experiment, control
group images had a basal rate λ0 = 40, which mimics the
distribution of Aβ plaques in a relatively low-density condition.
In the second and third experiments, rate was increased to λ0 =

80 and λ0 = 160, respectively.

2.1.2. ADAM30 Study Dataset
This dataset was previously investigated in Letronne et al. (2016).
Two transgenic mouse strains with a C57Bl/6N background
(Taconic) were generated either carrying the human ADAM30
gene with a Cre promoter enabling its expression or only the
human ADAM30 gene. Cre-ADAM30 mice express ADAM30
conditionally upon Neomycine-mediated Cre activation while
the second line does not express the gene because the promoter
is absent and, thus, served as negative control to test the effect
of ADAM30 on the Aβ load. Cre-ADAM30 and ADAM30
mice were crossed with hAPPSwe,Ind mice expressing the human
APP gene bearing “Swedish” and “Indiana” mutations which are
associated with familial forms of Alzheimer’s disease and cause
pathological Aβ deposition (Jackson Laboratory) (Mucke et al.,
2000). At 10 months of age, 10 APPSwe,Ind-Cre-ADAM30 and 5
APPSwe,Ind-ADAM30 were euthanized, the brains were removed
from the skull and freshly frozen. For each individual, one hemi-
brain was used for 3D histology investigations. All experiments
were approved by the local animal care and use committee
(Comité d’Ethique en Experimentation Animale du Nord - Pas
de Calais, Lille, France).

Hemi-brains were all embedded in a green-colored solid
matrix (Neuroscience Associates) to obtain a sharp contrast
between the embedding material and the cerebral tissue
(Vandenberghe et al., 2016). For each hemi-brain, 100 30-µm-
thick coronal sections evenly spaced by 90 µm were collected.
Before each section was cut, a block-face photograph of the brain
was taken (lateral resolution of 13µm, EOS 5DMark III, Canon).
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FIGURE 1 | Simulation experiments. From left to right: simulation experiments with basal expected number of disks, 3, equal to 40, 80, and 160, respectively. For

each experiment, one example of a simulation image from the control group is shown at the top and one example of a simulation image from the exacerbated group is

shown at the bottom. Disks appear in black and the underlying cluster boundaries are shown in red. For each experiment, the expected relative increase in the

number of disks per cluster is either 20 (top left cluster), 10 (top right cluster), 5 (bottom left cluster), or 2.5 (bottom right cluster).

As block-face photographs were taken prior to tissue sectioning
at the exact same position, the resulting images could be stacked
to yield a 3D coherent brain volume for each subject that respects
the geometry of the brains (Dubois et al., 2010). All tissue sections
were immunohistochemically stained for Aβ-plaque detection
with a 6E10 monoclonal antibody and a 3,3′-Diaminobenzidine
revelation. Finally, stained tissue sections were digitized using a
flatbed scanner (ImageScanner III, GE Healthcare) with a lateral
resolution of 5 µm.

2.2. Image Processing
This subsection describes the image processing steps that were
performed prior to voxel-based inference on 3D histology images
in the ADAM30 study (Figure 2). The image processing steps
were implemented in the BrainVISA neuroimaging software
(http://brainvisa.info).

2.2.1. 3D Reconstruction
For each individual, 3D reconstruction of block-face photographs
and histology images was performed as described previously
(Dubois et al., 2007). Briefly, block-face photographs were first
segmented with an automatic threshold operation to extract
the tissue from the background and then stacked in order
to yield a 3D reference for each brain. IHC-stained section
images were stacked and each individual image was registered
to its corresponding block-face photograph by estimating
a rigid transformation (translation, rotation) and an affine
transformation (translation, rotation, scaling, shearing) that
maximized the correlation coefficient between the images using
the Block-Matching algorithm with three resolution levels
(Dauguet et al., 2007). This allowed to reconstruct a coherent Aβ

plaques IHC-stained volume for each individual and to correct

for deformations due to histological procedures. Non-linear
registration was not carried-out because the tissue embedding
enabled to limit deformations within sections and because
Aβ plaques IHC-stained volumes carry little neuroanatomical
information to guide non-linear registration.

2.2.2. Template Generation
An average anatomical template was generated by, first,
registering all the block-face photography volumes onto one
chosen reference block-face photography volume and then by
calculating the mean image from the registered block-face
photography volumes.

