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We perform isobaric-isothermal molecular dynamics simulations of partially rigidn-alkanes of length 10~10
carbon atoms! and 32, respectively. All bonds are considered as rigid. For these systems we compare molecular
and atomic scaling to control the pressure in the Nose´-Andersen simulation scheme@S. Nose´, J. Chem. Phys.
81, 511 ~1984!; H. C. Andersen,ibid. 72, 2384 ~1980!#. Atomic scaling in the presence of geometrical
constraints means coupling all available degrees of freedom to the pressure bath, keeping the desired isobaric-
isothermal ensemble, and satisfying at the same time the geometrical constraints. The corresponding equations
of motion have been derived recently@G. R. Kneller and T. Mu¨lders, Phys. Rev. E54, 6825 ~1996!#. In
contrast, no intramolecular degrees of freedom but only the center-of-mass positions are coupled to the pres-
sure bath when the well established molecular scaling is applied. We demonstrate that coupling the intramo-
lecular degrees of freedom to the volume dynamics~or, equivalently, to the pressure bath! strongly improves
the relaxation of energy and volume for the long chains, while for the short chains atomic and molecular
scalings are more or less equivalent in this respect. For the long chains we show explicitly that the barostat
couples to intramolecular breathing modes when atomic scaling is used. The frequencies of these modes are
found to be in excellent agreement with results from neutron scattering experiments.
@S1063-651X~98!02511-2#

PACS number~s!: 02.70.Ns, 31.15.Qg, 36.20.2r
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I. INTRODUCTION

In 1980 Andersen introduced theextended systemmethod
in order to perform molecular dynamics simulations in t
isobaric-isoenthalpic ensemble@1#. Nosé showed that this
concept also allows one to simulate the dynamics in
isobaric-isothermal ensemble@2#, which corresponds to mos
experimental situations. While the original methods
Andersen and Nose´ were designed for simulations of simp
liquids, the generalization to the case of partially rigid m
ecules has been the subject of series of works in the
@3–10#. In contrast to atomic fluids, macromolecules a
modeled mostly as semiflexible systems. Rigid coval
bonds are the most common examples for geometrical c
straints that restrict the flexibility. The main reason to ap
such constraints is that the computational efficiency is a
mented by up to a factor of 4 avoiding the sampling of hig
frequency motions@11#. While the concept of partial rigidity
has the advantage of decreased computational costs, it
entails disadvantages such as more complicated equatio
motion.

In simulations of atomic liquids, Andersen’s pressure b
scales uniformly all coordinates in order to steer the press
towards the desired value. Clearly, this procedure canno
applied to partially rigid molecules without violating in
tramolecular geometrical constraints, e.g., frozen bonds.
standard approach to circumvent this difficulty is to cou
only the centers of mass~c.m.! of the molecules to the
PRE 581063-651X/98/58~5!/6766~15!/$15.00
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barostat~molecular scaling or center-of-mass scaling! @8#.
The c.m. positions can be obviously scaled without violat
internal constraints. However, it can be expected that suc
procedure becomes more and more inefficient with incre
ing size and decreasing number of simulated molecules
the extreme case of a single very long macromolecule i
simulation box pressure control by center-of-mass sca
cannot be applied at all. In contrast to pressure control, t
perature control by a Nose´ thermostat can be straightfor
wardly combined with geometrical constraints, such that
degrees of freedom respond to the thermostat. Coupling o
the c.m. momenta to the heat bath is known to be an ine
cient procedure. Coupling as many degrees of freedom
possible to the thermostat improves the response of the
tem to temperature steering. The same is also desired
Andersen’s barostat. Obviously, the partial rigidity of mo
ecules allows them still to adapt their internal geometry to
applied pressure by changing the radius of gyration.

The basic idea in@3# was to incorporateall available de-
grees of freedom of geometrically constrained systems
the pressure control mechanism, while keeping the cor
NPT ensemble. Intramolecular stress can be expected t
more efficiently dissipated in this way. Dirac’s theory
constrained Hamiltonian dynamics@12# together with projec-
tor techniques has been used to generalize Anders
barostating mechanism in the presence of geometrical c
straints. It can be expected that intramolecular relaxat
mechanisms are important for pressure control in macro
6766 © 1998 The American Physical Society
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lecular systems with a larger proportion of internal degr
of freedom, whereas the center-of-mass scaling proce
can be applied without difficulties for systems consisting o
large number of relatively small molecules. It is the purpo
of this work to demonstrate these points and to elucidate
differences between the center-of-mass scaling proce
and the atomic scaling method.

The paper is organized as follows. In Sec. II we specia
the equations of motion for partially rigid molecules given
@3# to the case of constraints that can be expressed as h
geneous functions of the Cartesian coordinates. The ato
scaling method is then compared to the equations of mo
corresponding to the standard center-of-mass scaling pr
dure. We then apply linear response theory@14# in order to
derive formulas for the energy dissipation spectra appro
ate to describe the different response mechanisms to an
ternally applied compression or dilatation. In that way t
rate of energy dissipation can be related to the power spe
of the instantaneous stress. In Sec. III we describe some t
nical details of the simulations of the alkane chains. In S
IV the simulation results are analyzed, which are obtained
the two different methods. Section V is devoted to a concl
ing discussion. In the Appendix we describe the integrat
scheme that has been used.

II. THEORY

A. Equations of motion

In the following we quote the results forNPT equations
of motion in the case of geometrical constraints for atom
and molecular scaling, respectively. We introduce notat
that simplifies the comparison for these different press
control mechanisms.

1. Atomic scaling

The NPT equations of motion of anN-particle system
subject tol geometrical constraints presented here have b
derived in @3#. Assuming the equivalence of time and e
semble averages, it has been shown that the equation
motion generate trajectories corresponding to the des
NPT ensemble. In the following we will use standard Ca
tesian coordinates instead of mass-weighted coordinates
relations between various quantities expressed in these
coordinate systems have been given in Table 1 of Ref.@3#.

The geometrical constraints describing idealized chem
structures as rigid bonds or planar rings can be cast in
general form

sa~r !50, a51, . . . ,l . ~1!

If N is the number of particles the constraints~1! leave f
53N2 l degrees of freedom for the configuration space
the system. We restrict ourselves to a system ofK identical
molecules. The generalization to a system of different ty
of molecules is straightforward. TheK individual molecules
are labeled by greek indicesg51, . . . ,K, and the atoms in
each molecule by latin indicesi 51, . . . ,n such that N
5nK. To facilitate a comparison with the center-of-ma
scaling procedure, where different molecules are to be
tinguished, it is convenient to introduce the 3n-dimensional
subvectorsrg andpg , collecting the Cartesian positions an
s
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momenta of the gth molecule, respectively. One ha
r5(r1

T , . . . rK
T)T, wherer contains all the 3N Cartesian co-

ordinates of the N-particle system. From now on
Mg5diag(m1 ,m1 ,m1 , . . . ,mnmn) stands for the 3n33n
mass matrix of each single molecule. Each molecule is s
ject to nc constraints such thatl 5ncK. The l constraint
equations are now labeled as

sg
a~rg!50, a51, . . . ,nc , g51, . . . ,K, ~2!

and the equations of motion for atomic scaling read

ṙg5Mg
21pg1

V̇

3V
rgi , ~3!

