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Nosé-Andersen dynamics of partially rigid molecules:
Coupling all degrees of freedom to heat and pressure baths
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T. Mülders†
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~Received 31 May 1996!

We derive the equations of motion for partially rigid molecules in the isothermal-isobaricN-P-T ensemble.
The extended system method introduced by Andersen@J. Chem. Phys.72, 2384~1980!# and Nose´ @J. Chem.
Phys.81, 511 ~1984!# is generalized to the case of discrete mechanical systems subject to geometrical con-
straints. In our approach all available degrees of freedom are coupled to both the heat and the pressure bath. In
this way we take into account that partially rigid molecules can adapt their conformation to volume fluctuations
without violating intramolecular constraints. Using projector techniques and Dirac’s theory of constrained
Hamiltonian dynamics, we derive the equations of motion in Cartesian coordinates and extend the generalized
Euler equations for linked rigid bodies@G. R. Kneller and K. Hinsen, Phys. Rev. E50, 1559~1994!# to the case
of N-P-T dynamics. We prove that the trajectories generated by our equations of motion correspond to the
desiredN-P-T ensemble.@S1063-651X~96!12711-2#

PACS number~s!: 03.20.1i, 02.70.2c

I. INTRODUCTION

Andersen introduced the ‘‘extended system method’’ in
order to perform molecular-dynamics~MD! simulations in
the isobaric-isoenthalpicN-P-H ensemble@1# ~N, P, andH
denote constant particle number, constant pressure, and con-
stant enthalpy, respectively!. Here the pressure bath is de-
scribed by an additional dynamical variable, and the dynam-
ics of the whole system, i.e., the physical system plus the
additional variable, is described in the framework of Hamil-
tonian mechanics. The introduction of the extended system
method was an important step in the history of computer
simulations since completely deterministic MD simulations
could now be performed in other ensembles than the ‘‘natu-
ral’’ microcanonicalN-V-E ensemble, in which the volume
V and the total energyE are constants. Nose´ showed that the
extended system method allows as well the generation of
trajectories corresponding to the canonicalN-V-T ensemble
~T is the temperature! and the isothermal-isobaricN-P-T
ensemble, which is appropriate for most experimental situa-
tions @2#. In @1# Andersen treated also the case of theN-P-T
ensemble, but the temperature was controlled by a stochastic
method. The original extended system method was designed
for simulations of simple liquids. Later Ryckaert, Ciccotti,
and Ferrario presented extensions for simulations of molecu-
lar liquids @3–7#. The idea was to preserve the correctness of
the simulated ensembles in the presence of geometrical con-
straints. The generalization of Anderson’s method for sys-
tems subject to holonomic constraints is not straightforward

since the latter are destroyed by the space scaling method
that is used to adjust the pressure. Ryckaert, Ciccotti, and
Ferrario circumvented this problem by coupling Andersen’s
pressure bath only to the center-of-mass positions of the mol-
ecules. Since velocity scaling does not affect holonomic con-
straints, it is easy to implement the Nose´ thermostat in a
simulation program for partially rigid molecules such that all
degrees of freedom couple to the temperature bath. This is
also desirable for Andersen’s barostat since the local re-
sponse of the system due to pressure steering is kept as small
as possible in this way.

In principle, a general and elegant method to combine
thermodynamic and geometrical constraints is offered by
Gauss’s principle of least constraint@8–12#. In contrast to
Hamilton’s variational principle of mechanics, Gauss’s prin-
ciple is a time-local minimum principle for the accelerations
of the particles, which can be derived from d’Alembert’s
principle of virtual displacements. The proof is given by
Gauss in his original article@8#. His idea was to formulate
constrained mechanics as a least-squares problem. Evans
et al. recognized the value of Gauss’s principle to set up
equations of motion for arbitrary position and velocity-
dependent constraints. The latter cannot be properly handled
in the framework of Hamiltonian mechanics@13#. Gauss’s
principle allows, for instance, one to construct a thermostat
by fixing the kinetic energy or to impose an average particle
flow describing a nonequilibrium system@14#. One can as
well impose constant pressure and constant temperature@15#.
For an overview see also@16# and@17#. The combination of
geometrical constraints with a Gauss thermostat has been
used in polymer simulations by Edberg, Evans, and Morriss
@18#. Here the thermostat was coupled only to the centers of
mass of the molecules, but not to all atomic degrees of free-
dom, which is possible as well, but complicates the equations
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for the Lagrange multipliers associated with the constraints.
As soon as explicit kinematical conditions can be formu-
lated, as in nonequilibrium molecular dynamics, Gauss’s
principle offers a mathematically clear and simple way to
write down the equations of motion.A priori it is, however,
not obvious which constraints are to be imposed in order to
describe a specific thermodynamic ensemble. The Gauss
thermostat, e.g., fixes the kinetic energy and not theaverage
kinetic energy, which is constant in the canonical ensemble.
Correspondingly, the phase-space distribution is of the usual
form e2bV(r ) in configurational space, but in velocity space it
yields ad function centered at the prescribed kinetic energy
@2,19#. We are not aware that the ensemble corresponding to
a Gauss thermostat and/or barostat in the presence of geo-
metrical constraints has been identified. Berendsenet al. @20#
suggested a third method for MD simulations at constant
temperature and/or constant pressure that is known as the
‘‘weak-coupling scheme.’’ They use controllers with propor-
tional characteristics@17# to maintain temperature and pres-
sure at prescribed values. Geometrical constraints are
handled separately via the SHAKE method@21#. By con-
struction, all degrees of freedom couple to the heat and pres-
sure bath~weak coupling!. However, even for systems with-
out geometrical constraints the resulting trajectories cannot
be shown to correspond to a well-defined thermodynamic
ensemble@22#. The latter is indispensable if one wishes to
obtain the correct fluctuations of thermodynamic variables.
On the other hand, the method by Ryckaert, Ciccotti, and
Ferrario is not suitable if only a few but large molecules are
to be simulated at constant pressure. In the extreme case
where the simulated system consists of only one long poly-
mer chain it cannot be applied at all since pressure adjust-
ment by center-of-mass scaling becomes meaningless.

In this paper we focus on the simulation of partially rigid
molecules in the conventional thermodynamicN-P-T en-
semble. We show how the extended system method can be
generalized to simulations of discrete mechanical systems
with arbitrary holonomic constraints such that all available
degrees of freedom are coupled to the heatand the pressure
bath~see Fig. 1!. In this way not only the distances between
the molecules, but also their internal coordinates respond to
volume fluctuations. The latter is reflected in a change of the
radius of gyration. In Sec. II we set up the Nose´-Andersen
Lagrangian corresponding to a geometrically constrained
system and construct the corresponding Hamiltonian. Using
the Dirac theory of constrained Hamiltonian dynamics@23–
25#, we derive first the Hamiltonian equations of motion in
Cartesian coordinates~Sec. III!. Then we adapt the general-
ized Euler equations for linked rigid bodies@26# to the case
of N-P-T dynamics~Sec. IV!. In Sec. V we give the proof
that our equations of motion correspond to the desired
N-P-T ensemble. An important result is also that we obtain
a microscopic expression for the pressure in a system of
partially rigid molecules. This aspect is discussed in Sec. VI.
A concluding discussion follows in Sec. VII and in the Ap-
pendix details on general coordinates in virtual and real
space are given. Numerical considerations and an application
are planned to be discussed in a future paper.

