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Generation of level-k LGT Networks
Joan Carles Pons, Celine Scornavacca, Gabriel Cardona

Abstract—Phylogenetic networks provide a mathematical
model to represent the evolution of a set of species where, apart
from speciation, reticulate evolutionary events have to be taken
into account. Among these events, lateral gene transfers need
special consideration due to the asymmetry in the roles of the
species involved in such an event. To take into account this
asymmetry, LGT networks were introduced.

Contrarily to the case of phylogenetic trees, the combinatorial
structure of phylogenetic networks is much less known and
difficult to describe. One of the approaches in the literature is to
classify them according to their level and find generators of the
given level that can be used to recursively generate all networks.

In this paper we adapt the concept of generators to the case
of LGT networks. We show how these generators, classified by
their level, give rise to simple LGT networks of the specified level,
and how any LGT network can be obtained from these simple
networks, that act as building blocks of the generic structure.

The stochastic models of evolution of phylogenetic networks
are also much less studied than those for phylogenetic trees.
In this setting, we introduce a novel two-parameter model that
generates LGT networks. Finally, we present some computer
simulations using this model in order to investigate the complexity
of the generated networks, depending on the parameters of the
model.

Index Terms—Phylogenetic network, LGT network, level-k,
generator, blobbed tree, evolutionary model.

I. INTRODUCTION

The evolution of species is often modeled as a branching
mechanism and represented via phylogenetic trees. However,
the presence of reticulation events (hybridisations, recombina-
tions and lateral gene transfers to name a few) makes phyloge-
netic networks a more accurate model [Doolittle and Bapteste,
2007]. These networks, in their broadest sense, can simply be
thought as graphs (directed or undirected) with their leaves
labelled by species. Among the different kinds of phylogenetic
networks that exist in the literature, a model that recently has
gained much attention from the scientific community [Anaya
et al., 2016], [Francis et al., 2018a], [Francis et al., 2018b],
[Jetten and van Iersel, 2018], [Pons et al., 2018], [Bordewich
and Semple, 2018] is given by tree-based networks [Francis
and Steel, 2015]. In these networks, the underlying backbone
of tree-like evolution is represented by a phylogenetic tree —
the base tree— to which reticulate events are added. Specially
designed to highlight the asymmetricity of lateral gene transfer
events, [Cardona et al., 2015] introduced LGT networks, i.e.
tree-based networks with a base tree representing the main line
of evolution of the organisms under study and with a subset
of its arcs representing LGT events.
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In order to use phylogenetic networks in a phylogenomics
context —e.g. reconstructing them using the information con-
tained in a set of phylogenetic networks— while avoiding the
combinatorial explosion, some topological restrictions have
been introduced [Cardona et al., 2008], [Cardona et al., 2009],
[Huson et al., 2010], [Huber et al., 2016]. One of these
restrictions is to focus only on level-k networks, which are
phylogenetic networks where the number of reticulation events
in each biconnected component is bounded by k [Choy et al.,
2005]. The characterization of the combinatorial structure of
level-k networks was firstly introduced in [van Iersel et al.,
2009a], [van Iersel et al., 2009b] and further developed in
[Gambette et al., 2009], where a polynomial time algorithm
was given in order to build all level-(k + 1) generators from
the level-k ones. This process allows to generate the whole set
of generators for any k, although the process becomes soon
prohibitively slow.

We begin this paper reviewing in Section II some basic
definitions on phylogenetic networks and LGT networks.
Then, in Section III we introduce LGT generators as an
adaptation of generators to the case of LGT networks; we
give their definition, properties and algorithms to generate
them. These algorithms have been implemented in python
and can be downloaded from https://github.com/bielcardona/
LGTGenerators. In Section IV we show how the building
blocks of level-k LGT networks can be obtained from the
generators constructed in the previous section, and in Sec-
tion V we prove that gluing together these building blocks
we can effectively generate all level-k LGT networks. Finally,
in Section VI we give a stochastic model of evolution that
generates LGT networks and make some computer simulations
to analyze the complexity of the generated networks.

