
HAL Id: hal-02155266
https://hal.science/hal-02155266

Submitted on 12 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constructing a Consensus Phylogeny from a
Leaf-Removal Distance

Cédric Chauve, Mark Jones, Manuel Lafond, Celine Scornavacca, Mathias
Weller

To cite this version:
Cédric Chauve, Mark Jones, Manuel Lafond, Celine Scornavacca, Mathias Weller. Constructing a
Consensus Phylogeny from a Leaf-Removal Distance. SPIRE 2017, Sep 2017, Palermo, Italy. pp.129–
143, �10.1007/978-3-319-67428-5
12.hal − 02155266

https://hal.science/hal-02155266
https://hal.archives-ouvertes.fr

Constructing a Consensus Phylogeny from a

Leaf-Removal Distance

Cedric Chauve1, Mark Jones2, Manuel Lafond3, Celine Scornavacca4, and
Mathias Weller5

1Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
cedric.chauve@sfu.ca

2LIRMM, Université de Montpellier, France Mark.Jones@lirmm.fr
3Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada

lafonman@iro.umontreal.ca
4ISEM, IBC, Université de Montpellier, France Celine.Scornavacca@umontpellier.fr

5LIGM, Université Paris EST, Marne-la-Vallée, France mathias.weller@u-pem.fr

Abstract

Understanding the evolution of a set of genes or species is a fundamental problem in
evolutionary biology. The problem we study here takes as input a set of trees describing pos-
sibly discordant evolutionary scenarios for a given set of genes or species, and aims at finding
a single tree that minimizes the leaf-removal distance to the input trees. This problem is
a specific instance of the general consensus/supertree problem, widely used to combine or
summarize discordant evolutionary trees. The problem we introduce is specifically tailored
to address the case of discrepancies between the input trees due to the misplacement of indi-
vidual taxa. Most supertree or consensus tree problems are computationally intractable, and
we show that the problem we introduce is also NP-hard. We provide tractability results in
form of a 2-approximation algorithm. We also introduce a variant that minimizes the maxi-
mum number d of leaves that are removed from any input tree, and provide a parameterized
algorithm for this problem with parameter d.

1 Introduction

In the present paper, we consider a very generic computational biology problem: given a col-
lection of trees representing, possibly discordant, evolutionary scenarios for a set of biological
entities (genes or species – also called taxa in the following), we want to compute a single tree
that agrees as much as possible with the input trees. Several questions in computational biology
can be phrased in this generic framework. For example, for a given set of homologous gene se-
quences that have been aligned, one can sample evolutionary trees for this gene family according
to a well defined posterior distribution and then ask how this collection of trees can be combined
into a single gene tree, a problem known as tree amalgamation [13]. In phylogenomics, one aims
at inferring a species tree from a collection of input trees obtained from whole-genome sequence
data. A first approach considers gene families and proceeds by computing individual gene trees
from a large set of gene families, and then combining this collection of gene trees into a unique
species tree for the given set of taxa; this requires handling the discordant signal observed in
the gene trees due to evolutionary processes such as gene duplication and loss [10], lateral gene
transfer [14], or incomplete lineage sorting [12]. Another approach concatenates the sequence
data into a single large multiple sequence alignment, that is then partitioned into overlapping
subsets of taxa for which partial evolutionary trees are computed, and a unique species tree is
then inferred by combining the resulting collection of partial trees [11].

1

mailto:cedric.chauve@sfu.ca
mailto:Mark.Jones@lirmm.fr
mailto:lafonman@iro.umontreal.ca
mailto:Celine.Scornavacca@umontpellier.fr
mailto:mathias.weller@u-pem.fr

For example, the Maximum Agreement Subtree (MAST) problem considers a collection of
input trees1, all having the same leaf labels and looks for a tree of maximum size (number of
leaves), which agrees with each of the input trees. This problem is tractable for trees with
bounded degree but NP-hard generally [1]. The MAST problem is a consensus problem, because
the input trees share the same leaf labels set, and the output tree is called a consensus tree. In
the supertree framework, the input trees might not all have identical label sets, but the output
is a tree on the whole label set, called a supertree. For example, in the Robinson-Foulds (RF)
supertree problem, the goal is to find a supertree that minimizes the sum of the RF-distances
to the individual input trees [15]. One way to compute consensus trees and supertrees that is
closely related to our work is to modify the collection of input trees minimally in such a way
that the resulting modified trees all agree. For example, in the MAST problem, modifications of
the input trees consist in removing a minimum number of taxa from the whole label set, while
in the Agreement Supertree by Edge Contraction (AST-EC) problem, one is asked to contract
a minimum number of edges of the input trees such that the resulting (possibly non-binary)
trees all agree with at least one supertree [8]; in the case where the input trees are all triplets
(rooted trees on three leaves), this supertree problem is known as the Minimum Rooted Triplets
Inconsistency problem [4]. The SPR Supertree problem considers a similar problem where the
input trees can be modified with the Subtree-Prune-and-Regraft (SPR) operator [16].

In the present work, we introduce a new consensus problem, called LR-Consensus. Given a
collection of input trees having the same leaf labels set, we want to remove a minimum number of
leaves – an operation called a Leaf-Removal (LR) – from the input trees such that the resulting
pruned trees all agree. Alternatively, this can be stated as finding a consensus tree that minimizes
the cumulated leaf-removal distance to the collection of input trees. This problem also applies
to tree amalgamation and to species tree inference from one-to-one orthologous gene families,
where the LR operation aims at correcting the misplacement of a single taxon in an input tree.

In the next section, we formally define the problems we consider, and how they relate to
other supertree problems. Next we show that the LR-Consensus problem is NP-hard and that
in some instances, a large number of leaves need to be removed to lead to a consensus tree. We
then provide a 2-approximation algorithm2. We then introduce a variant of the LR-Consensus

problem, where we ask if a consensus tree can be obtained by removing at most d leaves from
each input tree, and describe a fixed-parameter tractable (FPT) algorithm with parameter d.