3D registration between each block-face photography volume
and the reference block-face photography volume was performed
using a 3-step procedure validated previously (Lebenberg et al.,
2010). A global rigid transformation was estimated based
on the mutual information similarity criterion and Powell’s
optimization method (Viola and Wells, 1995), and then, an
affine registration initialized with the rigid transformation was
performed with the Block-Matching technique (Ourselin et al.,
2001; Dauguet et al., 2007). Finally, a non-linear transformation
was computed using the Free Form Deformation algorithm
to improve registration locally by maximizing the mutual
information between the images using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) optimizer and a grid of 10 × 10 × 10
regularly spaced control points (Mattes et al., 2003; Lebenberg
et al., 2010).

2.2.3. Aβ Plaque Segmentation and Registration
Aβ plaques were segmented using a weighted Random Forest
model (WRF) (Breiman, 2001) with color and texture features as
described and validated previously (Vandenberghe et al., 2015).
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FIGURE 2 | (A) 3D reconstruction of block-face photography and histology volumes. The block-face photography volume for each mouse is generated by stacking

each photograph. Aβ plaque IHC stained coronal section images are stacked and registered to their corresponding block-face photographs. A reconstructed

block-face photography volume and its corresponding 3D IHC volume are shown in the axial view. (B) The anatomical template is generated by registering every

block-face photography volume onto a common reference. From left to right: coronal view, axial view and sagittal view of the anatomical template. (C) Aβ plaques are

segmented on histology volumes using WRF (i), spatially normalized to the template and continuous-scale quantitative parametric map volumes are derived from the

binary volumes (ii). All volumes are shown in the axial view at the same dorsoventral position.

This approach relies on a learning step which models ground-
truth expert segmentation and a voxel-level classification step
to segment images. The ground-truth dataset was constructed
by extracting a set of 10 representative small 100×100-pixel-
image patches fromAβ IHC volumes and subsequently manually
segmenting them into 3 classes: background, non-stained tissue
and Aβ plaques. In the learning step, 100 trees were constructed.
As Aβ plaques represent only a very small fraction of the
images compared to background and non-stained tissue, this
class was weighted to increase its importance during the tree
building process. The Aβ plaque class weight was tuned by
leave-one-image-out cross-validation as described previously
(Vandenberghe et al., 2015). In the classification step, each
voxel was assigned to a class by a weighted majority voting of
the classification trees. Each Aβ plaque IHC volume was fully
segmented and a binary volume with segmented Aβ plaques was
generated for each mouse brain.

Finally, high-resolution segmented volumes were all put
into the same spatial referential by registering them to the
anatomical template. As each segmented volume is in the
same referential as its corresponding block-face photography
volume, the registration was estimated between each block-
face photography volume and the anatomical template using
the aforementioned 3D registration approach and then the

transformation was applied to each segmented volume. Voxel
values in the registered segmented volumes were obtained by
nearest-neighbor interpolation, therefore preserving the binary
nature of the images.

2.3. Voxel-Based Analysis
In this subsection, we describe parametric map generation from
binary images and cluster inference.

2.3.1. Parametric Map Generation
In the simulation study, we investigated the performance of 3
techniques to generate paramatric maps which locally estimate
the marker load: image binning; Voronoi tessellation (Barr and
Schoenberg, 2010) combined with binning; Gaussian kernel
smoothing combined with image binning. As the expected
marker load is known in simulation images, the performance of
each technique was evaluated by computing the mean squared
error between the parametric map sample mean and the true
expected marker load. The results from the simulation study
enabled to choose the best method to be applied in the ADAM30
study.

Voronoi tessellation has been previously applied to estimate
neuronal density in histology images (Duyckaerts et al., 1994)
and does not require any parameter to be fixed. In contrast,
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image binning requires to specify a binning window-size and
Gaussian-kernel smoothing requires to specify the Gaussian-
kernel standard deviation. Fixing the size of the Gaussian-kernel
standard deviation is particularly important as the bias and
variance of the marker load estimation directly depend on it. The
Gaussian-kernel standard deviation could be selected visually
but, here, we propose a more rational approach to select an
optimal kernel standard deviation. The optimal kernel standard
deviation was selected based on bootstrap error minimization.
First, a large number of bootstrap samples were generated
by sampling individuals with replacement. For each bootstrap
sample, segmented images were smoothed with a Gaussian kernel
and the left-out individuals were used as a validation set. The
bootstrap error (Hastie et al., 2009) was calculated as follows:

Êrrboot =
1

T

T∑

j=1

1

|C−j|

∑

b∈C−j

1

n

n∑

i=1

(µ̂b
xi
−Mj(xi))

2, (2)

where T is the number of individuals in the original sample,
C−j is the subset of bootstrap samples that do not contain
individual j and |C−j| is the number of such samples, n is the
number of voxels in the brain, Mj(x) is the segmented binary

image for individual j and µ̂b
x is the sample mean of smoothed

images obtained from boostrap sample b. The bootstrap error was
calculated for each experimental group separately. The optimal
Gaussian kernel standard deviation is the one minimizing the
mean bootstrap error.

Image binning was performed to explicitly reduce the image
resolution and limit the total number of voxels in parametric
maps. In the simulation dataset, the 2D window size was set to
18 × 18. For the 3D histology dataset, the binning window size
was set to 18 × 18 × 1 voxels which provided low resolution
parametric maps at an isotropic voxel-size of 90 µm. This choice
for the parametric map voxel-size corresponds to the smallest
cluster-size that would be deemed biologically relevant.

2.3.2. Cluster Inference
A voxel-based two-tailed Student’s t-test was computed to
compare the marker load between groups of individuals at each
coordinate and the resulting p-value map was thresholded at a
level p < 0.05. The Python scipy library implementation of the
t-test was used throughout the study (https://www.scipy.org).

In the simulation study, F1 scores were calculated between
inferred and true clusters using the number of true positives (TP),
false positives (FP) and false negatives (FN):

F1 = 2TP/(2TP + FP + FN). (3)

Although parametric map generation greatly reduces the original
size of 3D IHC volumes, voxel-based analysis throughout the
brain involves a large number of statistical tests which raises the
risk of false positive results. Therefore, in the ADAM30 study, a
correction for multiple comparisons was performed using non-
parametric cluster mass inference. Compared to the Bonferroni
correction or the False Discovery Rate (Genovese et al., 2002),
correcting multiple comparisons via cluster mass inference is

advantageous for 3D IHC imaging as it does not rely on the total
number of voxels in the brain and thus has the advantage of being
insensitive to the binning value used for generating parametric
maps. Cluster-mass was computed as the sum of the T-statistic
values in the cluster (Bullmore et al., 1999). The distribution
under the null hypothesis was constructed by performing 100
permutations on the individuals and recording the mass of the
largest cluster from each permutation (Nichols, 2012). Finally,
clusters that were larger than a threshold determined from the
null-hypothesis distribution at p < 0.05 were considered as
statistically significant.

Anatomical localization of the clusters was performed by
registering the MICe digital mouse brain atlas on the anatomical
template (http://www.mouseimaging.ca) (Dorr et al., 2008)
following a protocol described and validated in Lebenberg et al.
(2010) and further refined by referring to the Paxinos mouse
brain atlas (Paxinos and Franklin, 2001).

2.4. Statistical Analysis of Aβ Plaque Count
and Size
In the ADAM30 study, the effect of ADAM30 over-expression on
the Aβ load was further investigated within the inferred clusters.
For each mouse, the number and the size of Aβ plaques lying
within clusters were recorded. Aβ plaques were defined on high-
resolution segmented 3D IHC images as groups of connected Aβ

plaque voxels in the coronal plane. Within cluster Aβ plaque
number difference was tested with a two-tailed Students’s t-test.
Within cluster Aβ plaque size difference was assessed with a
hierarchical linear model with mouse as a random factor and
group as a fixed factor. Statistical tests were performed in R
(http://cran.r-project.org) with the stats and nlme packages.

3. RESULTS

3.1. Region-Based Analysis Fails to
Anatomically Finely Characterize the Effect
of ADAM30 on the Aβ Plaque Load
In APPSwe,Ind mice, Aβ plaques are most frequently observed in
the cerebral cortex and the hippocampal region. In a previous
study, we employed an region-based approach to show that
ADAM30 reduces Aβ load in the hippocampal region and more
globally, in the forebrain (including the hippocampal region
and cerebral cortex) (Letronne et al., 2016). Table 1 shows the
statistical comparisons between APPSwe,Ind-Cre-ADAM30 mice
and APPSwe,Ind-ADAM30 in the hippocampal region and the
cerebral cortex. A statistically significant effect was detected in
the hippocampal region but not in the cerebral cortex.

3.2. Simulation Experiments Validate
Voxel-Based Analysis Methodology
We investigated the best of the three candidate methods to
generate parametric maps that can accurately synthesize 3D high
resolution images to enable voxel-based analysis of 3D IHC
imaging.

Figure 3 illustrates Gaussian kernel-size selection using the
bootstrap error. For all three experiments, the bootstrap error
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correctly pinpointed to the Gaussian kernel size whichminimizes
the true error indicating that the bootstrap error may be used
to automatically select the optimal Gaussian kernel smoothing
when the expected marker load is not known. Pixel-based
Student’s t-tests were performed between sets of parametric
maps for each experiment and for the three approaches (image
binning alone, Voronoi tessellation followed by binning and
Gaussian kernel smoothing followed by binning). The three
approaches resulted in very different marker load estimations
and cluster detection results (Figure 4). Binning alone provided
noisy marker load estimation and it barely allowed detection of
differences between groups except for the experiment with the
highest disk density (3 = 160). While the Voronoi estimator
allowed to detect clusters, their shapes were not recovered
properly and, overall, the cluster sizes were overestimated as a
result of imprecise load estimation in the neighborhood of the
clusters. The Gaussian kernel estimation yielded smooth marker
load estimation and the cluster shapes were recovered. Across
all three experiments, Gaussian kernel smoothing followed by

TABLE 1 | Comparative statistics between APPSwe,Ind-ADAM30 and

APPSwe,Ind-Cre-ADAM30 using the region-based analysis.

ROI APPSwe,Ind-ADAM30 APPSwe,Ind-Cre-ADAM30

Cerebral cortex 0.51 ± 0.46 0.27 ± 0.09

Hippocampal region 2.63∗ ± 0.58 2.08 ± 0.42

Data is shown as mean Aβ load ± SD. *p<0.05, APPSwe,Ind-ADAM30 mice vs.

APPSwe,Ind-Cre-ADAM30 mice (t-test).

image binning provided parametric maps with the smallest true
error compared the true marker load and allowed to detect
clusters with the highest F1 score compared with the true
clusters (Table 2). This approach was applied to the 3D histology
study.

3.3. Voxel-Based Analysis Unveils the
Effect of ADAM30 in Sub-regions of the
Hippocampus and of the Cerebral Cortex
Following 3D IHC reconstruction (Figure 2) and parametric
map generation (Figure 5), voxel-based analysis was carried-out
in order to delineate more precisely the effect of ADAM30
over-expression in the brain of APPSwe,Ind transgenic mice.
Two significant clusters of reduced Aβ load were detected
in APPSwe,Ind-Cre-ADAM30 mice compared to APPSwe,Ind-
ADAM30 mice. This confirms the hypothesis that ADAM30
over-expression reduces the Aβ load (Figure 6). We did
not detect any cluster of higher Aβ load in APPSwe,Ind-
Cre-ADAM30 mice compared to APPSwe,Ind-ADAM30
mice.

The first cluster was identified in the lateral septal nucleus
(Figure 6C) and the cerebral cortex (Figures 6C,D) while
the second cluster was localized in the hippocampal region
(Figures 6E,F). In the cerebral cortex, we could identify the
cluster in the cingulate cortex areas 1 and 2 and the retropsplenial
agranular cortex. In the hippocampal region we could identify
the cluster in the dentate gyrus. The two detected clusters occupy
1.8% of the volume of the cerebral cortex and 7.1% of the volume
of the hippocampal region.

FIGURE 3 | Gaussian kernel standard deviation selection for the three simulation experiments. Bootstrap error (Top) and true error (Bottom) are shown for the

exacerbated group. From left to right: 3 = 40, 3 = 80, 3 = 160. The bootstrap error was calculated using 1000 bootstrap samples. Ten Gaussian kernel sizes were

tested, minima are indicated with a dashed blue line.
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FIGURE 4 | Cluster detection for the three simulation experiments. Each experiment consists of 10 images from the control group and 10 images from the

exarcerbated group. From left to right: Location of the true clusters, clusters detected via binning alone, Voronoi tesselation combined with binning and Gaussian

smoothing combined with binning.

TABLE 2 | Squared errors between the estimated marker load and the true

population marker load as well as cluster detection F1 scores are shown for each

simulation experiment and for each marker load estimation technique.

Method True error F1

3 = 40

Binning alone 8.26×10−5 0.13

Voronoi + Binning 8.27×10−6 0.44

Gaussian smoothing + Binning 4.25×10−6 0.74

3 = 80

Binning alone 1.52×10−4 0.07

Voronoi + Binning 2.67×10−5 0.55

Gaussian smoothing + Binning 1.44×10−5 0.76

3 = 160

Binning alone 3.01×10−4 0.37

Voronoi + Binning 8.14×10−5 0.64

Gaussian smoothing + Binning 4.48×10−5 0.73

Best scores appear in boldface.

3.4. Within-Cluster Investigation of Aβ

Plaque Size and Number Suggests
Different Mechanisms of Actions in the
Cerebral Cortex and Hippocampus
After detecting clusters of significantly reduced Aβ load, we
investigated if these differences were due to a difference in the
number and/or the size of Aβ plaques between the groups.

The Aβ plaque number was significantly reduced in the cortical
cluster in APPSwe,Ind-Cre-ADAM30mice (48 % drop in the mean
number of Aβ plaques, Student’s t-test, p < 0.001, Figure 7A).
It remained similar in the hippocampal cluster for both groups
(6% drop in the mean number of Aβ plaques in APPSwe,Ind-Cre-
ADAM30 mice, Student’s t-test, p = 0.3). Inversely, Aβ plaques
had a reduced size in the hippocampal cluster in APPSwe,Ind-Cre-
ADAM30 mice (hierarchical linear model, p = 0.004, Figure 7B)
whereas we did not see any significant difference in the cortical
cluster (hierarchical linear model, p = 0.55). Figure 7C shows
zooms of the retrosplenial cortex and the dentate gyrus of
APPSwe,Ind-ADAM30 and APPSwe,Ind-Cre-ADAM30 mice. Aβ

plaque number reduction in APPSwe,Ind-Cre-ADAM30 mice is
clearly apparent in the retrosplenial cortex but the few Aβ

plaques observed in the APPSwe,Ind-Cre-ADAM30 mouse are
rather large. On the other hand, in the dentate gyrus, an almost
continuous band of Aβ plaques is apparent in the APPSwe,Ind-
ADAM30 mouse while it seems thinner and more dislocated in
the APPSwe,Ind-Cre-ADAM30 mouse.

4. DISCUSSION

To our knowledge, the present study is the first to demonstrate
the feasibility of voxel-based analysis in 3D imaging of
immunostained brain tissue. A first challenge in performing
voxel-based analysis of the rodent brain at the microscopic
level is to produce the images. Specific challenges may arise
depending on how the tissue sample is produced and digitized.
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FIGURE 5 | Parametric map generation. Coronal view images from (A) an APPSwe,Ind-ADAM30 mouse and from (B) an APPSwe,Ind-Cre-ADAM30 mouse. Left:

segmented Aβ plaques (red) superimposed with the anatomical template. Right: parametric maps derived from the segmented image and superimposed with the

anatomical template. Parametric maps are shown with increasing values of Gaussian kernel smoothing standard deviation (from left to right: 90, 180, 270, 360 µm).

The Gaussian kernel standard deviation of 270 µm was selected for voxel-based testing (white rectangle).

Here, tissue sections were stained for Aβ plaques and then
reconstructed in 3D thanks to block-face photography which
served as a geometrical reference. 3D histology has demonstrated
its potential for high-throughput production of whole-brain
images of immunostained specimens so that group-studies
including dozens of animals can be performed in reasonable
time (Vandenberghe et al., 2016). Histology color images were
segmented with a supervised classification approach based on
color-texture features and WRF classification. This approach
has been shown to be robust to various artifacts which arise
during histology processing (non-specific staining, tissue folding,
debris on the glass-slide) (Vandenberghe et al., 2015). Finally,
segmented images were spatially normalized using block-face
photography because it provides good anatomical contrasts and
has been successfully used to construct anatomical templates
in previous 3D autoradiography studies (Dubois et al., 2010;
Lebenberg et al., 2010). In this work image processing steps were
adapted for 3D histology, but if brain 3D images were to be
acquired through light-sheet microscopy or reconstructed from
optical tomography, the most appropriate way to segment and
spatially normalize images may vary according to each imaging
modality specificities.

A second challenge is that microscopy images are not
naturally suited for voxel-based analysis. Indeed, it would
not be realistic to attempt voxel-based inference directly at
microscopic resolution because the inherent inter-individual
variability of brain microstructure would overshadow inter-
group variability. A crucial part in the proposed approach
consists in segmenting the marker of interest at microscopic
resolution and then in smoothing the segmented high-resolution
images to provide accurate voxel-based estimation of the marker
load at a lower resolution. For voxel-based analysis to be reliable,
the parametric map sample mean for a given group should
estimate the population mean as precisely as possible. Ideally, the
smoothing should not excessively alter the original images (i.e.,

low bias estimation) and it should give reproducible estimates
across individuals from the same group (i.e., low variance
estimation). The optimal Gaussian kernel size may vary from
one study to another according to, for instance, the density
of the segmented objects in high-resolution images and the
number of individuals included in the study. Here, we proposed
a bootstrap error approach which can be used to determine
the optimal Gaussian kernel size. In the simulation study, this
approach predicted the value of the optimal kernel size in
various experimental conditions and it allowed to approximate
the shape of the clusters. Future studies are warranted to
validate this approach under more varied conditions such as
when object shape or size varies between groups. Smoothing
the high-resolution segmented images results in a reduction of
image resolution. Because neighboring voxel values are highly
correlated, smoothed images can be binned to explicitly reduce
the image size. This also provides two important practical
advantages: it reduces the impact of small registration errors
that can arise during spatial normalization and it limits the
problem of multiple comparisons. Other methods could be used
to estimate themarker load. For instance, a limitation of Gaussian
kernel smoothing is that the amount of smoothing is constant.
In order to preserve more details in very dense regions while
smoothing sparser regions, an interesting perspective would be to
use adaptive Gaussian smoothing (Abramson, 1982) to select the
kernel size on a per voxel basis. Additional evidence is warranted
to determine the most appropriate spatial smoothing approaches
across various experimental conditions and markers of interest.

A third challenge which is common to preclinical voxel-based
studies is the small sample-size compared to most voxel-based
studies in humans. Small sample-size strongly hinders statistical
power when performing corrections for multiple comparisons
at the voxel-level. Voxel-based studies are often valuable in
animals because effect-sizes are usually expected to be larger in
than in humans due to for example, genetic engineering or the
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FIGURE 6 | Clusters detection and anatomical localization. (A) Permutation-based cluster mass distribution under the null-hypothesis. The red line corresponds to the

significance threshold at a risk α = 0.05. (B) 3D mesh representation of the two clusters where the Aβ load is reduced in APPSwe,Ind-Cre-ADAM30 mice compared to

APPSwe,Ind-ADAM30. Green corresponds to the cortical cluster and purple corresponds to the hippocampal cluster. (C–F) Top: T statistic values within the clusters

are shown in blue and overlaid with the anatomical template at selected coronal levels of the brain. Bottom: the MICe brain atlas at the same coronal levels. Clusters

are localized in (C) the retrosplenial area of the cortex (*), the lateral septal nucleus (◦), (D) the cingulate area of the cortex and (E,F) the dentate gyrus of the

hippocampal region (#).

administration of high doses of active compounds. In addition,
in preclinical studies populations are standardized according to
strain, gender age and weight which usually enable to rely on
smaller sample sizes than in humans. Here, to further mitigate
the risk of type II errors, we used permutation-based cluster
inference which takes advantage of the dependence between
voxels.

The developed voxel-based analysis was applied to dissect
the effect of ADAM30 over-expression on the Aβ plaque load.
In a previous study, ADAM30 was shown to be a major actor
in the metabolism of the Amyloid Precursor Protein which is
necessary for the appearance of Aβ plaques (Letronne et al.,
2016). Also, an region-based approach enabled to show that
ADAM30 significantly reduces the Aβ plaque load in the
hippocampus of APPSwe,Ind transgenic mice. Here, voxel-based
analysis enabled to precisely locate the effect of ADAM30 in
APPSwe,Ind mice in the cingulate cortex, the retrosplenial cortex,
the lateral septal nucleus and the dentate gyrus. Interestingly, the