II. PRELIMINARIES

A. Phylogenetic networks

The mathematical objects used in this paper to depict
evolution are directed acyclic graphs (DAGs, for short). A
node in a DAG D is a reticulation if it has indegree greater
than one, and principal otherwise. A node with indegree zero
is called a root, and a node with outdegree zero is called a leaf.
We shall always assume that DAGs are rooted, i.e. they have a
single root r, and we will say that they are rDAGs. A principal
node with outdegree 1 is called elementary. The subdivision
of an arc (u, v) in D is the result of replacing (u, v) by two
arcs (u,w) and (w, v), where w is a new (elementary) node.
A subdivision of D is a directed graph obtained from D by
a sequence of arc subdivisions. Conversely, contracting an
elementary node w 6= r in D is the operation of replacing
the two arcs, say (u,w) and (w, v), incident with w by the
single arc (u, v), and finally deleting the node w. If the
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elementary node is the root r, then contracting it coincides
with its removal. Binary DAGs are DAGs in which all nodes
have both indegree and outdegree ≤ 2.

A binary (rooted) phylogenetic network, from now on
simply refered to as a network, is a binary rDAG without
elementary nodes and whose reticulations have outdegree 1.
Notice that the different kinds of nodes, classified by their
pair of degrees d(u) = (indeg u, outdeg u) are: the root, with
d(u) = (0, 2), the (internal) principal nodes, with d(u) =
(1, 2), the leaves, with d(u) = (1, 0), and the reticulations,
with d(u) = (2, 1). Notice also that the term phylogenetic
tree/network is usually reserved for trees/networks whose
leaves are labeled by a set X of taxa. In this paper, however,
no such labeling is assumed; we sometimes emphasize this
fact saying that the trees or networks are unlabeled.

Throughout this paper, whenever we consider the connec-
tivity of a directed graph we will mean the connectivity of
the underlying undirected graph. A cut node (resp. cut arc)
in a directed graph is a node (resp. arc) whose removal
increases the number of connected components of the graph.
A biconnected component, or a blob, of a network is a non-
trivial maximal connected subgraph without cut nodes. In this
setting, by non-trivial we mean that we exclude the case of two
nodes connected by an arc. It follows from the definition that
different blobs are arc-disjoint; in this paper we also assume
that they are node-disjoint, which is the case for phylogenetic
networks as we have defined them. A network is of level-
k when all their biconnected components have at most k
reticulation nodes [van Iersel et al., 2009a]. Roughly speaking,
the level of a network measures the extent of interlacing
between the reticulation nodes in the network. It can be used
as a measure for how tree-like a network is. A level-k network
which is not a level-(k − 1) network is called a strict level-k
network.

A network can thus be seen as having tree-like parts and
non-tree-like parts, the blobs, containing the reticulations.
Once the set of blobs in a network N is determined, con-
tracting each blob to a single node, the network becomes a
tree because every arc outside of a blob is a cut arc. This
tree is referred to as the blobbed tree of N and it is denoted
by B(N) [Gusfield and Bansal, 2005], [Gusfield, 2014]. We
remark that the blobbed tree may not be a phylogenetic tree (in
the sense of the definition above) since it could be non binary
and contain elementary nodes. See Fig. 1 for an example.

B. LGT networks

An LGT network N = (V,E) is a network along with a par-
tition of E in a set of principal arcs Ep and a set of secondary
arcs Es, such that its principal subtree T0(N) = (V,Ep)
is a tree (maybe with elementary nodes), see Fig. 2. It is
straightforward to check that the following two conditions
characterize LGT networks among phylogenetic networks:

1) except for the root, every node has exactly one principal
incoming arc, and

2) except for the leaves, every node has at least one
principal outgoing arc.

(a)

(b) B1

B4

B5B2

B3

(c) (d) (e)

Fig. 1. (a) A level-3 phylogenetic network N ; (b) The blobbed tree of the
network N where every node with thick borders represents an internal blob;
(c-e) The three non trivial blobs of the network, B1, B4 and B5, respectively
– B2 and B3 are trivial.