2 Preliminary notions and problems statement

Trees. All trees in the rest of the document are assumed to be rooted and binary. If T is
a tree, we denote its root by r(T) and its leaf set by L(T). Each leaf is labeled by a distinct
element from a label set X , and we denote by X (T) the set of labels of the leaves of T . We
may sometimes use L(T) and X (T) interchangeably. For some X ⊆ X , we denote by lcaT (X)
the least common ancestor of X in T . The subtree rooted at a node u ∈ V (T) is denoted Tu

and we may write LT (u) for L(Tu). If T1 and T2 are two trees and e is an edge of T1, grafting
T2 on e consists in subdividing e and letting the resulting degree 2 node become the parent of
r(T2). Grafting T2 above T1 consists in creating a new node r, then letting r become the parent
of r(T1) and r(T2). Grafting T2 on T1 means grafting T2 either on an edge of T1 or above T1.

The leaf removal operation. For a subset L ⊆ X , we denote by T − L the tree obtained
from T by removing every leaf labeled by L, contracting the resulting non-root vertices of degree
two, and repeatedly deleting the resulting root vertex while it has degree one. The restriction

1All trees we consider here are uniquely leaf-labeled, rooted (i.e. are out-trees) and binary; see next section
for formal definitions.

2In a previous version of this work, we claimed a fixed-parameter tractable result for LR-Consensus, which
turned out to be inaccurate. See Section 4 for details.

2

T |L of T to L is the tree T − (X \ L), i.e. the tree obtained by removing every leaf not in L.
A triplet is a rooted tree on 3 leaves. We denote a triplet R with leaf set {a, b, c} by ab|c if c is
the leaf that is a direct child of the root (the parent of a and b being its other child). We say
R = ab|c is a triplet of a tree T if T |{a,b,c} = R. We denote tr(T) = {ab|c : ab|c is a triplet of T}.

We define a distance function dLR between two trees T1 and T2 on the same label set X
consisting in the minimum number of labels to remove from X so that the two trees are equal.
That is,

dLR(T1, T2) = min{|X| : X ⊆ X and T1 −X = T2 −X}

Note that dLR is closely related to the Maximum Agreement Subtree (MAST) between two
trees on the same label set X , which consists in a subset X ′ ⊆ X of maximum size such that
T1|X′ = T2|X′ : dLR(T1, T2) = |X | − |X ′|. The MAST of two binary trees on the same label set
can be computed in time O(n log n), where n = |X | [6], and so dLR can be found within the
same time complexity.

Problem statements. In this paper, we are interested in finding a tree T on X minimizing
the sum of dLR distances to a given set of input trees.

LR-Consensus

Given: a set of trees T = {T1, . . . , Tt} with X (T1) = . . . = X (Tt) = X .
Find: a tree T on label set X that minimizes

∑
Ti∈T dLR(T, Ti).

We can reformulate the LR-Consensus problem as the problem of removing a minimum
number of leaves from the input trees so that they are compatible. Although the equivalence
between both formulations is obvious, the later formulation will often be more convenient. We
need to introduce more definitions in order to establish this equivalence.

A set of trees T = {T1, . . . , Tt} is called compatible if there is a tree T such that X (T) =⋃
Ti∈T X (Ti) and T |X (Ti) = Ti for every i ∈ [t]. In this case, we say that T displays T . A

list C = (X1, . . . ,Xt) of subsets of X is a leaf-disagreement for T if {T1 − X1, . . . , Tt − Xt}
is compatible. The size of C is

∑
i∈[t] |Xi|. We denote by ASTLR(T) the minimum size of a

leaf-disagreement for T , and may sometimes write ASTLR(T1, . . . , Tt) instead of ASTLR(T). A
subset X ′ ⊆ X of labels is a label-disagreement for T if {T1 − X ′, . . . , Tt − X ′} is compatible.
Note that, if T = {T1, T2}, then the minimum size of a label-disagreement for T is dLR(T1, T2).
We may now define the AST-LR problem (see Figure 1 for an example).

Agreement Subtrees by Leaf-Removals (AST-LR)
Given: a set of trees T = {T1, . . . , Tt} with X (T1) = . . . = X (Tt) = X .
Find: a leaf-disagreement C for T of minimum size.

a b c d

T1

a bc d

T2

a bcd

T3

Figure 1: Example instance T = {T1, T2, T3} of AST-LR with label set X = {a, b, c, d}. The list
(X1 = {d},X2 = {b},X3 = {a}) is a leaf-disagreement for T of size 3.

Lemma 1. Let T = {T1, . . . , Tt} be a set of trees on the same label set X , with n = |X |. Given
a supertree T such that v :=

∑
Ti∈T dLR(T, Ti), one can compute in time O(tn log(n)) a leaf-

disagreement C of size at most v. Conversely, given a leaf-disagreement C for T of size v, one
can compute in time O(tn log2(tn)) a supertree T such that

∑
Ti∈T dLR(T, Ti) ≤ v.

3

From Lemma 13 both problems share the same optimality value, the NP-hardness of one
implies the hardness of the other and approximating one problem within a factor c implies that
the other problem can be approximated within a factor c. We conclude this subsection with the
introduction of a parameterized variant of the AST-LR problem.

AST-LR-d

Input: a set of trees T = {T1, . . . , Tt} with L(T1) = . . . = L(Tt) = X , and an integer d.
Question: Are there X1, . . . ,Xt ⊆ X such that |Xi| ≤ d for each i ∈ [t], and {T1−X1, . . . , Tt−Xt}
is compatible?

We call a tree T ∗ a solution to the AST-LR-d instance if dLR(Ti, T
∗) ≤ d for each i ∈ [t].

Relation to other supertree/consensus tree problems. The most widely studied su-
pertree problem based on modifying the input trees is the SPR Supertree problem, where ar-
bitrarily large subtrees can be moved in the input trees to make them all agree (see [16] and
references there). The interest of this problem is that the SPR operation is very general, mod-
elling lateral gene transfer and introgression. The LR operation we introduce is a limited SPR,
where the displaced subtree is composed of a single leaf. An alternative to the SPR operation
to move subtrees within a tree is the Edge Contraction (EC) operation, that contracts an edge
of an input tree, thus increasing the degree of the parent node. This operation allows cor-
recting the local misplacement of a full subtree. AST-EC is NP-complete but can be solved in
O((2t)ptn2) time where p is the number of required EC operations [8].

