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We present a method to systematically optimize nonlinear damage detection

in multiple scattering media by the nonlinear Vibro-Acoustic Modulation

(VAM) technique. The latter consists here of exciting a medium simultane-

ously with a high frequency ultrasonic sinusoidal burst and with a low fre-

quency continuous sinusoidal wave. Modulation of the high frequency (probe)

by the low frequency (pump) is made possible by the presence of nonlinear

scatterers, i.e. cracks, defects. A signal processing technique consisting of a

closed loop system drives the automatic adaptation of the pumping frequency,

yielding to the optimization of the nonlinear modulation (NM) of the output

probing coda signal without a priori information on the medium and the

scatterers. The correlation coefficient between a reference output probe sig-

nal without the pumping wave and an output modulated probe signal with

a pumping wave was considered as our cost function. A multiple scattering

solid beam where nonlinear scatterers can be controllably added or removed

is designed and tested. The first step of this study is an empirical search

of the correlation coefficient dependency on the pumping frequency to verify

the performances of the proposed method. Then the implemented optimiza-

tion algorithm based on genetic algorithm (GA) is used to find automatically

the optimal pumping frequency. The obtained optimization results show a

good agreement with the empirical study. Moreover, the genetic algorithm

allowed to find the optimal pump frequency adapted to each configuration

of nonlinear scatterers. This relatively fast search of the optimal nonlinear

response could be extended to nonlinear scatterer imaging applications us-

ing the information on the resonant modes spatial shapes together with the

associated optimal response.
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1. Introduction1

Nonlinear ultrasonic nondestructive testing has known a great develop-2

ment during the last decades. Numerous studies have shown the possibility3

to detect damages at earlier stages than whith linear ultrasonic methods.4

The integrity of the structure can be easily preserved by an earlier mainte-5

nance. The presence of a nonlinear defect, such as a crack or a delamination,6

can give rise to nonlinear phenomena, among which are the generation of7

higher harmonics, subharmonics, wave modulation or resonance frequency8

shift. Several methods based on the detection of these phenomena have been9

proposed [1, 2, 3, 4, 5, 6, 7]. One of the most widely studied methods is the10

Vibro-Acoustic Modulation (VAM) [8, 9] or the Nonlinear Wave Modulation11

Spectroscopy (NWMS) [10], which belongs to the class of nonlinear modu-12

lation or nonlinear mixing methods. With the VAM, micro-damage can be13

detected by following the amplitude modulation induced on a probe signal14

(e.g. high frequency ultrasound) by a pump signal (e.g. low frequency vibra-15

tion). Nonlinear modulation techniques have been widely used on samples16

with simple geometries in which coherent waves propagate [11, 12]. How-17

ever, the use of these methods has been poorly studied in environments with18

complex geometries, which lead to multiple scattering of the waves. Among19

the few reported results in such case, Zhang et al. have demonstrated that20

a global inspection of multiple scattering materials is possible by combining21

the Coda Wave Interferometry (CWI) technique with a nonlinear modulation22
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method [13, 14].23

Generally, the pump frequency is chosen to correspond to one of the vibra-24

tion modes of the studied sample in order to amplify the vibration response25

[9, 15, 16, 17, 18]. A preliminary modal analysis is, then, necessary for iden-26

tifying and selecting the resonance frequencies of the sample. It is important27

to underline that such a procedure requires a further experimental setup and28

time. Furthermore, a possible drawback of a modal excitation is that the29

crack or the damaged zone can be located at a strain node of the pump or30

probe wave, which compromises the generation of the nonlinear modulation.31

To overcome this problem, a frequency swept pump and/or probe signals32

have been used [13, 17, 19, 20, 21, 18, 22]. As such, several resonance modes33

are excited and an averaged effect over a wide frequency range is detected,34

without low sensitivity zones. Dunn et al. suggest that selecting the res-35

onant frequencies as a pumping frequency is not ideal, because the system36

nonlinearities are maximum at those frequencies and the resonant peaks shift37

in frequency with changing amplitude [23].38

In order to optimize and to refine the sensitivity of the nonlinear mod-39

ulation method to detect damage, various signal processing techniques have40

been adopted. These methods make it possible to extract the nonlinear41

modulation information in the frequency domain [20, 21, 24, 25, 26, 27, 28].42

The VAM was also successfully associated with the time reversal technique43

for localizing and imaging damage in materials [29, 30, 31]. All these post-44

processing techniques aim for improving the crack detection with fixed ex-45

citations, while it has been proved that the effect of excitation parameters,46

such as the frequency, can improve the VAM sensitivity [18, 22]. Pieczonka et47
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al. have used a swept sine chirp probe excitation and modal frequency pump48

