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I. INTRODUCTION

Expectation values that involve the position operator r play a prominent role in both molecular and condensed-matter physics. Many important quantities are expressed in term of r, e.g., the multipole moments and the localization tensor. The latter quantity was introduced by Resta and co-workers [1][2][3] following an idea of Kohn 4 that information about electron localization should be obtained from the ground-state wave function (see also Ref. 5 ). The localization tensor is able to distinguish between conductors and insulators: when the number of electrons tends to infinity it diverges in the case of a conductor, while it remains finite in the case of an insulator. It has been applied to study the metallic behavior of clusters [6][7][8][9][10][11][12][13][14] and has recently also been used to investigate Wigner localization. 15 In its standard definition the position operator r is simply defined as the multiplication with the position vector r. However, this definition is not compatible with periodic boundary conditions (PBC), since r is not a periodic function. This is a problem, since many quantities of interest are related to the solid state which are conveniently described using PBC. Therefore, it is of great interest to search for a position operator that is compatible with PBC while reducing to the position vector r in the appropriate limit. We will provide such a definition of the position operator in this work. For notational convenience we will mainly focus on one dimension in the remainder of this work. All our findings can be generalized to higher dimensions. In particular, our main results, i.e., Eqs. ( 2) and (7), can be generalized to three dimensions by replacing x with r. We use Hartree atomic units ( = 1, e = 1, m e = 1, 4π 0 = 1).

We study a system of length L whose electronic many-body wave function Ψ(t) satisfies PBC, i.e., for each x i the following condition holds, (1) where N is the number of electrons. We are looking for a position operator that is compatible with PBC. We denote such an operator as q.

Ψ(x 1 , • • •, x i , • • •, x N ) = Ψ(x 1 , • • •, x i + L, • • •, x N ),
Let us summarize important criteria that q should satisfy: 1) q should be invariant with respect to a translation L; 2) q should reduce to the standard position operator x = x for finite systems described within PBC, i.e., in a supercell approach (L → ∞ for fixed N ) 16 one should obtain results that coincide with those obtained within open-boundary conditions (OBC). 3) The distance defined in terms of q should be real and gauge-invariant, i.e., it should be independent of the choice of the origin. This criterium is important since the main purpose of a position operator is to yield the correct distance between two spatial coordinates. Finally, we add a fourth criterium: 4) For a system of many particles, q should be a onebody operator, as is x. Although the last criterium is not a fundamental one, it is crucial if we want to apply the new operator to realistic systems.

In a seminal work Resta proposed a definition for the expectation value of the total position operator X = N i=1 x i that is compatible with PBC. 17 Following a similar strategy Resta and coworkers also proposed an expression for the localization tensor that is compatible with PBC. 1,2 Despite the important progress made in these works there are also several shortcomings to this approach: 1) they provide definitions for expectation values but not a definition for the position operator itself ; 2) the operators are Nbody which make them unpractical for the calculation of expectation values of real correlated systems with many electrons. Finally, we note that their approach can yield diverging localization tensors for systems with a finite number of electrons, namely for those systems that become metallic in the thermodynamic limit.

Instead, in this work we propose a definition for the position operator itself. We will demonstrate that it satisfies the four criteria mentioned above. Moreover, we will explicitly show that it correctly yields the macroscopic polarization in the thermodynamic limit as well as a useful expression for the localization tensor. The latter gives finite values at finite N and L while yielding the correct values in the thermody-namic limit.

The manuscript is organized as follows. We start by giving an introduction in Sec. I. In Sec. II we present a position operator that is compatible with PBC and we show how it can be used to define a PBC localization tensor. We also briefly discuss the polarizability. In Sec. III we report results obtained for uncorrelated and correlated model systems. Finally, in Sec. IV we draw our conclusions.

II. A POSITION OPERATOR COMPATIBLE WITH PERIODIC BOUNDARY CONDITIONS

In order to treat PBC systems, we associate to the electron position x the complex position q L (x), defined as

q L (x) = L 2πi exp 2πi L x -1 , (2) 
with i the imaginary unit. The complex position q L (x) is a continuous and infinitely differentiable function of x. In complete analogy with the quantum treatment of the position operator x, we define the action of the complex position operator q as the multiplication with q L (x).