Compared to the two problems described above, an LR models a very specific type of error
in evolutionary trees, that is the misplacement of a single taxon (a single leaf) in one of the input
trees. This error occurs frequently in reconstructing evolutionary trees, and can be caused for
example by some evolutionary process specific to the corresponding input tree (recent incomplete
lineage sorting, or recent lateral transfer for example). Conversely, it is not well adapted to model
errors, due for example to ancient evolutionary events that impacts large subtrees. However,
an attractive feature of the LR operation is that computing the LR distance is equivalent to
computing the MAST cost and is thus tractable, unlike the SPR distance which is hard to compute.
This suggests that the LR-Consensus problem might be easier to solve than the SPR Supertree
problem, and we provide indeed several tractability results. Compared to the AST-EC problem,
the AST-LR problem is naturally more adapted to correct single taxa misplacements as the EC
operation is very local and the number of EC required to correct a taxon misplacement is linear
in the length of the path to its correct location, while the LR cost of correcting this is unitary.
Last, LR-Consensus is more flexible than the MAST problem as it relies on modifications of the
input trees, while with the way MAST corrects a misplaced leaf requires to remove this leaf from all
input trees. This shows that the problems AST-LR and AST-LR-d complement well the existing
corpus of gene trees correction models.

3 Hardness and approximability of AST-LR

In this section, we show that the AST-LR problem is NP-hard, from which the LR-Consensus

hardness follows. We then describe a simple factor 2 approximation algorithm. The algorithm
turns out to be useful for analyzing the worst case scenario for AST-LR in terms of the required
number of leaves to remove, as we show that there are AST-LR instances that require removing
about n−

√
n leaves in each input tree.

3All missing proofs are provided in Appendix.

4

a b c

X1 X2 X3

TL′

Figure 2: Construction of the tree T1 for an instance R = {R1, R2, R3} of MinRTI in which
R1 = ab|c.

NP-hardness of AST-LR

We assume here that we are considering the decision version of AST-LR, i.e. deciding whether
there is a leaf-disagreement of size at most ` for a given `. We use a reduction from the MinRTI

problem: given a set R of rooted triplets, find a subset R′ ⊂ R of minimum cardinality such
that R \ R′ is compatible. The MinRTI problem is NP-Hard [4] (even W [2]-hard and hard
to approximate within a O(log n) factor). Denote by MINRTI(R) the minimum number of
triplets to remove from R to attain compatibility. We describe the reduction here.

Let R = {R1, . . . , Rt} be an instance of MinRTI, with the label set L :=
⋃t

i=1X (Ri).
For a given integer m, we construct an AST-LR instance T = {T1, . . . , Tt} which is such that
MINRTI(R) ≤ m if and only if ASTLR(T) ≤ t(|L| − 3) + m.

We first construct a tree Z with additional labels which will serve as our main gadget. Let
{Li}1≤i≤t be a collection of t new label sets, each of size (|L|t)10, all disjoint from each other and
all disjoint from L. Each tree in our AST-LR instance will be on label set X = L∪L1 ∪ . . .∪Lt.
For each i ∈ [t], let Xi be any tree with label set Li. Obtain Z by taking any tree on t leaves
l1, . . . , lt, then replacing each leaf li by the Xi tree (i.e. li is replaced by r(Xi)). Denote by
rZ(Xi) the root of the Xi subtree in Z.

Then for each i ∈ [t], we construct Ti from Ri as follows. Let L′ = L \ X (Ri) be the set of
labels not appearing in Ri, noting that |L′| = |L| − 3. Let TL′ be any tree with label set L′,
and obtain the tree Zi by grafting TL′ on the edge between rZ(Xi) and its parent. Finally, Ti

is obtained by grafting Ri above Zi. See Figure 2 for an example. Note that each tree Ti has
label set X as desired. Also, it is not difficult to see that this reduction can be carried out in
polynomial time. This construction can now be used to show the following.

Theorem 3.1. The AST-LR and LR-Consensus problems are NP-hard.

The idea of the proof is to show that in the constructed AST-LR instance, we are ”forced”
to solve the corresponding MinRTI instance. In more detail, we show that MINRTI(R) ≤ m
if and only if ASTLR(T) ≤ t(|L| − 3) + m. In one direction, given a set R′ of size m such that
R\R′ is compatible, one can show that the following leaf removals from T make it compatible:
remove, from each Ti, the leaves L′ = L \ X (Ri) that were inserted into the Z subtree, then
for each Ri ∈ R′, remove a single leaf in X (Ri) from Ti. This sums up to t(|L| − 3) + m leaf
removals. Conversely, it can be shown that there always exists an optimal solution for T that
removes, for each Ti, all the leaves L′ = L \ X (Ri) inserted in the Z subtree, plus an additional
single leaf l from m trees Ti1 , . . . , Tim such that l ∈ L. The corresponding triplets Ri1 , . . . , Rim

can be removed from R so that it becomes compatible.

Approximating AST-LR and bounding worst-case scenarios

Given the above result, it is natural to turn to approximation algorithms in order to solve
AST-LR or LR-Consensus instances. It turns out that there is a simple factor 2 approximation

5

for LR-Consensus which is achieved by interpreting the problem as finding a median in a metric
space. Indeed, it is not hard to see that dLR is a metric (over the space of trees on the same label
set X). A direct consequence, using an argument akin to the one in [9, p.351], is the following.

Theorem 3.2. The following is a factor 2 approximation algorithm for LR-Consensus: return
the tree T ∈ T that minimizes

∑
Ti∈T dLR(T, Ti).

Theorem 3.2 can be used to lower-bound the ‘worst’ possible instance of AST-LR. We show
that in some cases, we can only keep about

√
|X | leaves per tree. That is, there are instances for

which ASTLR(T) = Ω(t(n−
√
n)), where t is the number of trees and n = |X |. The argument is

based on a probabilistic argument, for which we will make use of the following result [3, Theorem
4.3.iv].

Theorem 3.3 ([3]). For any constant c > e/
√

2, there is some n0 such that for all n ≥ n0, the
following holds: if T1 and T2 are two binary trees on n leaves chosen randomly, uniformly and
independently, then E[dLR(T1, T2)] ≥ n− c

√
n.

Corollary 1. There are instances of AST-LR in which Ω(t(n−
√
n)) leaves need to be deleted.

The above is shown by demonstrating that, by picking a set T of t random trees, the expected
optimal sum of distances minT

∑
Ti∈T dLR(T, Ti) is Ω(t(n−

√
n). This is not direct though, since

the tree T ∗ that minimizes this sum is not itself random, and so we cannot apply Theorem 3.3
directly on T ∗. We can however, show that the tree T ′ ∈ T obtained using the 2-approximation,
which is random, has expected sum of distances Ω(t(n−

√
n)). Since T ∗ requires, at best, half

the leaf deletions of T ′, the result follows. Note that finding a non-trivial upper bound on
ASTLR(T) is open.