excitation associated with an advanced signal proccesing technique to find49

the optimal probe frequency enhancing the VAM sensitivity [17]. Recently, a50

novel method in which the pump frequency is omitted and the high frequency51

is amplitude- modulated and contains 3 frequencies that interact in the pres-52

ence of nonlinearity has been reported [32]. However, to our knowledge, no53

study using VAM has tried to find the optimal excitation that improve the54

sensitivity of the damage detection automatically by a closed loop system.55

Previous results using the optimal command principle for nonlinear sys-56

tems were initiated by Ménigot et al. [33, 34] in medical ultrasound imaging.57

A first attempt in NDT was applied in [35] then in [36]. The originality of58

these results is to search for the optimal input excitation parameter/shape59

without any a priori knowledge on the studied system, by using known op-60

timization algorithms. The key point of this method lies in the choice of the61

cost function which must best write the optimization purpose.62

The present study constitutes an extension to the NDT domain, espe-63

cially, to the VAM technique, of the method demonstrated in [33], in which64

the optimal command was applied to medical ultrasonic imaging. A conven-65

tional VAM system is, then, replaced by a closed loop VAM system permit-66

ting a real time optimization of input excitations parameters. We focused,67

here, on the pump frequency parameter since the nonlinear modulation inten-68

sity increase with the pump amplitude [18, 37, 38]. The aim of our study is69

therefore to find automatically the best pumping frequency which maximizes70

the nonlinear modulation occurring between the pump and the probe signals71

without a priori information. The proposed method requires no preliminary72
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modal analysis and use a simple optimization genetic algorithm. In a first73

time, the cost function must be adapted to the VAM. An empirical search of74

the cost function behavior as a function of the optimization parameter was75

achieved in order to show the relevance of our choices.76

The remainder of the paper is organized as follow, in the Section 2, we77

present our closed loop optimization system for the VAM technique. Section78

3 describes the experiment including the studied sample and the setup. The79

Section 4 is devoted to the experimental results of the empirical optimiza-80

tion, a modal analysis for a comparison purpose, and the genetic algorithm81

optimization. Finally, a discussion and conclusion are given in Section 5.82

2. Closed Loop Pump Frequency Optimization83

The proposed method is an optimal command method using a closed loop,84

in order to optimize the VAM sensitivity of crack detection. Indeed, it makes85

it possible to find the pump frequency which optimizes the nonlinear mod-86

ulation effects. The cost function and its parameters need to be adequately87

chosen. Here, only an iterative optimization procedure is implemented. The88

conventional open loop system is replaced by a closed loop system in which89

the transmitted pump frequency is modified by adding a feedback, ensuring90

the optimization of the cost function. The closed loop system of the VAM91

optimization is described in Fig. 1.92

2.1. Cost function93

As mentioned above, the goal of our study is to find automatically the94

best pump frequency f ∗

p , which maximizes the Nonlinear modulation (NM)95
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Figure 1: Bloc diagram of closed loop optimization of pump frequency for the VAM

technique. The same probe excitation signal xs(t) is transmitted to the sample without

the pumping excitation. The received reference probe coda signal yr,k(t) is recorded for a

next use( switch position 1). In a second time (switch position 2), a pumping excitation

xp,k(t) at a frequency fp,k is transmitted simultaneously with the probe excitation to the

medium. The modulated coda probe signal ym,k(t) is also recorded. The added feedback

consists of evaluating and minimizing the correlation coefficient ρ between yr,k(t) and

ym,k(t). The optimization algorithm allowed to find a new pumping frequency fp,k+1.

effects. Usually, to quantify the resulting NM effects in the context of mul-96

tiple scattering media, the Coda Wave Interferometry (CWI) in the time97

domain is used [13, 14, 39, 40]. We have chosen to proceed similarly, and98

extract the nonlinear modulation information in the time domain as it seems99
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to be more accessible. Indeed, the frequency response is very complex in100

multiple scattering media, and the modulation sidebands are difficult to see101

(see section 3.3).102

The correlation coefficient ρ between the received probe coda signal with-103

out pumping and with the pump excitation constitutes our cost function.104

With the presence of a nonlinear scatterer in the sample, the probe signal is105

expected to be modulated by the pump excitation which induces to a decor-106

relation between the two signals. A correlation coefficient equal to unity107

means that there is no influence of the pump on the probe wave, i.e., no non-108

linear modulation effect in the sample. On the contrary, for the same pump109

amplitude value, a deviation of ρ from 1 indicates the presence of nonlinear110

damage leading to a nonlinear modulation effect. In a theoretical point of111

view, the problem consists in calculating:112

f ∗

p = argmin
fp

(ρ(fp)). (1)