Let us review the criteria mentioned above with respect to q L (x). 1) q L (x) is trivially invariant under a translation, i.e., q L (x + L) = q L (x). Therefore the complex position q L (x), unlike the ordinary position x, satisfies the PBC constraint. 2) q L (x) reduces to the standard position operator x in the limit L → ∞, in the sense of a supercell approach mentioned above. This can be shown by expanding the exponential function:

exp 2πi L x = 1 + 2πi L x + O(1/L 2 ) 18 . 3) the distance |q L (x 2 ) -q L (x 1 )
| is real and gauge independent. By defining the difference q L,x0 (x 2 , x 1 ) = q L (x 2 -x 0 ) -q L (x 1 -x 0 ), where x 0 is the (arbitrary) origin, it can be verified that

q L,x0 (x 2 , x 1 ) = L 2πi e -2πi L x0 e 2πi L x2 -e 2πi L x1 . (3) 
Therefore, the distance

|q L (x 2 ) -q L (x 1 )| = q * L,x0 (x 2 , x 1 )q L,x0 (x 2 , x 1 ) = L 2π 2 -2 cos 2π L (x 2 -x 1 ) (4) 
is real and independent of x 0 , as it should. 19 4) q L (x) is a one-body operator.

A. The localization tensor

Let us now demonstrate how the complex position in Eq. (2) yields a useful expression for the localization tensor within PBC using an approach that is completely analogous to the OBC case. The localization tensor λ is defined as the total position spread (TPS) per electron where the TPS is a one-body operator that is defined as the second cumulant moment of the total position operator X = N i=1 x i 20 :

λ(N ) = 1 N Ψ| X2 |Ψ -Ψ| X|Ψ 2 . ( 5 
)
The second term in the square brackets ensures gauge invariance with respect to the choice of the origin of the coordinate system. The localization tensor is translationally invariant.

In complete analogy with the OBC definition, within PBC we replace the position of a particle x i by its complex position q L (x i ). In such a way, the complex total position operator is still a one-body operator, defined as

QL = N i=1 qL (x i ). (6) 
The localization tensor within PBC λ L is also a real quantity, like λ. It is defined as the second cumulant moment of the complex total position operator per electron:

λ L (N ) = 1 N Ψ| Q † L QL |Ψ -Ψ| Q † L |Ψ Ψ| QL |Ψ (7 
) in complete analogy with the OBC definition in Eq. (5). Equation ( 7), together with Eq. ( 2), is the main result of this work. The simple expression is completely general, it can be applied to correlated many-body wave functions and is valid for both finite systems and infinite systems, e.g., by taking the thermodynamic limit. In the special case of a singledeterminant wave function, it can be shown that the expression in Eq. ( 7) coincides with the result obtained in Ref. [2] in the thermodynamic limit. The proof is given in appendix A.

B. The polarizability

The polarization has been related to the position operator. 17,[START_REF] Yaschenko | [END_REF] However, since the current operator is compatible with PBC, variations of the polarization can also be calculated as a time integral of the current density. Instead, the expression for the polarization itself proposed in Ref. [22] is not gauge invariant and cannot be written as an expectation value of any operator; it requires the calculation of a Berry-phase expression. [START_REF] Yaschenko | [END_REF][22][23][24] Instead of the current density we focus here on a related quantity, namely the polarizability, i.e, the variation of the current due to a perturbing field. For one-dimensional chains the polarizability can also be related to the macroscopic polarization in the thermodynamic limit. 25 The static polarizability α for OBC can be written as

α(N ) = 2 Ψ 0 |x( Ĥ -E 0 ) -1 ⊥ x|Ψ 0 , (8) 
where Ψ 0 is the ground-state wave function and ( Ĥ -E 0 ) -1 ⊥ is the reduced resolvent of the Hamiltonian in the orthogonal complement to Ψ 0 . 26 Therefore, in complete analogy with the OBC definition above we define the PBC polarizability α L (N ) as

α L (N ) = 2 Ψ 0 |q † L (x)( Ĥ -E 0 ) -1 ⊥ q L (x)|Ψ 0 , (9) 
III. RESULTS

We will now demonstrate that the PBC localization tensor given by Eq. ( 7) can differentiate between metals and insulators and that it can be applied to both finite and infinite systems. To do so we will apply it to model systems.

