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Generalized Euler equations for linked rigid bodies
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We derive the equations of motion for linked rigid bodies from Lagrange mechanics and from
Gaufl’s principle of least constraint. The rotational motion of the subunits is described in terms of
quaternion parameters and angular velocities. Different types of joints can be incorporated via axis
constraints for the angular velocities. The resulting equations of motion are generalizations of the

Euler equations of motion for a single rotor.

PACS number(s): 03.20.+i, 02.70.Ns

I. INTRODUCTION

During the last three decades a considerable amount
of work has been devoted to the study of complex me-
chanical systems. In this article we are concerned with
classical systems consisting of assemblies of point masses.
Such systems are used to describe molecules in molecular
dynamics simulations, where the point masses represent
atoms or small groups of atoms. In such simulations,
stiff bonds—corresponding to fast vibrations—are com-
monly replaced by rigid connections to improve the ef-
ficiency of the numerical integration [1]. Basically there
are three methods to describe the motion of such con-
strained systems: (a) the method of constraint forces,
(b) a Lagrange formalism in terms of generalized coor-
dinates and velocities, and (c) rigid body dynamics in
terms of positions, angles, translational velocities, and
angular velocities. It should be noted that (b) does not
include (c) since the angular velocities cannot be written
as time derivatives of angular coordinates, i.e., they are
not generalized velocities suitable for the Lagrange for-
malism. Although Lagrange mechanics seems to be the
obvious choice to describe any mechanical system with
holonomic constraints, it has not been widely used to de-
scribe the dynamics of linked rigid bodies. The reason
is that the equations of motion can become very bulky
and inconvenient to deal with in numerical calculations if
the generalized coordinates are not chosen carefully [2,3].
Because of its conceptual simplicity and versatility, the
method of constraint forces [4-6] has been most widely
used until now. An exception is the treatment of discon-
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nected rigid bodies, which can be conveniently described
by the well-known Euler equations of motion for a spin-
ning top [7-10].

The purpose of this paper is to generalize the Euler
equations of motion to the case of linked rigid bodies,
maintaining the same analytical and numerical advan-
tages. This is achieved by describing angular positions
in terms of quaternion parameters and rotations in terms
of angular velocities. The equations of motion are de-
rived from Lagrange mechanics and, independently, from
Gauf}’s principle of least constraint.

II. EQUATIONS OF MOTION
A. Orientation and angular velocity

Before deriving the equations of motion for linked rigid
bodies, we consider first a simple rotor, consisting of N
mass points. The orientation of such a rotor is commonly
described by three Euler angles. However, this descrip-
tion has the disadvantage that the equations of motion
for the rotor contain terms that become singular for cer-
tain orientations. A description that does not lead to sin-
gularities can be based on quaternion parameters [8,1].
A comprehensive treatise on quaternions and rotations
may be found in [11].

Let €; (j = 1,...,3) be the basis vectors of the
laboratory-fixed frame, and €. (: = 1,...,3) those of
the body-fixed frame. The relation between the two sets
of basis vectors is given by

€; = Dij(¢a)&;, 1)

where D;; is a rotation matrix with (D,-_,-)'1 = Dj;. Here
and in the following, we assume summation over pairwise
like indices. The rotation matrix depends on four quater-
nion parameters ¢, (o = 0,...,3), which are subject to
the normalization condition g2 + ¢% + ¢2 + ¢2 = 1. Its
explicit form reads [11]
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95 +af — 45— 43 2(~dogs + 4192)
93 +493—ai — a3 2(—g0a1 + q293) |- (2)
2(gogq1 + g293)

D(ga) = 2(qog3 + 9192)

2(—qog2 + 9193)

One can derive linear relations between the components
of the angular velocity and the time derivatives of any
set of angular variables by using the orthogonality of D.
For quaternion parameters one obtains ([13], Appendix
C)

