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NoseAndersen dynamics of partially rigid molecules:
Coupling all degrees of freedom to heat and pressure baths
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Institut fir Theoretische Physik A, Rheinisch-Wéifae Technische Hochschule Aachen,
Templergraben 55, D-52056 Aachen, Germany

T. Mulders
Institut fur Biochemie, Rheinisch-Wesdifche Technische Hochschule Aachen,
Klinikum Pauwelsstrae 30, D-52057 Aachen, Germany
(Received 31 May 1996

We derive the equations of motion for partially rigid molecules in the isothermal-isoaReT ensemble.
The extended system method introduced by Andefde@hem. Phys72, 2384(1980] and NosgJ. Chem.
Phys.81, 511 (1984)] is generalized to the case of discrete mechanical systems subject to geometrical con-
straints. In our approach all available degrees of freedom are coupled to both the heat and the pressure bath. In
this way we take into account that partially rigid molecules can adapt their conformation to volume fluctuations
without violating intramolecular constraints. Using projector techniques and Dirac’s theory of constrained
Hamiltonian dynamics, we derive the equations of motion in Cartesian coordinates and extend the generalized
Euler equations for linked rigid bodi¢&. R. Kneller and K. Hinsen, Phys. Rev5B, 1559(1994] to the case
of N-P-T dynamics. We prove that the trajectories generated by our equations of motion correspond to the
desiredN-P-T ensemble[S1063-651X%96)12711-2

PACS numbes): 03.20+i, 02.70—c

[. INTRODUCTION since the latter are destroyed by the space scaling method
that is used to adjust the pressure. Ryckaert, Ciccotti, and
Andersen introduced the “extended system method” inFerrario circumvented this problem by coupling Andersen’s
order to perform molecular-dynamid®D) simulations in  pressure bath only to the center-of-mass positions of the mol-
the isobaric-isoenthalpiN-P-H ensembld1] (N, P, andH  ecules. Since velocity scaling does not affect holonomic con-
denote constant particle number, constant pressure, and co#taints, it is easy to implement the Nosieermostat in a
stant enthalpy, respectiv@lyHere the pressure bath is de- simulation program for partially rigid molecules such that all_
scribed by an additional dynamical variable, and the dynamdegrees of freedom couple to the temperature bath. This is

ics of the whole system, i.e., the physical system plus th@lso desirable for Andersen’s barostat since the local re-
additional variable, is described in the framework of Hamil- SPOnse of the system due to pressure steering is kept as small

tonian mechanics. The introduction of the extended systerfiS Possible in this way.

method was an important step in the history of computerth;:]mggnﬁg)rlsi’c aaggnegilmaer;ﬂcg:egggétgﬁgo?stsz?r? dbn;e
simulations since completely deterministic MD simulations y 9 y

could now be performed in other ensembles than the .‘natugauss’s principle of least constraif@—12. In contrast to
oo Pe . . Hamilton’s variational principle of mechanics, Gauss’s prin-
ral” microcanonicalN-V-E ensemble, in which the volume

, ciple is a time-local minimum principle for the accelerations
V and the total energl are constants. Noshowed that the of the particles, which can be derived from d'Alembert's

extended system method allows as well the generation Qfincinie of virtual displacements. The proof is given by
trajectories corresponding to the canonikial/-T ensemble  Gayss in his original articlg8]. His idea was to formulate
(T is the temperatujeand the isothermal-isobari-P-T  constrained mechanics as a least-squares problem. Evans
ensemble, which is appropriate for most experimental situaet al. recognized the value of Gauss's principle to set up
tions[2]. In[1] Andersen treated also the case of hé-T  equations of motion for arbitrary position and velocity-
ensemble, but the temperature was controlled by a stochasiiiependent constraints. The latter cannot be properly handled
method. The original extended system method was designédd the framework of Hamiltonian mechani$3]. Gauss’s
for simulations of simple liquids. Later Ryckaert, Ciccotti, principle allows, for instance, one to construct a thermostat
and Ferrario presented extensions for simulations of moleciby fixing the kinetic energy or to impose an average particle
lar liquids[3—7]. The idea was to preserve the correctness oflow describing a nonequilibrium systefi4]. One can as
the simulated ensembles in the presence of geometrical comell impose constant pressure and constant temperfdttfe
straints. The generalization of Anderson’s method for sysfor an overview see aldd6] and[17]. The combination of
tems subject to holonomic constraints is not straightforwardyeometrical constraints with a Gauss thermostat has been
used in polymer simulations by Edberg, Evans, and Morriss
[18]. Here the thermostat was coupled only to the centers of
*Electronic address: g.kneller@kfa-juelich.de mass of the molecules, but not to all atomic degrees of free-
"Electronic address: thomas@bionm1.biochem.rwth-aachen.de dom, which is possible as well, but complicates the equations
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for the Lagrange multipliers associated with the constraints.
As soon as explicit kinematical conditions can be formu-
lated, as in nonequilibrium molecular dynamics, Gauss'’s
principle offers a mathematically clear and simple way to
write down the equations of motiow priori it is, however,

not obvious which constraints are to be imposed in order to
describe a specific thermodynamic ensemble. The Gauss
thermostat, e.g., fixes the kinetic energy and notatherage
kinetic energy, which is constant in the canonical ensemble.
Correspondingly, the phase-space distribution is of the usual
form e~ A" in configurational space, but in velocity space it
yields aé function centered at the prescribed kinetic energy
[2,19]. We are not aware that the ensemble corresponding to
a Gauss thermostat and/or barostat in the presence of geo-
metrical constraints has been identified. Berendseal. [ 20]
suggested a third method for MD simulations at constant
temperature and/or constant pressure that is known as the
“weak-coupling scheme.” They use controllers with propor-
tional characteristicf1l7] to maintain temperature and pres-  FIG. 1. Stretching of a molecule by enlargement of the simula-
sure at prescribed values. Geometrical constraints argon box. The bond lengths in the original molec(tieick lines and
handled separately via the SHAKE methf®2Il]. By con- in the stretched moleculghin lineg are the same; only the angles
struction, all degrees of freedom couple to the heat and presrave changed.