A. Noninteracting electrons

First, we will treat the simple case of N noninteracting electrons in a one-dimensional box of length L. This model system can be seen as a prototype of a conductor. For this reason, it is particularly important that the formalism we propose in this work can be applied to such a system. In analogy to the OBC case, 3 one expects that the localization tensor λ L (N ), diverges in the thermodynamic limit.

We consider N = 2m + 1 non-interacting electrons where m is a non-negative integer. For the sake of simplicity, we assume that the particles are spinless. In the case of particles with spin, the final result can be trivially obtained by multiplying the spinless-particle result by the spin multiplicity of a single particle. The eigenfunctions of the Hamiltonian of this system are periodic orbitals given by

φ n (x) = 1 √ L exp i 2πn L x , ( 10 
)
where n is an integer. Since the particles do not interact, the ground-state wave function is a single Slater determinant of the occupied orbitals, given by

|Φ 0 = |φ -m • • • φ m . The corresponding localization tensor reads λ L (N ) = L 2 4π 2 N Φ 0 | N i=1 e -2πi L xi N j=1 e 2πi L xj |Φ 0 -Φ 0 | N i=1 e -2πi L xi |Φ 0 Φ 0 | N j=1 e 2πi L xj |Φ 0 . (11)
Inserting a complete set of states in the first term in the square brackets yields

λ L (N ) = L 2 4π 2 N I =0 N i,j=1 Φ 0 |e -i 2π L xi |Φ I Φ I |e i 2π L xj |Φ 0 (12) = L 2 4π 2 N |p|≤m |l|>m φ p |e -i 2π L x |φ l φ l |e i 2π L x |φ p , (13) 
where in the last step we used the Slater-Condon rules for one-electron operators. [START_REF] Szabo | Modern Quantum Chemistry : Introduction to Advanced Structure Theory[END_REF] Inserting Eq. ( 10) into the above expression leads to the following expression for the matrix element

φ p |e -i 2π L x |φ l , 1 L L exp i 2π(l -p -1) L x dx = δ l-p-1 . (14) 
Therefore, there is only one nonzero contribution in the double summation over p and l in Eq. ( 13), namely when p = m and l = m + 1. We can write the final result as

λ L (N ) = L 2 N 2 N 4π 2 , (15) 
from which we can deduce the behavior of the localization tensor in the thermodynamic limit. Since, in this limit, N/L remains constant, the localization tensor diverges linearly with N , as one would expect for a measure of conductivity applied to a perfect conductor.

B. A tight-binding model

We now consider a dimerized chain containing 4n + 2 atoms at half filling, i.e., N = 4n + 2, in a tightbinding model. The Hamiltonian is given by, for OBC and PBC, respectively, where â † i (â i ) is a creation (annihilation) operator and the hopping parameter

ĤOBC = N -1 i=1 -t i (â † i âi+1 + â † i+1 âi ) (16) 
ĤP BC = N -1 i=1 -t i (â † i âi+1 + â † i+1 âi ) -t N (â † N â1 + â † 1 âN ) (17) 
t i = 1-(-1) i δ with 0 ≤ δ ≤ 1.
This means that the dimerization is at its maximum when δ = 1 while there is no dimerization when δ = 0. The latter system can be interpreted as a precursor of a metal since in the thermodynamic limit this system becomes metallic. It is convenient to express the Hamiltonian in the site basis. Upon diagonalization we thus obtain the eigenfunctions which, when inserted in Eqs. ( 5) and (7), yield the OBC and PBC localization tensors of the dimerized chain.

In Fig. 1 we report λ(N ), as defined in Eq. ( 5) for OBC, as well as λ L (N ), as defined in Eq. ( 7) for PBC, as a function of the number of electrons for various values of δ. The length of the unit cell has been set to unity and we have set L = N such that the density N/L = 1. First of all, we see that the PBC localization tensor is well-defined for finite N also for the "metallic" chain (δ = 0). Second, as expected, the OBC and PBC localization tensors, λ(N ) and λ L (N ), respectively, differ for finite N , since they describe different systems. Instead, in the thermodynamic limit both localization tensors describe the same system and indeed we obtain the same values in that limit.

