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We present a position operator that is compatible with periodic boundary conditions (PBC). It is a
one-body operator that can be applied in calculations of correlated materials by simply replacing the
traditional position vector by the new definition. We show that it satisfies important fundamental as
well as practical constraints. To illustrate the usefulness of the PBC position operator we apply it to
the localization tensor, a key quantity that is able to differentiate metallic from insulating states. In
particular, we show that the localization tensor given in terms of the PBC position operator yields
the correct expression in the thermodynamic limit. Moreover, we show that it correctly distinguishes
between finite precursors of metals and insulators.

I. INTRODUCTION

Expectation values that involve the position oper-
ator r̂ play a prominent role in both molecular and
condensed-matter physics. Many important quanti-
ties are expressed in term of r̂, e.g., the multipole mo-
ments and the localization tensor. The latter quantity
was introduced by Resta and co-workers1–3 following
an idea of Kohn4 that information about electron lo-
calization should be obtained from the ground-state
wave function (see also Ref.5). The localization tensor
is able to distinguish between conductors and insula-
tors: when the number of electrons tends to infinity it
diverges in the case of a conductor, while it remains
finite in the case of an insulator. It has been applied
to study the metallic behavior of clusters6–14 and has
recently also been used to investigate Wigner local-
ization.15

In its standard definition the position operator r̂ is
simply defined as the multiplication with the position
vector r. However, this definition is not compatible
with periodic boundary conditions (PBC), since r is
not a periodic function. This is a problem, since many
quantities of interest are related to the solid state
which are conveniently described using PBC. There-
fore, it is of great interest to search for a position op-
erator that is compatible with PBC while reducing to
the position vector r in the appropriate limit. We will
provide such a definition of the position operator in
this work. For notational convenience we will mainly
focus on one dimension in the remainder of this work.
All our findings can be generalized to higher dimen-
sions. In particular, our main results, i.e., Eqs. (2)
and (7), can be generalized to three dimensions by re-
placing x with r. We use Hartree atomic units (~ = 1,
e = 1, me = 1, 4πε0 = 1).

We study a system of length L whose electronic
many-body wave function Ψ(t) satisfies PBC, i.e., for
each xi the following condition holds,

Ψ(x1, · · ·, xi, · · ·, xN )=Ψ(x1, · · ·, xi +L, · · ·, xN ), (1)

where N is the number of electrons. We are looking

for a position operator that is compatible with PBC.
We denote such an operator as q̂.

Let us summarize important criteria that q̂ should
satisfy: 1) q̂ should be invariant with respect to a
translation L; 2) q̂ should reduce to the standard po-
sition operator x̂ = x for finite systems described
within PBC, i.e., in a supercell approach (L → ∞
for fixed N)16 one should obtain results that coincide
with those obtained within open-boundary conditions
(OBC). 3) The distance defined in terms of q̂ should
be real and gauge-invariant, i.e., it should be inde-
pendent of the choice of the origin. This criterium is
important since the main purpose of a position oper-
ator is to yield the correct distance between two spa-
tial coordinates. Finally, we add a fourth criterium:
4) For a system of many particles, q̂ should be a one-
body operator, as is x̂. Although the last criterium
is not a fundamental one, it is crucial if we want to
apply the new operator to realistic systems.

In a seminal work Resta proposed a definition for
the expectation value of the total position operator

X̂ =
∑N
i=1 xi that is compatible with PBC.17 Follow-

ing a similar strategy Resta and coworkers also pro-
posed an expression for the localization tensor that
is compatible with PBC.1,2 Despite the important
progress made in these works there are also several
shortcomings to this approach: 1) they provide defi-
nitions for expectation values but not a definition for
the position operator itself ; 2) the operators are N -
body which make them unpractical for the calculation
of expectation values of real correlated systems with
many electrons. Finally, we note that their approach
can yield diverging localization tensors for systems
with a finite number of electrons, namely for those
systems that become metallic in the thermodynamic
limit.

