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Influence of constraints on the dynamics of polypeptide chains
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D-52056 Aachen, Germany
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Based on the equations of motion for linked rigid bodies that we derived recently [G. Kneller and
K. Hinsen, Phys Rev. E 50, 1559 (1994)], we develop a technique for the simulation of molecular
systems with constraints. We apply it to analyze the importance of the various degrees of freedom of
a polypeptide chain for its dynamics. We find that keeping the peptide planes rigid does not change
the dynamics much, but that the bending degrees of freedom of the a-carbon bond geometry are
essential for large-amplitude backbone motions. This means that the ¢ and ¢ angles commonly used
to characterize protein conformations and protein backbone dynamics do not constitute a sufficient

set of variables to perform dynamical simulations.

PACS number(s): 02.70.Ns, 87.15.He

I. INTRODUCTION

One of the major goals in the development of simu-
lation techniques is the reduction of the computer time
needed to run simulations of complex systems. The use
of constraints to eliminate fast motions and thereby al-
low larger time steps in molecular-dynamics (MD) simu-
lations is already a standard technique [2]. Besides, the
use of rigid subunits in macromolecules holds the promise
of allowing a simplification of the force fields [3]. Since

the calculation of the forces accounts for most of the CPU

time in MD simulations, this approach deserves serious
consideration.

The most commonly used method to implement con-
straints is known as SHAKE [4]. SHAKE uses the same
set of Cartesian coordinates that describes the atomic
positions of the corresponding unconstrained system. A
list of bond constraints can be imposed by computing
for each time step constraint forces from a system of
quadratic equations describing the constraints. This set
of quadratic equations must be solved iteratively. For
strongly interdependent constraints the convergence can
be very poor. In some cases it is impossible to calculate
constraint forces from the list of bond constraints: lin-
ear rigid molecules with more than two atoms and pla-
nar rigid molecules with more than three atoms. In these
cases and in the case of three-dimensional rigid molecules
with more than four atoms, one may also have redundant
constraints, which yield an incorrect number of degrees
of freedom. An improved method to handle such systems
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has been developed [5], but it is not in general use. In this
method the constraints are split into bond constraints for
2, 3, or 4 “basis atoms,” and linear constraints, which re-
late the positions of the remaining atoms to those of the
basis atoms. Chains of topologically linked rigid units
cannot be treated at all with the iterative methods de-
veloped so far [6]. Examples for such systems are double-
ring structures in which the two rings have a common
axis, e.g., the protein side-chain thyrosin, and the so-
called “calixarenes,” which basically consist of a closed
chain of benzene rings.

One possibility to avoid the problems of iterative meth-
ods is the use of generalized coordinates that correspond
to the remaining degrees of freedom of the constrained
system. This is a common approach in theoretical clas-
sical mechanics [7], but it is rarely used for numerical
calculations. The commonly quoted reason is that find-
ing the right set of coordinates and deriving the equa-
tions of motion for them is too complicated and has to
be redone for each new system or set of constraints to
be studied. Some of the attempts in this direction [9,10]
seem to confirm this view. However, a realistic simulation
of n-butane using generalized coordinates has been pub-
lished in [11], but it should be noted that the equations
of motion derived in that paper are incorrect in that they
do not take into account the normalization conditions for
quaternions.

In a recent paper [1], we have derived equations of mo-
tion for topologically linked rigid bodies, which represent
a very general class of geometrical constraints. We have
also shown how a set of generalized coordinates can be
constructed for such systems. Our approach covers all
atomic systems with distance constraints, excluding for
the moment closed chains, which will be treated later. In
this paper, we will show how a general and easy-to-use
simulation algorithm can be constructed on the basis of
this theoretical treatment. Taking a list of constrained
distances as input, this algorithm will automatically find
the appropriate generalized coordinates and integrate the
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corresponding equations of motion. It makes it possi-
ble to simulate complicated constrained systems without
manual intervention.