II. CONSTRAINED EXTENDED SYSTEMS

A. Geometrical constraints and projectors

We consider a dynamical system consisting ofN pointlike
particles whose positions are determined by 3N mass-

weightedCartesian coordinatesr5(r 1, . . . ,r 3N)T. The com-
ponents ofr are the particle positions multiplied by the
square roots of their masses. To keep the notation short
mass-weighted coordinates and related quantities will not be
labeled as such. The relations between mass-weighted and
non-mass-weighted quantities are listed in Table I. If cou-
pling to pressure and temperature baths is disregarded, the
dynamics of our system is governed by the Lagrangian

L5 1
2 ṙ

Tṙ2V~r ! ~1!

and l holonomic constraints

sa~r ![0, a51,. . . ,l. ~2!

The latter describe, for instance, chemical bonds, planar
rings, or a reaction coordinate that is constrained to a certain
value. We introduce now thel33N matrix A, whose ele-
ments are the partial derivatives of the constraintssa with
respect to the particle positions,

Aj
a~r !5

]sa~r !

]r j
, a51,. . . ,l , j51,. . . ,3N. ~3!

In the following we will make extensive use of the projectors
on the null space ofA and its orthogonal complement. These
projectors will be denoted asPi andP' , respectively. They
can be concisely expressed in terms of the matrixA:

FIG. 1. Stretching of a molecule by enlargement of the simula-
tion box. The bond lengths in the original molecule~thick lines! and
in the stretched molecule~thin lines! are the same; only the angles
have changed.

TABLE I. Mass weighting.

Mass weighted Not mass weighted Connection

r r * r*5M21/2r
p p* p*5M1/2p
f f* f*5M1/2f
s~r !50 s* ~r* !50 s~r !5s* ~r* !

A A* A*5AM 1/2

z z* z*5M1/2z
C C* C*5M21/2C
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Pi512A1A, ~4!

P'5A1A. ~5!

A1 is the Moore-Penrose inverse ofA @27–29#, which is also
called the ‘‘generalized inverse’’ or ‘‘pseudoinverse.’’ As-
suming thatA has full row rank,A1 can be written in the
explicit form @27#

A15AT~AAT!21. ~6!

Both Pi andP' fulfill the relationsP25P andPT5P. It is
easy to see thatAPi50, i.e.,Pi is indeed the projector on the
null space ofA. In the following the null space ofA is called
Vi and its orthogonal complement is calledV' . Application
of Pi andP' to an arbitrary vectorx yields its projections on
Vi andV' , respectively. We denote the projection onVi by
xi and the one onV' by x' .

Time differentiation of the constraint equations~2! shows
that the velocities are in the null space ofA,

Aṙ50⇔Pi ṙ5 ṙ i5 ṙ . ~7!

It follows from the simple form ofL that the canonical mo-
menta are identical to the velocities

p5
]L
] ṙ

5 ṙ ~8!

and thus fulfill the same constraints

Ap50⇔Pip5pi5p. ~9!

B. Lagrangian of the extended system

We make now the following ansatz for the Nose´-
Andersen Lagrangian of the constrained extended system in
mass-weighted coordinates:

Lv5
Q2/3s2

2
ṙTPi~Q1/3r!ṙ2V~Q1/3r!1

s2WQ

2
Q̇21

Ws

2
ṡ2

2PextQ2gkBT lns. ~10!

The LagrangianLv , together with kinematical conditions yet
to be specified, describes the dynamics of a virtual system
consisting ofN pointlike particles.Q ands are scaling vari-
ables.Q has the dimension of volume ands is dimension-
less.WQ andWs are the corresponding ‘‘masses,’’ which
have to be regarded as adjustable parameters. The vectorr
contains the 3N mass-weighted positions of the virtual par-
ticles that are normalized to a cube of volumeQ. All over-
dots in ~10! denote time derivatives with respect to thevir-
tual time t. The functionV denotes the potential energy,Pext
is the external pressure,g is an integer number still to be
determined, andkBT is the Boltzmann constant multiplied by
the absolute temperature. The relations between the variables
describing the virtual system~briefly called ‘‘virtual vari-
ables’’! and the variables describing the real system to be
simulated~‘‘real variables’’! are given in Table II. They do
not constitute a canonical transformation and therefore the
real variables cannot be equivalently used in the derivation
of Hamiltonian equations of motion. The LagrangianLv is

constructed in analogy to the Lagrangian of Nose´ given in
@2#. The main difference betweenLv and the corresponding
Lagrangian forN unconstrained particles is the presence of
the projectorPi . We include the velocityQ̇ in the time scal-
ing procedure to formulate the equations of motion in
‘‘Nosé-Hoover-like’’ form @19,7#.

The constraints imposed on the virtual system read

sa~Q1/3r![0, a51,. . . ,l ~11!

and the elements of the matrixA are now given by

Ai
a~Q1/3r!5

]sa~r !

]r i U
r5Q1/3r

. ~12!

As in the case of real-space dynamics one can derive a con-
straint for the velocities by time differentiation of the kine-
matical conditions. One obtains from~11!

Aṙ1
Q̇

3Q
Ar50. ~13!

The solution of this equation forṙ yields all virtual velocities
that are kinematically possible,

~14!

At this point ṙi is anarbitrary vector inVi . Equation~14!
shows thatṙ, in contrast toṙ , is notan eigenvector ofPi , but
has also a component inV' . If the projectorPi were inserted
in the kinetic energy term of the real space LagrangianL
given in ~1!, the resulting trajectories would be exactly the
same as the ones derived fromL without the projector. In
that light, singular Lagrangians in classical mechanics appear
to be artificial@30#. However,Lv is truly singular. Here the
presence of the projectordoeschange the equations of mo-
tion. The virtual LagrangianLv is constructed in such a way
that the virtual canonical momenta

p5
]Lv
]ṙ

~15!

fulfill the same constraints as the real momentap,

TABLE II. Connection between virtual and real quantities.

Virtual Real Connection

Q V Q5V

pQ pV
pQ

s
5pV

s S s5S
ps pS ps5ps

r r Q1/3r5r

p p p

Q1/3s
5p

dt dt dt

s
5dt
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Ap50⇔Pip5pi5p. ~16!

The constraints for the coordinates and momenta describing
the virtual system ensure that the real variables fulfill the
conditionssa~r !50 andAp50, respectively.

