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ABSTRACT
Creating lifelike virtual humans for interactive virtual reality is a
difficult task.Most current solutions rely either on crafting synthetic
character models and animations, or on capturing real people with
complex camera setups. As an alternative, we propose leveraging
efficient learning-based models for human mesh estimation, and
applying them to the popular form of immersive content that is
360° video. We demonstrate an implementation of this approach
using available pre-trained models, and present user study results
that show that the virtual agents generated with this method can be
made more compelling by the use of idle animations and reactive
verbal and gaze behavior.

CCS CONCEPTS
• Human-centered computing → Virtual reality; • Comput-
ing methodologies → Machine learning; Computer vision.
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1 INTRODUCTION
360° video is a popular and efficient way of capturing the real world
for virtual reality (VR). (1) The recording process is easy, quick, and
low-cost. (2) It produces high-fidelity visual results that are adapted
to all-around VR viewing. (3) It is able to capture real-world motion,
which includes - perhaps most importantly - the motion of people.

This last aspect is important, because although people are a
fundamental part of our everyday lives, they remain quite complex
to simulate convincingly in virtual worlds. Consequently, there is a
need for an efficient, high-quality method able to quickly generate
convincing virtual agents. We believe that this method could be
to automatically estimate 3D characters from video recordings of
people using learning-based models. One could thereby get the
advantages of both video - that captures real-world motion with
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visual fidelity - and 3D characters - that are easy to animate and
able to provide motion parallax for VR viewing.

In this paper, we therefore seek to evaluate the extent to which
360° video can help generate compelling virtual agents for VR.
We provide two main contributions in this regard. First, we detail
our method for applying learning-based human mesh generation
models - which are generally trained on regular/planar images - to
the 360°/spherical inputs typically used for VR. Second, we validate
user perception of the generated character models by way of a
study focused on agent responsiveness.

2 RELATEDWORK
2.1 Human shape and pose from video
Our research leverages work from the field of human body shape
and pose estimation from images. Within this field, we specifically
study methods that satisfy three distinct constraints.

First, the method should be applicable to monoscopic, fixed-
viewpoint video, since most 360° content takes this form. The
method must therefore be able to estimate the output parameters
from color images without depth or stereo, as was recently achieved
quite convincingly e.g. by Xu et al [14] and Alldieck et al [1, 2].

Second, the output data must enable creating a textured, ani-
mated 3D character mesh. Methods that estimate parameters for
the Skinned Multi-Person Linear (SMPL) model [12] are practical in
this sense, especially for VR research, since the model is easy to un-
derstand and has been adapted for use with the Unity game engine.
Notable approaches based on this model include those presented
by Kanazawa et al [9], Güler et al [8], and Alldieck et al [1, 2].

Third, the method should be efficient and produce high-quality
visual results, to encourage adoption by content creators. Learning-
based models are likely more adapted in this sense than those
relying heavily on optimization, as was reported by Alldieck et al
[1] who thereby describe cutting processing time from hundreds of
minutes to a few seconds for similar visual results.

2.2 Creating compelling virtual agents
We also seek to evaluate the extent to which the 3D human we
generate by this method convincingly simulates a social presence
in 3D space. This is likely to be impacted by the quality and realism
of its mesh and animations, but also by the agent’s ability to react
to the user’s presence and actions in a believable way [7].

Gaze behavior is a first important cue in this regard. Mutual
gaze (between the user and the virtual agent) has notably been
underlined by the literature as a crucial factor to increase perceived
responsiveness and feeling of copresence [7, 10, 11]. Joint gaze
(towards an object) was also recently shown to have a positive
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Figure 1: Background mesh estimation.

impact on user preference [10]. Extending gaze with specific facial
expressions can also modify users’ perception of the agent [4].

Interpersonal distance (between user and virtual human) is an-
other factor to keep in mind. Indeed, proxemics can be used by
virtual agents to elicit a feeling of intimacy, especially when cou-
pled with eye contact [11]. Inversely, they can cause feelings of
unease if users perceive an invasion of their personal space [3, 4].

Evaluating the extent to which users actually perceive the virtual
agent as a social entity is then typically done using both question-
naire data and behavioral measures [7, 11]. Such measures include
users’ gaze direction and how close they get to the agent [3].

To compare to these works, our user study therefore includes
mutual gaze as a factor, and measures several responses similar to
those used by Garau et al [7] and Bailenson et al [3].

3 OUR APPROACH
3.1 Estimating a background mesh
A preliminary step in our approach is to create a 3D background
mesh in which to place the virtual agent. Indeed, users will likely
be required to move around to interact with the agent. If we simply
project a 2D 360° image as background, this will be uncomfortable
for users due to the lack of motion parallax [5].