During the optimization process, for each iteration k, the same probe113

excitation signal xs(t) is transmitted to the sample without the pumping114

signal (see Fig.1 switch position 1), and the received reference probe coda115

signal yr,k(t) is recorded for a next use. In a second time (switch position 2), a116

pump excitation xp,k(t) at a frequency fp,k is transmitted simultaneously with117

the probe excitation to the medium. The modulated coda probe signal ym,k(t)118

is also recorded. The added feedback consists in evaluating and optimizing119

a cost function, which is, in our case, the correlation coefficient between120

the two recorded received signals ρ(yr,k, (t), ym,k(t)) within the time interval121
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[t1,t2] such as:122

ρ (yr,k(t), ym,k(t)) =

∫ t2

t1

(

yr,k(t)− yr,k(t)
) (

ym,k(t)− ym,k(t)
)

dt

√

∫ t2

t1

(

yr,k(t)− yr,k(t)
)2

dt

∫ t2

t1

(

ym,k(t)− ym,k(t)
)2

dt

(2)

where yr,k(t) is the average of the reference signal within the interval [t1,t2],123

and ym,k(t) that of the modulated signal. This coefficient quantifies the re-124

semblance between the reference probe signal and the modulated probe signal125

by the pump signal. The higher the nonlinear modulation between the probe126

and the pump signals is, the lower the value of the correlation coefficient127

is. An optimization algorithm is required to find a new pumping frequency128

fp,k+1, at the iteration k+1, which maximizes the NM effect and therefore129

minimizes the correlation coefficient. The frequency is then modified and130

all the process described above is reiterated until the algorithm converges131

toward the best solution. In our study, the genetic algorithm was applied.132

2.2. Genetic Algorithm133

To find iteratively the pumping frequency giving the global minimum of134

the correlation coefficient, the genetic algorithm is used [41]. It is a search135

optimization technique based on the principles of genetics and natural se-136

lection. The genetic algorithm allows a population composed of a set of137

pumping frequencies to evolve under specified selection rules to a state that138

maximizes the ”fitness” (i.e., minimizes the correlation coefficient)[34, 42].139

The first step (called generation 1) consists of choosing randomly N pumping140

frequencies from a uniform distribution on a given frequencies interval. In141

our case, we have chosen 10Hz ≤ fp ≤900Hz. This choice is directly related142
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to the empirical optimization for a comparison purpose. Indeed, a largest143

initial population could been chosen. The correlation coefficient is evaluated144

for each pumping frequency value and sorted in descending order. To prepare145

the next step, the N/2 best pumping frequencies that minimize the corre-146

lation coefficient are kept for the next generation k+1 and become parents.147

N/2 new pumping frequencies named offspring are generated following the148

expressions [41, 42]:149

offspring1 = fpm − β[fpm − fpd]

offspring2 = fpm + β[fpm − fpd]
(3)

where β is a random value between 0 and 1. the subscripts m and d discrim-150

inates between the mum and the dad pumping frequencies. A percentage151

of the samples is mutated to obtain a robust optimization. There are some152

algorithm parameters that must be chosen such the population size N and153

the mutation rate R. In our case, N= 12 and the mutation rate R=40% [34].154

Finally, after cost function evaluation, the pumping frequency with the lower155

correlation coefficient is the best solution of generation k+1. The genetic156

algorithm is adapted to global optimization problem; it means that it will be157

able to find the global minimum even if the function presents local minima.158

The GA is good for at identifying promising area of the search space but less159

efficient at fine-tuning the approximation to the minimum [43].160

3. Material161

3.1. Sample description162

An aluminium bar (600 mm ×15 mm× 3mm), with density ρ=2700163

kg/m3, Poisson ratio σ=0.33, and Young modulus E=69 GPa [44], is used as164
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the specimen for our experiments. The probe wave propagation velocity in165