ṗg5fg1zg2
V̇

3V
pg2zpg2

V̇

3V
HgMg

21pg , ~4!

V̇5
pV

WV
, ~5!

ṗV5Pinst
atm2Pext2zpV , ~6!

ż5
1

WS
S (

g
pg

TMg
21pg1

pV
2

WV
2~ f 11!kBTD . ~7!

The 3n-dimensional vectorsfg andzg comprise the potentia
forces and constraint forces acting on the atoms in molec
g, respectively. As usualkBT is the Boltzmann constan
times the absolute temperature andPext is the external pres-
sure imposed on the system.WV andWS are adjustable iner-
tia parameters for the pressure and the temperature con
respectively. The volume is denoted asV and pV is the as-
sociated momentum. A special feature of the equations
motion is the appearance of the 3n33n matricesHg , whose
elements are given as

~Hg! ik5(
a

ga,g

]2sg
a

]r i ,g]r k,g
, i ,k51, . . . ,3n. ~8!

The ga,g are related to Lagrangian multipliers associat
with the momentum constraints. Introducing the matrixAg
as

~Ag! i
a5

]sg
a

]r g
i

, a51, . . . ,nc , i 51, . . . ,3n, ~9!

which collects the constraint gradients as row vectors,
coefficientsga,g can be determined by solving the line
system of equations@3#

~10!
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Here thenc-dimensional vectorgg contains the coefficients
ga,g , andrg,' is the projection of the position vectorrg on
the row space ofAg . Correspondingly, the vectorrgi , with
rgi'rg,' ,denotes the projection ofrg onto the tangent spac
of the constraint surface, which is defined by Eq.~2!. From
Eq. ~10! and rg,i5rg2rg,' it follows immediately that

Agrg,i50, ~11!

i.e., rg,i is in the null space of the matrixAg . The appear-
ance of the matrixHg given in Eq.~8! is a consequence o
the momentum constraints that are to be explicitly impo
in the extended system method. The time derivation of
constraints~2! shows that the velocitiesṙg are in the null
space ofAg , explicitly Ag ṙg50. In standardHamiltonian
~microcanonical! dynamics the Cartesian momenta divid
by the corresponding masses are identical to the Carte
velocitiesMg

21pg5 ṙg and thus fulfill the constraints

AgMg
21pg50. ~12!

It is necessary that the relations~12! remain valid also for
equations of motion derived by the extended system meth
Otherwise the accessible phase space of the constrained
tem would not be correctly assigned, which would lead
systematic deviations in ensemble averages of quant
containing the momenta, e.g., the temperature or the pres
@5#. This fact explains why only the parallel projections
the positionsrg,i can appear in Eq.~3!.

Let us briefly consider the atomic pressure

Pinst
atm5

1

3VH (
g

pg
TMg

21pg

1(
g

rg
TS fg1zg2

V̇

3V
HgMg

21pgD J . ~13!

It has been shown in@3# that the term proportional to
rg

THgMg
21pg does not contribute to the average pressure.

we will show now, this term can be omitted if the constrain
can be written in the form

sg
a~rg!5qa~rg!2q0

a50, ~14!

whereq0
a is a fixed parameter andqa(rg) is a homogeneous

function of degreena11 in the coordinates,qa(lrg)
5l (na11)qa(rg). The constraint derivatives themselves th
appear in the matrixAg are homogeneous functions of d
greena . All standard constraints, such as bond constraint
bond angle constraints, are such homogeneous constrain
is even questionable whether other constraints are physic
meaningful. In the case of homogeneous constraints the
rg

THgMg
21pg vanishes identically, as can be seen by us

Euler’s formula for homogeneous functions
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rg
THgMg

21pg5(
a

ga,g(
i ,k

3n

r i ,g

]2sg
a

]r i ,g]r k,g

pk,g

~Mg!k,k

5(
a

ga,gna(
k

3n ]sg
a

]r k,g

pk,g

~Mg!k,k
50. ~15!

The second equality follows from the homogeneity of t
constraint derivatives and the last equality is obtained fr
the momentum constraints~12!. In the following we will
always assume that we are dealing with homogeneous
straints only. In that case the atomic version of the instan
neous pressure reads

Pinst
atm5

1

3VH(
g

pg
TMg

21pg1(
g

rg
T~ fg1zg!J . ~16!

This is exactly what one would get for the pressure in
case of microcanonical dynamics with constraints. Note t
all forces, including the constraint forceszg , contribute to
the internal virial@15,16#.

2. Molecular scaling

In the case of molecular scaling only the centers of m
of the molecules are coupled to the pressure bath, yieldin
different form for the equations of motion. The thre
dimensional center-of-mass vector of moleculeg and its
conjugate momentum vector areRg5( i

nmir i ,g /Mg and Pg

5( i
npi ,g , respectively. HereMg denotes the total mass o

each molecule,Mg5( i
nmi , and r i ,g and pi ,g are the three-

dimensional Cartesian position and momentum vectors
atom i in moleculeg. When the ‘‘piston momentum’’pV is
included in the thermostating procedure in the same way
in Eqs.~3!–~7! the equations of motion can be cast into t
form ~compare@7,9#!

ṙg5Mg
21pg1

V̇

3V
IRg , ~17!

ṗg5fg1zg2
V̇

3V

MgIPg

Mg
2zpg , ~18!

V̇5
pV

WV
, ~19!

ṗV5
1

3V H(
g

Pg
TPg

Mg
1(

g
Rg

TFgJ 2Pext2zpV , ~20!

ż5
1

Ws
S (

g
pg

TMg
21pg1

pV
2

WV
2~ f 11!kBTD . ~21!

The (3n33)-dimensional matrixI is introduced to take care
of the correct dimensionality in the formulas relating vecto
as rg andRg ,

~22!

where1 is the 333 unit matrix. The molecular version o
the instantaneous pressure can be obtained from the equ
of motion for pV , writing ṗV5Pinst

mol2Pext2zpV :
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Pinst
mol5

1

3VH(
g

Pg
TPg

Mg
1(

g
Rg

TFgJ . ~23!

Fg is the total force on moleculeg and Fg5( i
nf i ,g , where

f i ,g is the three-dimensional force vector acting on atomi in
moleculeg.

B. Energy dissipation

Both sets of equations of motion~3!–~7! and ~17!–~21!
areconsistentwith theNPT ensemble. However, an efficien
simulation scheme should give a quick response to an ex
nally applied perturbation in order to drive the system ba
to equilibrium. The two simulation schemes presented h
involve quite different response mechanisms. While in
atomic scaling method all degrees of freedom are involve
the pressure steering, only the centers of mass respon
rectly to local stress when the molecular scaling method
used. To quantify these differences we consider appropr
response functions in the framework of linear respo
theory @14#.

TABLE I. Atomic scaling.

Virtual variable Real variable Connection

rg rg rg5V1/3rg

pg pg pg5V21/3s21pg

V V V5V
pV pV pV5(pV /s)
s s s5s

dt dt dt5
dt

s

2 z z5
1
s

ds

dt

zg5Ag
T(V1/3rg)mg zg5Ag

T(rg)mg zg5zg
r-
k
re
e
in
di-
is
te
e

1. Hamiltonians

In order to relate the rate of energy or heat dissipation
mechanical quantities, we start with the corresponding No´-
Andersen HamiltoniansH v

atm andH v
mol in terms ofvirtual

variables, since these virtual variables involve no impli
volume dependence:

H v
atm5(

g

pg
TMg

21pg

2V2/3s2
1

pV
2

2s2WV

1
ps

2

2Ws
1V~$V1/3rg%!