Instead, in this work we propose a definition for
the position operator itself. We will demonstrate that
it satisfies the four criteria mentioned above. More-
over, we will explicitly show that it correctly yields
the macroscopic polarization in the thermodynamic
limit as well as a useful expression for the localization
tensor. The latter gives finite values at finite N and
L while yielding the correct values in the thermody-
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namic limit.

The manuscript is organized as follows. We start by
giving an introduction in Sec. I. In Sec. II we present a
position operator that is compatible with PBC and we
show how it can be used to define a PBC localization
tensor. We also briefly discuss the polarizability. In
Sec. III we report results obtained for uncorrelated
and correlated model systems. Finally, in Sec. IV we
draw our conclusions.

II. A POSITION OPERATOR COMPATIBLE

WITH PERIODIC BOUNDARY CONDITIONS

In order to treat PBC systems, we associate to the
electron position x the complex position qL(x), defined
as

qL(x) =
L

2πi

[
exp

(
2πi

L
x

)
− 1

]
, (2)

with i the imaginary unit. The complex position qL(x)
is a continuous and infinitely differentiable function of
x. In complete analogy with the quantum treatment
of the position operator x̂, we define the action of the
complex position operator q̂ as the multiplication with
qL(x).

Let us review the criteria mentioned above with re-
spect to qL(x). 1) qL(x) is trivially invariant under
a translation, i.e., qL(x + L) = qL(x). Therefore the
complex position qL(x), unlike the ordinary position
x, satisfies the PBC constraint. 2) qL(x) reduces to
the standard position operator x in the limit L→∞,
in the sense of a supercell approach mentioned above.
This can be shown by expanding the exponential func-
tion: exp

(
2πi
L x
)

= 1 + 2πi
L x + O(1/L2)18. 3) the

distance |qL(x2) − qL(x1)| is real and gauge inde-
pendent. By defining the difference qL,x0

(x2, x1) =
qL(x2−x0)− qL(x1−x0), where x0 is the (arbitrary)
origin, it can be verified that

qL,x0
(x2, x1) =

L

2πi
e−

2πi
L x0

[
e

2πi
L x2 − e 2πi

L x1

]
. (3)

Therefore, the distance

|qL(x2)− qL(x1)| =
√
q∗L,x0

(x2, x1)qL,x0
(x2, x1)

=
L

2π

√
2− 2 cos

[
2π

L
(x2 − x1)

]
(4)

is real and independent of x0, as it should.19 4) qL(x)
is a one-body operator.

A. The localization tensor

Let us now demonstrate how the complex position
in Eq. (2) yields a useful expression for the localization
tensor within PBC using an approach that is com-
pletely analogous to the OBC case. The localization
tensor λ is defined as the total position spread (TPS)
per electron where the TPS is a one-body operator
that is defined as the second cumulant moment of the
total position operator X̂ =

∑N
i=1 xi

20:

λ(N) =
1

N

[
〈Ψ|X̂2|Ψ〉 − 〈Ψ|X̂|Ψ〉2

]
. (5)

The second term in the square brackets ensures gauge
invariance with respect to the choice of the origin
of the coordinate system. The localization tensor is
translationally invariant.

In complete analogy with the OBC definition,
within PBC we replace the position of a particle xi
by its complex position qL(xi). In such a way, the
complex total position operator is still a one-body op-
erator, defined as

Q̂L =

N∑
i=1

q̂L(xi). (6)

The localization tensor within PBC λL is also a real
quantity, like λ. It is defined as the second cumulant
moment of the complex total position operator per
electron:

λL(N) =
1

N

[
〈Ψ|Q̂†LQ̂L|Ψ〉 − 〈Ψ|Q̂

†
L|Ψ〉〈Ψ|Q̂L|Ψ〉

]
(7)

in complete analogy with the OBC definition in
Eq. (5). Equation (7), together with Eq. (2), is the
main result of this work. The simple expression is
completely general, it can be applied to correlated
many-body wave functions and is valid for both fi-
nite systems and infinite systems, e.g., by taking the
thermodynamic limit. In the special case of a single-
determinant wave function, it can be shown that the
expression in Eq. (7) coincides with the result ob-
tained in Ref. [2] in the thermodynamic limit. The
proof is given in appendix A.