4 Fixed-parameter tractability of AST-LR and AST-LR-d.

An alternative way to deal with computational hardness is parameterized complexity. The most
natural parameter to study is q := ASTLR(T), the question being whether there exists an
algorithm for AST-LR that runs in time O(f(q)poly(n)) for some function f depending only on
q. In a previous version of this work, we proposed an FPT algorithm that turned out to be
inaccurate. This was observed by Chen et al. [5], who proposed a fix through an alternate proof
of FPT membership. We invite the interested reader to consult the second arXiv version [V2]
of this paper in Section 4 for the details of the inaccurate algorithm.

We consider an alternative parameter d, and show that finding a tree T ∗, if it exists, such
that dLR(Ti, T

∗) ≤ d for every input tree Ti, can be done in O(cdd3d(n3 + tn log n)) time for
some constant c.

4.1 Parameterization by maximum distance d

We now describe an algorithm for the AST-LR-d problem, running in time O(cdd3d(n3+tn log n))
that, if it exists, finds a solution (where here c is a constant not depending on d nor n).

We employ the following branch-and-bound strategy, keeping a candidate solution at each
step. Initially, the candidate solution is the input tree T1 and, if T1 is indeed a solution, we
return it. Otherwise (in particular if dLR(T1, Ti) > d for some input tree Ti), we branch on a set
of “leaf-prune-and-regraft” operations on T1. In such an operation, we prune one leaf from T1

and regraft it somewhere else. If we have not produced a solution after d such operations, then
we halt this branch of the algorithm (as any solution must be reachable from T1 by at most d
operations). The resulting search tree has depth at most d. In order to bound the running time
of the algorithm, we need to bound the number of “leaf-prune-and-regraft” operations to try at
each branching step. There are two steps to this: first, we bound the set of candidate leaves
to prune, second, given a leaf, we bound the number of places where to regraft it. To bound

6

the candidate set of leaves to prune, let us call a leaf x interesting if there is a solution T ∗, and
minimal sets X1, Xi ⊆ X of size at most d, such that (a) T1−X1 = T ∗−X1, (b) Ti−Xi = T ∗−Xi,
and (c) x ∈ X1 \ Xi, where Ti is an arbitrary input tree for which dLR(T1, Ti) > d. It can be
shown that an interesting leaf x must exist if there is a solution. Moreover, though we cannot
identify x before we know T ∗, we can nevertheless construct a set S of size O(d2) containing all
interesting leaves. Thus, in our branching step, it suffices to consider leaves in S.

Assuming we have chosen the correct x, we then bound the number of places to try regrafting
x. Because of the way we chose x, we may assume there is a solution T ∗ and Xi ⊆ X such that
|Xi| ≤ d, Ti−Xi = T ∗−Xi and x /∈ Xi. Thus we may treat Ti as a “guide” on where to regraft
x. Due to the differences between T1, Ti and T ∗, this guide does not give us an exact location
in T1 to regraft x. Nevertheless, we can show that the number of candidate locations to regraft
x can be bounded by O(d). Thus, in total we have O(d3) branches at each step in our search
tree of depth d, and therefore have to consider O((O(3d))d) = O(cdd3d) subproblems.

Theorem 4.1. AST-LR-d can be solved in time O(cdd3d(n3 + tn log n)), where c is a constant
not depending on d or n.

5 Conclusion

To conclude, we introduced a new supertree/consensus problem, based on a simple combinatorial
operator acting on trees, the Leaf-Removal. We showed that, although this supertree problem is
NP-hard, it admits interesting tractability results, that compare well with existing algorithms.
Future research should explore if various simple combinatorial operators, that individually define
relatively tractable supertree problems (for example LR and EC) can be combined into a unified
supertree problem while maintaining approximability and fixed-parameter tractability.

Acknowledgement: MJ was partially supported by Labex NUMEV (ANR-10-LABX-20) and Vidi

grant 639.072.602 from The Netherlands Organization for Scientific Research (NWO). CC was supported

by NSERC Discovery Grant 249834. CS was partially supported by the French Agence Nationale de la

Recherche Investissements d’Avenir/Bioinformatique (ANR-10-BINF-01-01, ANR-10-BINF-01-02, Ance-

strome). ML was supported by NSERC PDF Grant. MW was supported by the Institut de Biologie

Computationnelle.

References

[1] A. Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary trees:
Metrics and efficient algorithms. SIAM J. Comput., 26:1656–1669, 1997.

[2] D. Bryant. Building trees, hunting for trees, and comparing trees. PhD thesis, Bryant
University, 1997.

[3] D. Bryant, A. McKenzie, and M. Steel. The size of a maximum agreement subtree for
random binary trees. Dimacs Series in Discrete Mathematics and Theoretical Computer
Science, 61:55–66, 2003.

[4] J. Byrka, S. Guillemot, and J. Jansson. New results on optimizing rooted triplets consis-
tency. Discrete Appl. Math., 158:1136–1147, 2010.

[5] Zhi-Zhong Chen, Shohei Ueta, Jingyu Li, and Lusheng Wang. Computing a consensus
phylogeny via leaf removal. In International Symposium on Bioinformatics Research and
Applications, pages 3–15. Springer, 2019.

[6] R. Cole, M. Farach-Colton, R. Hariharan, T. M. Przytycka, and M. Thorup. An O(nlog n)
algorithm for the maximum agreement subtree problem for binary trees. SIAM J. Comput.,
30:1385–1404, 2000.

7

[7] Y. Deng and D. Fernández-Baca. Fast Compatibility Testing for Rooted Phylogenetic Trees.
In Combinatorial Pattern Matching 2016, volume 54 of LIPIcs. Leibniz Int. Proc. Inform.,
pages 12:1–12:12, 2016.

[8] D. Fernández-Baca, S. Guillemot, B. Shutters, and S. Vakati. Fixed-parameter algorithms
for finding agreement supertrees. SIAM J. Comput., 44:384–410, 2015.

[9] D. Gusfield. Algorithms on strings, trees and sequences: computer science and computa-
tional biology. Cambridge university press, 1997.

[10] M. Hellmuth, N. Wieseke, M. Lechner, H.-P. Lenhof, M. Middendorf, and P. F. Stadler.
Phylogenomics with paralogs. Proc. Natl. Acad. Sci. USA, 112:2058–2063, 2015.