the bulk of the bar is estimated to 4838 m/s. 10 tapped holes with a 4 mm166

diameter and localized at distances of 10 mm, 30 mm, 50 mm, 100 mm and167

200 mm from each sides of the bar center are drilled (see Fig. 2 from S1 to S10168

from left to right). Identical screws (m=4.42 g) can be placed in the tapped169

holes to mimic nonlinear solid contacts (cracks) such as in [45, 39, 40, 46].170

These holes constitute linear scatterers when no screw is present. According171

to the number of nonlinear scatterers on the bar, different levels of ”effective”172

damage can be obtained.173

In the present study, three configurations have been more particularly174

studied: the first one (Config 1) corresponds to the case where no screw is175

placed in the sample bar; the reference. Nevertheless, one fixation screw is176

placed in the middle to insure the link between the shaker and the bar (S0177

in Fig. 2). Configuration 2 (Config 2) corresponds to the case where only178

2 screws are positioned at S2 and S9, and a third configuration (Config 3)179

is the case where all screws are placed (at S1, S2, S3, S4, S5, S6, S7, S8,180

S9, and S10). Note that the nonlinearity level in the sample depends on the181

screw number and the nuts tightening.182

3.2. Experimental Setup183

The closed loop pump frequency optimization process requires the exper-184

imental setup depicted in Fig. 3. Two broadband piezoelectric transducers185

with 250kHz central frequencies for transmitting and receiving the probe sig-186

nal are glued to the ends of the sample. For the transmission of the probe sig-187

nal, a 100 mVpp sinusoidal burst of 3 periods of 250 kHz frequency, repeated188

every 20 ms, was emitted by a function generator (AFG3022, Tektronix,189
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S1 S2 S3 S4 S5 S0 S6 S7 S8 S9 S10

600 mm

15 mm

Configuration 1

S1 S2 S3 S4 S5 S0 S6 S7 S8 S9 S10

Configuration 2

S1 S2 S3 S4 S5 S0 S6 S7 S8 S9 S10

Configuration 3

Figure 2: Specimen schemes of the three configurations. One Aluminium bar (600 mm

×15 mm× 3mm) containing 10 tapped holes. Config 1: no screws are placed. Config 2: 2

screws are placed at S2 and S9. Config 3: all the screws are placed on the bar.

Beaverton, Oregon, USA) and amplified to 60 dB (100Vpp) by a power am-190

plifier (Type 2713, Bruël & Kjær, Nærum, Danemark). Simultaneously, a191

lower frequency continuous sine pump signal is generated by the computer-192

controlled function generator (Tektronix, AFG3021C, Beaverton, Oregon,193

USA) to change the excitation frequency during the closed-loop optimiza-194

tion process. The pump signal is amplified by a power amplifier (PA100E,195

Bruël & Kjær, Nærum, Danemark), and transmitted to the shaker (LDS196

V406, Bruël & Kjær, Nærum, Danemark) which is connected to the center197

of the sample by a screw. The coda probe signal is detected by the receiving198

transducer and amplified by a preamplifier (Ciprian, Saint ISMIER, France),199

then, transmitted to an oscilloscope (LT 264ML, Lecroy, Chestnut Ridge,200

NY, USA). In order to improve the signal to noise ratio, an average of 300201

successive acquisitions is carried out, and a coda averaged signal is recorded.202

Each measurement lasts about 10s. Both the function generator and the203

oscilloscope are controlled by MATLAB (Mathworks, Natick, MA, USA).204
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The pump signal is desynchronized from the probe so that the nonlinear ef-205

fects are correctly distributed over the successive acquisitions and averaged206

over the acquired signal. By comparison, An experimental modal analysis

Power ampli�er

Bruel & Kjaer

Type 2713

Waveform generator

Tektronix AFG3022B

LF shaker

LDS 406

Power ampli�er

PA100E

Waveform generator

Tektronix AFG3022B

Sample

Pre-ampli�er

Oscilloscope

Lecroy LT264ML

Probe excitation

PZT transducer

Pump vibration

excitation

GPIB

GPIB

Probe reception

PZT transducer
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11

Figure 3: Experimental setup for the closed loop Vibro-Acoustic Modulation (VAM) tech-

nique.