1PextV1~ f 11!kBT ln s, ~24!

H v
mol5(

g
H p̃g

TMg
21p̃g

2s2
1

Pg
TPg

Mg2s2V2/3J 1
pV

2

2s2WV

1
ps

2

2Ws

1V~$r̃g1V1/3IRg%!1PextV1~ f 11!kBT ln s.

~25!

V stands for the potential energy,pV is the virtual momen-
tum associated with the volume, ands andps are the Nose´
variable and its conjugate momentum, respectively. The
tual HamiltonianH v

atm corresponding to the atomic scalin
procedure depends onrg ,pg , which are the virtual coordi-
nates and conjugate momenta, respectively. In contrast,
virtual HamiltonianH v

mol is formulated in terms of the

3n-dimensional vectorsr̃g and the three-dimensional vecto
Rg , which are the virtual variables associated withrelative
and center-of-masscoordinates, respectively. The corr
sponding momenta are denoted asp̃g and Pg . The scaling
rules that connect these virtual variables with the phys
~real! coordinates and momenta are listed in Tables I and

From the above Hamiltonians and the constraints the
tual equations of motion can be derived. To obtain the eq
tions of motion~3!–~7! and~17!–~21! the respective scaling
rules are to be applied; this includes Nose´’s time scaling
procedure~Tables I and II!. As outlined in@3#, in the case of
TABLE II. Molecular scaling.

Virtual variable Real variable Connection

r̃g r̃g r̃g5r̃g

Rg Rg Rg5V11/3Rg

rg5r̃g1V1/3IRg

p̃g p̃g p̃g5s21p̃g

Pg Pg Pg5V21/3s21Pg

pg5s21$p̃g1MgIII g /MgV1/3%
V V V5V
pV pV pV5(pV /s)
s s s5s

dt dt
dt5

dt

s

2 z
z5

1
s

ds

dt

zg,v5Ag
T(r̃)m̃g1MgIjg zg5Ag

T( r̃g)m̃g5Ag
T(rg)m̃g

zg1MgIFg /Mg5zg,v

whereFg5( i
nf i ,g
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the atomic scaling procedure the proper set of constra
must include the momentum constraints for the virtual m
menta

AgMg
21pg50. ~26!

It follows then from the scaling relationspg5s21V21/3pg
that the real momenta fulfill the proper constraints~12! too.
In the case of the molecular scaling procedure it is not n
essary to include the momentum constraints explicitly. Si
the geometrically intramolecular constraints can always
formulated in terms of the relative coordinatesr̃g only and
since these relative coordinates do not interfere with
length scaling (r̃g5 r̃g , wherer̃g are the real positions rela
tive to the center of mass of moleculeg; compare Table II!,
the momentum constraints are automatically fulfilled and
this sense redundant in the molecular scaling proced
However, the virtual variables corresponding to the relat
coordinates are not independent variables because they
the equation

(
i

n

mi r̃i ,g50, ~27!

wherer̃i ,g is the virtual three-dimensional position vector
atom i in moleculeg relative to the center of mass. Th
conditions ~27! have to be considered as extra constrai
when the virtual equations of motion are to be derived fr
Eq. ~25! @7#.

Collecting the respective virtual variables in the set$qn%
and all corresponding momenta in the set$pn%, where either
n51, . . . ,3N12 ~atomic scaling! or n51, . . . ,3N13K
12 ~molecular scaling!, Hamiltonian equations for the re
spective virtual variables can be derived from the variatio
principle

dS5dE
t0

t1
dtS (

n
q̇npn2HvD 50, ~28!

where the velocities are to be expressed in terms of coo
nates and momenta. Due to the respective set of constra
the variations appearing in Eq.~28! are not independent. In
order to take the constraints into account the new Hami
niansH v

atm,* andH v
mol,* can be introduced@3#

H v
atm,* 5H v

atm2(
g

K

sg
T~V1/3rg!mg1(

g

K

pg
TAg

T~V1/3rg!kg ,

~29!

H v
mol,* 5H v

mol2(
g

K

sg
T~ r̃g!m̃g2(

g

K

jg
T(

i

n

mi r̃i ,g . ~30!

Here we introduced thenc-dimensional vectors sg

5(sg
1, . . . ,sg

nc)T. The Lagrangian multipliers mg

5(m1,g , . . . ,mnc ,g)T, kg5(k1,g , . . . ,knc ,g)T, and m̃g

5(m̃1,g , . . . ,m̃nc ,g)T and the three-dimensionaljg appear
ts
-

c-
e
e

e

n
e.
e
bey

s

l

i-
ts,

-

now as independent new variables. Inserting the Hami
nians~29! and~30! into the action integral~28! allows one to
consider anunconstrainedvariational problem. The virtua
equations of motion are then obtained in the standard fo
q̇n5]Hv* /]pn andṗn52]Hv* /]qn and the Lagrangian mul
tipliers are to be determined by the requirement that the
spective constraints are fulfilled.

2. Response theory

Since the virtual Hamiltonians~29! and ~30! are formu-
lated in terms of the virtual variables that involve no implic
volume dependence, they are suitable to construct the pr
perturbation Hamiltonians corresponding to an externally
plied compression or dilatation. To describe such a pertur
tion we replace in the HamiltoniansH v

atm,* andH v
mol,* the

volumeV by its perturbed valueV8,

V→V85@11ã~t!#V, ~31!

where the relative compression factorã(t)5(V82V)/V de-
pends on virtual time. Since we are interested in small p
turbationsuã(t)u!1, the corresponding perturbations of th
HamiltoniansDH v

atm,* (t) andDH v
mol,* (t) can be obtained

from the expressions~29! and ~30! by linearization with re-
spect toã:

~32!

When the respective connections between virtual and
variables listed in Tables I and II are applied, the pertur
tions DH atm,* andDHmol,* can concisely be expressed
terms of the real variables

DH atm,* 52a~ t !~Pinst
atm2Pext!V, ~33!

DHmol,* 52a~ t !~Pinst
mol2Pext!V. ~34!

Here the definitions of the instantaneous pressures~16! and
~23! in terms of the real variables were used anda(t)
5ã„t(t)… may now be considered as a function of real tim
Introducing the abbreviationA5(Pinst

atm/mol2Pext)V, the re-
spective perturbation terms can be written asDH* 5
2a(t)A. For any function of the real variablesB, the devia-
tion due to the compression from its equilibrium value^B&eq
in the unperturbed ensemble^dB&(t)[^B&(t)2^B&eq can
be expressed as

^dB&~ t !5E
2`

t

dt8FBA~ t2t8!a~ t8!1O~a2!, ~35!

whereFBA is the linear response function. Evans and Holi
have proved that the standard Kubo form@14# for the linear
response functionFBA still holds, even when the equation
of motion are of Nose´-Hoover type@17,18#. Therefore, we
use the standard Kubo form of the linear response func
too. According to standard linear response theory@14#, the
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time-dependent linear response functionsFBA are given as
time correlation functions, which are to be evaluated in
unperturbedensemble

FBA~ t !52
1

kBT
^A~0!Ḃ~ t !&eq . ~36!