As an application, we analyze the influence of vari-
ous sets of constraints on the dynamics of a polypep-
tide chain. An earlier study [8] of the effect of freez-
ing all bonds and all bond angles on the dynamics of
a protein concluded that while it is safe to freeze cova-
lent bonds, freezing all bond angles leads to significant
changes in dynamical quantities. In this work, we com-
pare two more physically motivated sets of constraints:
rigid peptide planes, and a model that leaves only the ¢
and v angles (i.e., rotations around the peptide bonds)
unconstrained, thus corresponding to the set of variables
commonly used to describe protein backbone conforma-
tions. Simulations in these coordinates have been used
successfully in crystallographic structure refinement [12].
‘We will show, however, that they do not constitute a suf-
ficient set of variables to perform dynamical simulations
of helices, whereas keeping the peptide planes rigid does
not lead to significant changes.

II. IMPLEMENTATION
A. Equations of motion

In [1] we have derived equations of motion for flexible
chains made of rigid subunits, each consisting of two or
more atoms. This derivation is based on the following
consistent choice of generalized coordinates and veloci-
ties: (i) The orientation of each rigid subunit is described
by four components of a normalized quaternion. (ii) The
rotation of each rigid subunit is described by a set of an-
gular velocity components. (iii) The position and transla-
tional velocity of the whole chain in space is described by
the position and velocity of an arbitrary reference atom.
In analogy to the treatment of conventional rigid-body
dynamics [7], we use angular velocities as generalized ve-
locities for rotational motion instead of the time deriva-
tives of the angular coordinates. As we have described in
[1], the matrix Ci, (¢ = 1,...,3N;k = 1,..., f), which
maps the generalized velocities u onto the Cartesian ve-
locities 7; via

7; = Cik(Ta) U, 1)

then has a simple structure. It depends on the positions
of all atoms and reflects the connectivity of the chain
as well as the types of joints between the subunits. Here
and in the following, we assume summation over pairwise
like indices. The chain is supposed to consist of N atoms
and have f degrees of freedom. Its configuration is de-
scribed by the generalized coordinates z, (& = 1,...,n.),
which contain the three Cartesian coordinates of an arbi-
trary reference atom and one normalized quaternion for
each rigid subunit. Due to the use of quaternions, n.
is larger than f, but the coordinates x, are subject to
n. — f normalization conditions. The generalized veloci-
ties u; (I =1,..., f) comprise the three Cartesian veloc-
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ities for the reference atom and a set of angular velocity
components for each rigid subunit.

Writing the Lagrangian of the system in the coordi-
nates described above and taking into account the nor-
malization conditions for the quaternion parameters, we
derived the following equations of motion:

MijCun(ea) 3 [Cat(ap)u] = FConi(:),  (2)
:ia = Bai(a:ﬁ)u,-. (3)

The matrix M;; is diagonal and contains the masses of
all atoms. The matrix By; (@ = 1,...,n1=1,...,f)
relates the generalized velocities to the time derivatives
of the generalized coordinates. Due to the use of quater-
nions these relations can be written in a singularity-free
form. The construction of the matrices Bg; is described
in detail in [1]. In the following we will show how these
equations of motion can be used to design an integrator
for an arbitrary atomic system with distance constraints
that avoids many of the problems arising with iterative
methods such as SHAKE [4,5].

B. Topological analysis

A crucial step in the implementation of our method
is the calculation of the matrix C defined by (1), which
gives the relation between the generalized velocities of
the flexible chain and the Cartesian velocities of its con-
stituent atoms. This matrix depends on the current po-
sition of all atoms (which are easily available) and on
the constraints being imposed. As has been shown in
Sec. III B of [1], the matrix C contains information about
which atoms are part of which rigid subunit(s), as well
as about the way in which these subunits are linked to
each other. Obtaining this information manually for a
nontrivial system is a formidable and error-prone task.
It is better to leave this work to the computer.