sure bathiweak coupling. However, even for systems with-

out geometrical constraints the resulting trajectories cannatieightedCartesian coordinates=(r?, ... r3")". The com-

be shown to correspond to a well-defined thermodynamigonents ofr are the particle positions multiplied by the
ensemblg22]. The latter is indispensable if one wishes to square roots of their masses. To keep the notation short
obtain the correct fluctuations of thermodynamic variablesmass-weighted coordinates and related quantities will not be
On the other hand, the method by Ryckaert, Ciccotti, anqapeled as such. The relations between mass-weighted and
Ferrario is not suitable if only a few but large molecules arenon-mass-weighted quantities are listed in Table I. If cou-
to be simulated at constant pressure. In the extreme Cafing to pressure and temperature baths is disregarded, the

where the simulated system consists of only one long polygynamics of our system is governed by the Lagrangian
mer chain it cannot be applied at all since pressure adjust-

ment by center-of-mass scaling becomes meaningless. L=Tr—W(r) (1)

In this paper we focus on the simulation of partially rigid
molecules in the conventional thermodynanNeP-T en-  andl holonomic constraints
semble. We show how the extended system method can be
generalized to simulations of discrete mechanical systems a*(r)=0, a=1,...). v
with arbitrary holonomic constraints such that all available ) ] ]
degrees of freedom are coupled to the reead the pressure The latter desqube, for_mstance,_ chemlcal_ bonds, plana}r
bath(see Fig. L In this way not only the distances between ings, or a reaction coordinate that is constrained to a certain
the molecules, but also their internal coordinates respond téalue. We introduce now thex 3N matrix A, whose ele-
volume fluctuations. The latter is reflected in a change of thénents are the partial derivatives of the constraiftswith
radius of gyration. In Sec. Il we set up the NeSedersen respect to the particle positions,
Lagrangian corresponding to a geometrically constrained
system and construct the corresponding Hamiltonian. Using AY(r)= do(r) 1 | i1 N 3
the Dirac theory of constrained Hamiltonian dynaniiz8— i(n= gri o eT e 1= L aN )
25], we derive first the Hamiltonian equations of motion in
Cartesian coordinatgSec. Ill). Then we adapt the general- In the following we will make extensive use of the projectors
ized Euler equations for linked rigid bodi€26] to the case on the null space oA and its orthogonal complement. These
of N-P-T dynamics(Sec. IV). In Sec. V we give the proof projectors will be denoted &8, and P, , respectively. They
that our equations of motion correspond to the desiredan be concisely expressed in terms of the mahrix
N-P-T ensemble. An important result is also that we obtain

a microscopic expression for the pressure in a system of TABLE I. Mass weighting.
partially rigid molecules. This aspect is discussed in Sec. VI
A concluding discussion follows in Sec. VII and in the Ap- Mass weighted Not mass weighted Connection
pendix details on general coordinates in virtual and reat N T
space are given. Numerical considerations and an application ' " reMeT
are planned to be discussed in a future paper. P pT=M"p
f f* f*=MY%
Il. CONSTRAINED EXTENDED SYSTEMS o(r)=0 a*(r*)=0 a(r)=o*(r*)
A A* A*=AM1?
A. Geometrical constraints and projectors . " 7 —MY2
We consider a dynamical system consistingNgbointlike C c* c*=M"Yc

particles whose positions are determined b 3nass-




(4)
©)

A" is the Moore-Penrose inverse &f27—29, which is also
called the “generalized inverse” or “pseudoinverse.” As-
suming thatA has full row rank,A™ can be written in the
explicit form [27]

P=1-A*A,

PL:AJFA.

AT=AT(AAT) L. (6)
Both P, and P, fulfill the relations =P andP'="P. It is
easy to see that’?,=0, i.e., P, is indeed the projector on the
null space ofA. In the following the null space ¢ is called
V, and its orthogonal complement is callgd . Application
of P, andP, to an arbitrary vectox yields its projections on
V, andV, , respectively. We denote the projection ¥nby
X, and the one oW, by x, .

Time differentiation of the constraint equatiof® shows
that the velocities are in the null space Aof
It follows from the simple form ofL that the canonical mo-
menta are identical to the velocities

aL

:E:i (8)

p

and thus fulfill the same constraints

Ap=0&ePp=p,=p. 9

B. Lagrangian of the extended system

We make now the following ansatz for the Nese
Andersen Lagrangian of the constrained extended system
mass-weighted coordinates:

Q2/352 ] ] SZW . \"Y; .
L= PTPUQ P p-NQ V) + 5 QP+ 5 &
— P @—gkgT Ins. (10

The Lagrangiar’, , together with kinematical conditions yet

to be specified, describes the dynamics of a virtual system

consisting ofN pointlike particlesQ ands are scaling vari-
ables.Q has the dimension of volume arwdis dimension-
less. Wy and W, are the corresponding “masses,” which

NOSEANDERSEN DYNAMICS OF PARTIALLY RIGD . ..
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TABLE Il. Connection between virtual and real quantities.

Virtual Real Connection
Q \ Q=V
Ly Pv To_

Q s Pv
S S s=S
s Ps Ts = Ps
P r QBp=r

p =
%P
d
ST dt 97 _ dt
s

constructed in analogy to the Lagrangian of Ngpeen in
[2]. The main difference betweefy, and the corresponding
Lagrangian forN unconstrained particles is the presence of
the projectorP,. We include the velocity in the time scal-
ing procedure to formulate the equations of motion in
“Nosé-Hoover-like” form [19,7).

The constraints imposed on the virtual system read

o (Q¥p)=0, a=1,...] (11)
and the elements of the matrix are now given by
da(r)
Aia(QmP) =T (12

r= Qll3p

As in the case of real-space dynamics one can derive a con-
straint for the velocities by time differentiation of the kine-
matical conditions. One obtains fro(t1)

Q

3Q

The solution of this equation fgs yields all virtual velocities
that are kinematically possible,

in

Ap+ Ap=0. (13

] o .
p==p. 35" (14)
[ —

n

At this point p, is an arbitrary vector inV,. Equation(14)
shows thap, in contrast ta, is notan eigenvector oP,, but

have to be regarded as adjustable parameters. The yectorhas also a component i . If the projectorP, were inserted
contains the Bl mass-weighted positions of the virtual par- in the kinetic energy term of the real space Lagrangian

ticles that are normalized to a cube of volu®e All over-
dots in(10) denote time derivatives with respect to thie-
tual time 7. The function) denotes the potential energyey;
is the external pressureg, is an integer number still to be

given in (1), the resulting trajectories would be exactly the
same as the ones derived frafhwithout the projector. In
that light, singular Lagrangians in classical mechanics appear
to be artificial[30]. However,£,, is truly singular. Here the

determined, angT is the Boltzmann constant multiplied by presence of the projectaloeschange the equations of mo-
the absolute temperature. The relations between the variablésn. The virtual Lagrangiarf, is constructed in such a way
describing the virtual systertbriefly called “virtual vari- that the virtual canonical momenta

ables”) and the variables describing the real system to be
simulated(“real variables™) are given in Table Il. They do
not constitute a canonical transformation and therefore the
real variables cannot be equivalently used in the derivation
of Hamiltonian equations of motion. The Lagrangidp is  fulfill the same constraints as the real momepta