The advantage of the PBC localization tensor is that the thermodynamic limit can be obtained without extrapolating results for finite N and L. Instead, at least for single-particle Hamiltonians, one can obtain an expression involving information of a single unit cell.

In the case of the dimerized chain one can derive an analytical expression for the localization tensor in the thermodynamic limit. The unit cell of length d contains two sites separated by d/2 with one electron per site. In the site basis the Hamiltonian Ĥκ , which corresponds to the periodic part of the wave function, is then given by (d = 1):

H κ,11 = H κ,22 = 0 (18) H κ,12 = H * κ,21 = -(1 + δ)e -πi κn + (1 -δ)e πi κn (19) 
where κ = 0, 1, 2, . . . , n -1 is an integer and n is the number of cells. The eigenvectors of the matrix H κ are the periodic part of the Bloch functions φ ik . There is one occupied valence state φ vk and one unoccupied conduction state φ ck . They are given by

φ ik (x) = 1 √ n e ikx u ik (x) (i = v, c) (20) 
where x is the coordinate along the chain, k = 2πκ/L is the wave vector and u ik (x) is a periodic function that is normalized over a single cell. To obtain the localization tensor we use a similar strategy to that used for the system of non-interacting electrons, i.e., we insert a complete set of states in Eq. ( 7) and use the Slater-Condon rules. This yields the following expression:

9 λ L (N ) = L 2 4π 2 n-1 κ=0 φ vk |e -i 2π L x |φ ck φ ck |e i 2π L x |φ vk , (21) 
with k = k + 2π/L. In the thermodynamic limit the variable κ becomes continuous and the summation over κ can be replaced with an integral over k. We finally obtain

λ ∞ ≡ lim N,L→∞ λ L (N ) = 1 + δ 2 16|δ| . ( 22 
)
As expected, for a periodic system, λ ∞ is an even function of δ. We note that λ ∞ goes to infinity as 1/|δ| when δ tends to zero, i.e., when we go from an insulator (δ = 0) to a metal (δ = 0). We reported the limiting values obtained with Eq. ( 22) in Fig. 1.

Finally, in Fig. 2 we report the static polarizability per electron ᾱ(N ) = α(N )/N and ᾱL (N ) = α L (N )/N as a function of the number of electrons for various values of δ. As before, the length of the unit cell has been set to unity and we have set L = N such that the density N/L = 1. As was the case for the PBC localization tensor, the PBC polarizability is well-defined for finite N for the "metallic" chain (δ = 0). We note that, while the localization tensor diverges linearly for this chain, the polarizability per electron diverges quadratically. Most importantly, in the thermodynamic limit ᾱ(N ) and ᾱL (N ) tend to the same values, as they should.

In the thermodynamic limit we can obtain an analytical expression for the PBC polarizability ᾱL of the tight-binding model in a similar way as that employed for the localization tensor, which is described in the article. The PBC polarizability ᾱL can be rewritten The dots and numbers next to each curve are the values of the PBC localization tensor in the thermodynamic limit. They were obtained from Eq. ( 24). Inset: ᾱ(N ) and ᾱ(L) (N ) for δ = 0.04 and δ = 0.1 for large N .

as

ᾱL (N ) = L 2 4π 2 n-1 κ=0 φ vk |e -i 2π L x |φ ck φ ck |e i 2π L x |φ vk ck -vk , (23) 
where vk ( ck ) is the orbital energy of a valence (conduction) state. In the thermodynamic limit the variable κ becomes continuous and the summation over κ can be replaced with an integral over k. We finally obtain ᾱ∞ = lim

N,L→∞ α L (N ) = 2(1 + δ 2 )E(1 -δ 2 ) -δ 2 K(1 -δ 2 ) 48πδ 2 , (24) 
where K and E are the complete elliptic integrals of the first and second kind, respectively:

K(x) = π/2 0 1 -x sin 2 θ -1/2 dθ, (25) 
E(x) = π/2 0 1 -x sin 2 θ 1/2 dθ. (26) 
We reported the limiting values obtained with Eq. ( 24) in Fig. 2.