We have implemented an automatic topology analyzer
that takes a list of constrained distances as input and
finds all rigid subunits in the system, as well as the con-
nections between them and the degrees of freedom for
each subunit. The presence of redundant distance con-
straints in the list poses no problems, which it does for
algorithms that satisfy all constraints iteratively [4]. Al-
though the restriction to distance constraints may seem
a limitation, almost all types of constraints that are typi-
cally encountered in the simulation of molecular systems
can easily be expressed in terms of a list of distance con-
straints. An even larger class of constraints can be han-
dled with the addition of massless dummy atoms to the
system. An example of a constrained system that can-
not be described in this way is a linear molecule whose
bond lengths are not fixed (i.e., there are only angle con-
straints, but no bond-length constraints). It is possible
to extend the topology analyzer for such systems if the
need arises.

The input to the topology analyzer is the list of dis-
tance constraints and the starting configuration of the
system; the latter is needed only to detect linear con-
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(a) 3 degrees of freedom (b) 2 degrees of freedom

figurations of more than two atoms. The output of the
topology analyzer is a list of flexible chains and a list
of unconstrained atoms. Each flexible chain is described
by a list of rigid subunits. For each rigid subunit, the
analyzer determines the type of motion relative to the
subunit to which it is attached, and the atom(s) it has
in common with that subunit. There are four possible
types of motion (see Fig. 1): (i) Translation of one ref-
erence point in every chain. (ii) Rotation with three de-
grees of freedom. This means that the subunit has one
atom in common with the subunit to which it is attached.
(iii) Rotation with two degrees of freedom. This occurs
for rigid subunits that are linear and therefore have no
degree of freedom corresponding to rotation around their
own axis. (iv) Rotation with one degree of freedom. This
means that the subunit has an axis (two or more atoms
along a straight line) in common with the subunit to
which it is attached. The only degree of freedom is rota-
tion around this axis.

1. Finding the rigid subunits

The first step in the topological analysis is the deter-
mination of rigid subunits, which are constructed atom
by atom from the list of constraints. The algorithm is
based on two rules: (i) Three atoms whose three pair
distances are constrained form a rigid unit. (ii) An atom
whose distance from at least three atoms of a rigid unit
is constrained is itself part of the same rigid unit. In
practice these simple rules are complicated by additional
considerations for groups of more than two atoms located
on a line, and by the bookkeeping needed to treat atoms
that are part of more than one rigid subunit correctly. In
the following exact description of the algorithm, the word
“linked” refers to two atoms whose distance is fixed, ei-
ther because a distance constraint was given in the input
list, or because both atoms are part of the same rigid sub-
unit being constructed: (1) Find a group of three atoms
linked to each other. At least one of the three atoms
must not already be part of a rigid subunit. These three
atoms form a new rigid subunit. If no such group can be
found, continue with step (4). (2) Find an atom linked
to three atoms of the rigid subunit under construction.
The three atoms must not lie on a straight line. Add the
new atom to the subunit, and add the distances between
it and all previous atoms of the subunit to the list of

(c) 1 degree of freedom

FIG. 1. Illustration of the different types
of joints describing the links between suc-
ceeding rigid bodies n» and n + 1., From left
to right: (a) the joint allows for free rotation,
(b) the joint allows for free rotation, but due
to the linear structure of unit n + 1 its angu-
lar velocity must not have a component along
its axis, (c) the angular velocity of unit n +1
must be parallel to the common axis of unit
n + 1 and n.

constrained distances. Repeat this step until no further
atom to be added can be found. (3) Continue with step
(1). (4) Find all constrained distances that are not inside
rigid subunits. Each of them refers to a new rigid subunit
consisting of two atoms.