L,
-5

(15
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Aa=0=Pm=m=m. (16)
|

T I AL TP
. 71 Op p T Ll iyl

The constraints for the coordinates and momenta describing

the virtual system ensure that the real variables fulfill the oH, . oH, - oH, .
conditionso(r)=0 andAp=0, respectively. Q| Fg Tt oM an_Q TS\ Gs T
C. Hamiltonian of the extended system IH, .
' + Oy o S =0. (20
S

The basic quantity that relates classical dynamics to sta-

tistical physics and thermodynamics is the Hamilton func- h . . th t0b luated at the t
tion. In order to generalize the extended system method tgNe expressions in parentheses are to be evaluated at the true

the case of semiflexible molecules we need a Hamiltoniar’?ath that makes the_aqtums_tatlonary. It ”FUSt be tal_<en Into
description of a constrained systemGartesian coordinates account that the var|'c_1t|ons (.'20) are reSt”Cted anq interde- .
First the Hamiltonian is needed to prove the correctness ot‘[)endent due to the kinematic CO”d'“O”.S for the virtual pOSI-
the simulated ensemble, assuming the equivalence of timuons and momenta. Therefore the variations of the paths in

and ensemble averages. If mass-weighted coordinates aggnﬂguraﬂon and momentum space are not arbitrary, and

used, the Hamiltonian equations of motion have also a sim2ne cannot conclude that the terms in parenthese@n

pler form than the Lagrangian equations of motion. Thevanish identically. We diSCUS.S first th_e derivation of the
theory of constrained Hamiltonian dynamics was establishe§avations of motion in Cartesian coordinates.
by Dirac [23,24 and Anderson and Bergmar31l]. De
Leeuw, Perram, and Petersen treated this subject in a more B. Equations of motion for the virtual system
recent papef32].

To construct the Hamilton function associated withwe
write

The equations of motion for the virtual system can be
derived by the Lagrange multiplier method. Following Dirac
[23,24], we observe that the Hamiltonidti, is not uniquely
determined. If we write the constraints for coordinates and

T - e
H,=p mtQmotsms=L,. 17 momenta in the formbP=0, where

, Mg, and g are the virtual momenta, which are defined as —oB(QVp), B=1,...)

aL,lap, aL,19Q, anddL,/ Is, respectively. The velocities in PF= A (QY3p) —1+1. 12 (21
. . . . | p 3 B IR

‘H, must now be eliminated in favor of the momenta. Since

L, contains the projectdP; as a metric tensor in the kinetic

energy term, and consequentlpym=m, the associated

Hamiltonian 7, depends only on the componept. The

we can introduce a new Hamiltonian

latter can be expressed. ps=n/Q?°s%. The elimination of My =H,+cpd? (22)
the remaining velocitie®) and s is trivial and yields the
following concise form forH, : containing 2 arbitrary functionsc4(7). (Here and in the fol-
lowing we use the Einstein convention, assuming implicitly a
1 T,é 7.,5 summation over pairwise upper and lower indices. Upper
Hv:m ot s2w- 3w +V(QY3p) + P, Q indices refer to contravariant components and lower indices
Q s to covariant components. In a Euclidean coordinate system
+gkgT Ins. (18) covariant and contravariant components are identical. In

some places we distinguish formally between them to respect
On account of the momentum constraifRgr= 1, the pro- the Einstein conventionObviously H =H, on the surface
jectorP, appearing inC, can be omitted if{, . Compared to defined by®#=0. For variations of the paths in phase space
the Lagrangian equations of motion, whefemust be kept, that are in accordance with the constraints it follows that
the Hamiltonian equations have a much simpler form. Wed’=0, and consequently?{} = §H,. However, the de-
note here that this is a result of the use of mass-weightedvatives of 1 with respect to the momenta and coordinates

coordinates. yield additional terms ;d®”/dar, ¢ z0P"/p, etc. The Hamil-
tonian allows us to consider amnconstrainedariational
Ill. EQUATIONS OF MOTION problem, which is supplemented by the @nditions®?=0.
IN CARTESIAN COORDINATES These allow us to fix the, that appear now as Lagrange
multipliers in complete analogy with Lagrange’s equations
A. Hamilton’s variational principle of the first kind. To derive the Hamiltonian equations of

The Hamiltonian equations of motion for the virtual co- motion we split thec into a set ofl Lagrange multipliers
ordinates and momenta can be derived from the variationdi.} corresponding to the position constraint$=0 and a
principle [11] set of| Lagrange multipliergy,} corresponding to the mo-
mentum constraintsA{#'=0. Introducing the vectors
0-:(0-11 e vo-l)Tv ’L:(Mli Tt !/*LI)Ti and Fy:(’)/l! e !7|)T1

71 . - .
S= fTO dr{p'm+Qmq+sms—H,}=Extremum. (19) 4o Hamiltonian} may be expressed as

This leads to the necessary condition Hi=H,— o' (Q"3p) u+ 7 AT(Q"%p) v. (23)
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The equations of motion are now derived by inserthff in C. Equations of motion of the real system
the stationarity conditior(20) and considering an uncon-  Tg write down the equations of motion in real space we
strained variational problem. This means that all variationgntroduce thd -dimensional vectog such that
can be considered as independent.
To write the equations of motion in matrix notation we

introduce the 8l-dimensional force vectdr and thel X 3N T 1V )
AA'g=—Ar, = =g 34
matrix F via 9 Y (T\/l S 3v )9 (34
A% o From now on the overdot denotes again a time derivative
fi= T i=1...N 24 with respect toreal time t. In addition, we define the sym-
r=Q% metric 3N X 3N matrix H with elements
Fi=—a' o =1 k=1,....N
o WFQ”%, bk S Hi(r)= o ik=1,...,. N (35
(25) ik gam, s G A\
Using these definitions, the Hamiltonian equations of motionThe g,, are the components @f The above definitions may
in virtual coordinates and virtual time are found to be now be inserted into the equations of motion in virtual coor-
.. @ T 26 dinates, performing at the same time the substitutions listed
p_Q2/3s2+A Y (28 in Table II. The result is
N —— .
. P
& .
.V
1'7=Q1/3(f+AT#+FT,y), (27) r=3—vru+p, (36)
——
z
: 7Q p="f v 1+H 3
Q= gy (29) p=f+z-3y (1+H)p—{p, (37
Q
T T
. ik p - Pv
7TQ=_Pext+ W'Fm(f‘FATM‘FFT'}/), (29 V—WV, (38
z
. Tg 1 V
_ s o AT T - _
=W, (30 Pv=—Pext 3y | PP+ f+z— 37 Hp)} ¢pv,
(39
T 2
) T aT o gkgT
Ts=—~ma3t 3~ (3D 2
Q7"s®  Wgs S : 1., Pv
¢ ws PP, gkgT (40)