C. Hamiltonian of the extended system

The basic quantity that relates classical dynamics to sta-
tistical physics and thermodynamics is the Hamilton func-
tion. In order to generalize the extended system method to
the case of semiflexible molecules we need a Hamiltonian
description of a constrained system inCartesian coordinates.
First the Hamiltonian is needed to prove the correctness of
the simulated ensemble, assuming the equivalence of time
and ensemble averages. If mass-weighted coordinates are
used, the Hamiltonian equations of motion have also a sim-
pler form than the Lagrangian equations of motion. The
theory of constrained Hamiltonian dynamics was established
by Dirac @23,24# and Anderson and Bergmann@31#. De
Leeuw, Perram, and Petersen treated this subject in a more
recent paper@32#.

To construct the Hamilton function associated withLv we
write

Hv5ṙTp1Q̇pQ1 ṡps2Lv . ~17!

p, pQ , andps are the virtual momenta, which are defined as
]Lv/]ṙ, ]Lv/]Q̇, and]Lv/] ṡ, respectively. The velocities in
Hv must now be eliminated in favor of the momenta. Since
Lv contains the projectorPi as a metric tensor in the kinetic
energy term, and consequentlyPip5p, the associated
HamiltonianHv depends only on the componentṙi . The
latter can be expressed asṙi5p/Q2/3s2. The elimination of
the remaining velocitiesQ̇ and ṡ is trivial and yields the
following concise form forHv :

Hv5
1

2Q2/3s2
pTp1

pQ
2

2s2WQ
1

ps
2

2Ws
1V~Q1/3r!1PextQ

1gkBT lns. ~18!

On account of the momentum constraintsPip5p, the pro-
jectorPi appearing inLv can be omitted inHv . Compared to
the Lagrangian equations of motion, wherePi must be kept,
the Hamiltonian equations have a much simpler form. We
note here that this is a result of the use of mass-weighted
coordinates.

III. EQUATIONS OF MOTION
IN CARTESIAN COORDINATES

A. Hamilton’s variational principle

The Hamiltonian equations of motion for the virtual co-
ordinates and momenta can be derived from the variational
principle @11#

S5E
t0

t1
dt$ṙTp1Q̇pQ1 ṡps2Hv%5Extremum. ~19!

This leads to the necessary condition

dS52E
t0

t1
dtH drTS ]Hv

]r
1ṗD1dpTS ]Hv

]p
2ṙD

1dQS ]Hv

]Q
1ṗQD1dpQS ]Hv

]pQ
2Q̇D1dsS ]Hv

]s
1ṗsD

1dpsS ]Hv

]ps
2 ṡD J 50. ~20!

The expressions in parentheses are to be evaluated at the true
path that makes the actionS stationary. It must be taken into
account that the variations in~20! are restricted and interde-
pendent due to the kinematic conditions for the virtual posi-
tions and momenta. Therefore the variations of the paths in
configuration and momentum space are not arbitrary, and
one cannot conclude that the terms in parentheses in~20!
vanish identically. We discuss first the derivation of the
equations of motion in Cartesian coordinates.

B. Equations of motion for the virtual system

The equations of motion for the virtual system can be
derived by the Lagrange multiplier method. Following Dirac
@23,24#, we observe that the HamiltonianHv is not uniquely
determined. If we write the constraints for coordinates and
momenta in the formFb[0, where

Fb5 H 2sb~Q1/3r!, b51,. . . ,l
p jAj

b2 l~Q1/3r!, b5 l11,. . . ,2l , ~21!

we can introduce a new Hamiltonian

Hv*5Hv1cbFb ~22!

containing 2l arbitrary functionscb~t!. ~Here and in the fol-
lowing we use the Einstein convention, assuming implicitly a
summation over pairwise upper and lower indices. Upper
indices refer to contravariant components and lower indices
to covariant components. In a Euclidean coordinate system
covariant and contravariant components are identical. In
some places we distinguish formally between them to respect
the Einstein convention.! ObviouslyHv*5Hv on the surface
defined byFb[0. For variations of the paths in phase space
that are in accordance with the constraints it follows that
dFb50, and consequentlydHv*5dHv . However, the de-
rivatives ofHv* with respect to the momenta and coordinates
yield additional termscb]Fb/]p, cb]Fb/]r, etc. The Hamil-
tonianHv* allows us to consider anunconstrainedvariational
problem, which is supplemented by the 2l conditionsFb[0.
These allow us to fix thecb that appear now as Lagrange
multipliers in complete analogy with Lagrange’s equations
of the first kind. To derive the Hamiltonian equations of
motion we split thecb into a set ofl Lagrange multipliers
$ma% corresponding to the position constraintssa[0 and a
set of l Lagrange multipliers$ga% corresponding to the mo-
mentum constraintsA i

ap i[0. Introducing the vectors
s5(s1, . . . ,s l)T, m5(m1 , . . . ,m l)

T, and g5(g1 , . . . ,g l)
T,

the HamiltonianHv* may be expressed as

Hv*5Hv2sT~Q1/3r!m1pTAT~Q1/3r!g. ~23!
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The equations of motion are now derived by insertingHv* in
the stationarity condition~20! and considering an uncon-
strained variational problem. This means that all variations
can be considered as independent.

To write the equations of motion in matrix notation we
introduce the 3N-dimensional force vectorf and thel33N
matrix F via

f i52
]V
]r iU

r5Q1/3r

, i51,. . . ,3N ~24!

Fk
a52p i

]2sa

]r k]r iU
r5Q1/3r

, a51,. . . ,l, k51,. . . ,3N.

~25!

Using these definitions, the Hamiltonian equations of motion
in virtual coordinates and virtual time are found to be

~26!

~27!

Q̇5
pQ

s2WQ
, ~28!

~29!

ṡ5
ps

Ws
, ~30!

ṗs5
pTp

Q2/3s3
1

pQ
2

WQs
32

gkBT

s
. ~31!

The vectorz5ATm contains the yet undetermined mass-
weighted constraint forces and the vectorATg can be iden-
tified with the componentṙ' . This follows immediately
from P'p50 andP'A

T5AT. In principle, bothg andm can
be fixed by making use of the constraint equations
sa~Q1/3r![0. For practical purposes, however, it is more
convenient to determine onlyg at this point, and to perform
the computation ofm in real-space coordinates. We know
from Eq. ~14! that ṙ'52(Q̇/3Q)r' . This allows us to write

~32!

whereP'5A1A is the projector on the row space ofA.
According to Eq.~6!, the pseudoinverse ofA has the explicit
form A15AT~AAT!21 if A is assumed to have full row rank.
Multiplication of ~32! by A from the left yields then a system
of l linear equations for the components ofg,

AATg52
Q̇

3Q
Ar. ~33!

C. Equations of motion of the real system

To write down the equations of motion in real space we
introduce thel -dimensional vectorg such that

AATg52Ar , g5S 1

V1/3S

V̇

3VD g. ~34!