I
Il

wi = Aip(da)ip, w; = Ajs(da)is,
da = Baj(gs)wj, da = Bg;(a)w;],

i,j=1,...,3, a,8=0,...,3, (3)

where w; and w] are the components of the angular ve-
locity in the space-fixed and the body-fixed coordinate
system, respectively:

wi = Djj(ga)w;- (4)
The matrices A and B are given by

—-q1 qo —4q3 Qq2
A=2|-¢ ¢ ¢ —a |,
—q3 —q2 q1 Qo
(5)
—q1 —q2 —q3
1 _
B=- Go I3 —Q
2 —q3 qo 1
g2 —q1 do

The corresponding matrices A’ and B’ read

—q1 4qo 943 —Qq2
—q2 —4q3 qJo Q1 »
—q93 42 —q1 Qo
(6)

—q1 —q2 —q3
B=l| ®© - ¢
2 3 qo —q1
—q2 q1 qo

B. Equations of motion from Lagrange mechanics

To describe the dynamics of a chain of linked rigid sub-
units with f degrees of freedom, we define a suitable set
of generalized coordinates z, (a = 1,...,n.) and veloc-
ities u; (i = 1,..., f), which are in general not the time
derivatives £,. The z, are the Cartesian coordinates of
an arbitrary reference point, defining the position of the
chain as a whole, and quaternion parameters, defining
the orientation of each subunit. The use of quaternions
necessitates the addition of quadratic normalization con-
ditions

Xj,aﬂmallﬂ =1, J=1,...,s, (7)
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2(qo92 + 9193)

@ +d - ¢ —d}

r

with X;,3 = X3, and s = n.— f. In analogy to Eq. (3)
we assume the linear relations

u; = Aig(za)ip, (8)

&g = Bgj(Ta)y; (9)

to be valid for all z, that fulfill the normalization con-
dition. By inserting (9) into (8), one can see that
Aia(23)Baj(zy) = 0i; for all zg,z,. [One might be
tempted to insert (8) into (9) and conclude that also
B,i(zy)Aig(xzs) = 6ap. This is not true, however, since
the product Bgi(z,)Aig(xs) maps only normalized zg
onto themselves.] Inserting (9) into the time derivative
of (7), one obtains the condition X jg,Bgj(ca)ryu; = 0.
Since the components of the velocities u; can take any
value, it follows that

J=1,...,s, j=1,...,f

(10)

X1,6vBpj(Ta)zy = 0,

The Cartesian positions of all mass points are functions
of the generalized coordinates z, and a set of reference

positions 7} = r;(t = 0):

ri = ri(Za(t);T})- (11)

The relation between Cartesian and generalized velocities
is obtained by differentiating the Cartesian coordinates
r; with respect to time and using (9):

fi = C,‘j (.’L‘a)u]', (12)
where the matrix C;; is given by

87‘,’
oz B

Cij(za) = 5—Bp;(Za)- (13)
In Cartesian coordinates the Lagrangian of the system
reads L = 1M;;#:7; — V(r), where My; = M;4;5 is a di-
agonal mass matrix. In terms of generalized coordinates
one obtains

1 67‘,‘ . Brj

= M g i -V
L 2M‘IJ ama Ta amﬁ zﬁ [rk (z‘Y)]

1
——2‘/\.] (X_]"",il:,_,x,, — 1). (14)

The auxiliary coordinates A; have been introduced to
account for the normalization conditions. The derivatives
of the Lagrangian are

oL 1 oL

— = (X v v — y - =O, 15
Ok 2( K,puvTul 1) g (15)
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oL _ . 0%r; i Q'J_w
oz, = "Oz,0z, " 0Ozp s
ov 8r.~
- 67‘,’ 31:“ - AJXJ,uua:u’ (16)

oL M. or; (91']

_—— = 17
6:1':“ 1'73.’1: 3:175 ( )

Writing the time derivative of the generalized momentum
as

doéL . %r; i %m Or; d 8r1m

dt 8z, = Y 0z,0zo “Ozs © | Y0z, dt|dzg ")’
(18)

and introducing the notation F; = —3V/dr; for the

Cartesian forces, we obtain the Lagrange equations of
motion

Or; d [Or; . ory
- — = Aj X7 Ty, 19
K oz, dt [&cﬁ ] Fkaw,, T T ® (19)
Xspzuz, = 1. (20)