The difference in the response mechanisms for the ato
and the molecular scaling procedure rests on the diffe
perturbation variables, eitherAatm5(Pinst

atm2Pext)V or Amol

5(Pinst
mol2Pext)V.

Having established the general form of the perturbat
corresponding to an externally applied compression or d
tation ~33! and~34!, we follow Kubo@14# in order to discuss
how the work done by the external perturbation can be
sipated as heat into the environment. Thermodynamica
the average rate of enthalpy loss2](E1PextV)/]t equals
the rate of heat dissipation]Q/]t. Assuming for simplicity a
periodic ~monochromatic! compression factor a(t)
5Re$X0exp(2iv0t)%, the average rate of heat dissipatio
over a cycle period 2p/v0 can be written as
pr
-

re

n
tio
a-

t
a

sa
e
-

g
m

nd

y

e

ic
nt

n
-

-
y,

]Q

]t
52ȧE

0

`

dt8 FAA~ t8!a~ t2t8!

52
ȧ

2
@X0e2 iv0txAA~v0!1X0* eiv0txAA* ~v0!#. ~37!

HerexAA(v)5*0
`dt eivtFAA(t) denotes the Fourier-Laplac

transform of the response functionFAA describing the re-
sponse mechanism ofA itself. The asterisk in Eq.~37! de-
notes the complex conjugate and the overbar stands f
time average over the period 2p/v0 . Inserting in this ex-
pression ȧ(t)5 iv0/2@2X0exp(2iv0t)1X0*exp(iv0t)# and
regarding thatexp(6i2v0t)50 yields

Q̇5uX0u2
v0

2
Im$xAA~v0!%. ~38!

Finally, the imaginary part of the complex susceptibili
Im$xAA(v)% can be reformulated as
~39!
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This shows that the average rate of heat dissipation is
portional tov0

2I (v0). HereI $A%(v) denotes the power spec
trum of A, given as the Fourier transform of the autocor
lation function ofA. In the followingv is understood as the
frequency of compressionv[v0 . Thus the heat dissipatio
spectrum can be computed from the autocorrelation func
of the respective propertyA. The shape of the heat dissip
tion spectrum indicates the frequency range contributing
the dissipation of stress as a consequence of externally
plied compression or dilatation. Summarizing, we can
that in the case of atomic scaling the heat dissipation sp
trum Q̇atm(v) corresponding to an externally applied com
pression is given by

Q̇atm~v!}v2I $~P
inst
atm2Pext!V%~v!, ~40!

whereasQ̇mol(v) reads for molecular scaling

Q̇mol~v!}v2I $~P
inst
mol2Pext!V%~v!. ~41!

III. MATERIALS AND METHODS

Molecular dynamics simulation

Two different systems ofn-alkane chains, each containin
2560 beads, have been simulated with the atomic and
lecular pressure baths described above~four simulations in
total!. In all NPT simulations the external temperature a
pressure were fixed toT5303 K andPext51 atm, respec-
tively. The total momentum of the two systems was alwa
o-

-

n

o
p-
y
c-

o-

s

zero and all bond lengths were constrained. The first sys
consists of 256n-decane molecules~‘‘short chains’’! corre-
sponding tof 55373 degrees of freedom. The second syst
~‘‘long chains’’! consists of 80n-alkanes, each containing 3
carbons~n-dotriacontanes!. This system corresponds tof
55197 degrees of freedom. Both systems were prepared
nonequilibrium start configuration to observe relaxation in
equilibrium. For theNPT simulations of the decanes w
started with an existing isotropic configuration of 256 mo
ecules that was then equilibrated in anNVT simulation at
temperatureT5522 K and a box volumeV597.77 nm3. Be-
fore starting the isobaric simulations~atomic scaling and mo-
lecular scaling! we rescaled all velocities such that the initi
temperature wasT5303 K, keeping the volume for the high
temperature configuration. In view of the longer relaxati
times to be expected for the long chains we prepared a c
figuration supposedly somewhat closer to equilibrium. F
we constructed an ‘‘all-trans’’ configuration for the 8
chains. Then we heated the system again toT5522 K, how-
ever adjusting the box volume to a value ofV567.28 nm3.
The heating phase was followed by anNVT simulation of
100 ps atT5303 K, keeping the same volume, before sta
ing the NPT simulations. The value of 67.28 nm3 for the
volume is an estimate that was obtained from Fig. 1 in@19#
by extrapolating to a chain length 32. The simulations for
different pressure baths started with exactly the same in
configuration for the decanes and the dotriacontane cha
Both systems were simulated with the same force field
simulation parameters. A time step of 2 fs was used for
tegrating the equations of motion. The relaxation timetT
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determining the ‘‘Nose´ mass’’ WS5( f 11)kBTtT
2 was cho-

sen to betT50.2 ps. Andersen’s piston mass having t
physical dimension kg/m4 can also be formulated in terms o
a relaxation timeWV5( f 11)kBT@tP

2 /V2(0)#, whereV(0)
is the initial volume. We fixedWV by choosingtP51.6 ps in
all simulations. The equations of motion were integra
with a modified velocity Verlet integrator. The algorithm fo
atomic scaling is described in detail in the Appendix. W
used ten iterations each step for the iterative process~vii !
described in the Appendix. Possibly fewer iterations co
also be used. For the molecular scaling method the veloc
dependent acceleration terms in the equations of motion h
also been treated iteratively, very similarly to the scheme
the atomic scaling described in the Appendix. The bo
length constraints were considered to be fulfilled for err

FIG. 1. Relaxation of the box volume of 256n-decane mol-
ecules as a function of simulation time. The gray solid curve c
responds to atomic scaling, the black dashed curve correspon
molecular scaling.

FIG. 2. Relaxation of the box volume of 80n-dotriacontane
molecules as a function of simulation time. The gray solid cu
corresponds to atomic scaling, the black dashed curve corresp
to molecular scaling.
d
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smaller than a relative tolerance of 1028. Except for the
torsion potential, the force field was Toxvaerd’s united ato
force field for decanes described in@19#. The torsion poten-
tial was that of Smith and Jaffe@20#, which has been ex-
panded into a polynomial in cos(Ctorsion). The coefficients of
this expansion can be found in Table I in@21#. The torsion
energies reported below were calculated without use of
first coefficient corresponding to@cos(Ctorsion)#

05const. This
alters neither the forces nor the virial, but causes a shif
the torsion potential. To mimic an infinite system, cubic p
riodic boundary conditions were applied. Since we appl
always the atomic version of periodic boundary conditio
@22#, special care was taken when the molecular virial w
computed. As described in@9#, the molecular virial can be
computed in a way consistent with~atomic! periodic bound-
aries as (gRg•Fg5( ig, j d8 (r ig, j d

NI 2 r̃ i ,g1 r̃ j ,d)•f ig, j d . The
summation on the right-hand side runs over all pairs of

-
to

e
ds

FIG. 3. Relaxation of the Lennard-Jones energy of 256n-decane
molecules as a function of simulation time. The gray solid cu
corresponds to atomic scaling, the black dashed curve corresp
to molecular scaling.