N T0(N)

Fig. 2. A level-3 LGT network N with three secondary arcs (dashed) and
its principal subtree T0(N) after contracting its elementary nodes.

Note that our definition of LGT network differs slightly
from the definition in [Cardona et al., 2015] because here we
focus on binary networks. Note also that LGT networks are
tree-based networks, where T0(N) is a distinguished base tree
[Francis and Steel, 2015]. A path in an LGT network N is
principal if it consists only of principal arcs. We say that an
LGT network is of level k if the underlying network (i.e., with
no distinction of principal and secondary arcs) is of level k.

III. GENERATORS FOR LGT NETWORKS

The combinatorial structure of level-k phylogenetic net-
works is based on the concept of generators [van Iersel
et al., 2009a]. These generators allow for the construction
of simple level-k networks, which are defined as level-k
networks containing no cut arc except the trivial ones leading
to leaves, and constitute the basic building blocks for all level-
k networks. Formally, a level-k generator is a binary rooted
directed acyclic multigraph without cut or elementary nodes,
with k reticulations, and whose leaves are reticulations. In par-
ticular, the only possibilities for d(u) = (indeg u, outdeg u)
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(1) (2a) (2b) (2c)

(2d)

Fig. 3. The only level-1 generator (1) and the four level-2 generators (2a-d).

are (0, 2), (1, 2), (2, 0), and (2, 1). There is a single level-
1 generator and 4 level-2 generators, which are depicted in
Figure 3. This number greatly increases for higher levels: 65
level-3 generators, 1993 level-4 generators, etc. We denote by
Sk the set of level-k generators and by gk = |Sk| the number
of such generators.

In this section we adapt the definition of generators above
to the case of LGT networks, obtaining what we call LGT
generators. For small values of the level, we will show how
to compute all those generators, up to isomorphisms.

Definition 1: A level-k LGT generator is a level-k generator,
as defined above, together with a tagging of some of its arcs
using the labels SEC and MIX, with the following restrictions:

1) For each reticulation, exactly one of its incoming arcs
is tagged, and if it is not a leaf, then its single outgoing
arc is not tagged with SEC.

2) For each principal node, if both outgoing arcs are tagged,
then their tags are different, and if only one of them is
tagged, then it is tagged with SEC. Also, if it is not the
root, then its single incoming arc is not tagged.

The rationale behind this definition is that we will construct
LGT networks from these generators; arcs not tagged will
be replaced by principal paths, arcs tagged with SEC will
represent secondary arcs, and arcs tagged with MIX will
become paths formed by a principal path followed by a
secondary arc.

In order to ease notations, we will indicate by Ĝ a level-
k LGT generator and by G the underlying generator (that is,
forgetting the tagging).

Given a level-k generator G, all possible taggings that
make it an LGT generator can be obtained by the following
procedure:

1) For each reticulation in G, choose one of its incoming
arcs and tag it with SEC.

2) For each reticulation in G, if it has a tagged outgoing
arc, change the tag to MIX.

3) For each principal node in G, if both outgoing arcs are
tagged with SEC, choose one of them and change the
tag to MIX.

Proposition 1: The procedure described above generates
a level-k LGT generator. Conversely, every level-k LGT
generator can be obtained from a level-k generator using this
procedure.

Proof: Let us assume that we tag a level-k generator using
the procedure. Let u be one of its reticulations. Step 1 in the

procedure ensures that exactly one of its incoming arcs are
tagged, and notice that steps 2 and 3 can change tags, but do
not tag untagged arcs or viceversa. If u is not a leaf, then its
outgoing arc could have been tagged with SEC in step 1, but
in such a case, its tag would be changed to MIX in step 2.
Hence, condition 1 in the definition of level-k LGT generator
is satisfied.

Now, let us assume that u is a principal node. If both of its
outgoing arcs are tagged in step 1, then exactly one of them
changes its tag in step 3. If only one of them is tagged in step
1, then its tag will be SEC and will not be changed in the
other steps. Finally, if u has one incoming arc, then it will not
be tagged, since step 1 only applies to arcs whose endpoint
is a reticulation and the other steps can change tags, but do
not tag untagged arcs or viceversa. Thus, condition 2 is also
satisfied.