B. The polarizability

The polarization has been related to the position
operator.17,21 However, since the current operator is
compatible with PBC, variations of the polarization
can also be calculated as a time integral of the current
density. Instead, the expression for the polarization
itself proposed in Ref. [22] is not gauge invariant and
cannot be written as an expectation value of any op-
erator; it requires the calculation of a Berry-phase
expression.21–24

Instead of the current density we focus here on a
related quantity, namely the polarizability, i.e, the
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variation of the current due to a perturbing field. For
one-dimensional chains the polarizability can also be
related to the macroscopic polarization in the ther-
modynamic limit.25

The static polarizability α for OBC can be written
as

α(N) = 2〈Ψ0|x(Ĥ − E0)−1⊥ x|Ψ0〉, (8)

where Ψ0 is the ground-state wave function and
(Ĥ − E0)−1⊥ is the reduced resolvent of the Hamil-
tonian in the orthogonal complement to Ψ0.26 There-
fore, in complete analogy with the OBC definition
above we define the PBC polarizability αL(N) as

αL(N) = 2〈Ψ0|q†L(x)(Ĥ − E0)−1⊥ qL(x)|Ψ0〉, (9)

III. RESULTS

We will now demonstrate that the PBC localization
tensor given by Eq. (7) can differentiate between met-
als and insulators and that it can be applied to both
finite and infinite systems. To do so we will apply it
to model systems.

A. Noninteracting electrons

First, we will treat the simple case of N non-
interacting electrons in a one-dimensional box of
length L. This model system can be seen as a proto-
type of a conductor. For this reason, it is particularly
important that the formalism we propose in this work
can be applied to such a system. In analogy to the
OBC case,3 one expects that the localization tensor
λL(N), diverges in the thermodynamic limit.

We consider N = 2m+ 1 non-interacting electrons
wherem is a non-negative integer. For the sake of sim-
plicity, we assume that the particles are spinless. In
the case of particles with spin, the final result can be
trivially obtained by multiplying the spinless-particle
result by the spin multiplicity of a single particle. The
eigenfunctions of the Hamiltonian of this system are
periodic orbitals given by

φn(x) =
1√
L

exp

(
i
2πn

L
x

)
, (10)

where n is an integer. Since the particles do not
interact, the ground-state wave function is a single
Slater determinant of the occupied orbitals, given by
|Φ0〉 = |φ−m · · ·φm〉. The corresponding localization

tensor reads

λL(N) =
L2

4π2N

[
〈Φ0|

N∑
i=1

e−
2πi
L xi

N∑
j=1

e
2πi
L xj |Φ0〉

− 〈Φ0|
N∑
i=1

e−
2πi
L xi |Φ0〉〈Φ0|

N∑
j=1

e
2πi
L xj |Φ0〉

]
. (11)

Inserting a complete set of states in the first term in
the square brackets yields

λL(N)=
L2

4π2N

∑
I 6=0

N∑
i,j=1

〈Φ0|e−i
2π
L xi |ΦI〉〈ΦI |ei

2π
L xj |Φ0〉

(12)

=
L2

4π2N

∑
|p|≤m

∑
|l|>m

〈φp|e−i
2π
L x|φl〉〈φl|ei

2π
L x|φp〉,

(13)

where in the last step we used the Slater-Condon rules
for one-electron operators.27 Inserting Eq. (10) into
the above expression leads to the following expression
for the matrix element 〈φp|e−i

2π
L x|φl〉,

1

L

∫
L

exp

(
i
2π(l − p− 1)

L
x

)
dx = δl−p−1. (14)

Therefore, there is only one nonzero contribution in
the double summation over p and l in Eq. (13), namely
when p = m and l = m + 1. We can write the final
result as

λL(N) =
L2

N2

N

4π2
, (15)

from which we can deduce the behavior of the local-
ization tensor in the thermodynamic limit. Since, in
this limit, N/L remains constant, the localization ten-
sor diverges linearly with N , as one would expect for
a measure of conductivity applied to a perfect con-
ductor.