FIG. 4. Relaxation of the Lennard-Jones energy of 80n-
dotriacontane molecules as a function of simulation time. The g
solid curve corresponds to atomic scaling, the black dashed c
corresponds to molecular scaling.
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oms for which atomi and atomj are in different molecules
(g5” d) and the superscriptNI denotes the three-dimension
nearest image distance vectorr ig, j d

NI between atomsig and

j d, while r̃ ig is the three-dimensional position vector of ato
i in moleculeg relative to the center of mass of moleculeg.
No long-range corrections, for either the pressure or the
ergies were taken into account; instead we used a relati
large cutoff distance of 1.6 nm, which corresponds to m
than 4s, where s denotes the length diameter in th
Lennard-Jones potential. This is considered to be a rea
ably accurate approximation for nonpolar systems@23#. The
Verlet neighbor list technique was applied, using a shell
dius of 1.969 nm for all beads in the pair list, which w
updated every ten simulation steps. The system of dec
was simulated for 330 ps, using the last 163.84 ps for

FIG. 5. Relaxation of the torsion energy~upper curves! and
bending angle energy~lower curves! of 256 n-decane molecules a
a function of simulation time. The gray solid curves correspond
atomic scaling, the black dashed curves correspond to molec
scaling.

FIG. 6. Relaxation of the torsion energy~upper curves! and
bending angle energy~lower curves! of 80 n-dotriacontane mol-
ecules as a function of simulation time. The gray solid curves c
respond to atomic scaling, the black dashed curves correspon
molecular scaling.
n-
ly
e

n-
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es
e

analysis of equilibrium properties~averages, power spectra
and energy dissipation spectra!. This time interval corre-
sponds to 21358192 data points written out every 20 fs an
thus enabled us to use the fast Fourier transform techn
for the computation of the spectra discussed in Sec. II B.
the longer n-dotriacontane chains~32 beads! the system
needed a much longer equilibration time. The total simu
tion length~for each pressure bath! here was 1.2 ns. From th
last 327.68 ps corresponding to 214516 384 data points, we
computed all the listed equilibrium properties.

IV. RESULTS AND DISCUSSION

Figures 1 and 2 show equilibration curves of the sim
lated box volume as a function of time. While the volume
the short chains~256n-decanes! in Fig. 1 equilibrates during
the first tens of picoseconds, the volume of the longer cha
~80 n-dotriacontanes! in Fig. 2 needs hundreds of picose
onds to attain a stable limit. Visualization of the structures
the simulated systems shows that the 32 carbon chains
more or less aligned in parallel atT5303 K andPext51
atm, with an intramolecular zigzag conformation. In contra
the decanes form an isotropic fluid. This is consistent w
the experimental observation@24# that the alkane chains
from length 16 on start to form a wax under normal con
tions, where the single chains are ordered in parallel lam
lae. The following figures show the energy relaxation beh
ior: The relaxation of the Lennard-Jones energies is show
Figs. 3 and 4 for the short and long chains, respective
Similarly to the volume relaxation, the Lennard-Jones en
gies of the decanes equilibrate much faster. Again, hund
of picoseconds are needed for the 32-alkanes. In Figs. 5
6 we show the relaxations for the torsion and bond an
energies corresponding to Figs. 3 and 4, respectively
Tables III and IV we list the averages of various quantities

TABLE III. Averages for 256n-decane molecules (C10H22) at
T5303 K andPext51 atm.

Averaged quantity Atomic scaling Molecular scaling

volumeV (nm3) 81.660.58 81.660.56

VLJ ~kJ/mol! 214212.66114.4 214220.66115.7

Vtorsion ~kJ/mol! 4090.9695.3 4110.9692.8

Vbending~kJ/mol! 2598.6673.2 2601.5672.9

enthalpy
E1PextV ~kJ/mol! 2746.76228.3 2731.36210.9

TABLE IV. Averages for 80n-dotriacontanes (C32H66) at T
5303 K andPext51 atm.

Averaged quantity Atomic scaling Molecular scaling

volumeV ~nm3) 65.0160.32 65.4760.35
VLJ ~kJ/mol 218264.1692.6 217926.5692.9
Vtorsion kJ/mol 3319.0692.9 3610.0692.4
Vbending ~kJ/mol! 2807.7675.5 2868.6678.2
enthalpy

E1PextV ~kJ/mol! 25601.56218.1 24893.26214.5
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the simulated systems.
As intuitively expected, differences between the rela

ation curves and other quantities resulting from using m
lecular and atomic scaling, respectively, become pronoun
for the long chains. It can be seen from the figures that
main differences are between the atomic and the molec
scaling methods in the case of the long 32 carbonn-alkanes.
There are significant differences in the contributions to
potential energy. Generally, the atomic scaling method p
duced lower energies on average, which may be consid
as an indication for faster relaxation. The total enthalpy d
ference between the atomic scaling and the molecular sca
method for the 32-alkanes amounts to 708 kJ/mol, wher
for the decanes this difference is only 15 kJ/mol. The to
enthalpy differences are very close to the sum of the dif
ences in the potential contributions since the kinetic ene

FIG. 7. Molecular scaling for 80n-dotriacontane chains: run
ning averages of the atomic pressure~gray solid curve! and the
molecular pressure~black dashed curve! as a function of time. Each
point in the figure corresponds to an average over 20 ps.

FIG. 8. Atomic scaling for 80n-dotriacontane chains: runnin
averages of the atomic pressure~gray solid curve! and the molecu-
lar pressure~black dashed curve! as a function of time. Each poin
in the figure corresponds to an average over 20 ps.
-
-

ed
e

lar

e
-

ed
-
ng
as
l

r-
y

differences and the difference inPextV are very small com-
pared to the large differences in the potential contributio
An explanation for this large difference in the case of t
long 32-bead chains is provided by Figs. 7 and 8. Here, b
pressure definitions, theatomic pressure and themolecular
pressure, are depicted as running averages during the s
lations. Each plotted point corresponds to an average ove
ps. Such an averaging procedure for obtaining the figure
necessary due to the strong noise in the pressure signa
can be seen, the molecular scaling method produces ato
pressures that are systematically larger than the contro
molecular pressure. Only the directly controlled molecu
pressure@compare the equations of motion~17!–~21!# fluc-
tuates around the prescribed external pressure of 1 atm. S
both pressure definitions must produce equalNPT ensemble
averages, it is clear that the molecular scaling method fail
reach theNPT equilibrium distribution, at least in the cours
of the simulation time (1.2 ns!. The situation is different for
atomic scaling. Although a long relaxation time~approxi-
mately 400 ps! is needed for convergence of the molecu
pressure, both pressures fluctuate finally aroundPext . The
decanes do not exhibit this behavior at all~see Figs. 9 and
10!.