From now on the overdot denotes again a time derivative
with respect toreal time t. In addition, we define the sym-
metric 3N33N matrix H with elements

Hik~r !5ga

]2sa

]r i]r k
, i ,k51,. . . ,3N. ~35!

Thega are the components ofg. The above definitions may
now be inserted into the equations of motion in virtual coor-
dinates, performing at the same time the substitutions listed
in Table II. The result is

ṙ5
V̇

3V
r i1p, ~36!

ṗ5f1z2
V̇

3V
~11H!p2zp, ~37!

V̇5
pV
WV

, ~38!

ṗV52Pext1
1

3V H pTp1rTS f1z2
V̇

3V
HpD J 2zpV ,

~39!

ż5
1

WS
S pTp1

pV
2

WV
2gkBTD . ~40!

Here we have introduced the ‘‘friction coefficient’’z5Ṡ/S.
The vectorg can be used to computer i appearing in the
equation of motion for r . Writing r i5Pir
5@12AT~AAT!21A#r , it follows that

r i5r1ATg. ~41!

In addition tor i , the constraint forces

z5ATm ~42!

need to be determined. A linear equation form is obtained by
time differentiation of the identityAp50. This yieldsAṗ5
2Ȧp. Hereṗ can be expressed by the right-hand side of Eq.
~37!. All terms proportional top will drop out on account of
Ap50, and we get

AATm52Ȧp2AS f2 V̇

3V
HpD . ~43!
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It should be noted that the constraint forces depend explicitly
on V̇/3V, but not onz5Ṡ/S. This shows that a Nose´ thermo-
stat does not interfere with holonomic constraints.

From the equation forṗV , which may be written in the
concise form

ṗV5Pinst~ t !2Pext2zpV , ~44!

the definition of theinstantaneouspressure can be obtained:

Pinst~ t !5
1

3V H pTp1rTS f1z2
V̇

3V
HpD J . ~45!

The expression for themean pressureis derived in Sec. VI.

IV. EQUATIONS OF MOTION
FOR LINKED RIGID BODIES

A. Linear velocity constraints

In the following the generalized Euler equations of topo-
logically linked rigid bodies@26,33# will be generalized to
the case ofN-P-T dynamics. The 3N real-space velocities
of theN pointlike constituents are related to a set off gen-
eralized velocities via

ṙ5C~r !u. ~46!

Consider a system ofL chain molecules, enumerated by
J51,. . . ,L, each containingmJ rigid bodies. The vectoru
comprises thenL translational velocities andM5( J51

L mJ
angular velocities. To keep the formulas in the derivation of
the equations of motion as simple as possible, we consider a
singleC matrix for the whole system. In general, theC ma-
trix is not a Jacobian. This case is, of course, included. Since
we are using mass-weighted coordinates we haveC
5M1/2C* , whereC* is the definition of theC matrix in @26#
andM is the diagonal mass matrix. TheC matrix depends on
the Cartesian coordinates of the particles, which depend, in
turn, on quaternion parameters describing the orientation of
the rigid units. For each unit there are four normalized
quaternion parameters. A linear relation of the form
q̇5L~q!v connects the time derivatives of the quaternion
parameters and the angular velocity of the respective unit.

B. Hamilton’s principle for linked rigid bodies

Formally the geometrical constraints of the chain can be
described in the alternative formsa~r !50. As shown above,
the velocities in real space fulfill the conditionAṙ50, where
the elements ofA are the partial derivatives of thesa with
respect to the particle coordinates. Sinceṙ5Cu andu is an
arbitrary vector, it follows thatAC50. This shows that the
columns ofC span the null space ofA.

The equations of motion for linked rigid bodies in the
N-P-T ensemble are again derived from the stationarity con-
dition ~20!. Now the variationsdr anddp are constructed by
using the basis vectors ofVi . These are now explicitly given
in form of the column vectors of the matrixC.

To obtain an explicit expression for the variationdr we
proceed as follows. If the geometrical constraints in virtual
coordinates are given in the formsa~Q1/3r!50, the variation
of these equations yields@compare Eq.~14!#

Adr52
dQ

3Q
Ar. ~47!

The formal solution fordr reads

dr52
dQ

3Q
r'1dr i ~48!

wheredri is anarbitrary variation inVi . Since the columns
of C form a basis ofVi we can write

~49!

Heredy is an arbitraryf -dimensional vector.
SincePip5p the virtual momentap can be written in the

form

p5C~Q1/3r!v. ~50!

The vectorv containsf virtual generalized velocities~v is
not to be confused withu!. SinceC depends onr andQ the
variations ofp are given by

~51!

dv are arbitrary variations of the velocitiesv anddpi , f is an
arbitrary 3N-dimensional vector inVi . The vectordpi , f is
not the complete projection of the momentum variationdp
ontoVi , but only itsfreepart, which is left undetermined by
the momentum constraints. SinceC depends onQ andr its
variation, dC splits into a contribution proportional todQ
and a second one that is proportional todr. According to Eq.
~49!, the latter splits, in turn, into a contribution proportional
to dQ and a second one that is inVi . Written in components,
dp reads

~52!

The expressions fordr anddp, as given by Eqs.~49! and
~52!, respectively, are now to be used in the stationarity con-
dition ~20!. More explicitly we get
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dS52E
t0

t1
dtS dp i , f

i S ]Hv

]p i 2 ṙ i D
1dr i

kS ]Hv

]rk
1ṗk1Q1/3F]Hv

]p i 2 ṙ i G ]Ca
i

]~Q1/3rk!
vaD

1dpQS ]Hv

]pQ
2Q̇D 1dQH ]Hv

]Q
1ṗQ1

1

3Q2/3

3F ~rk2r'
k !S ]Hv

]p i 2 ṙ i D G ]Ca
i

]~Q1/3rk!
va

2
r'
k

3Q F]Hv

]rk
1ṗkG J 1dpsS ]Hv

]ps
2 ṡD

1dsS ]Hv

]s
1ṗsD D 50. ~53!

The first point to be observed is thatdri , dpi , f , dQ, dpQ ,
ds, anddps are theindependentvariations. In addition, one
must take into account thatdpi , f anddri are both restricted
to the subspaceVi , which is spanned by the columns ofC.
Writing the corresponding stationarity conditions asdp i , f

T

~E1!50 anddr i
T~E2!50, it follows that E1 and E2 must be

vectors inV' . We call them2ṙ' andQ1/3z, respectively.
The factorQ1/3 in front of z has been introduced to givez the
dimension of a force. SincedQ, dpQ , ds, anddps are unre-
stricted, the associated terms in parentheses must vanish
identically.

C. Equations of motion in virtual and real space

To write the equations of motion for linked rigid bodies in
matrix form we introduce the 3N3 f matrixG,

Gka5~ ṙ'! i
]Ca

i

]r k
U
r5Q1/3r

, k51,. . . ,3N, a51,. . . ,f .