207

is achieved to identify the frequencies of the first structural resonances of208

the sample. For this purpose, a frequency swept sine signal from 5Hz to209

1000Hz is generated using a signal analyzer (SR785, Stanford Research Sys-210

tems Inc., Sunnyvale, CA, USA). The signal is amplified by a PA100E power211

amplifier ,then, transmitted to a LDS406 shaker. The data are acquired by212

an accelerometer (352C23, PCB Piezotronics Inc, Depew, NY, USA) then213
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transmitted to the signal analyzer. Both the input excitation and the out-214

put response are used to obtain the averaged Frequency Response Function215

(FRF) of the sample. The excitation and the acquisition are controlled by a216

GPIB connection via MATLAB.217

3.3. Nonlinear modulation effects on the probe coda signal218

In order to show the NM effects on the temporal coda signal, two con-219

figurations are considered. The first one corresponds to the case without220

screws (Config 1), and the second one corresponds to the Config 2. The221

pump frequency is 150 Hz. Fig. 4 shows the received probe coda signal from222

the Config 1 (Fig. 4a) and Config 2 (Fig. 4d). For each case, early and late223

temporal windows are shown with and without the presence of the pump224

excitation (Figs. 4b, c and e, f). The pump presence causes no detectable225

change on the probe coda signal obtained from the intact sample, for early226

and late windows: there is no nonlinear modulation of the probe by the pump227

with a correlation coefficient of 1. On the contrary, for the damaged sample,228

it can easily be noted that the two coda signals recorded with and without229

the pumping wave are different for the late window t=[1,1.05] ms (Fig. 4f),230

with a correlation coefficient ρ = 0.976. It indicates that a NM has occurred231

between the probe and the pump waves. Moreover, the nonlinear effects are232

more visible in the late window because, at this time, the wave has crossed233

the medium and interacted with the nonlinear scatterers several times. From234

previous implementations of the nonlinear modulation of a coda wave by a235

pump wave in a multiple scattering medium [13, 14, 46], the decorrelation is236

either due to a localized velocity variation, to an amplitude- dependent dissi-237

pation effect or to an amplitude-dependent scattering effect. By introducing238
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internal solid contacts in the medium, between the screws and the holes,239

amplitude- dependent clapping, tapping and frictional effects are expected.240

These results consolidate our choice of quantifying the nonlinear modulation241

effects by calculating the correlation coefficient between the probe coda sig-242

nals obtained with and without the presence of the pump excitation, in a243

time interval between t1=1ms and t2=1.2 ms. It is important to notice that244

the choice of the central time and the width of the temporal window in which245

the correlation coefficient is estimated, obeys to some constraints [47]. The246

characteristic scattering time t* is estimated according to the method pro-247

posed in [48], and is find to be around 3 µs for our specimen. The starting248

time of our window t1=1ms satisfies the condition t1 ≫ t*. This ensures a249

global inspection of the entire studied sample. Moreover the time interval250

width is set to 200 µs, such as it includes enough signal periods (50 periods251

of the probe signal at 250 kHz). The choice of the window position is also252

limited by the signal quality. Indeed, the more t is increased, the more the253

signal to noise ratio is degraded and the higher the uncertainty on the result254

is.255

In parallel, we illustrate in Fig. 5, the frequency spectra (right) of the256

coda probe signals (left), obtained for Config 2, with and without the presence257

of the pump wave excitation at fp=150 Hz. The selected time window is ∆t=258

[1,1.2]ms. We can notice that both frequency spectra are centered on 250259

kHz, and include peaks due to the multiple scattered probe signal. The260

modulation sidebands are difficult to see in this case, and the only difference261

between the two spectra is an amplitude variation and a slight frequency262

shift. Moreover, the frequency resolution is not sufficient to observe the263
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Figure 4: Experimental temporal coda probe signals obtained from the Config 1 (without

screws): (a), (b) and (c), and for the Config 2 (with screws): (d), (e) and (f), with

and without the pump excitation. The pump excitation is a continuous sine signal at a

resonance frequency fp=150 Hz. (b) and (e) are captures of the coda signals (a) and (d),

respectively, during an early time interval between [0.2, 0.25] ms. (c) and (f) are captures

of (a) and (d), respectively, during a late interval between [1, 1.05] ms.

modulation sidebands when fpump ≪ fprobe. Therefore, we choose to extract264

to modulation effects information in the time domain.265

During all this study, it should be noticed that the decorrelation values266

are not observed higher than 2.5%. We recall, here, that we want to test our267

approach in a rather unfavorable configuration, i.e., when the variation of268
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Figure 5: (left) Experimental probe coda signals obtained from the Config 2, with and

without the presence of the pump. The pump excitation is a continuous sine wave at

150Hz. The coda signal is filtered with a hanning window for a duration ∆t=[1,1.2]ms.