If we have a level-k LGT generator Ĝ, then it can be
obtained using the described procedure as follows: In step 1,
choose as the arc to be tagged the same one that is tagged in
Ĝ with SEC or MIX. In step 3, choose as the arc to have its
tag changed the one whose tag is MIX in Ĝ.

We denote by Ŝk(G) the set of all level-k LGT generators
that can be constructed from G and by Ŝk the set of all level-k
LGT generators. Also, let ĝk(G) = |Ŝk(G)| and ĝk = |Ŝk|.

Proposition 2: ĝk ≤ gk · 2k+bk/2c.
Proof: Since there are gk level-k generators, it is enough

to count how many taggings can be defined on each of them.
Notice that in the tagging procedure above the first step can be
done in exactly 2k ways. The second step can only be done in
one way. Finally, the third step can be done in 2h ways, where
h is the number of principal nodes having both outgoing arcs
tagged, but since there are at most k tagged arcs, there can be
at most bk/2c such nodes.

Notice that Propositions 2.4 and 2.5 in [Gambette et al.,
2009] prove that 2k−1 ≤ gk ≤ k!2 ·50k and hence the number
of level-k LGT generators is bounded from above by k!2 ·
50k · 2k+bk/2c. As for a lower bound, notice that the different
taggings applied to a generator could give isomorphic LGT
generators, in the sense that there exists an isomorphism of
directed graphs that preserves the taggings. Hence, in principle
only the bound ĝk ≥ 2k−1 can be given.

The procedure presented in this section can be used to
compute the set of all level-k LGT generators for small
values of k; it has been implemented in python using
the package phylonetwork [Cardona and Sánchez, 2012]
and can be downloaded from https://github.com/bielcardona/
LGTGenerators. This script takes as input the set of level-
k generators [Gambette et al., 2009], then uses the procedure
described in this section to find all possible taggings and finally
checks for isomorphism (of arc-labeled directed multigraphs)
to remove duplicates. The number of LGT generators for small
values of the level is summarized in Table I, and Figure 4
shows the drawings of all the LGT generators of level 2.

IV. SIMPLE LEVEL-k LGT NETWORKS

In this section we show how we can obtain all simple level-
k LGT networks from the level-k LGT generators defined in
the previous section.
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TABLE I
NUMBER OF GENERATORS AND LGT GENERATORS FOR SMALL VALUES

OF THE LEVEL k.

k gk ĝk

1 1 1
2 4 14
3 65 546
4 1,993 39,257
5 91,454 4,052,250

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14)

Fig. 4. The set of non-isomorphic level-2 LGT generators. In this figure,
arcs not tagged are drawn with solid lines, arcs tagged with SEC are drawn
with dashed lines, and those tagged with MIX are drawn with mixed lines
(the first half with solid line and the second one with dashed line). The LGT
generators (1-5) are associated with generator (2a) in Figure 3, the ones in
(6-10) with the generator (2b), the ones in (11-12) with generator (2c) and
the LGT generators (13-14) with generator (2d).

Given a level-k LGT generator Ĝ, consider the following
construction:

1) For each arc e = (u, v) tagged with MIX, remove the
tag, subdivide it by introducing an elementary node w
and tag the second arc (w, v) with SEC.

2) For each node w that is either a reticulation or elemen-
tary, add a newly created node l (which will be a leaf)
and an arc (w, l).

Let M(Ĝ) = (V,E) the directed graph constructed so far,
together with the partition of its arcs obtained defining Ep
as the set of arcs not tagged, and Es as the set of tagged
arcs (notice that at this point only the tag SEC is used). See
Figure 5 for a depiction of this construction.

Proposition 3: Let Ĝ be a level-k LGT generator. Then,
the directed graph M(Ĝ) constructed above is an unlabeled
simple level-k LGT network.