The vectorz=ATu contains the yet undetermined mass-
weighted constraint forces and the vecidry can be iden-  Here we have introduced the “friction coefficient=S/S.
tified with the componenp, . This follows immediately The vectorg can be used to computg appearing in the
from P, r=0 and P, AT=A". In principle, bothyandp can  equation of motion for r. Wrting r,=Pr
be fixed by making use of the constraint equations—_[1_AT(AAT)"!A]r, it follows that

a(QY3p)=0. For practical purposes, however, it is more

convenient to determine only at this point, and to perform T

the computation ofu in real-space coordinates. We know n=r+A'g. (41)

from Eq.(14) thatp, =—(Q/3Q)p, . This allows us to write . ,
In addition tor, the constraint forces

. )

=3 A Ap=ATy. €2 2=ATh @2
P

where P, =A"A is the projecifor on the row space #f  heed to be determined. A linear equation fois obtained by

According to Eq(6), the pseudoinverse @ has the explicit time differentiation of the identityAp=0. This yieldsAp=

form AT=AT(AAT)"Lif A is assumed to have full row rank. —Ap. Herep can be expressed by the right-hand side of Eqg.

Multiplication of (32) by A from the left yields then a system (37). All terms proportional tg will drop out on account of

of | linear equations for the components pf Ap=0, and we get

AAT,y:_gAp (33 AATM=—Ap—A(f—l Hp) (43
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It should be noted that the constraint forces depend explicity To obtain an explicit expression for the variatidp we

onV/3V, but not onZ=5/S. This shows that a Noskermo-  proceed as follows. If the geometrical constraints in virtual

stat does not interfere with holonomic constraints. coordinates are given in the foraf(Q*®p)=0, the variation
From the equation fop,,, which may be written in the of these equations yieldgompare Eq(14)]

concise form

Adp=— x Ap. (47)

Pv=Pins(t) = Pexi— {Pv, (44) 3Q

the definition of theinstantaneougressure can be obtained: The formal solution fordp reads

| 50
T Hp) } . s o= 35 P+ 9 48)

1
Pins(1) = 33/ [prHT

The expression for thenean pressuré derived in Sec. VI. . . S .
where p, is anarbitrary variation inV,. Since the columns

of C form a basis oV, we can write

IV. EQUATIONS OF MOTION
FOR LINKED RIGID BODIES

o0
A. Linear velocity constraints o%p=~p, @“‘ C(Q'""p)dy.
. : _ N (49)
In the following the generalized Euler equations of topo- Py %oy

logically linked rigid bodieg[26,33 will be generalized to
the case oN-P-T dynamics. The Bl real-space velocities Here ¢y is an arbitraryf-dimensional vector.

of the N pointlike constituents are related to a setfogen- SinceP = the virtual momentar can be written in the
eralized velocities via form

r=C(r)u. (46) 7=C(Q¥°p)v. (50)

Consider a system of chain molecules, enumerated by The vectorv containsf virtual generalized velocitieév is

J=1,...L, each containingn, rigid bodies. The vectotl  not to be confused with). SinceC depends op andQ the
comprises therl translational velocities anM=X;_1m;  yariations ofsr are given by

angular velocities. To keep the formulas in the derivation of
the equations of motion as simple as possible, we consider a
single C matrix for the whole system. In general, tBema-

trix is not a Jacobian. This case is, of course, included. Since on=(8C)v+Cév.
we are using mass-weighted coordinates we have om ¢ (52)

=MY2C* whereC* is the definition of theC matrix in [26] _ o - _
andM is the diagonal mass matrix. Timatrix depends on 9V @ré arbitrary variations of the velocitigsand o ; is an
the Cartesian coordinates of the particles, which depend, igPitrary N-dimensional vector inv,. The vectordm ; is

turn, on quaternion parameters describing the orientation df°t the complete projection of the momentum variatim
the rigid units. For each unit there are four normalized®"to V), but only itsfreepart, which is left undetermined by

quaternion parameters. A linear relation of the form!N€ momentum constraints. SinGedepends orQ andp its
g=A(q)e connects the time derivatives of the quaternionvarlatlon, oC splits into a contribution proportional t6Q

parameters and the angular velocity of the respective unit, 21d @ second one that is proportionabje According to Eg.
(49), the latter splits, in turn, into a contribution proportional

_ e _ . _ to 6Q and a second one that is\f). Written in components,
B. Hamilton’s principle for linked rigid bodies

om reads

Formally the geometrical constraints of the chain can be 500" aC
descnbeq in the alternative for_m’(r)zo. As_ sho_wn above, smi=0"| - ———Bi+C’;5 B _lba_k_ 0@
the velocities in real space fulfill the conditigr =0, where 3 F_ | A@7pY)
the elements oA are the partial derivatives of the” with T e
respect to the particle coordinates. SimeeCu andu is an %,
arbitrary vector, it follows thaAC=0. This shows that the 500k  aCt . (52
columns ofC span the null space . + —m == v+ C, .

The equations of motion for linked rigid bodies in the 3077 Q7P —
N-P-T ensemble are again derived from the stationarity con- om g

dition (20). Now the variationsdp and 67 are constructed by The expressions fobp and ém, as given by Eqs(49) and
using the basis vectors &f . These are now explicitly given (52), respectively, are now to be used in the stationarity con-
in form of the column vectors of the matri3. dition (20). More explicitly we get
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™ P [IH, .
6S=—| dr7| om S P

s Mo i e acl, a)
Py R mtQ o pi O-,(Qllspk) v
+6 My +6 —(?H"Jr' + !
Q| gmg Q) TR g T et 378
IH, . JCl,
X (pk_pjk_) 3’77:} pl):| a(Ql/3pk) v
o~ M, s oH, .
3Q | 9p~ Tk Ts dmg S
+ 65 a—s”+q'rs =0. (53