(right) The frequency spectra of the coda signals.

the correlation coefficient is small. Indeed, a stronger nut tightening and a269

higher pump amplitude would have given higher levels of decorrelation.270

4. Experimental Results271

In this section, the main experimental results are presented. First an272

experimental modal analysis is performed in order to obtain the resonance273

modes of the sample for a comparison purpose. Then, an empirical research of274

the correlation coefficient ρ behavior versus the pump frequency is presented275

and compared to the modal analysis results. Finally, a closed loop optimiza-276

tion of the correlation coefficient by the genetic algorithm is performed and277

presented.278
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4.1. Empirical optimization: Correlation coefficient dependency on the pump279

frequency280

The frequency response function (FRF) is obtained using the experimen-281

tal input and output data obtained from the experiment described in the282

section 3.2. This preliminary experiment allows identifying the frequency283

resonance modes of the sample in the Configs 2 and 3. Figs. 6a and 6c284

show the FRFs obtained for Configs 2 and 3, respectively, in a frequency285

range from 5Hz to 900 Hz. We can see that the magnitude of the resonance286

peaks and the corresponding frequencies are different for the two configura-287

tions. The results show that there is a shift in the natural frequencies and288

an overall change in the frequency response due to the effect of the added289

screws.290

The first performed experiment is to check the existence of global or lo-291

cal minima for the correlation coefficient versus the pump frequency. This292

step is called ”empirical optimization”. For time saving, a pump frequency293

sine sweeping from 10 Hz to 900 Hz with a step of 10 Hz is achieved. This294

allows a global view of the correlation coefficient dependency on the pump295

frequency. For this first pass, the prominent observation is the presence of296

local minima peaks localized at specific vibration frequencies corresponding297

well to the resonances of the bar, and ρ ≃ 1 elsewhere. To refine the results298

and to get a better accuracy, a second sweeping was achieved with a finer299

frequency step of 1 Hz, over the frequency regions where ρ deviates from300

1 (Figs. 6b and 6d). The procedure cited in the section 2.1 is adopted to301

calculate the correlation coefficient for each pump frequency. As illustrated302

in Fig. 6, the pump frequencies that give minima peaks of ρ coincide well303
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with the resonance frequencies of the sample for the Configs 2 and 3. This304

confirms the expected effects that at a resonance frequency of the sample,305

the vibration amplitude is naturally amplified by constructive interferences,306

leading to a more efficient nonlinear modulation effect. Also, we can note a307

frequency shift to the lower frequencies with the increase of the number of308

screws in the plate, as it can be seen in Figs. 6b and 6d. Additionally, we309

can see clearly that for the same resonance mode, the correlation coefficient310

values vary from one configuration to another. In fact, the second minimum311

peak corresponding to fp=150 Hz is the most important for the Config 2;312

ρ= 0.975 (Fig. 6b) while ρ= 0.981 at fp=144 Hz for the Config 3 (Fig. 6d).313

We can also notice the third ρ peak is very close to 1 (ρ=0.998) for the314

Config 2 (Fig. 6b) and equal to 0.986 for the Config 3. These observations315

confirm the well-known fact that in the pump resonance configuration, the316

NM efficiency on the probe wave by the pump wave depends on the pump-317

ing frequency/mode and on the exact position of the nonlinear scatterers.318

Based on the obtained curves, it can be stated that for each configuration, it319

exists an optimal pump frequency that maximizes the nonlinear modulation320

effects and, thus, the damage detection sensitivity. This optimal frequency321

corresponds to the frequency giving the lowest minimum of ρ. The empiri-322

cal experiment also shows that the correlation coefficient is a good indicator323

to evaluate the nonlinear wave mixing in the sample. For an easier com-324

parison of results obtained from Fig. 6, table 1 summarizes the correlation325

coefficient minima peaks values and the corresponding pumping frequencies326

obtained from the empirical optimization (EO) and those obtained from the327

FRF for both configurations.328
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Figure 6: Comparison between the resonance frequencies obtained from the experimental

FRF of the Config 2 (a)and the Config 3 (c). Experimental results of correlation coefficient

versus pump frequency at the sample resonance frequencies areas for the two sample

configurations: b) Config 2 and d) Config 3. The FRF peaks coincide with the minimum

peaks of the correlation coefficient versus pumping frequency.