Proof: It follows from the definition of generators that
M(Ĝ) is an unlabeled phylogenetic network; also, since the
definition of the level for an LGT network does not depend
on the partition of arcs into principal and secondary ones, if
G has level k, so has Ĝ and M(Ĝ).

(a)G (b) Ĝ (c)M(Ĝ)

Fig. 5. (a) A level-2 generator; (b) A level-2 LGT generator Ĝ constructed
from G; (c) The (unlabeled) level-2 LGT network M(Ĝ) obtained from Ĝ.
Again, secondary arcs are drawn using dashed lines and principal arcs with
solid lines.

Finally, notice that the set of principal arcs, build up a tree,
since in the construction of M(Ĝ) each node has one single
incoming principal arc (except for the root) and at least one
outgoing principal arc (except for the leaves).

This construction can be generalized to obtain all simple
level-k LGT networks taking as input the set of all generators
by means of the following construction.

Let Ĝ be a level-k LGT generator and fix a mapping n :
E → Z≥0 that assigns to each arc e a non-negative integer
n(e) with the only condition that n(e) ≥ 1 if e is tagged
with MIX. With this data we define a level-k LGT network
according to the following construction:

1) For each arc e = (u, v):
a) If n(e) > 0, subdivide it by introducing n(e)

elementary nodes w1, . . . , wn(e).
b) If, moreover, e is tagged, tag the last arc (wn(e), v)

—and only this last arc— with SEC.
2) For each node w that is either a reticulation or elemen-

tary, add a newly created node l (which will be a leaf)
and an arc (w, l).

Let M(Ĝ, n) = (V,E) the directed graph constructed so far,
together with the partition of its arcs obtained by defining Ep
equal to the set of arcs not tagged, and Es as the set of tagged
arcs (notice that at this point only the tag SEC is used). Notice
that M(Ĝ) in Proposition 3 corresponds to the particular case
that n(e) = 1 if e is tagged with MIX and n(e) = 0 otherwise.

Theorem 1: Let Ĝ be a level-k LGT generator with set
of edges E, and n : E → Z≥0 a mapping such that
n(e) = 1 if e is tagged with MIX. Then, the directed graph
M(Ĝ, n) constructed above is an unlabeled simple level-k
LGT network. Conversely, given an unlabeled simple level-
k LGT network N , then there exists a level-k LGT generator
Ĝ and a mapping n : E(Ĝ) → Z≥0 such that M(Ĝ, n) is
isomorphic to N .

Proof: The first part of the theorem is proved analogously
to Proposition 3.

As for the converse, let N be an unlabeled simple level-k
LGT network. Remember that the different possibilities for
the pair (indeg u, outdeg u) for any node u of N are (0, 2),
(1, 2), (1, 0), and (2, 1), corresponding respectively to the root,
the principal nodes, the leaves and the reticulations. Let N1

be the directed graph obtained by removing the leaves of N .
We recall that N has neither cut nodes nor cut arcs, except
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those whose target is a leaf. Hence, N1 has neither cut nodes
nor cut arcs. For each leaf of N that we remove, its parent
u can either be a reticulation or a principal node. After the
removal of the leaf, the respective possibilities for the pair
(indeg u, outdeg u) are (2, 0) and (1, 1). Hence, all the nodes
of N1 have their pair of indegree and outdegree equal to (0, 2),
(1, 2), (1, 1), (2, 1), or (2, 0). In particular, the elementary
nodes of N1 are principal nodes in N . As a consequence, the
elementary paths in N1 are formed by principal arcs, except
for the last arc, that can be (or not) secondary. Notice also
that N can be reconstructed, up to isomorphism, from N1 by
simply hanging leaves to the elementary nodes and the nodes
with outdegree zero of N1.

Let G be the directed graph obtained from N1 by contract-
ing all the elementary nodes. In G all nodes have their pair of
degrees equal to (0, 2), (1, 2), (2, 1), or (2, 0). Also, since G
does not have neither cut arcs nor cut nodes, it follows that G
is a level-k generator since no reticulation has been removed.