The first point to be observed is thép,, om , 0Q, émg,
8s, and &, are theindependenvariations. In addition, one
must take into account thaim, ; and dp, are both restricted
to the subspac¥), which is spanned by the columns ©f
Writing the corresponding stationarity conditions &s[f
(£)=0 and ép| (£,)=0, it follows that&; and &, must be
vectors inV, . We call them—p, and Q'3z, respectively.
The factorQ¥?in front of z has been introduced to givehe
dimension of a force. SincéQ, omg, Js, and g are unre-

6831

To derive the equation of motion forro we used that
p! z=p"z, which follows fromzeV, . The vectorf contains
again the forces and comprises the constraint forces. An
equation of motion forv is obtained by multiplying(56)
from the left byC™. Assuming that all column vectors @
are linearly independent, the relations

ct=(Cc'™c)"ic’, c*c=1 (61)
hold. SinceC'z=0 the constraint forces on the right-hand
side of the equation fo#r drop out and one obtains

v=C*(QY%—Cv+QY3Gv). (62)
If the dynamics of a constrained system is described in Car-
tesian coordinates the connection between all dynamical
variables in virtual and real space is given by the simple
scaling relations listed in Table Il. This is no longer true if
generalized coordinates and velocities are used. To establish
the relation between the variables appearing in the virtual
equations of motion and the angular velocities describing the
real system we introduce another sef @uxiliary velocities,
comprised in the vectov=(w?, ... wHT,

w=V"1g 1y, (63)

The components ofv have the same dimension as those of
u, butw cannot be identified withi. It is now convenient to
define the BIXf matrix K through

stricted, the associated terms in parentheses must vanish

identically.

C. Equations of motion in virtual and real space

To write the equations of motion for linked rigid bodies in obtainr, we write

matrix form we introduce the 8X f matrix G,

. oCh
Gka:(pl)iﬁk_ y k=1,...,3\l, a=1,. ,f
r:Ql/3p
(54)

After straightforward algebra the equations of motion in vir-

tual coordinates are found to take the form

. Cv . . Q
p=QWa,S—2+m, PL="P 30 (55
= Cv+ Cv=Q¥¥(f+2) + Q3Gyv, (56)
Q_ WQSZ ’ (57)
. viclcv  pf
WQ:—Pext—l—W‘Fﬁg(f'f—Z‘FGV), (58)
«_ s
S= WS! (59)
. Vv'C'cv 72 Ko T
s o T (60)

aC(r)
Kja:(u)iT, i=1,...., a=1,...f
(64)
r,=r—r,=r—Ch, (65)

where h is to be determined from the requirement that
C'r,=0. The resulting equation fdr is
C'Ch=CTr. (66)

Using the definitions fow andK together with the relations
in Table Il, the equations of motion in real coordinates are
found to be

Vv
u=w+ = C'r,

_ : Vv
w=C*(f—Cw)— v (1+ CTK)w—¢w, (68)
- Pv
V= Wy’ (69)
- 1 TeT T v
pV=—Pext+3—V w'C' Cw+r f+Z—3—VKW —{pv,
(70)
1 Py
- TT _
{= W, (W C'Cw+ Wy ngT). (7D
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Here the overdots are derivatives with respect to real time Ujv(Ql/Bpﬁ):o. (76)

We used again the definitiofi=S/S for the friction coeffi-

cient. Some comments on the relation betweemdw need  The whole procedure of deriving the equations of motion can

to be given here. From the equation ferone obtains first now be repeated as described in the previous sections. Since

r=Cw+(V/3V)r,. Since the velocities can be expressed ashe constraints involve only relative positions, the variations

r=Cu it follows that Cu=Cw+(V/3V)r,. This equation is  of the center-of-mass positions and momenta are to be con-

now multiplied by C”. Using thatC"C=1, it follows that  sidered as unrestricted. Analogously to the virtual center-of-

u=w-+(V/3V)C'r;. SinceC'r, =0, the vectolC 'ty may be  mass coordinatep,, ; and the virtual relative coordinates

replaced byC™r, which leads to Eq(67). p}, we definer; ., andr} to be the corresponding vectors
The equations of motion are not yet complete since thgy real space. The relative position of atdmin rotor J is

constraint forces are still unknown. To find an expression foryenoted byr} . To indicate that the individuaT matrices

z we transform the equation fat into real-space coordinates depend onIy'on relative coordinates, we label thenCés

They have the simple forrf26]

. Vv
+Cw=f+z— —— (C+ - .
Cw+Cw=f+z 3V (C+K)w—{Cw (72 R},
We know that the constraint forces are in the null spacg of C)= : , (77
such thatP, z=(1-CC™)z=z. Multiplication of the above y
equation byP, yields then an equation far. Here we can _RJ,mj
use that the projectd?, annihilates all terms proportional to
C. The result is where the individual blocks are the skew symmetric matrices
_p [ cws v Kw—f 73 0 -z Yii
z=P,| Cw+ 3y Kw . R};= ), 0 —xj;|. (78)
. . , _ Y3 X 0
The vector on the right-hand side can be obtained in the
same way as, . The above form for theC) reflects the relationr}
=wy/\r} and holds in Cartesian coordinates as well as in
D. Rigid rotors mass-weighted Cartesian coordinates. It is now easy to verify
We will now show that in the case of an ensemble of rigidthat
rotors the volume scaling affects only the centers of mass, as T
C;'r;=0, (79

it should be. In principle, the degrees of freedom of the
whole system could be described by a sinGlenatrix. For
the following proof, however, it is more convenient to intro- Ky=-Cj, (80)
duce separat€ matrices for each rotor and to decompose

the coordinates into center-of-mass and relative coordinate¥/here for each rotod the matrixK} is defined through Eq.
We introduce the vectoig, .., containing the three Carte- (64), replacingC by C). Using these relations one finds that
sian components of the center of mass of ratoand the

vectorsp),, collecting for each rotor the relative coordinates w;=w;, J=1,...M, (82)
of all atoms with respect to its center of mass. The virtual
position of atomk in rotor J is then given by wherew; is the molecular analog to the auxiliary velocity
defined in Eq(63). It is then straightforward to show that the
Pik=Picmt pjvk. (74 equations of motion in real coordinates read
In terms of center-of-mass and relative coordinates the vir- ] v
tual Lagrangian reads F.em=Pacm™t 3y faem. (82
L Qz/ssz
L = "SI . \Y%
Y le 2 Pa.cmPa.cm. Psem™= fJ,c.m._ 3_\/ Py,cm=¢P3cm.s (83
L Q2/3 2 '
t2 T P PQ TR @2,=C) " (f,= Cjeny) — L@y, (84)
2
s“Wo - W . -
“VUQps 0 QU5 ) + 2 Q2+ 2 & v=2v ®5)
: : 2 2 Wy
—Pa@—gkgT Ins. (75 M