The equations of motion for the dynamical variables z
and u; are found by multiplying Eq. (19) by Buk(za),
summing over u, and using the definition (13) of the ma-
trix C,'j:

d
M;;iCik(za) —

5 [Cit(@s)u] = FrnCnic(2), (21)

a = Bai(zﬁ)ui~ (22)

Due to Eq. (10) the terms containing A; do not con-
tribute. The normalization conditions (7) are automat-
ically fulfilled by Eq. (22). The time derivative of the
matrix C is given by

. d 87‘,’
Cij = 7 [5;304} = Ajjrr, (23)
where
327‘,' or; 6Baj
A“jk = l:m «j 5;; 8.’1,‘5 ] Bﬁk. (24)

To emphasize the similarity to Euler’s equations of mo-
tion for a single rigid body, Eq. (21) can be cast in the
form

d
7 193 (Za)us] + &ijk(zp)ujtn = FrnCrmr(2y),  (25)
where

0;j(za) = MuCriCij, (26)
&ijk(zg) = —A1ij MinCri- (27)

The quantity ©;; can be considered as a generalized ten-
sor of inertia.

C. Equations of motion
from Gaufl’s principle of least constraint

The equations of motion for a system of linked rigid
bodies may also be derived from Gauf’s principle of least
constraint. This principle states that the function

o7 =y My (=00 (i —a) ()

is a minimum with respect to the actual accelerations
7; under the given constraints, with a; = F;/M; being
the accelerations due to the external forces. Obviously,
if no constraints are present, the principle yields New-
ton’s equations of motion, M;#; = F;. To include the
constraints we write the Cartesian accelerations as time
derivatives of the generalized velocities by using Eq. (12):

= 3 (Cis(ap] = Cij(ze)is + Cus(ep)uy
(29)

Fi(uj, i) =

The Cartesian accelerations depend on the generalized
accelerations u; and the generalized velocities u;. In-
serting (29) into (28) and minimizing g(#;(u;,%;)) with
respect to the generalized accelerations 4 yields again
the equations of motion (21).

Gaufl’s principle of least constraint allows us to rewrite
the equations of motion (21) in a form which is more
useful for numerical purposes, where the generalized ac-
celerations must be calculated explicitly as a function of
the velocities and coordinates. Using the square root of
the mass matrix M;; in (28),

M} = diag(+/M3), (30)

Gaufl’s principle takes the form
. 1 1. 2 ..
g(F) = 2 [M= (- a)] = minimum. (31)

Here r and a are the 3N-dimensional vectors whose com-

ponents are given by 7; and a;, respectively. Inserting
(29), which in matrix form reads
f = C(x)u+ C(x)u, (32)

yields a quadratic form to be minimized with respect to
u:

d() = % [G(x)t — b(x,u)]® = minimum.  (33)

The matrix G and the vector b are given by

G(x) = M3C(x), b(x,u) = Mia— C(x)u]. (34)
Equation (33) has a unique solution for u if the columns
in C are linearly independent [12], i.e., if C has column
rank f, with f being the number of degrees of freedom.
This is the case if the generalized velocities u; are inde-
pendent variables, as it has been assumed. The solution

for 1 can formally be written as
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u = G*(x)b(x,u), (35)

where G™ is the generalized inverse, or Moore-Penrose
inverse of G [12]. In a numerical integration scheme,
(35) can be used to calculate the generalized accelerations
explicitly.

The fact that the generalized accelerations w; are the
minimum of a quadratic form allows us to use efficient
and numerically stable solution procedures which are well
established in the field of least-squares problems [12].
The straightforward solution of (33), which is equivalent
to writing G* as

Gt = (CTMC)'CTM3, (36)

can lead to numerical instabilities if the positive definite
matrix CTMC is ill conditioned. This is indeed the case
for large chains, where the size of the eigenvalues varies
from the mass of a single mass point to the mass of the
whole chain.