[11] E. D. Jarvis et al. Whole-genome analyses resolve early branches in the tree of life of
modern birds. Science, 346:1320–1331, 2014.

[12] C. Scornavacca and N. Galtier. Incomplete lineage sorting in mammalian phylogenomics.
Sys. Biol., 66:112–120, 2017.

[13] C. Scornavacca, E. Jacox, and G. J. Szollösi. Joint amalgamation of most parsimonious
reconciled gene trees. Bioinformatics, 31:841–848, 2015.

[14] G. J. Szollösi, B. Boussau, S. S. Abby, E. Tannier, and V. Daubin. Phylogenetic modeling
of lateral gene transfer reconstructs the pattern and relative timing of speciations. Proc.
Natl. Acad. Sci. USA, 109:17513–17518, 2012.

[15] P. Vachaspati and T. Warnow. FastRFS: fast and accurate robinson-foulds supertrees using
constrained exact optimization. Bioinformatics, 33:631–639, 2017.

[16] C. Whidden, N. Zeh, and R. G. Beiko. Supertrees based on the subtree prune-and-regraft
distance. Sys. Biol., 63:566–581, 2014.

8

A Omitted proofs

Here we give proofs for several results whose proofs were omitted in the main paper. Note that
the proof of Theorem 4.1 is deferred to its own section.

Lemma 1 (restated). Let T = {T1, . . . , Tt} be a set of trees on the same label set X . Then,
given a supertree T such that v :=

∑
Ti∈T dLR(T, Ti), one can compute in time O(tn log n) a leaf-

disagreement C of size at most v, where n = |X |. Conversely, given a leaf-disagreement C for T
of size v, one can compute in time O(tn log2(tn)) a supertree T such that

∑
Ti∈T dLR(T, Ti) ≤ v.

Proof. In the first direction, for each Ti ∈ T , there is a set Xi ⊆ X of size dLR(T, Ti) such
that Ti − Xi = T − Xi. Moreover, Xi can be found in time O(n log n). Thus (X1, . . . , Xt) is
a leaf-disagreement of the desired size and can be found in time O(tn log n). Conversely, let
C = (X1, . . . , Xt) be a leaf-disagreement of size v. As T ′ = {T1−X1, . . . , Tt−Xt} is compatible,
there is a tree T that displays T ′, and it is easy to see that the sum of distances between T and
T ′ is at most the size of C. As for the complexity, it is shown in [7] how to compute in time
O(tn log2(tn)), given a set of trees T ′, a tree T displaying T ′ if one exists.

We next consider the case where T consists only of two trees.

Lemma 2. Let T1, T2 be two trees on the same label set X . Then ASTLR(T1, T2) = dLR(T1, T2).
Moreover, every optimal leaf-disagreement C = (X ′1,X ′2) for T1 and T2 can be obtained in the
following manner: for every label-disagreement X ′ of size dLR(T1, T2), partition X ′ into X ′1,X ′2.

Proof. Let X ′ ⊂ X such that |X ′| = dLR(T1, T2) and T1 − X ′ = T2 − X ′. Then clearly, for any
bipartition (X ′1,X ′2) of X ′, T ′1 := T1 − X ′1 and T ′2 := T2 − X ′2 are compatible, since the leaves
that T ′1 and T ′2 have in common yield the same subtree, and leaves that appear in only one tree
cannot create incompatibility. In particular, ASTLR(T1, T2) ≤ dLR(T1, T2).

Conversely, let C = (X ′1,X ′2) be a minimum leaf-disagreement. We have X ′1 ∩ X ′2 = ∅, for if
there is some ` ∈ X ′1 ∩ X ′2, then ` could be reinserted into one of the two trees without creating
incompatibility. Thus C is a bipartition of X ′ = X ′1 ∪ X ′2. Moreover, we must have T1 − X ′ =
T2 − X ′, implying |X ′| ≥ dLR(T1, T2). Combined with the above inequality, |X ′| = dLR(T1, T2),
and the Lemma follows.

It follows from Lemma 2 that any optimal label-disagreement X ′ can be turned into an
optimal leaf-disagreement, which is convenient as X ′ can be found in polynomial time. We will
make heavy use of this property later on.

Note that the same type of equivalence does not hold when 3 or more trees are given, i.e.
computing a MAST of three trees does not necessarily yield a leaf-disagreement of minimum size.
Consider for example the instance T = {T1, T2, T3} in Figure 1. An optimal leaf-disagreement
for T has size 2 and consists of any pair of distinct leaves. On the other hand, an optimal
leaf-disagreement for T has size 3, and moreover each leaf corresponds to a different label.

Theorem 3.1 (restated). The AST-LR and LR-Consensus problems are NP-hard.

Proof. We begin by restating the reduction from MinRTI to AST-LR.
Let R = {R1, . . . , Rt} be an instance of MinRTI, with the label set L :=

⋃t
i=1X (Ri).

For a given integer m, we construct an AST-LR instance T = {T1, . . . , Tt} which is such that
MINRTI(R) ≤ m if and only if ASTLR(T) ≤ t(|L| − 3) + m.

We first construct a tree Z with additional labels which will serve as our main gadget. Let
{Li}1≤i≤t be a collection of t new label sets, each of size (|L|t)10, all disjoint from each other and
all disjoint from L. Each tree in our AST-LR instance will be on label set X = L∪L1 ∪ . . .∪Lt.
For each i ∈ [t], let Xi be any tree with label set Li. Obtain Z by taking any tree on t leaves
l1, . . . , lt, then replacing each leaf li by the Xi tree (i.e. li is replaced by r(Xi)). Denote by
rZ(Xi) the root of the Xi subtree in Z.

9

Then for each i ∈ [t], we construct Ti from Ri as follows. Let L′ = L \ X (Ri) be the set of
labels not appearing in Ri, noting that |L′| = |L| − 3. Let TL′ be any tree with label set L′,
and obtain the tree Zi by grafting TL′ on the edge between rZ(Xi) and its parent. Finally, Ti

is obtained by grafting Ri above Zi. See Figure 2 for an example. Note that each tree Ti has
label set X as desired. Also, it is not difficult to see that this reduction can be carried out in
polynomial time.