1
b= —Pout —— > (p! 17 e mfrem)— £Pv,s
The important point is now that the constraints depend only Pv Y, le (Ps.cmPa.cm®3.cmba.cm) = EPy
on therelative coordinates (86)
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) 1 M p\zl B. Equivalence of the microcanonical ensemble
(= W 321 (pj,c.mpJ,c.m."_ wJTCjTCj w;)+ 2—Wv—ngT . of the extended system and th&PT ensemble
ST To calculate ensemble averages we need to introduce gen-
(87) g g

eralized coordinates and momenta. We start with the defini-
tion (10) for the LagrangianC, of the constrained extended
system. It has been shown abdeee Eq.(14)] that the vir-
tual velocities have the general form

The momentg; ., are associated with the center-of-mass
positionsr; . m. The vectorf, ., denotes the total force on
rotor J, f; . m=2f; «, wheref; , are the forces on the indi-
vidual atoms. SinceP; ;K)j=—P] ;C;=0, the constraint

forces are given bjycompare Eq(73)] p=—p: E+
\__.7_.J
2;=P, j(Clay—f;). (88) -

Note that the componept does not contribute to the kinetic
energy term inC, . We assume now having found a setfof
generalized coordmatesyﬁ collected in the vectorny
=(5%...,7"7 such thatp can be parametrized g&Q, 7).

To derive the above equations of motion it was used that for
rigid bodies the relation

r3ry=const (89 Explanations on generalized coordinates in virtual and real
space are given in the Appendix. The virtual velocities are
holds. This leads to;(f;+2;)=—®,C} C}e; and simpli-  then given by
fies the equation fop, considerably. The equations of mo- :
tion for the angular velocities do not couple to the volume p=—p. 0 +r,,, (92
dynamics and the instantaneous pressure is determined by 30
the center-of-mass variables only. In the particular case of an T’ L
ensemble of completely rigid molecules we retrieve the cenwhere -
ter of mass scaling procedure of Ryckaert, Ciccotti, and Fer- i
rario [3—7. If the Nosethermostat is switched off, the rota- i 9P (Q.m ! o _ap'(Q, I (Q.m 93)
tional dynamics is described by the Euler equations of 7 e 3QP T T
motion [26]. The p! are the components gb, =P, p. T is a ANXf
matrix whose column vectors form a basis of the null space
V. CORRECTNESS OF THE ENSEMBLE of A such thatAI'=0. In terms ofI" the projectorP, reads
It will now be shown that the equations of motion derived P=IT"=0('"T) "I, (94)

above correspond to the desirddP-T ensemble. As usual, he ab licit f ¢ d o
the equivalence of time and ensemble averages is assumege above explicit form foP, and expressio2) for p may
now be used to writeC, as

A. H, is a constant of motion Eg_QZBSZ . —— WQSZ-Q2 N W,s?
As a first step we show that the Hamiltonidd, is a vz T 2 2
constant of motion. For this purpose it is convenient to col- v _
lect all dynamical variables of the virtual systdmQ,s} in V=gkeT Ins=PeQ, (95)
the sef{q®} (e=1,...,3N+2) and all corresponding momenta whereV=MQ3p[Q,]). The superscripy stands for “gen-
in the set{p,} (a=1,...,8N+2). The equations of motion eralized coordinates.” As usual, the conjugate momenta to

(26)—(31) can then be written in the compact form are obtained via
IH; IL, 2/342 .
N — v == ST'T , 96
4= (90) Ty = Q 7 (96)
and we find that the corresponding Hamilton function is
.0y @) given by
pO( (?qa ? 2 2

s

Hg:+ﬁT(FTF)7lﬂ+ 79 + +V
v 2Q%Rs? 77 2Wos® T 2Wy

where H} =HU+CB<I>'3. Using the above form of the equa-
tions of motion it follows immediately that(* =q*dH; / +gkgT Ins+P,Q. (97)

Tty * =0, i * nstant of motion. . .
99"+ padH, [0p.=0, i€, T, is a constant of motio To confirm thatH? is H, in generalized coordinates, we
Since the constraints vanish |dent|cally on the constraint sur-
need the relation between the Cartesian momensand the

faced®?=0, it follows thatd? and all higher time derivatives I his rel i lish
vanish too. Consequently, = H* —c,d* is a constant of generalized momentar,. T |§/ re atlonzlg gasly established
. ) . vt 2B ) by using thatm=dL,/9p=Q%*s’p=Q?3s’T'y. It follows
motion H,=E. Sinced/dt=sd/dr, this holds also in real
then from Eq.(96) that
time, although the equations of motion in real space and time
are no longer Hamiltonian equations of motion. n-,,=FTﬂ-. (99
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If this is inserted in expressio(®7) one retrievesH, , ob-  The new set of variables is now chosen to be
serving that the projectoP, can be finally omitted on ac-

count of the momentum constrairBsz= 1. vV=Q, (107)
Consider now the ensemble average of an arbitrary func-
tion A(r,p,V) in the micro-canonical ensemble of the virtual pv=mqls, (108
system
[+ JdQ dmgd'm,d p ds drS(HI-E)A(r,p,V)
(W=—7 g o : ps= s, (110
J-+-JdQ dmod' @, d" 5 ds dms6(H, —E)
©9 x=x(Q,n), (111
H? is the Hamilton function in generalized coordinates and 1
E is theconstantenergy of the virtual extended system. Us- T rRT -1
ing the relations in Table IIr, p, andV can be written as Px=3 [BY(Qw] ", (112
r=Q%p(Q, ), (100  As stated in Eq(106), B is the Jacobian for the change from
7 to X. The volume elements transform as
1 1
P=om% 7 Q% (TrnH*m,, (109 dQ dmod'm,d 5 ds dm=S""1dV dp,d'p,d'x ds dps
(113
V=Q. (102 and the Hamiltoniar¥, takes the form
To expressa in terms of &, we inverted the equationr, 1 p%/ p2
=I'"a, observing thatP,m=. H =5 pI(CTC)™ 'p.+ V(r[x]) + S TPV + ﬁ
As in the original NoseAndersen proof of the correctness v S
of the ensembl§l,2], we perform now a change to integra- He
tion variables describing the real system. In the case of con- (114
strained motion Cartesian coordinates and momenta are to +gkgT InS.