~54!

After straightforward algebra the equations of motion in vir-
tual coordinates are found to take the form

ṙ5
Cv

Q2/3s2
1ṙ' , ṙ'52r'

Q̇

3Q
, ~55!

ṗ5Cv̇1Ċv5Q1/3~ f1z!1Q1/3Gv, ~56!

Q̇5
pQ

WQs
2 , ~57!

ṗQ52Pext1
vTCTCv

3Q5/3s2
1

rT

3Q2/3 ~ f1z1Gv!, ~58!

ṡ5
ps

Ws
, ~59!

ṗs5
vTCTCv

Q2/3s3
1

pQ
2

WQs
3 2

gkBT

s
. ~60!

To derive the equation of motion forpQ we used that
r'
Tz5rTz, which follows fromzPV' . The vectorf contains

again the forces andz comprises the constraint forces. An
equation of motion forv is obtained by multiplying~56!
from the left byC1. Assuming that all column vectors inC
are linearly independent, the relations

C15~CTC!21CT, C1C51 ~61!

hold. SinceCTz50 the constraint forces on the right-hand
side of the equation forṗ drop out and one obtains

v̇5C1~Q1/3f2Ċv1Q1/3Gv!. ~62!

If the dynamics of a constrained system is described in Car-
tesian coordinates the connection between all dynamical
variables in virtual and real space is given by the simple
scaling relations listed in Table II. This is no longer true if
generalized coordinates and velocities are used. To establish
the relation between the variables appearing in the virtual
equations of motion and the angular velocities describing the
real system we introduce another set off auxiliary velocities,
comprised in the vectorw5(w1, . . . ,wf)T,

w5V21/3S21v, ~63!

The components ofw have the same dimension as those of
u, butw cannot be identified withu. It is now convenient to
define the 3N3 f matrix K through

Kja5~r'! i
]Ca

i ~r !

]r j
, j51,. . . ,3N, a51,. . . ,f .

~64!

To obtainr' we write

r'5r2r i5r2Ch, ~65!

where h is to be determined from the requirement that
CTr'50. The resulting equation forh is

CTCh5CTr . ~66!

Using the definitions forw andK together with the relations
in Table II, the equations of motion in real coordinates are
found to be

u5w1
V̇

3V
C1r , ~67!

ẇ5C1~ f2Ċw!2
V̇

3V
~11C1K !w2zw, ~68!

V̇5
pV
WV

, ~69!

ṗV52Pext1
1

3V HwTCTCw1rTS f1z2
V̇

3V
Kw D J 2zpV ,

~70!

ż5
1

Ws
SwTCTCw1

pV
2

2WV
2gkBTD . ~71!
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Here the overdots are derivatives with respect to real timet.
We used again the definitionz5Ṡ/S for the friction coeffi-
cient. Some comments on the relation betweenu andw need
to be given here. From the equation forṙ one obtains first
ṙ5Cw1(V̇/3V)r i . Since the velocities can be expressed as
ṙ5Cu it follows thatCu5Cw1(V̇/3V)r i . This equation is
now multiplied byC1. Using thatC1C51, it follows that
u5w1(V̇/3V)C1r i . SinceC

Tr'50, the vectorC1r i may be
replaced byC1r , which leads to Eq.~67!.

The equations of motion are not yet complete since the
constraint forces are still unknown. To find an expression for
zwe transform the equation forṗ into real-space coordinates

Cẇ1Ċw5f1z2
V̇

3V
~C1K !w2zCw. ~72!

We know that the constraint forces are in the null space ofC
such thatP'z5~12CC1!z5z. Multiplication of the above
equation byP' yields then an equation forz. Here we can
use that the projectorP' annihilates all terms proportional to
C. The result is

z5P'S Ċw1
V̇

3V
Kw2fD . ~73!

The vector on the right-hand side can be obtained in the
same way asr' .

D. Rigid rotors

We will now show that in the case of an ensemble of rigid
rotors the volume scaling affects only the centers of mass, as
it should be. In principle, the degrees of freedom of the
whole system could be described by a singleC matrix. For
the following proof, however, it is more convenient to intro-
duce separateC matrices for each rotor and to decompose
the coordinates into center-of-mass and relative coordinates.
We introduce the vectorsrJ,c.m., containing the three Carte-
sian components of the center of mass of rotorJ and the
vectorsrJ8 , collecting for each rotor the relative coordinates
of all atoms with respect to its center of mass. The virtual
position of atomk in rotor J is then given by

rJ,k5rJ,c.m.1rJ,k8 . ~74!

In terms of center-of-mass and relative coordinates the vir-
tual Lagrangian reads

Lv5 (
J51

L
Q2/3s2

2
ṙJ,c.m.
T ṙJ,c.m.

1 (
J51

L
Q2/3s2

2
ṙJ8

TPJ,i8 ~Q1/3rJ8!ṙJ8

2V~$Q1/3rJ,c.m.1Q1/3rJ,k8 %!1
s2WQ

2
Q̇21

Ws

2
ṡ2

2PextQ2gkBT lns. ~75!

The important point is now that the constraints depend only
on therelative coordinates

sJ
a~Q1/3rJ8!50. ~76!

The whole procedure of deriving the equations of motion can
now be repeated as described in the previous sections. Since
the constraints involve only relative positions, the variations
of the center-of-mass positions and momenta are to be con-
sidered as unrestricted. Analogously to the virtual center-of-
mass coordinatesrc.m.,J and the virtual relative coordinates
rJ8 , we definer J,c.m. and r J8 to be the corresponding vectors
in real space. The relative position of atomk in rotor J is
denoted byr J,k8 . To indicate that the individualC matrices
depend only on relative coordinates, we label them asCJ8 .
They have the simple form@26#

CJ85S 2RJ,18

•

•

•

2RJ,mj
8
D , ~77!

where the individual blocks are the skew symmetric matrices

RJ,i8 5S 0
zJ,i8

2yJ,i8

2zJ,i8

0
xJ,i8

yJ,i8

2xJ,i8

0
D . ~78!

The above form for theCJ8 reflects the relationṙ J,k8
5vJ`r J,k8 and holds in Cartesian coordinates as well as in
mass-weighted Cartesian coordinates. It is now easy to verify
that

CJ8
Tr J850, ~79!

K J852CJ8 , ~80!

where for each rotorJ the matrixK J8 is defined through Eq.
~64!, replacingC by CJ8 . Using these relations one finds that

vJ5wJ , J51,. . . ,M , ~81!

wherewJ is the molecular analog to the auxiliary velocityw
defined in Eq.~63!. It is then straightforward to show that the
equations of motion in real coordinates read

ṙ J,c.m.5pJ,c.m.1
V̇

3V
r J,c.m., ~82!