An explanation for these strong differences, in particu
for the 32 carbon chains, is provided by the power spec
I (v) of (Pinst2Pext)V and the corresponding heat dissip
tion spectra given in Figs. 11–14. Their significance h
been discussed in Sec. II B. For both simulated systems,
256 decanes and the 80 dotriacontane chains, there are
nounced differences at higher frequencies between
atomic and the molecular scaling methods visible in
power spectra~see Figs. 11 and 12!. These frequencies~ap-
proximately equal to 250 cm21 for the decanes and approx
mately equal to 70 cm21 for the dotriacontanes! correspond
to intramolecular modes. The fact that these frequenc
are clearly visible in the power spectraI (v) corresponding
to atomic scaling and practically absent in the correspond
spectrum for molecular scaling shows that the atom

FIG. 9. Molecular scaling for 256n-decane chains: running av
erages of the atomic pressure~gray solid curve! and the molecular
pressure~black dashed curve! as a function of time. Each point in
the figure corresponds to an average over 20 ps.
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barostat couples to intramolecular motions. A comm
feature of all power spectra is the large low-frequen
peak around wave numbers 7 cm21 ~decanes! and 13
cm21 ~dotriacontanes!, no matter which scaling method i
applied. The low-frequency peaks can be assigned to
compressibility of the systems ofn-alkanes, which can be
understood as follows@25#. The equation of motion for the

volume can be written asWVV̈'Pinst2Pext , when the Nose´
thermostating for the piston momentum is neglected.
panding the volume around its equilibrium valueVeq as V
5Veq1(]V/]P)ueq(P2Pext)1••• and solving for P
2Pext shows that the equation of motion for the volume c
be formulated approximately as a harmonic oscillator eq
tion

FIG. 10. Atomic scaling for 256n-decane chains: Running av
erages of the atomic pressure~gray solid curve! and the molecular
pressure~black dashed curve! as a function of time. Each point in
the figure corresponds to an average over 20 ps.

FIG. 11. Power spectra of (Pinst2Pext)V obtained from the
simulations of 256n-decane chains using atomic scaling~gray solid
curve! and molecular scaling~black dashed curve!.
n
y

he

-

-

d2V

dt2
'2

1

kVeqWV
~V2Veq!, ~42!

where k52(]V/]P)ueq /Veq is the ~isothermal! compress-
ibility. The frequency of this oscillator isv051/AkVeqWV.
This frequency can also be found in the time evolution of
quantityA5(Pinst2Pext)V, whose power spectra are show
in Figs. 11 and 12. For the decanes the experimental c
pressibility is k512.34310210 Pa21 at 303 K and 1 atm
@26#. Inserting the value for the piston mass,WV5( f
11)kBT@tP

2 /V(0)2#'0.60231010 kg/m4 yields approxi-
mately a frequency ofn5v0 /2p52.031011s21, corre-
sponding to a wave number of 6.7 cm21. The large low-
frequency peak~for the atomic scaling as well as for th

FIG. 12. Power spectra of (Pinst2Pext)V obtained from the
simulations of 80n-dotriacontane chains using atomic scaling~gray
solid curve! and molecular scaling~black dashed curve!.

FIG. 13. Heat dissipation spectrav2I (Pinst2Pext)V
corresponding

to the power spectra in Fig. 12 obtained from the simulations of
n-dotriacontane chains using atomic scaling~gray solid curve! and
molecular scaling~black dashed curve!.
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molecular scaling! in the power spectra in Fig. 11 appears
wave number approximately equal to 7 cm21, showing that
the experimental compressibility is reproduced by the sim
lations. For the dotriacontanes we found no data for the e
tic constants in the literature, but it is plausible that the pe
found in the power spectra at approximately 13 cm21 is re-
lated to the elastic constants too. However, these ‘‘elas
low-frequency peaks do not significantly contribute to t
rate of energy dissipation since the rate of energy dissipa
is proportional to the power spectrum weighted byv2. Fig-
ure 13 shows the ‘‘heat dissipation spectra’’ for the lo
chains corresponding to the power spectra~Fig. 12!, al-
though, at least for the molecular scaling method, no co
plete equilibrium was established. As can be seen from
13, the~70–80!-cm21 peaks contribute strongly to the rate
stress dissipation in the case of atomic scaling for the l
chains. In Ref.@28# these frequencies were assigned
‘‘accordion-like’’ longitudinal motions of the individua
chains performing inelastic neutron scattering experime
on then-dotriacontanes, with the momentum transfer vec
oriented parallel and perpendicular to the chain axis. S
motions are responsible for fluctuations of the molecular v
ume. To confirm that these intramolecular stretching moti
are reproduced by the simulations we calculated the po
spectra of the time derivatives of the radius of gyration of
molecules. The radius of gyration of moleculeg is given by

Rgyr,g5Ar̃ g
T r̃g, ~43!

wherer̃g collects all the 3n relative coordinates of molecul
g with respect to its center of mass. Thus the correspond

time derivative reads Ṙgyr,g5êRgyr

T r̃̇g , where êRgyr

5 r̃g /Rgyr,g is the 3n-dimensional unit vector in radial direc
tion. The power spectrum ofṘgyr,g is a plausible measure fo

FIG. 14. Averaged power spectra of the time derivative of
radius of gyration of the 80n-dotriacontane chains. The averagin
is over the 80 power spectra of the single molecules. The gray s
curve corresponds to atomic scaling and the black dashed c
corresponds to molecular scaling.
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the contribution of the intramolecular ‘‘breathing motions
to the power spectrum obtained from the~Cartesian! velocity
autocorrelation function, which is observed by neutron sc
tering. The spectral densities~averaged over all 80n-
dotriacontane chains! of Ṙgyr,g are depicted in Fig. 14. The
maximum position of the spectrum at approximate
70 cm21 confirms that this frequency range correspon
really to the intramolecular breathing motions in the simu
tions, whether the atomic or the molecular scaling metho
used. It is also clear from the figure that this frequency
more sharply peaked for the atomic scaling method. By co
parison with Fig. 12, we conclude that the atomic scal
method couples the pressure really to these intramolec
breathing modes, while the molecular scaling method d
not. As a consequence, intramolecular stress is less
ciently dissipated if the molecular scaling method is appl
leading to the discrepancy between atomic and molec
pressure for the long chains described above. It seems
sonable that the low-frequency breathing modes are in
responsible for the extremely slow relaxation of energ
since conformational rearrangements are coupled to th
motions. For the shortern-decanes the intramolecular mod
correspond to considerably higher frequencies and co
spondingly motions with smaller amplitudes. Although F
11 shows clearly that the atomic barostat couples also
these motions, they are probably less important for the re
ation of the system since they have only a small amplitude
is important to let a large number of low-frequency–larg
amplitude motions participate in the relaxation process.

V. SUMMARY AND CONCLUSION

We presented a comparison of two different const
pressure simulation techniques for molecular systems sub
to geometrical constraints. The simulations showed that
atomic scaling method leads to an efficient relaxation of
tramolecular stress, in particular for systems consisting
large molecules. Differences from the standard center
mass scaling procedure to adjust the pressure were foun
be less pronounced for a liquid of relatively smalln-decanes.
However, for the longer 32 carbon chains pressure adj
ment by center-of-mass scaling did not work at all. While t
atomic scaling procedure is able to adjust both pressures
atomic pressure and the molecular pressure, to the presc
equilibrium value of 1 atm, the molecular scaling meth
fails to do so. An explanation for these findings was provid
by an analysis of the frequency-dependent heat dissipa
mechanisms. We showed that especially large conce
~low-frequency! motions determine the time scale for in
tramolecular relaxation processes. The simulated lo
frequent breathing modes of then-dotriacontane chains wer
found to be in good agreement with inelastic neutron scat
ing experiments, where the frequency range 70–80 cm21

was assigned to accordion-like motions of the chains. Th
motions were shown to be essential for the relaxation proc
in the system. We believe that our findings are also of i
portance for biomolecular simulations, where often o
single protein or at most a few of them are simulated in wa
as solvent. It is certainly desirable that the intramolecu
protein motion is on equal footing with respect to press
control, as in reality.
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APPENDIX

1. Constraint NPT algorithm

In the following we sketch a numerical algorithm suitab
for integrating the equations of motion~3!–~7!. This con-
cerns particularly the special features of the equations of
tion discussed in Sec. II A 1. The algorithm is based on
velocity version of the Verlet algorithm, which may be fo
mulated as

x~ t1D!5x~ t !1D ẋ~ t !1
D2

2
ẍ~ t !1O~D3!, ~A1!