2. Finding chains of rigid subunits

The second step consists of constructing the flexible
chains out of the rigid subunits. This is done by looking
for atoms that belong to more than one subunit. Two
subunits can either have one atom or one axis (two or
more atoms along a line) in common. If they had more
common atoms, they would in fact be only one rigid sub-
unit and would have been identified as such in the preced-
ing step. (1) Generate a list of all atoms that are common
to two or more rigid subunits. (2) Pick an arbitrary rigid
subunit that is not already part of a chain and make it
the first member of a new chain. Pick an arbitrary atom
in this subunit and assign three translational degrees of
freedom to it. Assign three rotational degrees of freedom
for rotation of this subunit around the chosen reference
point. (If the subunit is linear, assign only two degrees of
freedom.) If no more rigid subunits are available, termi-
nate. (3) In the list generated in step (1), find an atom
that is contained in a rigid subunit that is already part
of a chain. Add the other subunit(s) that contain it to
the same chain. Assign rotational degrees of freedom to
each of these subunits according to their linearity and
the number of atoms they share with their predecessor.
Repeat this step until no more rigid subunits to be added
can be found. (4) Continue with step (2).

At the end of this algorithm, all the necessary data for
the calculation of the matrix C is available. It should
be noted that this analysis needs to be done only once
for a system in which the constraints do not change in
time. It is also worth mentioning that the topological
analysis described above can also be used to implement
iterative methods designed for rigid units of more than
three atoms [5], although no such method has yet been
developed for chains containing more than one rigid sub-
unit with three or more atoms.

C. Integration of the equations of motion

The topological analysis described in the previous sec-
tion provides a list of flexible chains and a list of all atoms
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that are not part of any chain. The latter require no spe-
cial treatment and their trajectories are obtained with a
standard leap-frog integrator. For each of the chains we
have to integrate the equations of motion (2) and (3).
Equation (2) can be written as

W = (071),,, Crmk(24)[Fin — MinnCrp(zp)up]  (4)
with
O = M;;Cip(zo)Cji(zg) . (5)

The last term on the right-hand side of (4) is quadratic
in the velocities; it is similar to the centrifugal and
Coriolis forces occurring in rotating reference frames.
The presence of this velocity-dependent force necessitates
modifications to the standard integration schemes used in
molecular-dynamics applications [11], which also results
in a better estimation of the kinetic energy [13].

To facilitate the description of our integration algo-
rithm, we rewrite Egs. (4) and (3) in the form

u = [O(x)] ! [k(x) + g(x,u)] ,
x = B(x)u, (6)

where  k(x) = [C(x)]Tf(x) and g(x,u)
= [C(x)]TMC(x,u)u. We will write x,,,u, to denote
the values of x and u at the discrete time step n. Our in-
tegrator is based on a leap-frog scheme and will therefore
at each iteration calculate u,;/2 and X, using earlier
values of x and u and the forces f(x,). The algorithm
for one time step At is as follows: (1) Calculate ®(x,,).
(2) Solve

e(xn) (un+1/2 - un—1/2) = At [k(xn) + g(xn, un)] (7)
iteratively for u, /3, estimating u, by

u, & gun+1/2 + %un_l/z - %un—S/Z' (8)
For the first iteration, use u, ~ u,_;/2. (3) Solve
Xnt1 — Xp = AtB(xn+1/2)un+l/2 9)

for x,,+1, estimating x,,; /2 by

3 6 1
Xn+1/2 X gXn+1 + gXn — §Xn—1.

(10)
(4) Normalize the quaternions in x, ;.

We now make some remarks on the individual steps.
(1) For reasons described in the following section, we
use the center of mass of each chain as the refer-
ence point for translation. (2) The estimate given in
Eq. (8) is more accurate than the simpler estimate u,, ~
(un_l/g + lln+1/z) /2; it is also used for the calculation
of the kinetic energy. The repeated solution of the lin-
ear system of equations with the coefficient matrix @ is
done by calculating the Cholesky factorization of ® once
after step (1) and repeating only the back substitution
during the iteration. (3) In contrast to Eq. (7), Eq. (9)
is linear in the unknown (x,41/2) and can therefore be
solved analytically. Again Eq. (10) is more accurate than
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Xn+1/2 ® (Xn + Xn41) /2. (4) The equation of motion (3)
guarantees that x is normalized at all times. The explicit
normalization is made necessary by the discretization er-
ror in Eq. (9).