B. A tight-binding model

We now consider a dimerized chain containing 4n+
2 atoms at half filling, i.e., N = 4n + 2, in a tight-
binding model. The Hamiltonian is given by, for OBC
and PBC, respectively,

ĤOBC =

N−1∑
i=1

−ti(â†i âi+1 + â†i+1âi) (16)

ĤPBC =

N−1∑
i=1

−ti(â†i âi+1 + â†i+1âi)

− tN (â†N â1 + â†1âN ) (17)
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FIG. 1. The OBC localization tensor λ(N) (solid lines)
and the PBC localization tensor λL(N) (dashed lines) as
a function of the number of electrons N for various values
of the dimerization parameter δ in a tight-binding model
(see Eqs. (16 and (17)). The dots and numbers next to
each curve are the values of the PBC localization tensor
in the thermodynamic limit. They were obtained from
Eq. (22) with d = 1. Inset: λ(L)(N) for δ = 0.04 and
δ = 0.1 for large N .

where â†i (âi) is a creation (annihilation) operator and
the hopping parameter ti = 1−(−1)iδ with 0 ≤ δ ≤ 1.
This means that the dimerization is at its maximum
when δ = 1 while there is no dimerization when δ = 0.
The latter system can be interpreted as a precursor
of a metal since in the thermodynamic limit this sys-
tem becomes metallic. It is convenient to express the
Hamiltonian in the site basis. Upon diagonalization
we thus obtain the eigenfunctions which, when in-
serted in Eqs. (5) and (7), yield the OBC and PBC
localization tensors of the dimerized chain.

In Fig. 1 we report λ(N), as defined in Eq. (5) for
OBC, as well as λL(N), as defined in Eq. (7) for PBC,
as a function of the number of electrons for various
values of δ. The length of the unit cell has been set
to unity and we have set L = N such that the density
N/L = 1. First of all, we see that the PBC local-
ization tensor is well-defined for finite N also for the
”metallic” chain (δ = 0). Second, as expected, the
OBC and PBC localization tensors, λ(N) and λL(N),
respectively, differ for finite N , since they describe dif-
ferent systems. Instead, in the thermodynamic limit
both localization tensors describe the same system
and indeed we obtain the same values in that limit.

The advantage of the PBC localization tensor is
that the thermodynamic limit can be obtained with-
out extrapolating results for finite N and L. Instead,
at least for single-particle Hamiltonians, one can ob-
tain an expression involving information of a single
unit cell.

In the case of the dimerized chain one can derive
an analytical expression for the localization tensor in
the thermodynamic limit. The unit cell of length d
contains two sites separated by d/2 with one electron

per site. In the site basis the Hamiltonian Ĥκ, which
corresponds to the periodic part of the wave function,

is then given by (d = 1):

Hκ,11 = Hκ,22 = 0 (18)

Hκ,12 = H∗κ,21 = −(1 + δ)e
−πi
κn + (1− δ)e πi

κn (19)

where κ = 0, 1, 2, . . . , n− 1 is an integer and n is the
number of cells. The eigenvectors of the matrix Hκ

are the periodic part of the Bloch functions φik. There
is one occupied valence state φvk and one unoccupied
conduction state φck. They are given by

φik(x) =
1√
n
eikxuik(x) (i = v, c) (20)

where x is the coordinate along the chain, k = 2πκ/L
is the wave vector and uik(x) is a periodic function
that is normalized over a single cell. To obtain the
localization tensor we use a similar strategy to that
used for the system of non-interacting electrons, i.e.,
we insert a complete set of states in Eq. (7) and use
the Slater-Condon rules. This yields the following ex-
pression:9