C. Square Lattice

To demonstrate that our approach is not limited to one dimension we consider a two-dimensional square lattice with the following tight-binding Hamiltonian, 

Ĥ = - <i,k> j a † i,j a k,j - i <j,k> a † i,j a i,k + γ 2 i,j (-1) i+j a + i,j a i,j . (27) 
where the notation < i, k > indicates that i and k are nearest neighbors. The Hamiltonian in Eq. ( 27) describes a non-dimerized bipartite lattice with nearestneighbor hopping t = 1. We can obtain the band structure that corresponds to this Hamiltonian in the thermodynamic limit. It is given by

± (k x , k y ) = 1 2 [γ ± γ 2 + 16(1 + cos(k x ) + cos(k y ) + cos(k x ) cos(k y )] 1/2 . (28) 
The minimum gap between the two eigenvalues is γ, and it is reached for either k x = ±π or k y = ±π (or both). This means that the system is an insulator when it is bipartite, i.e., if γ = 0, while it becomes a metal when all the sites are equivalent, i.e., γ = 0. The parameter γ can be interpreted as the difference in electronegativity between neighboring sites. Therefore, the Hamiltonian in Eq. ( 27) represents a model for a single layer of NaCl when γ = 0 and a single layer of the simple-cubic polonium crystal for γ = 0. We computed the eigenvalues of the localization tensor and the polarizability of this system for various values of γ. Because of the symmetry, the diagonal components are identical, while the off-diagonal components vanish. For this reason we report only the xx component in the following. In Fig. 3, we report the localization tensor as a function of N for various values of γ. For γ = 0 the localization tensor is a monotonous increasing function, that saturates to a constant in the limit N → ∞. On the other hand, for γ = 0, the localization tensor is linear in N , so it diverges linearly for N → ∞. In Fig. 4 the corresponding polarizability per electron are reported. The behavior is very similar to that of the localization tensor. The main difference is that for γ = 0 the polarizability diverges quadratically as a function of N for large N .

D. A Heisenberg model

Finally, we calculate the spin localization tensor for a correlated Heisenberg model. We study the following Hamiltonians, for OBC and PBC, respectively,

ĤOBC = 2J N -1 i=1 (1 -(-1) i δ) ˆ S i ˆ S i+1 , (29) 
ĤP BC = 2J N -1 i=1 {(1 -(-1) i δ) ˆ S i ˆ S i+1 } + 2J(1 -δ) ˆ S 1 ˆ S N , (30) 
where ˆ S i is the spin vector of site i, J is the coupling constant, and 0 ≤ δ ≤ 1 is the dimerization parameter, i.e, the dimerization is at its maximum when δ = 1 while there is no dimerization when δ = 0. Furthermore, we assume that N ≥ 4 and N is even.

Since the electron positions are fixed in this model the localization tensor vanishes for all N . However, the localization tensor can be split into four spin contributions [START_REF] Khatib | [END_REF][29][30] λ(N ) = λ ↑↑ (N ) + λ ↓↓ (N ) + λ ↑↓ (N ) + λ ↓↑ (N ), (31) where λ ↑↑ (N ) (λ ↓↓ (N )) is a measure of the localization of ↑ (↓) spins, and λ ↑↓ (N ) and λ ↓↑ (N ) are the couplings between ↑ and ↓ spins. In the following we will focus on the spin localization tensor λ S (N ) = λ ↑↑ (N ) + λ ↓↓ (N ) obtained from the groundstate for an anti-ferromagnetic ordering (J = -1). In Fig. 5 we report the OBC spin localization tensor λ S (N ) as well as the PBC spin localization tensor λ S L (N ) as a function of the number of electrons for various values of δ. The length of the unit cell has been set to unity and we have set L = N such that the density N/L = 1. Because of the correlation the numerical solution of the problem is much more computationally demanding than the uncorrelated calculations discussed in the article. For this reason the largest number of electrons we were able to treat is N = 16.