We now show that MINRTI(R) ≤ m if and only if ASTLR(T) ≤ t(|L| − 3) + m.
(⇒) Let R′ ⊂ R such that |R′| ≤ m and R∗ := R\R′ is compatible, and let T (R∗) be a tree

displaying R∗. Note that |R∗| ≥ t −m. We obtain a AST-LR solution by first deleting, in each
Ti ∈ T , all the leaves labeled by L \ X (Ri) (thus Ti becomes the tree obtained by grafting Ri

above Z). Then for each deleted triplet Ri ∈ R′, we remove any single leaf of Ti labeled by some
element in X (Ri). In this manner, no more than t(|L| − 3) + m leaves get deleted. Moreover,
grafting T (R∗) above Z yields a tree displaying the modified set of trees, showing that they are
compatible.

(⇐) We first argue that if T admits a leaf-disagreement C = (X1, . . . ,Xt) of size at most
t(|L| − 3) + m, then there is a better or equal solution that removes, in each Ti, all the leaves
labeled by L \ X (Ri) (i.e. those grafted in the Zi tree). For each i ∈ [t], let T ′i = Ti − Xi, and
denote T ′ = {T ′1, . . . , T ′t}. Suppose that there is some i ∈ [t] and some ` ∈ L \ X (Ri) such that
` ∈ X (T ′i).

We claim that ` /∈ X (T ′j) for every i 6= j ∈ [t]. Suppose otherwise that ` ∈ X (T ′j) for some
j 6= i. Consider first the case where ` /∈ X (Rj). Note that by the construction of Zi and Zj , for
every xi ∈ X (Xi)∩X (T ′i)∩X (T ′j) and every xj ∈ X (Xj)∩X (T ′i)∩X (T ′j), T

′
i contains the `xi|xj

triplet whereas T ′j contains the `xj |xi triplet. Since these triplets are conflicting, no supertree
can contain both and so no such xi, xj pair can exist, as we are assuming that a supertree for
T ′i and T ′j exists. This implies that one of X (Xi) ∩ X (T ′i) ∩ X (T ′j) or X (Xj) ∩ X (T ′i) ∩ X (T ′j)
must be empty. Suppose without loss of generality that the former is empty. Then each xi ∈ Xi

must have been deleted in at least one of Ti or Tj . As |X (Xi)| = (|L|t)10 > t(|L| − 3) + m, this
contradicts the size of the solution C. In the second case, we have ` ∈ X (Rj). But this time,
if there are xi ∈ X (Xi) ∩ X (T ′i) ∩ X (T ′j) and xj ∈ X (Xj) ∩ X (T ′i) ∩ X (T ′j), then T ′j contains
the xixj |` triplet, again conflicting with the `xi|xj triplet found in Ti. As before, we run into a
contradiction since too many Xi or Xj leaves need to be deleted. This proves our claim.

We thus assume that ` only appears in T ′i . Let Rj ∈ R such that ` ∈ X (Rj), noting that `
does not appear in T ′j . Consider the solution T ′′ obtained from T ′ by removing ` from T ′i , and
placing it back in T ′j where it originally was in Tj . Formally this is achieved by replacing, in the
leaf-disagreement C, Xi by Xi ∪ {`} and Xj by Xj \ {`}. Since ` still appears only in one tree,
no conflict is created and we obtain another solution of equal size. By repeating this process for
every such leaf `, we obtain a solution in which every leaf labeled by L \X (Ri) is removed from
T ′i . We now assume that the solution T ′ has this form.

Consider the subset R′ = {Ri ∈ R : |X (T ′i)∩X (Ri)| < 3}, that is those triplets Ri for which
the corresponding tree Ti had a leaf removed outside of the Zi tree. By the form of the T ′
solution, at least t(|L|−3) removals are done in the Zi trees, and as only m removals remain, R′
has size at most m. We show that R\R′ is a compatible set of triplets. Since T ′ is compatible,
there is a tree T that displays each T ′i ∈ T ′, and since each triplet of R\R′ belongs to some T ′i ,
T also displays R \R′. This concludes the proof.

Theorem 3.2 (restated). The following is a factor 2 approximation algorithm for LR-Consensus:
return the tree T ∈ T that minimizes

∑
Ti∈T dLR(T, Ti).

Proof. Let T ∗ be an optimal solution for LR-Consensus, i.e. T ∗ is a tree minimizing
∑

Ti∈T dLR(Ti, T
∗),

and let T be chosen as described in the theorem statement. Moreover let T ′ be the tree of T

10

minimizing dLR(T ′, T ∗). By the triangle inequality,∑
Ti∈T

dLR(T ′, Ti) ≤
∑
Ti∈T

(
dLR(T ′, T ∗) + dLR(T ∗, Ti)

)
≤ 2

∑
Ti∈T

dLR(T ∗, Ti)

where the last inequality is due to the fact that dLR(T ′, T ∗) ≤ dLR(T ∗, Ti) for all i, by our choice
of T ′. Our choice of T implies

∑
Ti∈T dLR(T, Ti) ≤

∑
Ti∈T dLR(T ′, Ti) ≤ 2

∑
Ti∈T dLR(Ti, T

∗).

Corollary 1 (restated). There are instances of AST-LR in which Ω(t(n −
√
n)) leaves need to

be deleted.

Proof. Let T = {T1, . . . , Tt} be a random set of t trees chosen uniformly and independently. For
large enough n, the expected sum of distances between each pair of trees is

E

 ∑
1≤i<j≤t

dLR(Ti, Tj)

 =
∑

1≤i<j≤t
E[dLR(Ti, Tj)] ≥

(
t

2

)
(n− c

√
n)

for some constant c, by Theorem 3.3. Let S := minT
∑t

i=1 dLR(T, Ti) be the random variable
corresponding to the minimum sum of distances. By Theorem 3.2, there is a tree T ′ ∈ T such
that

∑t
i=1 dLR(T ′, Ti) ≤ 2S. We have

∑
1≤i<j≤t

dLR(Ti, Tj) ≤
∑

1≤i<j≤t
dLR(Ti, T

′) + dLR(T ′, Tj)

= (t− 1)
t∑

i=1

dLR(Ti, T
′)

≤ (t− 1)2S

Since, in general for two random variables X and Y , always having X ≤ Y implies E[X] ≤
E[Y], we get

(
t

2

)
(n− c

√
n) ≤ E

 ∑
1≤i<j≤t

dLR(Ti, Tj)

 ≤ E[(t− 1)2S] = 2(t− 1)E[S]

yielding E[S] ≥ t/4(n−c
√
n) = Ω(t(n−

√
n)), and so there must exist an instance T satisfying

the statement.