4.2. Optimal pumping frequency excitation329

Fig. 7 shows the results of the pump frequency optimization for the Con-330

fig 2 and Fig. 8 shows those obtained for the Config 3 when using the genetic331

algorithm optimization. For more clarity, the result of the empirical optimiza-332

tion is represented in Figs. 7a and 8a with a zoom on the GA covergence333

area. The initial population was included in a frequency range between 10 Hz334
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Modes

Config 2 Config 3

ρEO fp,EO (Hz) fp,FRF (Hz) ρEO fp,EO (Hz) fp,FRF (Hz)

1st Mode 0.981 23 22.1 0.979 22 22.1

2nd Mode 0.975 150 148.7 0.981 144 145.7

3rd Mode 0.998 400 401.0 0.986 361 365.8

4th Mode 0.991 862 861.3 0.984 770 773.9

Table 1: The correlation coefficient ρ and the fp values corresponding to the minimum

peaks obtained from the empirical optimization (EO) and the resonance frequencies ob-

tained from the Frequency Response Function (FRF) for Config 2 and 3.

and 900 Hz, with a population size of 6 for the Config 2 and 12 for the Config335

3. We can see that in both cases, the optimal pump frequency is reached336

after 4 generations for the Config 2 with an optimal pump frequency of 153.2337

Hz and ρ=0.991 (Figs. 7b and 7c), and after 7 generations for the Config 3338

with fp=22.17 Hz and ρ=0.971 (Figs. 8b and 8c). As it is illustrated in Figs.339

7a and 8a the obtained results are quite similar with those obtained by the340

empirical optimization. For Config 2, the optimal pump frequency is reached341

by the genetic algorithm with a slight discrepancy in the pump frequency and342

the corresponding correlation coefficient. Indeed, we can see in Fig. 7a, that343

the GA converges nearly to the global minimum at fp=153.2 Hz, in a pump344

frequency range between 10 and 900 Hz, including four (4) local minima of345

the cost function, but the accurate value of this minimum, at fp=150 Hz, is346

not reached. We suppose that a greater number of iterations should improve347

this result. Moreover, it is important to notice that for the empirical search,348

the step between two pump frequencies is chosen empirically, this may be349
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Figure 7: Genetic algorithm (GA) optimization results for the Config 2: (a) Empirical

optimization and GA iteration numbers (red circles), a zoom on the GA convergence area

is illustrated. (b) The correlation coefficient ρ versus generations. (c) The corresponding

pump frequency versus generations. The GA converges to fp,opt=153.2 Hz after the 4th

generation.

the origin of the discrepancy observed between the empirical and the auto-350

matic optimization. For the Config 3, the optimal pump frequency is nearly351

reached. For both cases, the pump frequency converges while ρ remains vari-352

able for the same value of the pump frequency. This can be clearly seen in353

Figs. 8b and 8c where the pump frequency converges to fp=22.17 Hz, and354

the corresponding ρ still varies slightly. This observation is directly due to355
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Figure 8: Genetic algorithm (GA) optimization results for the Config 3: (a) Empirical

optimization and GA iteration numbers (red circles), a zoom on the GA convergence area

is illustrated. (b) The correlation coefficient ρ versus generations. (c) The corresponding

pump frequency versus generations. The GA converges to fp,opt=22.17 Hz after the 7th

generation.

the experimental conditions since the coda signal is very sensible to small356

temperature changes. Moreover, the correlation coefficient value reaches a357

lower value than that obtained by the empirical optimization (Fig. 8a). It358

is important to mention that the empirical cost function is not a continuous359

function, and a measurement is made with a pump frequency step of 1Hz. We360

think, that a finer pump frequency step between two successive cost function361
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Config 3 Config 2

ρ fp,opt (Hz) ρ fp,opt (Hz)

Genetic Algorithm 0.971 22.17 0.991 153.2

Empirical optimization 0.979 22.00 0.975 150.0

Table 2: Experimental optimization results of the genetic algorithm covergence and the

empirical values of the global minimum obtained by the empirical search, for the Config

2 and 3.