λL(N) =
L2

4π2

n−1∑
κ=0

〈φvk|e−i
2π
L x|φck′〉〈φck′ |ei

2π
L x|φvk〉,

(21)
with k′ = k + 2π/L. In the thermodynamic limit
the variable κ becomes continuous and the summation
over κ can be replaced with an integral over k. We
finally obtain

λ∞ ≡ lim
N,L→∞

λL(N) =
1 + δ2

16|δ|
. (22)

As expected, for a periodic system, λ∞ is an even
function of δ. We note that λ∞ goes to infinity as
1/|δ| when δ tends to zero, i.e., when we go from an
insulator (δ 6= 0) to a metal (δ = 0). We reported the
limiting values obtained with Eq. (22) in Fig. 1.

Finally, in Fig. 2 we report the static polarizabil-
ity per electron ᾱ(N) = α(N)/N and ᾱL(N) =
αL(N)/N as a function of the number of electrons
for various values of δ. As before, the length of the
unit cell has been set to unity and we have set L = N
such that the density N/L = 1. As was the case for
the PBC localization tensor, the PBC polarizability
is well-defined for finite N for the ”metallic” chain
(δ = 0). We note that, while the localization tensor
diverges linearly for this chain, the polarizability per
electron diverges quadratically. Most importantly, in
the thermodynamic limit ᾱ(N) and ᾱL(N) tend to
the same values, as they should.

In the thermodynamic limit we can obtain an ana-
lytical expression for the PBC polarizability ᾱL of the
tight-binding model in a similar way as that employed
for the localization tensor, which is described in the
article. The PBC polarizability ᾱL can be rewritten
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FIG. 2. The OBC polarizability ᾱ(N) (solid lines) and
the PBC polarizability ᾱL(N) (dashed lines) as a func-
tion of the number of electrons N for various values of
the dimerization parameter δ in a tight-binding model.
The dots and numbers next to each curve are the val-
ues of the PBC localization tensor in the thermodynamic
limit. They were obtained from Eq. (24). Inset: ᾱ(N) and
ᾱ(L)(N) for δ = 0.04 and δ = 0.1 for large N .

as

ᾱL(N) =
L2

4π2

n−1∑
κ=0

〈φvk|e−i
2π
L x|φck′〉〈φck′ |ei

2π
L x|φvk〉

εck′ − εvk
,

(23)
where εvk (εck′) is the orbital energy of a valence (con-
duction) state. In the thermodynamic limit the vari-
able κ becomes continuous and the summation over
κ can be replaced with an integral over k. We finally
obtain

ᾱ∞= lim
N,L→∞

αL(N) =
2(1 + δ2)E(1− δ2)− δ2K(1− δ2)

48πδ2
,

(24)
where K and E are the complete elliptic integrals of
the first and second kind, respectively:

K(x) =

∫ π/2

0

(
1− x sin2 θ

)−1/2
dθ, (25)

E(x) =

∫ π/2

0

(
1− x sin2 θ

)1/2
dθ. (26)

We reported the limiting values obtained with
Eq. (24) in Fig. 2.

C. Square Lattice

To demonstrate that our approach is not limited to
one dimension we consider a two-dimensional square
lattice with the following tight-binding Hamiltonian,

0 1000 2000 3000 4000

N

0

20

40

60

80

100

120

140

160

λ
L
(N

)

γ=0

γ=0.001

γ=0.01

γ=0.1

γ=1

FIG. 3. The PBC localization tensor λL(N) as a function
of the number of electrons N for various values of the
electronegativity difference γ for a square lattice in a tight-
binding model.