Nevertheless, the same conclusions drawn for the uncorrelated tight-binding model discussed in the article also apply to the correlated Heisenberg model: 1) for the "metallic" chain (δ = 0) the PBC localization tensor is well-defined for finite N and it diverges linearly with N as does the OBC localization tensor; 2) the OBC and PBC localization tensors, λ(N ) and λ L (N ), respectively, differ for finite N , since they describe different systems; 3) in the thermodynamic limit both localization tensors describe the same system and the localization tensors tend to the same value in that limit. The last conclusion can only be verified numerically for δ 1 since for smaller values of δ the convergence with respect to N is not fast enough to be visible in the range 4 ≤ N ≤ 16.

IV. CONCLUSION

We have presented a simple one-body position operator that is compatible with periodic boundary conditions. We have shown that this operator meets several important fundamental constraints, e.g., it is translationally invariant, it reduces to the common position operator r = r in the appropriate limit, and the distance expressed in terms of the operator is gauge independent. Moreover, we have demonstrated its usefulness when applied to the localization tensor. In particular, we have shown that it yields the correct expression in the thermodynamic limit and correctly distinguishes between finite precursors of insulators and metals.

Finally, we note that this work opens the road for the calculation of various other properties of interest for which the corresponding operators involve the position operator. In particular, our definition of position could reconcile the Coulomb potential with periodic boundary conditions since the distance remains well-defined (see Eq. ( 4)). Preliminary investigations in this direction, both on the quantum (ab initio treatment of the electron gas) and classical level (Madelung sums) are in progress. In the end, this could, for example, enhance the convergence to the thermodynamic limit of Monte Carlo calculations of periodic systems. 31 This work was partly supported by the French "Centre National de la Recherche Scientifique" (CNRS, also under the PICS action 4263). It has received fundings from the European Union's Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement n o 642294. This work was also supported by the "Programme Investissements d'Avenir" under the program ANR-11-IDEX-0002-02, reference ANR-10-LABX-0037-NEXT. The calculations of this work have been partly performed by using the resources of the HPC center CALMIP under the grant 2016-p1048. Finally, one of us (EAV) acknowledges the support of the "Theoretical Chemistry and Computational Modeling(TCCM) Erasmus-Plus Master program.
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 1 FIG.1. The OBC localization tensor λ(N ) (solid lines) and the PBC localization tensor λL(N ) (dashed lines) as a function of the number of electrons N for various values of the dimerization parameter δ in a tight-binding model (see Eqs.(16 and (17)). The dots and numbers next to each curve are the values of the PBC localization tensor in the thermodynamic limit. They were obtained from Eq. (22) with d = 1. Inset: λ (L) ) for δ = 0.04 and δ = 0.1 for large N .
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 2 FIG.2. The OBC polarizability ᾱ(N ) (solid lines) and the PBC polarizability ᾱL(N ) (dashed lines) as a function of the number of electrons N for various values of the dimerization parameter δ in a tight-binding model. The dots and numbers next to each curve are the values of the PBC localization tensor in the thermodynamic limit. They were obtained from Eq. (24). Inset: ᾱ(N ) and ᾱ(L) (N ) for δ = 0.04 and δ = 0.1 for large N .
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 3 FIG. 3. The PBC localization tensor λL(N ) as a function of the number of electrons N for various values of the electronegativity difference γ for a square lattice in a tightbinding model.

FIG. 4 .

 4 FIG.4. The PBC polarisability ᾱL(N ) as a function of the number of electrons N for various values of the electronegativity difference γ for a square lattice in a tight-binding model.

FIG. 5 .

 5 FIG. 5. The OBC spin localization tensor λ S (N ) (solid lines) and the PBC spin localization tensor λ S L (N ) (dashed lines) as a function of the number of electrons N for various values of the dimerization parameter δ in a Heisenberg model.

Appendix A: Proof of equivalence with the localization tensor of Ref. [2] in the thermodynamic limit for a single Slater determinant.

In this section we proof that our definition of the localization tensor in Eq. ( 7) of the article reduces to the localization tensor proposed in Ref. 2 in the thermodynamic limit in the special case of a wave function that can be expressed as a single Slater determinant.

For a single Slater determinant we can rewrite Eq. ( 7) of the article according to

where k = k + 2π L and n is the number of cells. For large L we can rewrite u ck , which is the periodic part of φ ck , as

) Therefore, the localization tensor in the thermodynamic limit becomes lim

which is the expression proposed in Ref.. 2 This completes the proof.