replaced by correspondingeneralized(but not canonical
coordinates and momenta. The real-space positions are d
scribed by a set of =3N—| generalized coordinates”,
collected in the vectox=(x,... x"T, such thatr=r(x).
We recall thatf is the number of degrees of freedohthe
number of constraints, anl the number of particles. A

ii@fgr's)ogu;%(%ﬁgt shows that there must be a relation worth noting that the Cartesian form corresponding#bis
—n found by expressing, in terms of thg Cartesian momerga
r(X[Q,7])=Q¥3p(Q, 7). (103  According to Eq(98), one hasm,=I""#. Writing I', 77, and

@, in terms ofC, p, andp,, respectively, shows that

Here we have renametV,=Wg, Ws=W;. HY is the
Bamiltonian of theconstrained real systenm generalized
coordinates. This is seen by expressing the Lagrangian
=4Tr—y in terms of generalized coordinates
£9=23"C"Cx—V, which yields the canonical momenta
p,=C'Cx and the Hamiltoniar{%=3p [(CTC) Yp,+V. Itis

Obviously r is redundantly parametrized by tHe+-1 vari- T

ables » and Q. This point is discussed in the Appendix. Px=C'p. (115
Analogously to the matrid’, which is formed by the partial . _ T 1T .
derivativesdp'/dn®, we introduce the Jacobia@ with ele- Recognizing thaP,=C(C'C)™'C’, we obtain

ments HI—H=3p"Pp+V=3p p+V. (116
i )
Ci :a_r. (104 Sincer =p for purely geometrical constraints, this is exactly
* o ox” the Hamiltonian that results by a Legendre transformation of
L=3Tr—V.

It follows from Ar =0 that the columns o€ form a basis of
the null space of A. Write A'=Af(ar'/oxP)xP
=A{C}x#=0. The velocities<* are unrestricted and there-
fore AC=0. Since the columns of andI' span the same
subspaceV,, they must be related by a nonsingular linear

We follow now Noseand consider the denominator of
formula (99) for the average of\. This denominator is the
partition functionZ. In terms of the variable§v,... p,} we
obtain

transformation. The relation betwedhand C is found by ,
writing Z=f f av dpvdfpxdfx ds d[igSf+25('Hg -E).
_ 11
p(Q. 1) =Q Y ({Q. 7)) (109 (117
and differentiatingp with respect tos. This yields[see Eq. 1h€ & function can be written in the forms(*Hy —E)
(A3)] = 5(h(S)). Sinceh(S) has one zero,

Py p3
9y __ ° 2
O+ i+ PenV+ oy E”

x4 (Q, 1
Ir=Q '3cB, B;(Q,@=W. (106) So=exr{—(ngT)
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the integration ove$ can be performed by using the identity Time averaging the equation of motid89) for p, shows

&h(8))=1/h"(Sp)| 8(S—Sp). The result is that Pj,q= Pex in equilibrium. HereP, is theinstantaneous
‘1o pressure introduced in E45). Assuming the equivalence of
z:j f dV dp,d'p,dx dpsexp[— i g} time and ensemble averages we $&t= Pi = {(Pinsp-
gksT SinceV=py/Wy, Pjs can be written in the form
f+2\( p?
Xexp{— _ngT _2WV+PE>“V } L o
. - T T _
Xexp — gkaT| 2Ws ex gkaT E|. (118 (122

The Gaussian integrals ovpg andp,, yield constants. If we . _
setg=f+2, Z is proportional to the partition function of the The constraint forces depend also on all four variablesr,

desiredN-P-T ensemble, py, andV. Writing z=A"u and using Eq(43) for u, we
may formally write
(o HO+ PV
Zocffdededxex -—F. (119
kgT
. . Pv
= -_— + —_— —

This shows that z=—A"| Ap+Af Y, Hp|. (123

(A)=(A)npT, (120

which is the desired result. Assuming the equivalence offhe corresponding expression for the case of linked rigid
time and _ensemble averagéds)) corresponds to the time hody dynamics is given in Eq73). In both cases the con-
averageA”in virtual time. As shown by Nosesampling ofA  straint  forces depend explicitty and implicitly on
in real time corresponds to the weighted averagey/3y=p,/3W,V. The implicit dependence results from the
(Als)[(1fs). Therefore[see Eq(117)] g must be chosen as (ime derivatives ofA and C, respectively. In the following
g=f+1 for real-time sampling2] such that we consider the case_ of Cartesian coordinates. In compo-
(Abpr=AL (121) nents we have Ag=rloAg/or!,  where rl=p
NPT 22 + (py/3WyV)r }. This shows that the constraint forces con-

tain two terms that depend both linearly on the momentum
py. From expressiori118 for the microcanonical partition

The results of Sec. V B enable us to derive a microscopidunction of the extended virtual system it follows now that
expression for the average pressure, or simply the pressurée averagéP;,s) can be expressed in the form

VI. PRESSURE

ffffdpvdv dfpxdfx W( Pv vVapx 1X) Pinst( Pv 1V1px 1X)

P. = .
(Pns) TTTTApAV 0 pd’X W(py V,py )
|
The weighting functiorw is given by The final expression for the pressure is thus
T
1 p2 b L fkgT+r (f+2,)
w(pv,v,px,x>=ex;{—kB—T (H9<px,x>+m+PeXNH. Pou= (Pins <—3v 19

All terms in P, that are odd irp, will drop out sincew is The vectorz, contains the part of the constraint forces that

even inpy and the integration range is symmetric with re- d0€s not depend on the volume dynamics, i.e., the purely

spect to zero. It remains now to give an expressioriop). geometrical constraint for_c_es_one wo_ulq compute for given
Writing external force$ and velocitiesr=p. It is important to note

that contributions from the constraint forces are to be con-
g sidered in the pressure calculatifg¥].

(124

d
PTP=Px(CTC) "p=py -
X VIl. CONCLUSION
one finds by integration over the momema We have presented a derivation of the equations of mo-
T tion for discrete mechanical systems in theP-T ensemble
PP\ _ fkeT (125 in the presence of holonomic constraints. Our approach rep-
3v/ \ 3v /° resents a generalization of the extended system method in-
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troduced by Andersen and Nosehich was designed for The remainingf=3N—| degrees of freedom may be de-
simple liquids. The main aspect is the generalization ofscribed by thef variables{x?, ... x"}, with x*=x#(r). As-
Andersen’s space scaling method for constant pressure simauming, as usual, that the Jacobia@x{/ar'];[ do®/ar'])
lations in the presence of holonomic constraints. Usingdoes not vanish, we can write=r(x;o), abbreviating
Dirac’s theory of constrained Hamiltonian dynamics, thex=(x},... x")T andeo=(s?,...,6")T. The A components
equations of motion were derived for simulations in Carte-r' are the inverse functions of theN3functions {x*,o*}.
sian coordinates. In addition, the generalized Euler equationSincea=0, the vector is a function of thex? alone and we
of linked rigid bodies were extended to the casedNeP-T  write briefly r=r(x). The differential ofr reads