ẋ~ t1D!5 ẋ~ t !1
D

2
@ ẍ~ t !1 ẍ~ t1D!#1O~D3!. ~A2!

An advantage of the velocity Verlet algorithm is that bo
coordinates and velocities are available at the same time
the framework of the velocity Verlet integrator constrain
are mostly treated using theRATTLE scheme@27#. Here we
apply a slightly different variant of theRATTLE algorithm
suitable for the special requirements of the atomic sca
procedure discussed in Sec. II A 1. For the following it
helpful to write down a second-order differential equati
for the Cartesian coordinates r̈ g

i (g51, . . . ,K; i
51, . . . ,3n). ~The indexg, which labels the molecules, wil
be skipped in the following to keep the formulas short. Wh
we refer to single coordinates, e.g.,r i , the mass of the cor
responding atom will be denoted asmi .) From the equations
of motion ~3!–~7! we obtain

r̈ i5
d

dt S V̇

3VH r i1
1

mi
(
a

]sa

]r i
gaJ D 1

ṗi

mi
, ~A3!

where thega are Lagrangian multipliers which are the sol
tions of the linear system of equationsAM 21ATg52Ar .
From Eq.~A3! it is already clear that the time derivatives
the Lagrangian multipliersga are needed too. However, in
stead of constructing an equation of motion for thega it is
easier to circumvent this problem by reformulating the acc
erationsr̈ i . After some algebra~see Sec. 2 of the Appendix!
we find

r̈ i5S ṗV

3WVV
2

2pV
2

9WV
2V2D r i1

1

mi
(
a

]sa

]r i
ba

1
1

mi
S f i2zpi2

pV
2

9WV
2V2(a ga(

k

]2sa

]r i]r k
r'

k D
[ r̈ * i1

1

mi
(
a

]sa

]r i
ba . ~A4!

The last equality in Eq.~A4! defines the auxiliary quantitie
r̈ * i , which are useful in describing the algorithm.r'

i 5r i

2r i
i 52 (1/mi) (aga (]sa/]r i) is the part of the position
o-
e

In

g

n

l-

vector that is orthogonal to the constraint surface. It sho
be noted that theba are only abbreviations that stand for

ba5S ṗV

3WVV
2

2pV
2

9WV
2V2D ga

1
pV

3WVV
ġa1ma2S pV

3WVVD 2

naga . ~A5!

ma is the Lagrangian multiplier associated with the positi
constraintszi5(ama]sa/]r i and na denotes the degree o
homogeneity of the constraint gradienta, e.g., bond con-
straints whose gradients are of the form]sa/]r (a,1)5r (a,1)

2r (a,2) correspond tona51. Instead of constructing an ana
lytical formula for theġa that appear in Eq.~A5!, the com-
plete expression forba can be determined numerically i
such a way that the constraints are exactly fulfilled up to
predefined tolerance. Having established the equation for̈ i ,
we can sketch the algorithm for integrating the equations
motion ~3!–~7! in eight steps, supposing the following qua
tities are available at timet: input arrays

V~ t !,r ~ t !,f„r ~ t !…, r i~ t !5r ~ t !2r'~ t !,

r'~ t !52M21(
a

ga~ t !
]sa

]r
,

p~ t !,pV~ t !,z~ t !,z~ t !5(
a

]sa

]r
ma~ t !,

Pinst
atm~ t !5$~pTM21p!~ t !1rT~ t !@ f~ t !1z~ t !#%/3V~ t !.

Determine first positionlike quantities at the new timet
1D.

~i! Compute the time integral of the Nose´-Hoover friction

E
0

t1D

dt8z~ t8!5E
0

t

dt8z~ t8!1Dz~ t !1
D2

2WS
S ~pTM21p!~ t !

1
pV

2~ t !

WV
2~ f 11!kBTD .

~ii ! Compute the volume

V~ t1D!5V~ t !1D
pV~ t !

WV
1

D2

2WV
ṗV~ t !

where ṗV~ t !5Pinst
atm~ t !2Pext2z~ t !pV~ t !.

~iii ! Compute the positions

r i~ t1D!5r i~ t !1DS pi~ t !

mi
1

pV~ t !

3WVV~ t !
r i

i ~ t ! D
1

D2

2
r̈ * i~ t !1

D2

2mi
(
a

]sa

]r i
ba~ t !, ~A6!

where ba(t) can be determined similarly as in the we
knownSHAKE algorithm@13#. We recall that theba are only
convenient abbreviations. They cannot be used in propa
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ing the momenta. The constraint forceszi(t)
5(ama(t) (]sa/]r i) are determined by thema(t) and not
by ba(t). It is therefore necessary to find another way
obtain thema(t) for propagating the particle momentapi and
the momentumpV . However, since we have not determin
numerical estimates forma(t) by controlling all positions
constraints in step~iii !, we cannot use the standardRATTLE

integrator. An important observation in theRATTLE integra-
tion scheme for constrained systems is that the local e
made by determining only numerical estimates for the
grangian multipliersma(t) is of the same order in the tim
stepD as already inherent in the velocity Verlet algorithm.
this appendix we prove that the alternative proposed h
@see the comment below step~vi!# fulfills that condition too.

~iv! Use the positions to compute forcesf i(t1D) and the
contribution from the potential forces to the atomic virial
( i f i•r i5( i , j f i j •r i j

NI , where r i j
NI denotes the three

dimensional nearest image distance vector between atoi
and atomj .

~v! Compute the parallel projectionsr i(t1D) or, equiva-
lently, the multipliers ga in r'(t1D)5(r2r i)(t1D)5
2(aga(t1D)M21 (]sa/]r ) (t1D). The determination of
the ga(t1D) can be performed numerically by the sam
routine that is used in theRATTLE algorithm @27# to fulfill
velocity constraints of the formAr 5O. Here the constraints
read insteadAr i5Ar 2Ar'5O; compare Eq.~11!.

~vi! Determine the momentap(t1D), pV(t1D), and
z(t1D) iteratively: Compute firstp(t1D/2), pV(t1D/2),
and z(t1D/2), which are only propagated half a time st
D/2 and can be used to determine a zeroth approximation
the full time step propagated quantities

pi
~0!~ t1D!5pi~ t !1D@pi~ t1D/2!2pi~ t !#,

pi~ t1D/2!5pi~ t !1
D

2 H f i~ t !1zi~ t !2z~ t !pi~ t !2
pV~ t !

3WVV~ t !

3S pi~ t !1(
a,k

ga~ t !
]2sa

]r i]r k

pk~ t !

mk
D J .

It should be noted that in the case of bond constraints o
the second derivatives]2sa/]r i]r k are simply constants:

pV
~0!~ t1D!5pV~ t !1D@pV~ t1D/2!2pV~ t !#,

pV~ t1D/2!5pV~ t !1
D

2
@Pinst

atm~ t !2Pext2z~ t !pV~ t !#,

z~0!~ t1D!5z~ t !1D@z~ t1D/2!2z~ t !#,

z~ t1D/2!5z~ t !1
D

2WS
S ~pTM21p!~ t !