D. Center-of-mass coordinates

In [1] we have stated that any atom in a chain can be
chosen as the reference point for the global translational
motion. This is true as far as the equations derived in
[1] are concerned, but not all choices are equally good
for the numerical stability of an implementation. If the
reference atom is chosen badly, e.g., close to one end of a
long and almost linear chain, the elements of the inertia
matrix ® in Eq. (5) will range in magnitude from the
mass of a single atom to the mass of the whole chain;
i.e., the inertia matrix will be ill conditioned. The best
reference point from a numerical point of view would be
the center of mass of the chain. This would have the
added advantage that the translational motion would be
uncoupled from the rotational degrees of freedom.

However, it is not possible to construct the constraint
matrix C as described in [1] with the center of mass as a
reference point, since the location of the center of mass
depends on all coordinates of the chain. It is, however,
possible to construct the constraint matrix using an arbi-
trary atom as the reference point and then calculate the
center-of-mass version from it. First we rewrite Eq. (1)
as

#{" = # 4 Cloyin (2t (11)
Here the index R refers to the reference atom, the index
¢ runs from 1 to 3, the index n runs from 1 to N, uj,
contains only the rotational velocities (therefore k runs
from 1 to f — 3), and Cén)ik (za) contains only the el-
ements of C referring to rotational degrees of freedom.
What we want is a relation of the form

#M = 15 + OO (wa )l (12)
Since the center-of-mass velocity is given by
1 N (
) = 2y mai(™, (13)

n=1

where m,, is the mass of atom n and M =) m,, is the

)

mass of the whole chain, C((;)’:; must be given by

N
c.m. 1
i) (@) = Clayia(®a) = 32 > mnCluyan(@a), (14)
n=1

which follows from inserting Eq. (11) into Eq. (13), in-
serting the resulting expression for ffc'm') into Eq. (12)
and comparing to Eq. (11).

III. POLYPEPTIDE CHAINS

As an example for a polypeptide chain we selected a
polyalanine molecule in vacuum made up of 16 peptide
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groups and consisting of 99 “extended atoms” (i.e., CH,
groups are treated as single atoms, so that only polar hy-
drogen atoms are represented explicitly). We have chosen
this example because polyalanine folds into a so-called
a-helix, which is a common structural element in pro-
teins. Changes in the dynamics of such a regular struc-
ture due to geometrical constraints can be easily detected
and characterized. Moreover, since the ¢ and v angles
are the standard variables to characterize backbone con-
formations, it is a natural question to ask whether these
variables would also be useful for the description of back-
bone dynamics.

We studied three models differing in their degrees of
freedom: (1) Only the bonds are frozen. Bond vibrations
are known to be decoupled from the other dynamical de-
grees of freedom [8]. In our case, this leaves 199 degrees
of freedom. (2) All bonds are frozen, and the peptide
planes are kept rigid. There are 150 degrees of freedom
in this model. (3) All bonds and all bond angles are
frozen, and the peptide planes are kept rigid. This leaves
only the ¢ and v angles unconstrained, i.e., the dihedral
angles defining the orientation of the peptide groups (see
Fig. 2). This model leaves 38 degrees of freedom for our
polyanaline molecule. For each model we performed an
MD simulation over a time of 82 ps, after an equilibra-
tion run of 10 ps. The time step for the integration was
1 fs.

The first model (frozen bonds only) was run using the
GROMOS package of computer programs [14]. The other
two models were simulated using the analyzer-integrator
described above and the GROMOS force field.