A simple alternative is to estimate a background depth map,
which can then easily be used to create a 3D mesh (see Figure
1). A requirement for this step is to have an image of the scene’s
background. This can easily be obtained either by capturing an
image at acquisition, or by using background subtraction methods
during processing (since our input is a fixed-viewpoint video). Using
this background image, one can then immediately apply a pre-
trained depth estimation model to infer the corresponding depth
map. Note that this model must have been trained on images similar
to the desired scene. For instance, to process the indoors scene we
used for our user study, we applied the pre-trained UResNet model
presented by Zioulis et al [15], designed for 360° images.

3.2 Obtaining a textured and animated
character model

Very few learning-based models are trained to estimate characters’
shape, pose or texture from 360° inputs. This causes many of them
to - understandably - fail on such images, as we found was for
example the case for the pre-trained Human Mesh Recovery (HMR)

Figure 2: Character detection to obtain planar images.

Figure 3: Human mesh estimation.

Figure 4: Texture map estimation.

[9] and DensePose [8] models. Instead of re-training these models
on 360° images, we propose a way to transform our spherical input
images into planar ones that the pre-trained models can work with.

First, we automatically detect where the character is located in
the 360° image. In many cases, we could use background subtraction
methods. However, we found that in practice an easier solution was
to apply the pre-trained model for AlphaPose [6], a multi-person
character detection model that we found worked consistently even
on 360° inputs. Second, we use this character detection step to
obtain, for every frame and person, a planar image containing
entirely - and almost only - that person (see Figure 2). Specifically,
we use the obtained bounding boxes to modify the direction and
field-of-view of a virtual pinhole camera in order to capture images
centered on the character in the 360° frame.

We then use the obtained planar image sequences as input to the
pre-trained models for shape, pose and texture estimation. For our
demo implementation, we estimated shape and pose parameters
using the pre-trained model for HMR [9], which we converted
into animation clips in Unity (see Figure 3). We then obtained the
texture map by applying the pre-trained model for DensePose [9],
the result of which we averaged and cleaned up automatically over
a few dozen frames (see Figure 4). Note that this texture estimation
step is necessary: pose estimation is not yet precise enough to allow
simply projecting the image onto the posed character in order to
obtain a texture map. Also note that we only use a few frames (e.g.
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Figure 5: Generated 3D virtual agents.1

one in ten) to estimate pose, between which we interpolate the
animation, in order to produce more natural results. Characters can
then be positioned in absolute 3D space using the virtual camera
parameters and the local estimated pose in this camera’s view space.

3.3 Adding responsive behavior
A final step is to provide the virtual agents with lifelike behavior,
for example by adding responses to user interaction.

For the character in our user study, we first implemented a reac-
tive form of head-gaze: the agent turned its head towards the user
when the user looked towards it or came close to it (< 2m).

Second, we gave our character idle animations. This allowed the
agent not to stay completely frozen when waiting for the user to
perform an action, despite us not having recorded additional video
material. Specifically, we made the last few seconds of the previous
animation loop at a slower speed, producing motion resembling
the character breathing and making small body movements.

Third, we made the virtual agent verbally express discontent
should the user attempt to throw one of the scene’s virtual objects
onto it. Note that users had no instruction to do so.

4 USER STUDY
4.1 Research question and hypotheses
Previous work has shown that participant response to virtual agents
follows certain tendencies, e.g. users perceiving mutual gaze as a
form of increased social presence. We want to know if these results
hold when replacing the hand-made virtual agents of previous
studies with our video-based character models.

We define two study hypotheses: (H1) that agents made more
interactive, e.g. given idle animations and reactive gaze behavior,
will be perceived by participants as being more responsive, e.g. be
more often interacted with and given more personal space; and
(H2) that participants shown a segment of the original video before
being shown the 3D scene will also perceive the agent as more
engaging, since this added information will help users relate the
virtual human to the real-world person it is based on.

To test these hypotheses, we captured a 360° video using a tripod
and a Samsung Gear 360 camera at 3840x1920 resolution, and trans-
formed it into a VR scene for the user study. Total processing to
transform the 99 second-long video into a 3D scene and animated
character model took less than 3 minutes. During the scene, users

1For more visuals, see the supplementary video.

Table 1: Group means for measured variables.

R-V- R-V+ R+V- R+V+

Age (y) 25.92 26.67 25.38 25.38
Gender (# m/f) 9/3 7/5 11/2 8/5
Famil. VR (1-7) 3.25 4.17 3.15 3.00

Famil. 3D Char. (1-7) 2.92 4.08 2.92 4.31
Copresence (1-7) 4.90 5.00 4.98 4.81

Part. Behavior (1-7) 3.54 2.96 4.46 4.27
Perc. Awareness (1-7) 3.42 3.69 4.46 4.10

Comfort (1-7) 5.58 4.50 5.54 4.46
Min. Inter. Dist. (m) 0.87 0.90 0.77 0.78
Gaze Count (#) 11.92 12.67 13.31 13.23

Gaze Duration (s) 3.91 3.52 3.30 3.27
Throw Count (#) * * 0.38 1.07

* Not recorded due to coding error.

were asked by a virtual agent to take or catch 3D objects appearing
in its hand, thereby encouraging proximity and interaction.