Ĥ = −
∑
<i,k>

∑
j

a†i,jak,j −
∑
i

∑
<j,k>

a†i,jai,k

+
γ

2

∑
i,j

(−1)i+ja+i,jai,j . (27)

where the notation < i, k > indicates that i and k are
nearest neighbors. The Hamiltonian in Eq. (27) de-
scribes a non-dimerized bipartite lattice with nearest-
neighbor hopping t = 1. We can obtain the band
structure that corresponds to this Hamiltonian in the
thermodynamic limit. It is given by

ε±(kx, ky) =
1

2
[γ ± γ2

+ 16(1 + cos(kx) + cos(ky) + cos(kx) cos(ky)]1/2.
(28)

The minimum gap between the two eigenvalues is γ,
and it is reached for either kx = ±π or ky = ±π (or
both). This means that the system is an insulator
when it is bipartite, i.e., if γ 6= 0, while it becomes
a metal when all the sites are equivalent, i.e., γ = 0.
The parameter γ can be interpreted as the difference
in electronegativity between neighboring sites. There-
fore, the Hamiltonian in Eq. (27) represents a model
for a single layer of NaCl when γ 6= 0 and a single
layer of the simple-cubic polonium crystal for γ = 0.
We computed the eigenvalues of the localization ten-
sor and the polarizability of this system for various
values of γ. Because of the symmetry, the diagonal
components are identical, while the off-diagonal com-
ponents vanish. For this reason we report only the xx
component in the following.

In Fig. 3, we report the localization tensor as a func-
tion of N for various values of γ. For γ 6= 0 the lo-
calization tensor is a monotonous increasing function,
that saturates to a constant in the limit N →∞. On
the other hand, for γ = 0, the localization tensor is
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FIG. 4. The PBC polarisability ᾱL(N) as a function of the
number of electrons N for various values of the electroneg-
ativity difference γ for a square lattice in a tight-binding
model.

linear in N , so it diverges linearly for N → ∞. In
Fig. 4 the corresponding polarizability per electron
are reported. The behavior is very similar to that of
the localization tensor. The main difference is that
for γ = 0 the polarizability diverges quadratically as
a function of N for large N .

D. A Heisenberg model

Finally, we calculate the spin localization tensor for
a correlated Heisenberg model. We study the follow-
ing Hamiltonians, for OBC and PBC, respectively,

ĤOBC = 2J

N−1∑
i=1

(1− (−1)iδ) ~̂Si ~̂Si+1, (29)

ĤPBC = 2J

N−1∑
i=1

{(1− (−1)iδ) ~̂Si ~̂Si+1}+ 2J(1− δ) ~̂S1
~̂SN ,

(30)

where ~̂Si is the spin vector of site i, J is the coupling
constant, and 0 ≤ δ ≤ 1 is the dimerization param-
eter, i.e, the dimerization is at its maximum when
δ = 1 while there is no dimerization when δ = 0.
Furthermore, we assume that N ≥ 4 and N is even.

Since the electron positions are fixed in this model
the localization tensor vanishes for all N . However,
the localization tensor can be split into four spin con-
tributions28–30

λ(N) = λ↑↑(N) + λ↓↓(N) + λ↑↓(N) + λ↓↑(N), (31)

where λ↑↑(N) (λ↓↓(N)) is a measure of the local-
ization of ↑ (↓) spins, and λ↑↓(N) and λ↓↑(N) are
the couplings between ↑ and ↓ spins. In the fol-
lowing we will focus on the spin localization tensor
λS(N) = λ↑↑(N)+λ↓↓(N) obtained from the ground-
state for an anti-ferromagnetic ordering (J = −1).
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FIG. 5. The OBC spin localization tensor λS(N) (solid
lines) and the PBC spin localization tensor λS

L(N) (dashed
lines) as a function of the number of electrons N for vari-
ous values of the dimerization parameter δ in a Heisenberg
model.