We define now a tagging on the set E of arcs of G, and a
mapping n : E → Z≥0 as follows:

1) If e ∈ E was a principal arc in N1, then e gets no tag
and we define n(e) = 0.

2) If e ∈ E was a secondary arc in N1, then we tag e with
SEC and we define n(e) = 0.

3) If e ∈ E has been obtained by contraction of an
elementary path u = u0 → u1 → · · · → ur → v
(r ≥ 1) in N1 we set n(e) = r. If, moreover, (ur, v) is
secondary, we tag e with MIX.

Since N is an LGT network, the tagging we have just defined
satisfies the conditions in Definition 1 for reticulations, but
not necessarily for principal nodes. In order to satisfy all
conditions, we modify it as follows: For every principal node
u, if either (1) both of its outgoing arcs are tagged with MIX—
say e is one of them—, or (2) only one of its outgoing arcs is
tagged and the tag is MIX—say e is this arc—, then change
the tag of e to SEC.

Let Ĝ be the generator G together with the obtained tagging.
It is straightforward to check that Ĝ is an LGT generator and
that it has the same level as N . Also, N1 can be recovered
from (Ĝ, n). Indeed, the only differences between N1 and G
are (1) that elementary paths are substituted with arcs and (2)
the partition of arcs into principal and secondary arcs is lost.
The lengths of the paths can be recovered by looking at the
mapping n, while the set of secondary arcs is determined by
the tagging. Finally, notice that this reconstruction process is
exactly the definition of M(Ĝ, n).

Note also that the characterization given by this theorem
is not unique, since different generators and mappings can
produce the same simple LGT network. See Figure 6.

V. LEVEL-k LGT NETWORKS

Let N 1
k be the set of (unlabeled) simple LGT networks of

level at most k. For convenience, we letN 1
0 = {T0, T2}, where

T0 is the trivial graph with a single node, and T2 is the binary
rooted tree with 2 leaves. We define recursively the sets Nm

k

(m > 1) as

Nm
k = {R(N, `,N ′) | N ∈ Nm−1

k , ` is a leaf of N,N ′ ∈ N 1
k },

e1

Ĝ1

e1

Ĝ2

N

Fig. 6. Two level-2 LGT generators Ĝ1 and Ĝ2 and a simple level-2 LGT
network N . N can be obtained both as M(Ĝ1, n) and as M(Ĝ2, n), with
n(e1) = 0 and n(e) = 1 for every e 6= e1.

where R(N, `,N ′) is the network that is obtained by substi-
tuting in N the node ` with the network N ′ (more formally, it
is the disjoint union of N and N ′ modulo identifying ` with
r(N ′)). We also define

Nk =
⋃
m≥1

Nm
k .

That is, Nk is the set of LGT networks that can be obtained
by taking simple level-k LGT networks and substituting a leaf
with another simple level-k LGT network and iterating the
process.

Theorem 2: Let N be an unlabeled level-k LGT network,
and let m be the number of internal nodes of its blobbed tree.
Then, N ∈ Nm

k .
Proof: Let B = B(N) be the blobbed tree of N . Each

node of B corresponds to a biconnected component (or blob)
of N , which might be trivial, i.e. a single node. For each blob
U of N , we shall denote by [U ] the corresponding node of B.
Recall that there is an arc ([U ], [U ′]) in B, if and only if there
is an arc in N connecting a node u ∈ U to a node of u′ ∈ U ′,
and in such a case the nodes u, u′ are unique. Also, arcs joining
different blobs must necessarily be principal, since its target
will never be a reticulation. Hence N can be recovered up to
isomorphism by taking the disjoint union of its blobs (which
might contain both principal and secondary arcs) and adding
to this disjoint union one (suitably chosen) principal arc for
each arc of B. Notice that adding such an arc, say from u to
v, is equivalent to: (1) adding a pendant leaf `(u) to u and (2)
identifying `(u) and v.