III. EXAMPLES
A. Translation and rotation of a single rigid body

If the u; are Cartesian velocities, the matrix C;; is
given by the unit matrix and Eqgs. (21) and (22) reduce
to Newton’s equations of motion:

Miji; = Fi(ze), (37)
dr = uk. (38)

In the case of free rotational motion of a rigid body
around some reference point, which is assumed to be
the origin, we choose the generalized velocities and co-
ordinates to be the components w; of the angular veloc-
ity and the quaternion parameters g, respectively. The
Cartesian coordinates of the mass points are given by

i,j=1,...,3,
(39)

rﬂ,i(qﬂ) = Dij(Qa)"'i,j, s=1,...,N,

where r, ; are the Cartesian coordinates of mass point s
in the laboratory-fixed frame and r;,]- are those in the
body-fixed frame. N is the number of mass points in
the rigid body, and D;;(q.) are the coefficients of the
rotation matrix (2).

The constraint matrix C;; defined in (13) has the block

structure

C,
C.
c=| .| (40)

Cn
The block matrices C, ;;j can be derived from (13),

_ 31‘_.,,,'

Csij =
s 84;3

!
Bg; = €k Driry | = €ijkTa k> (41)

using 7, ; and Bg; from (39) and (5), respectively. By
€ijx we denote the completely antisymmetric Levi-Civita
tensor. The matrix C expresses the relation %F, =W X
7s. Inserting C into the equations of motion (25) yields
the familiar form

d

dt
with ©;; being the tensor of inertia and T; being the
torque:

[©ijw;] = T; (42)

0;; = M Cr;iCyj

N
=Y M, ([r2y 472y +risl0 —rairas),  (43)
s=1
N
T,' = F]C.-,z = Z _fijkrs,kFa,j' (44)
s=1

F, . is the force on mass point s. Straightforward calcu-
lation shows that the term quadratic in the velocities in
(25) vanishes.

Alternatively, one can choose the angular velocities w)
in the body-fixed frame as generalized velocities. The
matrix C;; has the same block structure as C;;, where
the blocks are now given by

vij = CaikDik- (45)
The equations of motion are the Euler equations of mo-
tion in the rotating frame:

d
7 (059 + €mwi Ot = T, (46)
Here ®§j = Msz,’ciC{j is constant and equal to the tensor
of inertia in the body-fixed frame, and T = F;Cj; is the
torque in the body-fixed frame.

B. Linked rigid bodies
1. Constraints for the angular velocity

In the following we consider chains of rigid subunits in
which neighboring rigid bodies can only rotate relative
to each other. The generalization to links with transla-
tional degrees of freedom is straightforward. The con-
nection between two rigid bodies can have two types: a
common point (free relative rotation with three degrees
of freedom) or a common axis (relative rotation with one
degree of freedom). In addition, each rigid body by it-
self may have three degrees of freedom, or it may be a
linear assembly of mass points with only two degrees of
freedom. Combining all possibilities, one finds that three
types of relative motion must be considered: (a) rotation
about a specified axis (one degree of freedom), (b) rota-
tion with an angular velocity perpendicular to the axis of
a linear assembly (two degrees of freedom), and (c) free
rotation with three degrees of freedom. All three cases
can be treated in a similar way by writing the angular
velocity of a rigid body relative to its anchor point as
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w; = Nijjuj, ..,d <3, (47
N Nji = 6i5, (48)

i=1,...

where N;; is a matrix whose orthonormal column vec-
tors span the subspace to which the angular velocity is
constrained. Note that the generalized velocities are the
u;. In case (a), N;; is a unit vector along the common
axis. For (b), N;; has two orthonormal column vectors
which are both perpendicular to the axis of the linear
rigid body, and in case (c) N;; is simply the unit matrix.
It should be noted that the matrix N;; is in general time
dependent.
The constraint matrix C;; is constructed as

Cij = CY Ny, (49)

where Ci(,(:) corresponds to unconstrained rotation.