In Fig. 5 we report the OBC spin localization ten-
sor λS(N) as well as the PBC spin localization tensor
λSL(N) as a function of the number of electrons for
various values of δ. The length of the unit cell has
been set to unity and we have set L = N such that
the density N/L = 1. Because of the correlation the
numerical solution of the problem is much more com-
putationally demanding than the uncorrelated calcu-
lations discussed in the article. For this reason the
largest number of electrons we were able to treat is
N = 16.

Nevertheless, the same conclusions drawn for the
uncorrelated tight-binding model discussed in the ar-
ticle also apply to the correlated Heisenberg model:
1) for the ”metallic” chain (δ = 0) the PBC localiza-
tion tensor is well-defined for finite N and it diverges
linearly with N as does the OBC localization ten-
sor; 2) the OBC and PBC localization tensors, λ(N)
and λL(N), respectively, differ for finite N , since they
describe different systems; 3) in the thermodynamic
limit both localization tensors describe the same sys-
tem and the localization tensors tend to the same
value in that limit. The last conclusion can only be
verified numerically for δ ' 1 since for smaller val-
ues of δ the convergence with respect to N is not fast
enough to be visible in the range 4 ≤ N ≤ 16.

IV. CONCLUSION

We have presented a simple one-body position oper-
ator that is compatible with periodic boundary condi-
tions. We have shown that this operator meets several
important fundamental constraints, e.g., it is transla-
tionally invariant, it reduces to the common position
operator r̂ = r in the appropriate limit, and the dis-
tance expressed in terms of the operator is gauge in-
dependent. Moreover, we have demonstrated its use-
fulness when applied to the localization tensor. In
particular, we have shown that it yields the correct
expression in the thermodynamic limit and correctly
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distinguishes between finite precursors of insulators
and metals.

Finally, we note that this work opens the road for
the calculation of various other properties of inter-
est for which the corresponding operators involve the
position operator. In particular, our definition of po-
sition could reconcile the Coulomb potential with pe-
riodic boundary conditions since the distance remains
well-defined (see Eq. (4)). Preliminary investigations
in this direction, both on the quantum (ab initio treat-
ment of the electron gas) and classical level (Madelung
sums) are in progress. In the end, this could, for
example, enhance the convergence to the thermody-
namic limit of Monte Carlo calculations of periodic
systems.31
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Appendix A: Proof of equivalence with the

localization tensor of Ref. [2] in the

thermodynamic limit for a single Slater

determinant.

In this section we proof that our definition of the
localization tensor in Eq. (7) of the article reduces to
the localization tensor proposed in Ref.2 in the ther-
modynamic limit in the special case of a wave function
that can be expressed as a single Slater determinant.

For a single Slater determinant we can rewrite
Eq. (7) of the article according to

λL(N) =
L2

4π2

∑
v,c

n−1∑
κ=0

〈φvk|e−i
2π
L x|φck′〉〈φck′ |ei

2π
L x|φvk〉,

(A1)

=
L2

4π2

∑
v,c

n−1∑
κ=0

〈uvk|uck′〉〈uck′ |uvk〉, (A2)

where k′ = k + 2π
L and n is the number of cells. For

large L we can rewrite uck′ , which is the periodic part
of φck′ , as

uck′(x) = uck(x) +
2π

L
∂kuck(x) +O(1/L2). (A3)

Therefore, the localization tensor in the thermody-
namic limit becomes

lim
N,L→∞

λL(N) =
∑
v,c

∫
dk〈uvk|∂kuck〉〈∂kuck|uvk〉

(A4)

=
∑
v,c

∫
dk〈∂kuvk|uck〉〈uck|∂kuvk〉.

(A5)

Using the completeness relation
∑
v〈uv|uv〉 +∑

c〈uc|uc〉 = 1 we can rewrite this as

lim
N,L→∞

λL(N) =
∑
v

∫
dk〈∂kuvk|∂kuvk〉 (A6)

−
∑
v,v′

∫
dk〈∂kuvk|uv′k〉〈uv′k|∂kuvk〉,

(A7)

which is the expression proposed in Ref..2 This com-
pletes the proof.
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