Let [U1], . . . , [Un] be the nodes of B ordered according
to a topological sort, so that if ([Ui], [Uj ]) is an arc of B,
then i < j. We can also assume that the first m nodes
[U1], . . . , [Um] are the internal nodes of B and that the other
ones [Um+1], . . . , [Un] are the leaves. In particular, [U1] is the
root of B. For each blob Uj (j 6= 1) with root r(j) there exists
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another one Uι(j) (with ι(j) < j) and a node p(j) ∈ Uι(j)
such that (p(j), r(j)) is an arc of N ; also both ι(j) and p(j)
are uniquely determined by j. Due to our restrictions of the
degrees of the nodes, the node p(j) must either be (1) an
elementary node, (2) a reticulation without outgoing arcs, or
(3) the single node in its blob.

For each blob Ui we define the network U i as follows:
• If Ui is non-trivial, then U i is the result of adding to
Ui, for each of its nodes that is either elementary or a
reticulation without outgoing arcs, a pendant leaf to it.

• If Ui is trivial (i.e. it is a single node) and [Ui] is internal
in B, then U i is the result of adding two pendant leaves
to this node.

• If Ui is trivial and [Ui] is a leaf in B, then U i = Ui.
Note that in any case U i belongs to N 1

k .
For each blob Uj (j 6= 1), consider p(j) ∈ Uι(j) as defined

above. In the construction of U ι(j), at least one pendant arc
has been added to p(j). Notice also that if there are two
different blobs j, j′ with p(j) = p(j′), then the blob containing
p(j) must contain one single node and hence U ι(j) has been
obtained by adding two pendant leaves to p(j). Therefore, we
can construct in any case an injective mapping j 7→ `(j) such
that `(j) is a leaf in U ι(j) and there is an arc in N from its
parent p(j) to the root r(j) of Uj .

Let Ũi be defined recursively as:
• Ũ1 = U1.
• Ũi = R(Ũi−1, `(i), U i) if i > 1.

Notice that if i > m, then U i is a single node, and hence
R(Ũi−1, `(i), U i) ' Ũi−1. Therefore, we can stop the con-
struction of these networks with Ũm. Notice that at the end
we get a network Ũm ∈ Nm

k . Also (see the first paragraph in
this proof) the operations we have made to construct Ũm are
equivalent to adding the required arcs to the disjoint union of
its blobs in order to recover N and hence N ' Ũm.

As a consequence, we find that all level-k LGT networks
can be constructed gluing together simple ones.

Corollary 1: The set Nk is equal to the set of all level-k
LGT networks.

VI. AN EVOLUTIONARY MODEL FOR LGT NETWORKS

In this section we introduce a simple stochastic evolu-
tionary model that accounts for speciation and lateral gene
transfer (LGT) events and hence generates LGT networks
that are, moreover, time-consistent [Baroni et al., 2006]. To
our knowledge, this is the first model where LGT events
are generated alongside speciations; other models of evolu-
tion consider a fixed base tree and then model LGT events
between its branches [Steel et al., 2013], [Roch and Snir,
2013], [Linz et al., 2007]. We have performed multiple
simulations using this model in order to generate networks
with a given number of events and have made a statistical
study of the level and the number of biconnected components
(blobs) of the obtained networks. Both the scripts and the
results obtained can be downloaded from https://github.com/
bielcardona/LGTGenerators.

The model we are going to describe depends on two
different parameters α ∈ [0, 1] and β ≥ 0. Roughly speaking

–see below for details– the first parameter controls how likely
an LGT event is, as opposed to a speciation event, and the
second one how likely it is that the ancestors of the species
involved in an LGT event have already participated in previous
LGT events.

We first describe the two evolutionary processes.
1) Let l be a leaf of a network N . The speciation event

on l, denoted by S(N, l), consists in splitting l into two
leaves. That is, adding two new leaves l1 and l2 and two
principal arcs (l, l1) and (l, l2) to N .

2) Given two leaves l,m of a network N , the LGT event
from l to m, denoted by L(N, l,m), consists in adding
two new leaves l1 and m1, two principal arcs (l, l1)
and (m,m1), and the secondary arc (l,m). Such an
LGT event can be internal if the parents of the leaves
l and m belong to the same blob of N and external
otherwise. Hence, an LGT event is internal if, in the
evolutive history of the leaves involved in the process,
some previous LGT event has taken place, and external
otherwise.