measurements should give a better concordance between the empirical and362

the automatic search by the GA. Another possible explanation is that for363

the empirical optimization, one measurement of the cost function has been364

made for each pump frequency value between 10-900Hz, while for the GA365

optimization, and after convergence, several measurements have been made366

at the same optimal pump frequency (resonance frequency). In fact, exciting367

a sample at its resonance frequency during a long time (conditioning), could368

gives rise to a greater decorrelation between the reference coda signal and369

the modulated coda signal. Indeed, for the modal excitation, the vibration370

response is amplified such as the medium does not reach the equilibrium and371

the reference signal is still affected by the previous iterations. This may be372

linked to ”slow dynamics” effects [49].373

We can also note that the algorithm convergence is faster when the pop-374

ulation size is lower. The strong point of our approach is that the algorithm375

converged to the global minimum of the correlation coefficient without a pri-376

ori information. For more clarity, table 2 summarizes the results obtained377

by both the empirical and the GA optimization.378
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5. Discussion and Conclusion379

In this work, a widely studied nonlinear ultrasonic nondestructive testing380

method has been combined with the optimal command method: an open loop381

Vibro Acoustic Modulation system has been enriched with a feedback sys-382

tem. The main idea was to achieve an optimal damage detection by finding383

automatically the best input pump frequency. This input frequency maxi-384

mizes the nonlinear modulation effects induced by the presence of nonlinear385

scatterers and, therefore, should increase the sensitivity of the VAM method.386

The best pump frequency adjusted to each configuration has been success-387

fully found by the feedback method. This method is based, principally, on388

the good choice of a so called ”cost function” and the optimization parame-389

ter. Moreover, the experiment setting is easy and not user dependent. The390

genetic algorithm was tested on two sample configurations with different lev-391

els of nonlinearity to demonstrate the adaptivity of the proposed method. It392

is found able to determine automatically the optimal pump frequency over393

a wide frequency range including 4 resonance modes. Even if the genetic394

algorithm is not always efficient to find the accurate optimal value, it guar-395

antees to find the global optimum region quite fast since four (4) generations396

were sufficient in our case. A preliminary empirical search was achieved to397

check for the behavior of the cost function, the correlation coefficient as a398

function of the optimization parameter (the pump frequency). The results of399

this empirical search, requiring a long blind experimental search, have been400

presented in the form of correlation coefficient versus pump frequency. The401

main outcome is the existence of frequencies, which correspond to some of the402

resonance frequencies of the sample, giving a maximum of decorrelation (or403
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a minimum correlation). It constitutes a first suitable result which confirms404

our hypothesis of choosing the correlation coefficient of the probe coda sig-405

nal, with and without pumping to quantify the NM effects, and the pumping406

frequency as an optimization parameter. The quantitative variation of ρ with407

the pump resonance frequencies, for the different configurations is related to408

the modal vibration shapes and the associated strain amplitude changes from409

a resonance mode to another, at the location of the nonlinear scatterers. For410

different arrangements of nonlinear scatterers, we observe differences in the411

values of the correlation coefficient, because a given resonant mode does not412

necessarily excites differently located nonlinear scatterers with the same effi-413

ciency. Similarly, for a given medium configuration, but when comparing two414

different resonant modes, the nodes and anti-nodes positions are not located415

identically, and they do not excite with the same efficiency a given nonlinear416

scatterer. As such, using a single pump frequency leads to the apparition of417

blind zones for the VAM, e.g. when a single scatterer is at a strain node. For418

this reason, a preliminary modal analysis to determine a resonance modes of419

the studied medium seems to be not sufficient to ensure an increase of the420

VAM sensitivity detection.421

The proposed method, in a resonance configuration, ensures to avoid the422

low sensitivity regions associated with the strain nodes, which could compro-423

mise the nonlinear scatterer detection. Moreover, for a fixed pump ampli-424

tude, the adjusted pump frequency excitation may bring maximum detection425

sensitivity for nonlinear damages, which can be very useful to detect early426

stage damage in materials. Furthermore, the advantage of the automatic427

optimization is a time gain compared to the empirical optimization which428
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takes about 15 times more then our method.429

The optimal command can be extended to other NDT methods by defin-430

ing the right cost functions adapted to the optimization purpose. Also, as431

a perspective, the genetic algorithm outcomes could be used as the initial-432

ization for a gradient descent algorithm in order to refine the results. In433

addition, information on the local minima of the correlation coefficient may434

be relevant for locating the nonlinear scatterers: each resonant mode consti-435

tutes a spatial sensitivity kernel for the method and information stacking for436

several modes may offer imaging capabilities.437
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