dynamics. We have shown that our equations of motion cor- i

respond to the desired-P-T ensemble of a geometrically dr=Cdx. C :ﬁ_r (A1)
constrained system. For the special case of an ensemble of ' B oxP-

completely rigid molecules we retrieve the well-known . .
center-of-mass scaling procedy@-7]. However, for only The f c%lumns of C are thef covariant baS|.s vectors
partially rigid molecules the internal molecular degrees ofSs~?/7x". They are orthogonal to thecontravariant basis
freedom are coupled to the pressure bath. In this way locaf€ctor& B:’?U /or. One way 10 see this is to use that i@
perturbations due to pressure controlling can be expected Sthgx areLndeipendiendg/namlcal variables and therefore
dissipate more quickly. This effect is already known for tem-9¢ /9X"=(da"/dr’) (or'/9x") =0. In matrix form we have
AC=0, where thea® are the rows ofA. The columns ofC

erature controlling with a Nostaermostat.
P g tspan the subspadg and the rows oA span the orthogonal

It is important to note that the computation of constrain
forces that maintain the imposed holonomic constraints carcomPlementV, . We assume that botA and C have full

not be decoupled from pressure steering if the system is to H&N%: o . "
simulated in the correct ensemble. This means that simula- h-.”;]ef cilonstr?mts T Vl',r?}“a' variables read’((()j ”)b_o’
tion methods that are commonly used to maintain geometri?/hich follows fromr=Q~"p. Now Q is supposed to be un-

cal constraints in Cartesian coordinates cannot be put “oﬁehSt”C]fed:ahpr'or' the r‘t’;'u”l‘g can take artl)y p05|t!\ée vzlue.
top” of the NoseAndersen equations for unconstrained sys-| erefore the equations’(Q™p)=0 are to be considered as
constraints forp, which depend parametrically a@. We

tems. The pressure is obtained from the usual viral ex re% | . i .
b P ave N Cartesian coordinatgs and| constraints depend-

sion, including the constraint forces. Here it is sufficient to hus f — | ning d f freed
use only the common geometrical constraint forces that arf19 on Q, thus . 3N_ remaining degrees o r§53 om. A
trivial parametrization ofp would be p(Q,x)=Q™ " (x).

not identical to those actually used in the simulation of theX’ " o
dynamics. y This corresponds to writing?=x?(r)=x#(Q?p). In Sec. V

Compared to unconstrained systems, the numerical intd?€ assumed the virtual position vecjoto have the general
gration of the equations of motion in Cartesian coordinated®™™ p=p(Q.7). The differentialdp is then given by
necessitates the following additional stef®:the computa-

tion of the projectiorr;, (b) the computation of the second dp=—p, 3—+ Tdn, (A2)
derivatives of thes® with respect to the particle positions, — p

i i . . . dp . _
and (c) the computation of the constraint forces. To deter where T'.=ap'lan" and i(l/w)plzo’?p'/z?Q. Differ-

mine r; one must solve a system bflinear equations. The S R . .
; ; " _entiating nowp=Q ™ ~"r(x) with respect toQ yields dp/dQ
constraint forces may be determined by a SHAKE-like pro-~ —1/(3Q)p. But, in generalp+p. and relation(A2) would

cedure, which ensures also that the geometrical constrainis

are exactly fulfilled. For bond constraints the second derivalot be fulfilled. Therefore the set of variableQ x} is not

tives of theg” are simply constants, whereas they can besunablg to describe the constrained dynamicpofo pa-
ametrizep we assume the/’ to have the general form

quite complicated expressions for more general constraints;; . o
such as angles. Programs for symbolic calculation are quit@ﬁ_ 7Q.p). quether with thes” the »” form a _complete
set of 3\ functions of p that depends parametrically @p

helpful in such a case. . . . .
The simulation of linked rigid bodies in th-P-T en- ~ and may be inverted to give=p(Q,»). To find the relation
etween the variablesx* and #* we write p

semble requires the solution of three systems of linear equa-—-""73 , .
tions, each of which corresponds to a formal application of_Q r(x[Q.#). The differential form reads then
C* to a different right-hand side. The pseudoinvese is

not needed explicitly. One of these matrix equations has the 1 ar\ [ ox
same form as the equation for the angular accelerations in the dp=| - 0 p+Q~ ”3(5) (@) dg
case ofN-V-E dynamics. In addition, the derivatives of the NI
C matrices with respect to the particle positions are to be C
provided. In contrast to the second derivatives ofdfigthey
have always a simple form. 3 ar) %
+OT = o dz. (A3)
APPENDIX ~

Here we discuss the relation between generalized coordiA comparison with expression(A2) shows that (a)
nates in real and in virtual space. We consider first the situl'=Q *°CB and (b) the vector in curly brackets must be
ation in real space where the Cartesian positions are reequal to —1/(3Q)p,. This leads to the condition
stricted byl constraints of the formr(r)=0 (a=1,...)).  Q ¥3C(éx/dQ)=(1/3Q)p,=(1/3Q)CC" p. Here we used that
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the projectorP on V, can be written a®=CC™. Since the p and Q This parametrization must edundantsince we
columns ofC are assumed to be linearly independent, weknow thatr can be parametrized Hyvariables{x*, . .. ,xf}.
have C*=(C"C) C". Performing the variable transforma- That this is indeed the case is readily seen. WitQ°p we
tion y=1/3 InQ we obtain have from(A2)

ox
gy~ (CTO) CTr=F(x(y). (Ad) dQ e, dQ y
dr= 307 p+Q¥3dp= 30 r+Q¥rdn.  (A5)

This is a system of ordinary differential equations for the

x# as functions ofy. Its solution containg “constants,”

which can still be arbitrary functions of thievariables7®.  This is a linear combination df+1 vectors inV,, which are

For simple geometrical constrain{d4) can be solved ana- r, and thef columns ofI". In an f-dimensional space onlfy

lytically and shows that variables; leading to dp/9Q  vectors can be linearly independent. This proves that the pa-

=—1/(3Q)p, andap/an’<cV, can be explicitly constructed. rametrizationr =Q*p(Q, ) is redundant. Neverthelessjs
Having found a suitable parametrizatipi(Q,7), one can  correctly parametrized sindadr is in V,, as required by Eq.

obviously writer =QY3p(Q,7)=r(Q, ), wherer depends on (Al).
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