B Leaf Prune-and-Regraft Moves

Here we introduce the notion of leaf prune-and-regraft (LPR) moves, which will be used in the
proof of Theorem 4.1, and which may be of independent interest. In an LPR move, we prune
a leaf from a tree and then regraft it another location (formal definitions below). LPR moves
provide an alternate way of characterizing the distance function dLR - indeed, we will show that
dLR(T1, T2) ≤ k if and only if there is a sequence of at most k LPR moves transforming T1 into
T2.

Definition 1. Let T be a tree on label set X . A LPR move on T is a pair (`, e) where ` ∈ X
and e ∈ {E(T −{`}),⊥}. Applying (`, e) consists in grafting ` on the e edge of T −{`} if e 6=⊥,
and above the root of T − {`} if e =⊥.

11

a b c d e

a bc d e

a bc e d

Figure 3: Sequence of trees showing the LPR sequence L = ((b, f), (d,⊥)), where f is the edge
between the root and the least common ancestor of a and c in the first tree.

An LPR sequence L = ((`1, e1), . . . , (`k, ek)) is an ordered tuple of LPR moves, where for
each i ∈ [k], (`i, ei) is an LPR move on the tree obtained after applying the first i − 1 LPR
moves of L. We may write L = (`1, . . . , `k) if the location at which the grafting takes place does
not need to be specified. We say that L turns T1 into T2 if, by applying each LPR move of L in
order on T1, we obtain T2.

See Figure 4 for an example of an LPR sequence.
In the following statements, we assume that T1 and T2 are two trees on label set X . We

exhibit an equivalence between leaf removals and LPR sequences, then show that the order of
LPR moves in a sequence do not matter in terms of turning one tree into another - in particular
any leaf can be displaced first.

Lemma 3. There is a subset X ⊆ X such that T1−X = T2−X if and only if there is an LPR
sequence (x1, x2, . . . , xk) turning T1 into T2 such that X = {x1, . . . , xk}.

Proof. If T1 = T2 then the proof is trivial, so we will assume this is not the case. We prove the
lemma by induction on |X|.

For the base case, suppose that X = {x}. If T1−X = T2−X, then let Tm = T1−X = T2−X.
We find an LPR move (x, e) with e ∈ E(Tm) ∪ {⊥} turning T1 into T2. Observe that T2 can be
obtained by grafting x on Tm, either on an edge uv, in which case we set e = uv, or above the
root, in which case we set e =⊥. Since Tm = T1 − {x}, it follows that (x, e) is an LPR move
turning T1 into T2. In the other direction, assume there is an LPR move (x, e) turning T1 into
T2. Observe that for any tree T ′ derived from T1 by an LPR move using x, T ′−{x} = T1−{x}.
In particular, T2 − {x} = T1 − {x} and we are done.

For the induction step, assume that |X| > 1 and that the claim holds for any X ′ such that
|X ′| < |X|. If T1−X = T2−X, then define Tm = T1−X, and let x be an arbitrary element of X.
We will first construct a tree T ′1 such that T1−{x} = T ′1−{x} and T ′1−(X\{x}) = T2−(X\{x}).

Observe that T2− (X \ {x}) can be obtained by grafting x in Tm. Let e = uv if this grafting
takes place on an edge of Tm with v being the child of u, or e =⊥ if x is grafted above Tm, and

12

in this case let v = r(Tm). Let v′ = vT1−{x} be the node in T1 − {x} corresponding to v.
Let T ′1 be derived from T1 − {x} by grafting x onto the edge between v′ and its parent if v′

is non-root, and grafting above v′ otherwise. It is clear that T1−{x} = T ′1−{x}. Furthermore,
by our choice of v′ we have that T ′1 − (X \ {x}) = T2 − (X \ {x}).

Now that we have T1−{x} = T ′1−{x} and T ′1− (X \{x}) = T2− (X \{x}), by the inductive
hypothesis there is an LPR sequence turning T1 into T ′1 consisting of a single move (x, e), and an
LPR sequence (x1, x2, . . . , xk−1) turning T ′1 into T2 such that {x1, . . . , xk′} = (X \ {x}). Then
by concatenating these two sequences, we have an LPR sequence (x1, x2, . . . , xk) turning T1 into
T2 such that X = {x1, . . . , xk}.

For the converse, suppose that there is an LPR sequence (x1, x2, . . . , xk) turning T1 into T2

such that X = {x1, . . . , xk}. Let T ′1 be the tree derived from T1 by applying the first move in
this sequence. That is, there is an LPR move (x1, e) turning T1 into T ′1, and there is an LPR
sequence (x2, . . . , xk) turning T ′1 into T2. Then by the inductive hypothesis T1−{x1} = T ′1−{x1}
and T ′1−{x2, . . . , xk} = T2−{x2, . . . , xk}. Thus, T1−X = T ′1−X = T2−X, as required.

Lemma 4. If there is an LPR sequence L = (x1, . . . , xk) turning T1 into T2, then for any
i ∈ [k], there is an LPR sequence L′ = (x′1, . . . , x

′
k) turning T1 into T2 such that x′1 = xi and

{x1, . . . , xk} = {x′1, . . . , x′k}.

Proof. Consider again the proof that if T1−X = T2−X then there is an LPR sequence (x1, . . . xk)
turning T1 into T2 such that X = {x1, . . . , xk} (given in the proof of Lemma 3). When |X| > 1,
we construct this sequence by concatenating the LPR move (x, e) with an LPR sequence of
length |X| − 1, where x is an arbitrary element of X. As we could have chosen any element of
X to be x, we have the following: If T1 − X = T2 − X then for each x ∈ X, there is an LPR
sequence (x1, . . . , xk) turning T1 into T2 such that X = {x1, . . . , xk} and x1 = x.

Thus our proof is as follows: Given an LPR sequence L = (x1, . . . , xk) turning T1 into T2 and
some i ∈ [k], Lemma 3 implies that T1 − {x1, . . . , xk} = T2 − {x1, . . . , xk}. By the observation
above, this implies that there is an LPR sequence (x′1, . . . , x

′
k) turning T1 into T2 such that

{x1, . . . , xk} = {x′1, . . . , x′k} and x′1 = x.

C Proof of Theorem 4.1

This section makes use of the concept of LPR moves, which are introduced in the previous
section. As discussed in the main paper, we employ a branch-and-bound style algorithm, in
which at each step we alter a candidate solution by pruning and regrafting a leaf. That is, we
apply an LPR move.