2. Comnstraint matric for linked rigid bodies

As an illustration we consider a system of four mass
points 1,...,4 (see Fig. 1), where the subsets {1,2,3} and
{2,3,4} form rigid subunits. This system has seven de-
grees of freedom: three degrees of freedom for the trans-
lation of the whole system, arbitrarily specified by the
translation of mass point 1, three degrees of freedom for
the free rotation of subunit {1,2,3} around mass point
1, and one degree of freedom for the rotation of sub-
unit {2,3,4} around the axis 2-3. The positions of the
mass points are given by [in the following we abbreviate

D;;(zq(t)) etc. as D;;(t)]

71 = R, (50)
7y = 71 + Dy (t)(Fy — 71), (51)
73 = 71 + Dy(t) (75 — 77), (52)
Fy = 72 4+ Da(t)(Fy — 73). (53)

We define the generalized coordinates to be the Carte-
sian coordinates (X,Y, Z) of the reference point R and
two sets of quaternion parameters, (q(l,, q}, qé, qé) and
(g3, 43,42, 43), specifying the orientation of the subunits.
In contrast to the case of rotational motion of a single
rigid body, it is convenient to write the equations of mo-
tion for linked rigid bodies in the laboratory frame. The

u—ry
H

FIG. 1. A chain consisting of two rigid subunits.

velocity variables are then (X,Y,Z), (wil),w(l),wgl)),
and the angular velocity along the 2-3 axis w(®.
The matrix C has the block structure [compare to (40)]

1 0 0

100
c=|1C2 O[30 |=coON, (59
1Cs 0 00N
1 Cy; Coy 2
where C;; and N3 are given by
0 —zy  ¥ij ";:
Ciy=-— 2;5 0 —z;; |, Ne=| ny |,
~¥i; T O nZ?
(55)

with z;; = x; — z; etc., and 723 being the unit vector
along the axis 2-3. The superscript (0) in Eq. (54) refers
to unconstrained rotations.

To find an explicit form for the time dependence of the
constraint matrix, it is convenient to use a further fac-
torization. It is easy to see that for our example system

1000 1 0 0
(0) _ 1100 0 Clz 0 — 1.000)
C7=11010 0Cy o |=LCT. (56)
1101 0 0 Cyy

The matrix C(® relates the generalized velocities u to
the relative Cartesian velocities of each mass point with
respect to the center of rotation of the respective rigid
body, whereas L reflects the connectivity of the chain.
The time dependence of C(® can be conveniently ex-
pressed as

EO(t) = UEHE () VT (1), (57)
where U(t) and V(t) read

1 0 0 0
_ | 0Dy(t) O 0
U®)= 0 0 Dy O ’
0 O 0 D(t)
(58)
1 0 0
V()= 0 D.i(¢) O
0 0 D@
Similarly the time dependence of N is given by
N(t) = W(H)N(0), (59)
with
10 0
wit)=(0o1 o |. (60)
0 0 D,(2)

With these relations, it is easy to calculate C(t) and also
C(t), since the time dependence is entirely due to the
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time dependence of the rotation matrices D(t) [13].

Any open chain of linked rigid bodies can be treated
in the way dicussed above, the main difference being the
structure of the matrix L, which depends on the topology
of the chain. Closed chains require a modified description
for two rigid units within each ring.

IV. CONCLUSIONS

We have derived the equations of motion for classical
systems of linked rigid bodies using the familiar concept
of Lagrange mechanics and Gauf}’s principle of least con-
straint. Our approach makes it possible to treat complex

molecular systems with constraints using the actual de-
grees of freedom instead of Cartesian coordinates and
constraint forces. Special cases such as linear subunits
and rotations around specified body-fixed axes have been
considered. For the case of a single rigid body we find
again the well-known Euler equations of motion. The
choice of quaternions for the description of rotations facil-
itates the numerical solution of the equations of motion,
which we will describe elsewhere. Advantages similar to
those for systems of single rotors [9,10] can be expected.
We also expect further advantages in comparison with
methods based on constraint forces, such as easier paral-
lelization.
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