ṗJ,c.m.5fJ,c.m.2
V̇

3V
pJ,c.m.2zpJ,c.m., ~83!

v̇J5CJ8
1~ fJ2ĊJ8vJ!2zvJ , ~84!

V̇5
pV
WV

, ~85!

ṗV52Pext1
1

3V (
J51

M

~pJ,c.m.
T pJ,c.m.1r J,c.m.

T fJ,c.m.!2zpV ,

~86!
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ż5
1

Ws
S (
J51

M

„pJ,c.m.
T pJ,c.m.1vJ

TCJ8
TCJ8vJ)1

pV
2

2WV
2gkBTD .

~87!

The momentapJ,c.m. are associated with the center-of-mass
positionsr J,c.m.. The vectorfJ,c.m. denotes the total force on
rotor J, fJ,c.m.5(kfJ,k , wherefJ,k are the forces on the indi-
vidual atoms. SinceP',J8 K J852P',J8 CJ850, the constraint
forces are given by@compare Eq.~73!#

zJ5P',J8 ~ĊJ8vJ2fJ!. ~88!

To derive the above equations of motion it was used that for
rigid bodies the relation

r J
Tr J5const ~89!

holds. This leads tor J
T(fJ1zJ)52vJ

TCJ8
TCJ8vJ and simpli-

fies the equation forṗV considerably. The equations of mo-
tion for the angular velocities do not couple to the volume
dynamics and the instantaneous pressure is determined by
the center-of-mass variables only. In the particular case of an
ensemble of completely rigid molecules we retrieve the cen-
ter of mass scaling procedure of Ryckaert, Ciccotti, and Fer-
rario @3–7#. If the Noséthermostat is switched off, the rota-
tional dynamics is described by the Euler equations of
motion @26#.

V. CORRECTNESS OF THE ENSEMBLE

It will now be shown that the equations of motion derived
above correspond to the desiredN-P-T ensemble. As usual,
the equivalence of time and ensemble averages is assumed.

A. Hv is a constant of motion

As a first step we show that the HamiltonianHv is a
constant of motion. For this purpose it is convenient to col-
lect all dynamical variables of the virtual system$r,Q,s% in
the set$qa% ~a51,. . . ,3N12! and all corresponding momenta
in the set$pa% ~a51,. . . ,3N12!. The equations of motion
~26!–~31! can then be written in the compact form

q̇a5
]Hv*

]pa
, ~90!

ṗa52
]Hv*

]qa , ~91!

whereHv*5Hv1cbFb. Using the above form of the equa-
tions of motion it follows immediately thatḢv*5q̇a]Hv* /
]qa1 ṗa]Hv* /]pa50, i.e., Hv* is a constant of motion.
Since the constraints vanish identically on the constraint sur-
faceFb[0, it follows thatḞb and all higher time derivatives
vanish too. Consequently,Hv5Hv*2cbFb is a constant of
motion Hv5E. Sinced/dt5sd/dt, this holds also in real
time, although the equations of motion in real space and time
are no longer Hamiltonian equations of motion.

B. Equivalence of the microcanonical ensemble
of the extended system and theNPT ensemble

To calculate ensemble averages we need to introduce gen-
eralized coordinates and momenta. We start with the defini-
tion ~10! for the LagrangianLv of the constrained extended
system. It has been shown above@see Eq.~14!# that the vir-
tual velocities have the general form

Note that the componentṙ' does not contribute to the kinetic
energy term inLv . We assume now having found a set off
generalized coordinateshb, collected in the vectorh
5(h1, . . . ,h f)T such thatr can be parametrized asr~Q,h!.
Explanations on generalized coordinates in virtual and real
space are given in the Appendix. The virtual velocities are
then given by

~92!

where

Gb
i 5

]r i~Q,h!

]hb , 2
1

3Q
r'
i 5

]r i~Q,h!

]Q
. ~93!

The r'
i are the components ofr'5P'r. G is a 3N3 f

matrix whose column vectors form a basis of the null space
of A such thatAG50. In terms ofG the projectorPi reads

Pi5GG15G~GTG!21GT. ~94!

The above explicit form forPi and expression~92! for ṙ may
now be used to writeLv as

Lvg5
Q2/3s2

2
ḣTGTGḣ1

WQs
2Q̇2

2
1
Wsṡ

2

2

2V2gkBT lns2PextQ, ~95!

whereV5V~Q1/3r@Q,h#!. The superscriptg stands for ‘‘gen-
eralized coordinates.’’ As usual, the conjugate momenta toh
are obtained via

ph5
]Lv
]ḣ

5Q2/3s2GTGḣ, ~96!

and we find that the corresponding Hamilton function is
given by

Hv
g5

1

2Q2/3s2
ph
T~GTG!21ph1

pQ
2

2WQs
2 1

ps
2

2Ws
1V

1gkBT lns1PextQ. ~97!

To confirm thatH v
g is Hv in generalized coordinates, we

need the relation between the Cartesian momentap and the
generalized momentaph . This relation is easily established
by using thatp5]Lv/]ṙ5Q2/3s2ṙi5Q2/3s2Gḣ. It follows
then from Eq.~96! that

ph5GTp. ~98!
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If this is inserted in expression~97! one retrievesHv , ob-
serving that the projectorPi can be finally omitted on ac-
count of the momentum constraintsPip5p.

Consider now the ensemble average of an arbitrary func-
tion A~r ,p,V! in the micro-canonical ensemble of the virtual
system

^A&5
*•••*dQ dpQd

fphd
fh ds dpsd~Hv

g2E!A~r ,p,V!

*•••*dQ dpQd
fphd

fh ds dpsd~Hv
g2E!

.

~99!

H v
g is the Hamilton function in generalized coordinates and

E is theconstantenergy of the virtual extended system. Us-
ing the relations in Table II,r , p, andV can be written as

r5Q1/3r~Q,h!, ~100!

p5
1

Q1/3s
p5

1

Q1/3s
~GT!1ph , ~101!

V5Q. ~102!

To expressp in terms ofph we inverted the equationph
5GTp, observing thatPip5p.

As in the original Nose´-Andersen proof of the correctness
of the ensemble@1,2#, we perform now a change to integra-
tion variables describing the real system. In the case of con-
strained motion Cartesian coordinates and momenta are to
replaced by correspondinggeneralized~but not canonical!
coordinates and momenta. The real-space positions are de-
scribed by a set off53N2 l generalized coordinatesxa,
collected in the vectorx5(x1, . . . ,xf)T, such thatr5r ~x!.
We recall thatf is the number of degrees of freedom,l the
number of constraints, andN the number of particles. A
comparison to~100! shows that there must be a relation
x5x~Q,h! such that

r ~x@Q,h# !5Q1/3r~Q,h!. ~103!