4.2 Independent variables
We used two active independent variables. To test H1, the agent was
either (R+) given the aforementioned real-time responsive features
or (R-) not given responsive features. To test H2, the VR scene
started by displaying either (V+) the first 10 seconds of the video
or (V-) only the background image with the video’s audio.

Several attribute independent variables - specifically age, gender,
level of familiarity with VR, and level of familiarity with 3D charac-
ter models - were also recorded in a pre-test questionnaire, as some
have been shown to be relevant in similar previous studies [3, 7].

4.3 Dependent variables
We measured user response using a post-test questionnaire with
7-point Likert-type questions. Referring to the study of Garau et
al. [7], we measured Copresence (Did you have a sense that you
were in the room with another person or did you have a sense of
being alone? | To what extent did you respond to the character as if
he was a person? | To what extent did you have a sense of being in
the same space as the character? | Did you respond to the charac-
ter more the way you would respond to a person, or the way you
would respond to a computer interface?), Participant Behavior
(To what extent did the presence of the character affect the way you
explored the space? | Did you attempt to initiate any interaction
with the character?), and Perceived Awareness (How much did
the character seem to respond to you? | How much was the charac-
ter looking at you? | How much did the character seem aware of
your presence?). We also recorded Comfort (Did you feel comfort-
able moving around the space?). Additionally, we recorded several
behavioral measures: minimum interpersonal distance, number of
times that users looked towards the agent, duration of these looks,
and number of times that users threw an object onto the agent.
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Table 2: Significant results.

ANOVA ART
Ind. Dep. F(1,46) p F(1,46) p
R Part. Behavior 7.36 0.03 5.96 0.06*
V Comfort 7.11 0.03 8.95 0.01
R Perc. Awareness 4.45 0.12* 4.77 0.10*
R Min. Inter. Dist. 5.77 0.06* 5.74 0.06*

* Unadjusted p-value is below significance level.

4.4 Results
Results for each participant group are shown in in Table 1. 50
volunteers recruited on university campus took part in the study.
We used a between-subjects experimental design to prevent bias
linked to users understanding the purpose of the study: participants
were randomly assigned to the four user groups, and were kept
blind to the studied hypotheses.

Data analysis was performed in R. To better compare with results
from previous research, we analyzed our data using a between-
subjects two-way analysis of variance (ANOVA) with the aforemen-
tioned active independent variables as factors, significance set to
α=0.05, and Bonferroni-adjusted p-values. Since we use Likert-type
data in our study, we also complemented our examination with the
nonparametric Aligned Rank Transform (ART) method specifically
designed by Wobbrock et al. [13] to analyze such responses.

Table 2 details the results of this analysis. These results show that
users rated Participant Behavior significantly higher when faced
with more reactive virtual agents, and rated Comfort substantially
lower when shown the actual video of the person. Moreover, per-
ceived agent awareness increased and minimum interpersonal dis-
tance decreased when users were faced with more reactive agents,
although these two trends were not found to be significant after
adjustment of the p-values.

4.5 Discussion
The results underline that giving the virtual agent interactive fea-
tures contributes to increasing users’ feeling that it is a responsive
entity. Users also seem encouraged to get closer to the agent in
order to interact with it, while remaining far enough not to enter its
perceived personal space. All of this supports H1, and is consistent
with results from previous research [3, 7, 11]. We can therefore
validate a certain degree of similarity between hand-made virtual
agents and our automatically-generated characters.

The influence of being shown the original video on perceived
comfort is more unexpected. A possible interpretation is that the
added motion caused by replacing the still 360° background image
with a video is enough to be a source of discomfort in VR. In any
case, there seems to be no impact on the perceived responsiveness
of the virtual agent, and therefore H2 cannot be validated.

Finally, user comments seem to indicate generally favorable
response to the characters. A strong point is the quality of the ani-
mations, which were found to appear natural and go well with the
corresponding audio. Conversely, the main point of concern seems
to be the quality of the texture map: estimated facial features for
our agents remain far too blurry, which prevents convincing gaze

behavior and dynamic facial expressions. This is to be improved in
future work, based on the availability of new models with better
texture estimation (e.g. [1]).

5 CONCLUSION
In this paper, we presented a novel method for automatically gen-
erating virtual agents from 360° video for interactive virtual reality.
Moreover, we demonstrated that users’ perception of agents’ re-
sponsiveness can be enhanced by implementing idle motion as well
as reactive verbal and gaze behavior. This validates the idea that
results from previous work on hand-made synthetic agents can also
be applied to our automatic video-based agents.
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