1
pV

2

WV
~ t !2~ f 11!kBTD .

As already mentioned, the constraint forceszi(t) and the
constraint virial at timet were not determined in step~iii !.
They had to be determined in the previous time step cy
t2D→t as described in~vii !. If there is no previous cycle
i.e., the program runs the first time step, one may start w
the approximationma(0)5ba(0).

~vii ! Start iterationsn50, . . . ,nmax:
or
-

re

or

ly

le

h

z~n11!~ t1D!5z~ t1D/2!1
D

2WS
S ~p~n!TM21p~n!!~ t1D!

1
pV

~n!2~ t1D!

WV
2~ f 11!kBTD ,

pi
~n11!~ t1D!5pi~ t1D/2!

1
D

2 H f i~ t1D!2z~n11!~ t1D!pi
~n!~ t1D!

2
pV

~n!~ t1D!

3WVV~ t1D!S pi
~n!~ t1D!

1(
a,k

ga~ t1D!
]2sa

]r i]r k

pk
~n!~ t1D!

mk
D J

1
D

2(
a

]sa

]r i
~ t1D!ma

~n!~ t1D!,

where ma
(n)(t1D) are the Lagrangian multipliers corre

sponding to thenth approximation to the constraint force
z(n)(t1D). In each iteration these estimates can be de
mined using a routine as described in theRATTLE algorithm.
Determine an estimate for the atomic pressure at timet1D:

Pinst
~n!atm~ t1D!5

1

3V~ t1D!H ~p~n11!TM21p~n11!!~ t1D!

1(
i

r i~ t1D!@ f i~ t1D!1zi
~n!~ t1D!#J ,

pV
~n11!~ t1D!5pV~ t1D/2!1

D

2
@2Pext1Pinst

~n!atm~ t1D!

2z~n11!~ t1D!pV
~n!~ t1D!#.

The respective estimate for the constraint virial( ir i•zi
(n) can

be computed from the estimates for the Lagrange multipl
ma

(n) as (ama
(n)da2, where da is the fixed bond length in

sa5@(r (a,1)2r (a,2))22da2#/250.
~viii ! Store the quantities at timet1D in the input arrays.

Store the actual time. Sett→t1D. Go to ~i!.

2. Validity of Eq. „A4…

In this section we prove the validity of Eq.~A4! for the
particle accelerations in the case of atomic scaling. Star
with Eq. ~A3! we find

r̈ i5
1

3WV
S ṗV

V
2

pV
2

WVV2D S r i1
1

mi
(
a

]sa

]r i
gaD

1
pV

3WVVS ṙ i1(
a

ga

mi
(

k

]2sa

]r i]r k
ṙ k1(

a

]sa

]r i

ġa

mi
D 1

ṗi

mi
.

~A7!
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Using the equation of motion forṙ k @Eq. ~3!#, the term containing the second derivatives of the constraints can be reformu
as

~A8!
in

ite

th
he
-

he

be

the
e

ctly

the
o-

e
tive

o-

p

ror
e

ey

p.
ady
d

li-

di-
re

ga-

al
where na is the degree of homogeneity of the constra
gradient numbera. In the final expression forr̈ i the first
term in Eq. ~A8! drops out since it appears with oppos
sign in the expression forṗi /mi in Eq. ~A7!. Using Eq.~A8!,
the equations of motion~3! and~4! for r i andpi in Eq. ~A7!,
and reordering of the terms yields Eq.~A4!. All coefficients
in front of ]sa/]r i are collected in the abbreviationsba as
described in Eq.~A5!.

3. Local error

Following Andersen’s arguments in@27# quite closely, we
prove here that the local error of the coordinates and of
velocities for the proposed constraint algorithm is of t
same orderD3 as is the error principally inherent in the ve
locity version of the Verlet algorithm. Concentrating on t
Cartesian coordinatesr i , their parallel projectionsr i

i , and the
momentapi of the molecular system, our algorithm can
summarized as

r i~ t1D!5r i~ t !1DS pi~ t !

mi
1

pV~ t !

3WVV~ t !
r i

i ~ t ! D
1

D2

2
r̈ * i~ t !1

D2

2mi
(
a

]sa

]r i
~ t !ba~ t !, ~A9!

r i
i ~ t1D!5r i~ t1D!1(

a

ga~ t1D!

mi

]sa

]r i
~ t1D!,

~A10!

pi~ t1D!5pi~ t !1
D

2 S ṗi* ~ t !1(
a

ma~ t !
]sa

]r i
~ t !

1 ṗi* ~ t1D!1(
a

ma~ t1D!
]sa

]r i
~ t1D!D ,

~A11!

wherer̈ * i is the abbreviation introduced in Eq.~A4! and ṗi*
stands for
t

e

ṗi* 5 f i2zpi2
pV

3WVVS pi1(
a,k

ga

]2sa

]r i]r k

pk

mk
D .

~A12!

In Eq. ~A9! the help quantityr̈ * i is completely known at
time t. When instead of the numerical estimatesba the exact
values at timet were used in Eq.~A9! the geometrical con-
straints would be possibly violated due to local errors in
velocity Verlet integrator. At worst, this violation would b
of O(D3). Since the numerical estimatesba are approxima-
tions for the exact values that are multiplied byD2 in Eq.
~A9! and since they guarantee that the constraints are exa
fulfilled, they deviate from the exact values byO(D). There-
fore, the possible errors in the positionsr i(t1D) are still of
O(D3).

Since the parallel projection in Eq.~A10! is a purely geo-
metrical operation that is independent of the time step,
multipliers ga(t1D) involve the same local error as the p
sitions themselves, namely,O(D3). Thus, if the momenta
are correct up toO(D3) ~this will be shown next!, the ve-
locities will also involve an error of the same order. If th
time step is small enough, it can be ensured that the itera
procedure in step~vii ! of the algorithm will converge, such
that the final iteration will give a propagation of the m
menta that is equivalent to the formula~A11!. Thus pi* (t)
andpi* (t1D) in Eq. ~A11! can be assumed to be correct u
to a local error ofO(D3). If ma(t1D) were replaced by the
exact~but unknown! Lagrangian multipliers the momentum
constraints would be possibly violated and the local er
would be of O(D3). We can therefore conclude that th
ma(t1D) need to deviate from the exact values byO(D2) in
order to fulfill the momentum constraints exactly since th
are multiplied by a factor proportional toD. The same holds
consequently forma(t) determined in the previous time ste
These arguments prove that no larger local error than alre
inherent in the velocity Verlet algorithm will be introduce
when the proposed integration scheme~i!–~viii ! is used. It is
worth noting that the estimates for the Lagrangian multip
ersma are correct up to an errorO(D2). This is the minimal
needed accuracy, since the Lagrangian multipliers enter
rectly the atomic pressure. If the Lagrangian multipliers we
obtained with lower accuracy the local error in the propa
tion of pV(t1D)5pV(t1D/2)1D/2$Pinst

atm(t1D)2Pext

2z(t1D)pV(t1D)% would be larger than the inherent loc
error of the velocity Verlet integrator.
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