Obviously r is redundantly parametrized by thef11 vari-
ablesh and Q. This point is discussed in the Appendix.
Analogously to the matrixG, which is formed by the partial
derivatives]ri /]ha, we introduce the JacobianC with ele-
ments

Ca
i 5

]r i

]xa . ~104!

It follows from Aṙ50 that the columns ofC form a basis of
the null space of A. Write A i

a ṙ i5A i
a(]r i /]xb) ẋb

5A i
aC b

i ẋb50. The velocitiesẋb are unrestricted and there-
fore AC50. Since the columns ofC andG span the same
subspaceVi , they must be related by a nonsingular linear
transformation. The relation betweenG andC is found by
writing

r~Q,h!5Q21/3r ~x@Q,h# ! ~105!

and differentiatingr with respect toh. This yields@see Eq.
~A3!#

G5Q21/3CB, Bb
a~Q,h!5

]xa~Q,h!

]hb . ~106!

The new set of variables is now chosen to be

V5Q, ~107!

pV5pQ /s, ~108!

S5s, ~109!

pS5ps , ~110!

x5x~Q,h!, ~111!

px5
1

s
@BT~Q,h!#21ph . ~112!

As stated in Eq.~106!, B is the Jacobian for the change from
h to x. The volume elements transform as

dQ dpQd
fphd

fh ds dps5Sf11dV dpVd
fpxd

fx ds dpS
~113!

and the HamiltonianHv takes the form

~114!

Here we have renamedWV[WQ , WS[Ws . Hg is the
Hamiltonian of theconstrained real systemin generalized
coordinates. This is seen by expressing the LagrangianL
5 1

2ṙ
Tṙ2V in terms of generalized coordinates

Lg51
2ẋ

TCTCẋ2V, which yields the canonical momenta
px5CTCẋ and the HamiltonianHg51

2p x
T~CTC!21px1V. It is

worth noting that the Cartesian form corresponding toHg is
found by expressingpx in terms of the Cartesian momentap.
According to Eq.~98!, one hasph5GTp. Writing G, p, and
ph in terms ofC, p, andpx , respectively, shows that

px5CTp. ~115!

Recognizing thatPi5C~CTC!21CT, we obtain

Hg→H5 1
2p

TPip1V5 1
2p

Tp1V. ~116!

Sinceṙ5p for purely geometrical constraints, this is exactly
the Hamiltonian that results by a Legendre transformation of
L5 1

2ṙ
Tṙ2V.

We follow now Nose´ and consider the denominator of
formula ~99! for the average ofA. This denominator is the
partition functionZ. In terms of the variables$V, . . . ,px% we
obtain

Z5E •••E dV dpVd
fpxd

fx ds dpSS
f12d~Hv

g82E!.

~117!

The d function can be written in the formd(Hv
g82E)

5d„h(S)…. Sinceh(S) has one zero,

S05expF2S 1

gkBT
D SHg1

pV
2

2WV
1PextV1

pS
2

2WS
2ED G ,
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the integration overS can be performed by using the identity
d„h(S)…51/uh8(S0)ud(S2S0). The result is

Z5E •••E dV dpVd
fpxd

fx dpSexpF2S f12

gkBT
DHgG

3expF2S f12

gkBT
D S pV

2

2WV
1PextVD G

3expF2S f12

gkBT
D pS

2

2WS
GexpF S f12

gkBT
DEG . ~118!

The Gaussian integrals overpS andpV yield constants. If we
setg5 f12, Z is proportional to the partition function of the
desiredN-P-T ensemble,

Z}E E E dV dfpxd
fx expF2

Hg1PextV

kBT
G . ~119!

This shows that

^A&5^A&NPT , ~120!

which is the desired result. Assuming the equivalence of
time and ensemble averages,^A& corresponds to the time
averageĀt in virtual time. As shown by Nose´, sampling ofA
in real time corresponds to the weighted average
^A/s&/^1/s&. Therefore@see Eq.~117!# g must be chosen as
g5 f11 for real-time sampling@2# such that

^A&NPT5Āt. ~121!

VI. PRESSURE

The results of Sec. V B enable us to derive a microscopic
expression for the average pressure, or simply the pressure.

Time averaging the equation of motion~39! for pv shows
thatPinst5Pext in equilibrium. HerePinst is theinstantaneous
pressure introduced in Eq.~45!. Assuming the equivalence of
time and ensemble averages we setPext5Pinst5^Pinst&.
SinceV̇5pV/WV , Pinst can be written in the form

Pinst~pV ,V,p,r !5
1

3V H pTp1rTS f1z2
pV

WV3V
HpD J .

~122!

The constraint forcesz depend also on all four variablesp, r ,
pV , andV. Writing z5ATm and using Eq.~43! for m, we
may formally write

z52A1S Ȧp1Af2
pV

3WVV
HpD . ~123!

The corresponding expression for the case of linked rigid
body dynamics is given in Eq.~73!. In both cases the con-
straint forces depend explicitly and implicitly on
V̇/3V5pV/3WVV. The implicit dependence results from the
time derivatives ofA andC, respectively. In the following
we consider the case of Cartesian coordinates. In compo-
nents we have Ȧ k

a5 ṙ j]A k
a/]r j , where ṙ j5pj

1(pV/3WVV)r i
j . This shows that the constraint forces con-

tain two terms that depend both linearly on the momentum
pV . From expression~118! for the microcanonical partition
function of the extended virtual system it follows now that
the averagêPinst& can be expressed in the form

^Pinst&5
****dpVdV dfpxd

fx w~pV ,V,px ,x!Pinst~pV ,V,px ,x!

****dpVdV dfpxd
fx w~pV ,V,px ,x!

.

The weighting functionw is given by

w~pV ,V,px ,x!5expF2
1

kBT
SHg~px ,x!1

pV
2

2WV
1PextVD G .

All terms in Pinst that are odd inpV will drop out sincew is
even inpV and the integration range is symmetric with re-
spect to zero. It remains now to give an expression for^pTp&.
Writing

pTp5px
T~CTC!21px5px

T ]Hg

]px
, ~124!

one finds by integration over the momentapx

K pTp3V L 5 K f kBT3V L . ~125!

The final expression for the pressure is thus

Pext5^Pinst&5 K f kBT1rT~ f1zg!

3V L
NPT

. ~126!

The vectorzg contains the part of the constraint forces that
does not depend on the volume dynamics, i.e., the purely
geometrical constraint forces one would compute for given
external forcesf and velocitiesṙ[p. It is important to note
that contributions from the constraint forces are to be con-
sidered in the pressure calculation@34#.