FIG. 2. A section of the polypeptide chain, showing two
peptide groups and the C, atom linking them. The dihedral
angles ¢ and v are indicated.
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A. Results

In Fig. 3 we show configurations of the backbone of the
polypeptide chain at different time steps superimposed
onto each other [15]. The picture clearly shows that the
model with 38 degrees of freedom, i.e., with only ¢ and
1) angles, is much less flexible than the other two models.
This can also be seen in a quantitative way from the
mean-square displacement. Figure 4 shows the average
over the mean-square displacements of all atoms in the
polypeptide chain, i.e.,

W) = 5 3 (550) ~ 5, 0)F), (15)

where N is the number of atoms in the chain and r; is the
position of extended atom j. It is evident that dynamics
in ¢ and % space produces results that are not satisfac-
tory. The two other models, however, lead to qualita-
tively and quantitatively similar behavior.

To analyze why so much information is lost in the most
rigid model, we have calculated the power spectrum of
the velocity autocorrelation function, again as an average
over all atoms:

P(w) = % )> /0 " dt cos(wt) C9) (1) (16)

with

CH(t) = (v (t) - v;(0)).

The results are shown in Figs. 5 and 6. Since the mean-
square displacement is related to the power spectrum by

(17)

W(t) = %/jo dw %P(w) (1 — coswt), (18)

it is only the low-frequency part that gives a substantial
contribution. Figure 6 shows that all contributions be-
low 40 cm™?! are missing in the model with 38 degrees of

FIG. 3. The backbone of the polypeptide chain at different
time steps. From left to right: the models with 38, 150, and
199 degrees of freedom [15].
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freedom. The sharp peak at 40 cm™! corresponds to the
fast oscillations that can be seen in the mean-square dis-
placement. The model with rigid peptid planes, however,
correctly reproduces the frequencies up to 500 cm™?!.
The slight overestimation of the mean-square displace-
ment may be due to a weaker damping of the helix bend-
ing motion caused by the rigid peptide planes, which can-
not partially absorb this type of motion by internal defor-
mations. This interpretation is confirmed by comparing
the low-frequency part of the power spectra P(w) for 199
and 150 degrees of freedom (Fig. 6). The strong peak
at about 10 cm ™! corresponding to helix bending motion
is less pronounced in the flexible model. In this context
we emphasize that we do not use a force field that is
adapted to our model, but a full atomic force field. A
reparametrization of the force field would be necessary
to obtain quantitatively correct low-frequency dynamics.
The low-frequency modes that are missing in the ¢-v
model are those that represent collective motions of large
parts of the molecule, e.g., bending modes of the a helix.
The only collective motion allowed by the constraints is
a torsional vibration. An animated visualization of the
molecular-dynamics trajectories clearly shows that the
absence of bending modes has a profound influence on
the dynamics of a polypeptide chain [16], and this ex-
pectation is numerically confirmed by our results for the
mean-square displacements and the power spectrum of
the velocity autocorrelation function. Nevertheless, it
should be noted that this very simple model can still be
useful for applications where dynamic quantities are not
needed, as in crystallographic structure refinement [12].

IV. CONCLUSION

We have presented a new method to handle constraints
in molecular-dynamics simulations that allows us to sim-
ulate systems with arbitrary distance constraints eas-
ily and without having to worry about redundant con-
straints or convergence problems for specific geometries.
We have applied this method to study the relevance of
various degrees of freedom for the dynamics of a polypep-
tide chain. We find that keeping the peptide groups rigid
does not modify the dynamics significantly, but that a
simulation with ¢ and v angles only shows an important
lack of flexibility.

Undoubtedly further work is necessary to establish the
essential degrees of freedom of more realistic systems,
i.e., larger molecules surrounded by a solvent. We expect
our basic conclusion to remain valid: that it is possible
to perform realistic simulations while keeping selected
groups of atoms rigid. This would allow the construction
of simplified force fields for such rigid groups, e.g., using
an approach similar to the one presented in [3], which
would reduce the computer CPU time spent on the most
expensive part of an MD simulation.
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FIG. 2. A section of the polypeptide chain, showing two
peptide groups and the C, atom linking them. The dihedral
angles ¢ and ¥ are indicated.