The stochastic model of evolution can be described as
follows. Starting with the binary rooted tree with two leaves
N1 = T2, at each step construct Nk+1 from Nk according to
these rules: With probability α choose the next event to be an
LGT event, and with probability 1− α a speciation event.
• If a speciation event is going to take place, choose

randomly and uniformly l, one of the leaves of Nk, and
compute Nk+1 = S(Nk, l).

• If an LGT event is going to take place, consider all
(ordered) pairs of different leaves, and assign to each
pair (l,m) a probability of being chosen equal to p if
the respective parents of l and m belong to the same
blob of Nk and β · p otherwise. Obviously, p must be
chosen so that the sum of all the probabilities is 1. Then,
choose one of these pairs (l,m) with the given probability
distribution and compute Nk+1 = L(Nk, l,m).

Figure 7 shows an example of an LGT network produced
using the evolutionary model we have described by means of
the events N2 = S(N1, 3), N3 = S(N2, 4), N4 = L(N3, 7, 5),
N5 = L(N4, 8, 6). Note that the first LGT event is external,
while the second one is internal.

We have performed several simulations using the described
model, in order to study the complexity of the generated
networks.

In our first experiment we have considered β ∈ {0.01, 10},
α ∈ {0, 0.1, 0.2, 0.3, 0.4} and n ∈ {10, 30}. For each value
of n we have considered the experiment of generating a
network using n iterations of the stochastic model with the
chosen parameters α and β. We have run this experiment 500
times and computed both the average value of the level and
of the number of nontrivial blobs of the resulting networks.
These results are shown in Figures 8 and 9. Notice that for
each choice of n and β, the graphs show the dependence
on α of the indicators of complexity under study. From the
observation of the plots it follows that the average level
has a linear dependence on α, while the number of blobs
increases but tends to stabilize. This phenomena should be
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Fig. 7. An example of how the evolution processes generate an LGT network.
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Fig. 8. Dependence on α of the average level of the simulated networks after
500 iterations of the experiment, with different values of the other parameters.

expected, as α represents the probability that an LGT event
takes place, and hence simulations with increasing values of
this parameter should give higher level. As for the number
of blobs, increasing the value of α has two different effects.
At first, it creates new nontrivial blobs, but when more blobs
are created, the probability that an external LGT event takes
place increases, and hence different blobs get connected and
reduced to a single one, which decreases the number of blobs.

In our second experiment we follow the same approach but
now we are interested in the dependence on β. Hence, we have
performed the simulations with n ∈ {30, 50}, α ∈ {0.1, 0.3}
and β ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 1, 5, 10, 20, 50, 100}. The
results are presented in Figures 10 and 11. For the number of
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Fig. 9. Dependence on α of the average number of nontrivial blobs of
the simulated networks after 500 iterations of the experiment, with different
values of the other parameters.
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Fig. 10. Dependence on β of the average level of the simulated networks after
500 iterations of the experiment, with different values of the other parameters.

blobs, notice that as β increases, external LGT events are more
likely, and hence the resulting networks tend to have fewer but
bigger blobs. Notice that this effect stabilizes at β = 1: the
fact that external LGT events are as likely as internal ones
makes that after many simulations of events (we take n = 30
or n = 50) the blobs will get connected and reduced to a
single one. As for the level, as we have already argued, when
β increases, the blobs get bigger and hence with higher level.
Finally, when the number of blobs stabilizes, also does the
average level of the generated networks.

VII. CONCLUSIONS

In this paper, we have described how generators of level-k
networks can be adapted to consider LGT networks and how
to obtain, from those, first the set of simple LGT networks
and then the full set of networks. We have seen how the
complexity of an LGT network can be described by how
intricate are their simple components —measured by their
level— and the number of such (nontrivial) components. We
have introduced a two-parameter stochastic model of evolution
that generates LGT networks and made an experimental study
of how the aforementioned measures of complexity depend on
the parameters of the model.
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