VII. CONCLUSION

We have presented a derivation of the equations of mo-
tion for discrete mechanical systems in theN-P-T ensemble
in the presence of holonomic constraints. Our approach rep-
resents a generalization of the extended system method in-
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troduced by Andersen and Nose´, which was designed for
simple liquids. The main aspect is the generalization of
Andersen’s space scaling method for constant pressure simu-
lations in the presence of holonomic constraints. Using
Dirac’s theory of constrained Hamiltonian dynamics, the
equations of motion were derived for simulations in Carte-
sian coordinates. In addition, the generalized Euler equations
of linked rigid bodies were extended to the case ofN-P-T
dynamics. We have shown that our equations of motion cor-
respond to the desiredN-P-T ensemble of a geometrically
constrained system. For the special case of an ensemble of
completely rigid molecules we retrieve the well-known
center-of-mass scaling procedure@3–7#. However, for only
partially rigid molecules the internal molecular degrees of
freedom are coupled to the pressure bath. In this way local
perturbations due to pressure controlling can be expected to
dissipate more quickly. This effect is already known for tem-
perature controlling with a Nose´ thermostat.

It is important to note that the computation of constraint
forces that maintain the imposed holonomic constraints can-
not be decoupled from pressure steering if the system is to be
simulated in the correct ensemble. This means that simula-
tion methods that are commonly used to maintain geometri-
cal constraints in Cartesian coordinates cannot be put ‘‘on
top’’ of the Nosé-Andersen equations for unconstrained sys-
tems. The pressure is obtained from the usual viral expres-
sion, including the constraint forces. Here it is sufficient to
use only the common geometrical constraint forces that are
not identical to those actually used in the simulation of the
dynamics.

Compared to unconstrained systems, the numerical inte-
gration of the equations of motion in Cartesian coordinates
necessitates the following additional steps:~a! the computa-
tion of the projectionr i , ~b! the computation of the second
derivatives of thesa with respect to the particle positions,
and ~c! the computation of the constraint forces. To deter-
mine r i one must solve a system ofl linear equations. The
constraint forces may be determined by a SHAKE-like pro-
cedure, which ensures also that the geometrical constraints
are exactly fulfilled. For bond constraints the second deriva-
tives of thesa are simply constants, whereas they can be
quite complicated expressions for more general constraints,
such as angles. Programs for symbolic calculation are quite
helpful in such a case.

The simulation of linked rigid bodies in theN-P-T en-
semble requires the solution of three systems of linear equa-
tions, each of which corresponds to a formal application of
C1 to a different right-hand side. The pseudoinverseC1 is
not needed explicitly. One of these matrix equations has the
same form as the equation for the angular accelerations in the
case ofN-V-E dynamics. In addition, the derivatives of the
C matrices with respect to the particle positions are to be
provided. In contrast to the second derivatives of thesa, they
have always a simple form.

APPENDIX

Here we discuss the relation between generalized coordi-
nates in real and in virtual space. We consider first the situ-
ation in real space where the Cartesian positions are re-
stricted by l constraints of the formsa~r !50 ~a51,. . . ,l !.

The remainingf53N2 l degrees of freedom may be de-
scribed by thef variables$x1, . . . ,xf%, with xb5xb~r !. As-
suming, as usual, that the Jacobian ([]xb/]r i ];[ ]sa/]r i ])
does not vanish, we can writer5r ~x;s!, abbreviating
x5(x1, . . . ,xf)T ands5(s1, . . . ,s l)T. The 3N components
r i are the inverse functions of the 3N functions $xb,sa%.
Sinces50, the vectorr is a function of thexb alone and we
write briefly r5r ~x!. The differential ofr reads

dr5Cdx, Cb
i 5

]r i

]xb . ~A1!

The f columns of C are the f covariant basis vectors
cb5]r /]xb. They are orthogonal to thel contravariant basis
vectoraa5]sa/]r . One way to see this is to use that thesa

and thexb areindependentdynamical variables and therefore
]sa/]xb5(]sa/]r i)(]r i /]xb)50. In matrix form we have
AC50, where theaa are the rows ofA. The columns ofC
span the subspaceVi and the rows ofA span the orthogonal
complementV' . We assume that bothA andC have full
rank.

The constraints in virtual variables readsa~Q1/3r!50,
which follows fromr5Q1/3r. Now Q is supposed to be un-
restricted:a priori the volume can take any positive value.
Therefore the equationssa~Q1/3r!50 are to be considered as
l constraints forr, which depend parametrically onQ. We
have 3N Cartesian coordinatesri and l constraints depend-
ing onQ, thus f53N2 l remaining degrees of freedom. A
trivial parametrization ofr would be r~Q,x!5Q21/3r ~x!.
This corresponds to writingxb5xb~r !5xb~Q1/3r!. In Sec. V
we assumed the virtual position vectorr to have the general
form r5r~Q,h!. The differentialdr is then given by

~A2!

where G a
i 5]r i /]ha and 2(1/3Q)r'

i 5]r i /]Q. Differ-
entiating nowr5Q21/3r ~x! with respect toQ yields ]r/]Q
521/(3Q)r. But, in general,rÞr' and relation~A2! would
not be fulfilled. Therefore the set of variables$Q,x% is not
suitable to describe the constrained dynamics ofr. To pa-
rametrizer we assume thehb to have the general form
hb5hb~Q,r!. Together with thesa the hb form a complete
set of 3N functions ofr that depends parametrically onQ
and may be inverted to giver5r~Q,h!. To find the relation
between the variablesxa and ha we write r
5Q21/3r ~x@Q,h#!. The differential form reads then

~A3!

A comparison with expression~A2! shows that ~a!
G5Q21/3CB and ~b! the vector in curly brackets must be
equal to 21/~3Q!r' . This leads to the condition
Q21/3C~]x/]Q!5~1/3Q!ri5~1/3Q!CC1r. Here we used that
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the projectorP on Vi can be written asP5CC1. Since the
columns ofC are assumed to be linearly independent, we
haveC15~CTC!21CT. Performing the variable transforma-
tion y51/3 lnQ we obtain

]x

]y
5~CTC!21CTr5F„x~y!…. ~A4!

This is a system off ordinary differential equations for the
xb as functions ofy. Its solution containsf ‘‘constants,’’
which can still be arbitrary functions of thef variableshb.
For simple geometrical constraints~A4! can be solved ana-
lytically and shows that variablesh leading to ]r/]Q
521/(3Q)r' and]r/]hbPVi can be explicitly constructed.

Having found a suitable parametrizationr ~Q,h!, one can
obviously writer5Q1/3r~Q,h!5r ~Q,h!, wherer depends on

r and Q. This parametrization must beredundantsince we
know thatr can be parametrized byf variables$x1, . . . ,xf%.
That this is indeed the case is readily seen. Withr5Q1/3r we
have from~A2!

dr5
dQ

3Q2/3 r1Q1/3dr5
dQ

3Q
r i1Q1/3Gdh. ~A5!

This is a linear combination off11 vectors inVi , which are
r i and thef columns ofG. In an f -dimensional space onlyf
vectors can be linearly independent. This proves that the pa-
rametrizationr5Q1/3r~Q,h! is redundant. Nevertheless,r is
correctly parametrized sincedr is in Vi , as required by Eq.
~A1!.
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