The technically challenging part is bound the number of possible LPR moves to try. To do
this, we will prove Lemma 7, which provides a bound on the number of leaves to consider, and
Lemma 10, which bounds the number of places a leaf may be regrafted to.

Denote by tr(T) the set of rooted triplets of a tree T . Two triplets R1 ∈ tr(T1) and
R2 ∈ tr(T2) are conflicting if R1 = ab|c and R2 ∈ {ac|b, bc|a}. We denote by conf(T1, T2)
the set of triplets of T1 for which there is a conflicting triplet in T2. That is, conf(T1, T2) =
{ab|c ∈ tr(T1) : ac|b ∈ tr(T2) or bc|a ∈ tr(T2)}. Finally we denote by confset(T1, T2) =
{{a, b, c} : ab|c ∈ conf(T1, T2)}, i.e. the collection of 3-label sets formed by conflicting triplets.
Given a collection C = {S1, . . . , S|C|} of sets, a hitting set of C is a set S such that S ∩ Si 6= ∅
for each Si ∈ C.

Lemma 5. Let X ⊆ X . Then T1−X = T2−X if and only if X is a hitting set of confset(T1, T2).

Proof. It is known that for two rooted trees T1, T2 that are leaf-labelled and binary, T1 = T2 if
and only if tr(T1) = tr(T2) [2]. Note also that tr(T −X) = {ab|c ∈ tr(T1) : X ∩ {a, b, c} = ∅}
for any tree T and X ⊆ X .

13

Therefore we have that T1−X = T2−X if and only if tr(T1−X) = tr(T2−X), which holds
if and only if for every a, b, c ∈ X \X, if ab|c ∈ tr(T1) then ab|c ∈ tr(T2). This in turn occurs if
and only if X is a hitting set for confset(T1, T2).

In what follows, we call X ⊆ X a minimal disagreement between T1 and T2 if T1−X = T2−X
and for any X ′ ⊂ X, T1 −X ′ 6= T2 −X ′.

Lemma 6. Suppose that d < dLR(T1, T2) ≤ d′ + d with d′ ≤ d, and that there is a tree T ∗ and
subsets X1, X2 ⊆ X such that T1 −X1 = T ∗ −X1, T2 −X2 = T ∗ −X2 and |X1| ≤ d′, |X2| ≤ d.
Then, there is a minimal disagreement X between T1 and T2 of size at most d + d′ and x ∈ X
such that x ∈ X1 \X2.

Proof. Let X ′ = X1 ∪ X2. Observe that T1 − X ′ = T ∗ − X ′ = T2 − X ′ and |X ′| ≤ d + d′.
Letting X be the minimal subset of X ′ such that T1−X = T2−X, we have that X is a minimal
disagreement between T1 and T2 and |X| ≤ d + d′. Furthermore as |X| ≥ dLR(T1, T2) > d,
|X \X2| > 0, and so there is some x ∈ X with x ∈ X \X2 = X1 \X2.

We are now ready to state and prove Lemma 7.

Lemma 7. Suppose that dLR(T1, T2) ≤ d for some integer d. Then, there is some S ⊆ X such
that |S| ≤ 8d2, and for any minimal disagreement X between T1 and T2 with |X| ≤ d, X ⊆ S.
Moreover S can be found in time O(n2).

We will call S as described in Lemma 7 a d-disagreement kernel between T1 and T2. Thus
Lemma 6 essentially states that if T1 isn’t a solution and dLR(T1, T2) > d, then for T1 to get
closer to a solution, there is a leaf x in the dLR(T1, T2)-disagreement kernel that needs to be
removed and regrafted in a location that T2 ‘agrees with’. Lemma 7 in turn gives us a set S of
size at most 8d2 such that the desired x must be contained in S.

Proof. By Lemma 5, it is enough to find a set S such that S contains every minimal hitting set
of confset(T1, T2) of size at most d.

We construct S as follows.
Let X be a subset of X of size at most d such that T1 −X = T2 −X. As previously noted,

this can found in time O(n log n) [6].
For notational convenience, for each x ∈ X we let x1, x2 be two new labels, and set X1 =

{x1 : x ∈ X}, X2 = {x2 : x ∈ X}. Thus, X1, X2 are disjoint “copies” of X. Let T ′1 be derived
from T1 by replacing every label from X with the corresponding label in X1, and similarly let
T ′2 be derived from T2 by replacing every label from X with the corresponding label in X2.

Let TJ be a tree with label set (X \X)∪X1∪X2 such that TJ −X2 = T ′1 and TJ −X1 = T ′2.
The tree TJ always exists and can be found in polynomial time. Intuitively, we can start from
T ′1, and graft the leaves of X2 where T2 “wants” them to be. See Figure 4 for an example.
Algorithm 1 gives a method for constructing TJ , and takes O(n2) time.

In addition, let L be the set of all labels in X \X that are descended in TJ from lcaTJ
(X1∪

X2), and let R = X \ (L ∪ X). Thus, L,X,R form a partition of X , and L,X1, X2, R form a
partition of the labels of TJ .

For the rest of the proof, we call {x, y, z} a conflict triple if {x, y, z} ∈ confset(T1, T2).
We first observe that no triple in confset(T1, T2) contains a label in R. Indeed, consider

a triple {x, y, z}. Any conflict triple must contain a label from X, so assume without loss of
generality that x ∈ X, z ∈ R. If x ∈ X, y ∈ L, z ∈ R, then we have that TJ contains the triplets
x1y|z, x2y|z, and so T1 and T2 both contain xy|z, and {x, y, z} is not a conflict triple. Similarly if
x, y ∈ X, z ∈ R, then TJ contains the triplets x1y1|z, x2y2|z, and again {x, y, z} is not a conflict
triple. If x ∈ X and y, z ∈ R, then the triplet on {x1, y, z} in TJ depends only on the relative
positions in TJ of y, z and lcaTJ

(X1 ∪X2). Thus we get the same triplet if we replace x1 with
x2, and so {x, y, z} is not a conflict triple.

14

Algorithm 1 Algorithm to construct “Join tree” of T ′1, T
′
2

1: procedure join-trees(T ′1, T
′
2, L

′, X ′1, X
′
2)

T ′1 is a tree on L′ ∪ X ′1, T ′2 is a tree on L′ ∪ X ′2, T ′1|L′ = T ′2|L′ . Output: A tree TJ on
L′ ