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Abstract— Alzheimer’s disease is characterized by brain 

pathological aggregates such as Aβ plaques and neurofibrillary 

tangles which trigger neuroinflammation and participate to 

neuronal loss. Quantification of these pathological markers on 

histological sections is widely performed to study the disease 

and to evaluate new therapies.  However, segmentation of 

neuropathology images presents difficulties inherent to 

histology (presence of debris, tissue folding, non-specific 

staining) as well as specific challenges (sparse staining, 

irregular shape of the lesions). Here, we present a supervised 

classification approach for the robust pixel-level classification 

of large neuropathology whole slide images. We propose a 

weighted form of Random Forest in order to fit nonlinear 

decision boundaries that take into account class imbalance. 

Both color and texture descriptors were used as predictors and 

model selection was performed via a leave-one-image-out cross-

validation scheme. Our method showed superior results 

compared to the current state of the art method when applied 

to the segmentation of Aβ plaques and neurofibrillary tangles 

in a human brain sample. Furthermore, using parallel 

computing, our approach easily scales-up to large gigabyte-

sized images. To show this, we segmented a whole brain 

histology dataset of a mouse model of Alzheimer’s disease. This 

demonstrates our method relevance as a routine tool for whole 

slide microscopy images analysis in clinical and preclinical 

research settings. 

I. INTRODUCTION 

Aβ plaques (AP) and neurofibrillary tangles (NFT), two 

forms of misfolded protein aggregates, are the 

histopathological signatures of Alzheimer’s disease [1]. 

These neuropathological markers are extensively studied in 

human brain samples and animal models of Alzheimer’s 

disease and they represent important therapeutic targets. 

Thus, their precise quantification is a critical issue for both 

physiopathological research and drug development. 

Quantification is commonly performed by segmenting 

histology whole slide microscopy images and computing the 

proportion of positively stained pixels relative to the 

remaining brain tissue. 

In this context, global and adaptive thresholding are 

popular segmentation approaches for they are simple and 

fully automated [2, 3]. However these methods are prone to 

errors. Indeed, histological procedures often lead to the 

presence of artifacts, such as debris and tissue folding, which 

have similar color properties to the marker of interest. In 
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addition, histological staining can lead to important 

background non-specific staining. This hinders methods 

based solely on color to provide optimal segmentation 

results and, as neuropathological markers represent a tiny 

portion of the brain tissue, minor segmentation errors can 

strongly impact the overall quantification.  

To overcome these limitations, Chubb et al. [4] developed 

a supervised classification method called BioVision which 

uses color and local intensity information (mean of the R, G 

and B channels in a 16-pixels diagonal neighborhood). This 

latter feature is particularly helpful to account for noise in 

neuropathology images. For each class, BioVision estimates 

the joint distribution of the predictors using Gaussian 

Mixture Models. In the segmentation step, each pixel is 

classified with a Bayesian classifier. Class imbalance 

between neuropathological markers and the rest of the tissue 

can be accounted for by injecting prior probabilities of each 

class in the decision. Although numerous contextual features 

have been shown to be efficient for image segmentation, 

they are typically high-dimensional and because of the curse 

of dimensionality, density estimation for these features with 

Gaussian Mixture Models is hazardous. Thus, one limitation 

of BioVision is that it cannot adequately incorporate 

complex contextual features, such as texture descriptors, 

which could be beneficial to the classification task. The 

authors propose to use a post-processing step to remove 

incorrectly classified pixels based on shape and size features. 

However, pathological aggregates are not well-defined 

objects. As shown in Figure 1, they present irregular shapes 

and disparate sizes. Hence, misclassified pixels are hard to 

detect with morphological features and a robust one-step 

segmentation approach would be preferable.  

Here, we propose a supervised classification approach that 

incorporates color and texture features in order to better 

discriminate markers of interest from noise. We propose to 

use Weighted Random Forest (WRF) for robust 

classification and parallel computing to handle large whole 
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Figure 1. Immunohistochemistry of a brain sample from a patient with 
Alzheimer’s disease. Left: Aβ plaques appear as dark purple clusters. 

Right: neurofibrillary tangles appear in black over a blue Nissl 

counterstaining. Scale bar: 20 µm. 
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slide images. We show that this approach is more robust to 

artifacts and background signal than BioVision. 

Furthermore, we demonstrate our approach usability on  

large datasets by segmenting a mouse high-resolution 3D 

whole-brain histology dataset. 

II. MATERIALS AND METHODS 

A. Datasets 

The first two datasets were used as benchmarks for AP and 

NFT detection. A cortical brain tissue sample (GIE 

NeuroCEB brain bank) from a patient with confirmed 

diagnosis of Alzheimer’s disease was sectioned.  Ten tissue 

sections were stained for AP detection (4G8 

immunohistochemistry).  Two sections were stained for NFT 

detection (AT8 immunohistochemistry with a Nissl 

counterstaining). All sections were digitized using a Zeiss 

Axio ScanZ.1 at a resolution of 0.44µm. At this resolution, 

each image has a size of approximately 15000×15000 pixels. 

Fifty representative image patches (200×200 pixels) for each 

staining were then extracted from whole-slide images and 

each patch was manually segmented into 3 classes: marker 

of interest, tissue and glass slide background. For each 

staining, patches were split so that half of them were used 

for learning and model selection and the other half was kept 

for final validation and comparison between algorithms.  

The third dataset is a 3D reconstruction of the whole brain 

of an APP/PS1 mouse model of Alzheimer’s disease. To 

generate 3D whole brain AP histology, a set of 78 sections 

were stained for AP detection (6E10 

immunohistochemistry). Sections were digitized at a 

resolution of 0.44µm and the 2D images were reconstructed 

in 3D with an inter-section distance of 125 µm using a 

protocol described by Vandenberghe et al. [5]. The 

histological volume has a size of 24000×16000×78 voxels.  

B. Feature extraction 

Our approach includes color, local intensity and texture 

features. For color features, HSV was chosen over RGB as it 

is generally assumed that HSV color space is closer to 

human perception. Local intensity was computed for each 

pixel as the mean of R, G and B values in a disk-shaped 

neighborhood of a given radius. Images were convolved 

with a family of Gabor filters to extract texture information. 

Gabor filtering is among the most popular approach for 

texture classification and it has been shown to model the 

function of simple cells in the mammalian visual system [6]. 

The Gabor filter kernel consists of a sinusoidal wave 

multiplied by a Gaussian function. The Gabor filter response 

has a real and an imaginary component. Here, we used a 

family of filters with 4 orientations and 4 frequencies [7]. 

This led to a 36-dimensional feature vector for each pixel. 

As feature extraction can be particularly time consuming, 

large images were divided in small chunks that were 

processed in parallel (Fig. 2) [8]. In order to take into 

account chunk borders properly, each chunk was processed 

with additional width equal to the size of the convolution 

kernel. 

B. Weighted Random Forest 

Random Forest (RF) is an ensemble of fully grown 

decision trees [9]. Each classification tree is built using a 

bootstrap sample of the original learning set and only a 

subset of randomly selected features at each split of the tree. 

This allows RF to have a low variance compared to a single 

decision tree and eventually, a better performance. RF can fit 

highly nonlinear decision boundaries which makes it 

particularly useful to discriminate the markers of interest 

from artifacts. During tree growing, the feature space is 

partitioned at each node to minimize the cross-entropy, 

defined by: 

 𝐻 =  − ∑ 𝑝𝑗log (𝑝𝑗)𝑚
𝑗=1  

where 𝑝𝑗 is the proportion of pixels of class 𝑗 at a given 

node. 

One limitation of decision tree learning algorithms is that 

when the classification problem is highly imbalanced, they 

tend to be biased toward the majority class. To overcome 

this problem, we propose to use a weighted form of RF 

modified from Chen et al. [10]. Each class is assigned a 

weight 𝜔𝑗 . At a given node, we have a population of pixels 

𝑥𝑖 with 𝑖 = 1 … 𝑛, 𝑌 ∈ ℝ𝑛 their corresponding class labels, a 

vector of weights 𝑊 ∈ ℝ𝑛 such that 𝑊𝑖 = 𝜔𝑌𝑖
 and a matrix 

of indicator variables 𝑀 ∈ ℝ𝑚×𝑛 such that 𝑀𝑗,𝑖 = 1 if 𝑥𝑖 is 

of class 𝑗 and 0 otherwise. In (1), 𝑝𝑗 is calculated as a 

weighted proportion: 

 
 

Figure 2. Parallel processing of a whole slide microscopy image. 
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 𝑝𝒋 =  
𝑀𝑗𝑊

∑ 𝑊𝑖
𝑛
𝑖=1

 

If class weights are equal, this is equivalent to the classical 

RF. If the minority class is given a higher weight than other 

classes, this results in an increase of its influence in the tree 

building process. After growing an ensemble of 𝐵 trees 

{𝑇𝑏}1
𝐵, class prediction for any new pixel 𝑥 is done by 

weighted majority voting: 

 �̂�(𝑥) = arg max𝑗∈[1,𝑚] 𝜔𝑗 ∑ 𝐼(𝑇𝑏(𝑥) = 𝑗)𝐵
𝑏=1  

 

where 𝐼(. ) is the indicator function. For a good tradeoff 

between performance and computational burden, we chose 

𝐵 = 100 trees to build the ensemble models. 

C. Model selection via leave-one-image-out cross-

validation 

We investigated the effect of feature extraction and 

learning parameters on classification performance with a full 

factorial design. We hypothesized that the local intensity 

neighborhood radius could have an impact on classification. 

Furthermore, according to Bianconi et al. [11], who 

evaluated the effect of the Gabor filter parameters on texture 

classification, we considered the effects of the standard 

deviation of the Gaussian envelope and its spatial aspect 

ratio. Finally, we considered the effect of increasing the 

weight of the minority class in the WRF (while the weights 

of tissue and background classes were kept equal to each 

other). A factorial design with three levels per parameter 

was constructed, leading to a total of 81 combinations (Table 

1).  

As RF relies on bootstrapping the original data, it is 

tempting to evaluate model performance by computing an 

out-of-the bag estimate for each model. However, alike 

cross-validation, out-of-the bag estimation is valid if the 

observations used for estimating classification performance 

are independent of those used for constructing the model. In 

our case, neighboring pixels are correlated, hampering pixel-

level resampling to provide independent samples. In 

contrast, the 25 patches in the training set are nearly 

independent since they are not neighboring and were 

sampled from various tissue sections. We used these patches 

as blocks for cross-validation as follows. Let 𝑍 = (𝑋, 𝑌) be 

the learning set with 𝑋 the feature vectors for all pixels and 

𝑌 their corresponding class labels. For each image 𝑖 =
1, … , 𝑘  included in the learning set, let 𝑍𝑖 ⊂ 𝑍 be its subset 

in the learning set and let  𝑍′𝑖 =  𝑍 \ 𝑍𝑖 its complement. A 

model 𝑄𝑖(𝑍′𝑖) is constructed for each 𝑖 and used to make 

predictions �̂�𝑖 over 𝑋𝑖. This leads to a leave-one-image-out 

cross-validation scheme. Precision and recall were 

calculated for each class 𝑗 as, respectively, 𝑃(𝑌 = 𝑗 | �̂� = 𝑗) 

and 𝑃(�̂� = 𝑗 | 𝑌 = 𝑗). A mean cross-validation f1 score was 

calculated for each parameters combination 𝑡 as: 

 f1̅(t) =
1

𝑛
∑ 2 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡,𝑗 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑡,𝑗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡,𝑗+ 𝑅𝑒𝑐𝑎𝑙𝑙𝑡,𝑗

𝑛

𝑗=1
 

Using f1̅ ensures that all classes are equally important. 

Finally, the optimal combination corresponding to 

arg max 𝑓1̅̅̅̅ (𝑡) was chosen to construct the final model using 

the whole learning set. The final model was compared to our 

implementation of the BioVision algorithm using test set 

images. 

 

III. RESULTS 

Leave-one-image-out cross-validation scores for the AP 

and NFT datasets remained relatively stable (𝑓1̅̅̅̅  between 

0.87 and 0.90 for the AP dataset and between 0.89 and 0.90 

for the NFT dataset) using the previously defined parameter 

levels. Similarly to Bianconi et al. [11], we found that the 

smoothing parameter of the Gabor filter has a significant 

influence on classification. As shown in Figure 3a, there is a 

systematic bias between precision and recall when class 

weights are equal (i.e. for RF). Figure 3b, shows how this 

shift can be compensated by adjusting the minority class 

weight. Recall increases with weight which leads to an 

inevitable decrease of precision. Overweighting the minority 

class provided little improvement of the 𝑓1̅̅̅̅  score but the 

equilibrium between precision and recall is valuable to 

ensure that the overall quantification is unbiased. 

Table 2 shows the comparison of our approach with 

BioVision in term of classification performance on the 25 

test images for the AP and the NFT datasets. Both methods 

appropriately classified tissue and glass slide background.  

Our approach showed the best score for every class in both 

datasets. While both methods achieved good AP (Fig. 4a) 

and NFT segmentations (Fig. 4b), our approach is clearly  

Figure 3. (a) Systematic imbalance between precision and recall 

for AP classification with Random Forest. (b) Effect of 

adjusting AP class weight. 

 

(b) (a) 

TABLE I. LEVELS OF THE FACTORIAL DESIGN 

Parameter Values 

Local intensity radius 4, 8, 16 (pixels) 

Gaussian envelope standard deviation 1, 2, 3 (pixels) 

Gaussian envelope aspect ratio 0.5, 1, 1.5 

Minority class weight 1.0, 1.25, 1.5 
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more robust than BioVision in the presence of high 

background noise (Fig. 4c) and artifacts (Fig. 4d).  

The 3D whole brain dataset and its associated 

segmentation are shown in Figure 4e,f. Using parallel 

computing on a 16-core workstation, we were able to extract 

features and segment the whole slide image (24000×16000 

pixels) of a mouse brain section in 25 minutes. Computing 

time speed-up was nearly linear with the number of CPUs 

which indicates that segmentation time for large images can 

be significantly decreased using computer clusters. 

IV. DISCUSSION AND CONCLUSION 

Our contribution to neuropathology image analysis is to 

provide an accurate and highly scalable segmentation 

method which is directly applicable for clinical and 

preclinical research. This one-step classification approach 

prevents the need for automatic or heavy manual post 

processing to remove incorrectly classified pixels. However, 

it should be noted that, in order to get a robust model, the 

learning set has to be as much representative as possible of 

the different structures in the neuropathology images 

including noise and artifacts. We believe that our approach 

could be applied more generally for microscopy image 

segmentation when objects of interest are sparse and images 

are noisy. Future work could be undertaken to compare 

various contextual descriptors, such as Gabor features 

variants [12] and co-occurrence matrices [13] in term of 

classification performance and computing time. 
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Figure 4. Segmentation results. (a-d) Comparisons of BioVision and our 
approach on test set images for AP and NFT detection: AP and NFT 

classes appear in white, tissue class in gray and background class in 

black. (e) 3D reconstruction of a mouse brain with AP appearing in 

brown and (f) the corresponding segmentation. 

TABLE II.  F1 SCORES FOR Aβ PLAQUES (AP), NEUROFIBRILLARY TANGLES (NFT), TISSUE (TS), BACKGROUND (BK) AND MEAN 

F1 SCORE (MN) FOR THE TWO BENCHMARK DATASETS. 

Methods 
AP dataset f1 scores  NFT dataset f1 scores 

AP Ts Bk Mn  NFT Ts Bk Mn 

BioVision 0.68 0.96 0.95 0.87  0.49 0.95 0.97 0.80 

Proposed approach 0.76 0.98 0.96 0.90  0.56 0.96 0.98 0.83 
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