cingulate and the retrosplenial areas of the cerebral cortex are
primarily involved in cognitive and memory function and the
dentate gyrus is responsible for spatial memory (Spreng et al.,
2009; Vann et al., 2009) and these areas are among the first
ones to undergo functional alterations in Alzheimer’s disease
(Lenartowicz and McIntosh, 2005; Pengas et al., 2010). Using
a single region-based analysis, a significant effect of ADAM30
was found in the hippocampus and a weak trend was found
in the cerebral cortex. Notably, voxel-based analysis detected
clusters that span over 1.8% of the cerebral cortex and 7.1% of
the hippocampal region. Therefore, in this study, the inability
of the region-based approach to detect the ADAM30 effect in
the cerebral cortex could be explained by the restricted spatial
extension of this effect. A decisive advantage of the proposed
voxel-based approach is its ability to detect local effects on the
brain microstructure. However, if changes between groups are
distributed over entire regions, the region-based analysis could
be more powerful than the voxel-based approach.
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FIGURE 7 | Comparisons of Aβ plaque number and size between APPSwe,Ind-ADAM30 and APPSwe,Ind-Cre-ADAM30 mice. (A) Boxplot with Aβ plaque number

within the cortical and the hippocampal clusters. (B) Violin plot showing the distribution of Aβ plaques size within the cortical and the hippocampal clusters. (C)

Zooms in 6E10 stained-tissue section images in the retrosplenial cortex and the dentate gyrus for both groups (scale bar: 200 µm).

Once clusters are detected, information from high-resolution
images can be exploited to explain the differences observed at
lower resolution. This is unlike circular analysis as the focus is
to explain differences at the microscopic scale, not to confirm
what has been already observed at the lower resolution. Here, we
found that ADAM30 reduces Aβ plaque number in the cingulate
and retrosplenial cortices while it reduces the Aβ plaque size
in the dentate gyrus. The lower number of Aβ plaques in the
cingulate and retrosplenial cortices of APPSwe,Ind-Cre-ADAM30
mice suggests that ADAM30 can prevent the formation of new
Aβ plaques in these regions. Nonetheless, Aβ plaques have
similar sizes in both groups which indicates that once seeded,
Aβ plaque growth is not altered by ADAM30 over-expression.
Contrastingly, in the dentate gyrus, the lower Aβ plaque size
indicates that ADAM30 over-expression could slow the Aβ

plaque growth in the dentate gyrus. Based on these results and the
fact that clusters are located in functionally connected regions,
it could be hypothesized that ADAM30 has an Aβ lowering
effect in the hippocampal region which could then lead to a

reduced spreading of Aβ plaques in tightly connected areas of
the cerebral cortex. Notably, Aβ plaques are very clumped in the
dentate gyrus whichmakes it hard to study them individually. Aβ

plaques are pathological aggregates without a defined structure
and several Aβ plaques in close proximity can grow until they
form a unique structure. Thus, studying the Aβ plaque size and
number in the dentate gyrus is inherently difficult and a definitive
conclusion about the effect of ADAM30 on individual Aβ plaques
formation and growth in the hippocampus requires additional
experiments.

There are multiple ways which could enhance and refine the
proposed methodology. The simulation study only considered
scenarios where the density of objects varies between groups. It
could be further expanded to include scenarios where shape or
size of objects varies or combinations of thereof. One limitation
of the 3D histology study is that the choice of a reference
brain to use as template was somehow arbitrary. A large body
of work in neuroimaging has been devoted to methods to
generate templates in an objectivemanner (Kochunov et al., 2002;
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Lepore et al., 2008). Future work could be undertaken to apply
such methodologies to generate templates for 3D immustained
imaging. Another limitation is that we have only explore one
way of inferring clusters. An interesting perspective would be to
investigate adjusted cluster size to account for non-stationarity in
the images (Salimi-Khorshidi et al., 2011). Besides, Random Field
Theory as well as additional cluster-based inference approaches
could be further explored. Finally, permutation tests with a
greater number of permutations or using tail-fitting approaches
could be further investigated (Winkler et al., 2016).

In conclusion, this work describes the first application of
voxel-based statistical analysis to 3D imaging of immunostained
tissue. Given the large content lying in microscopic images, this
work opens new avenues for the quantitative analysis of brain
microstructural adaptation to pathology.
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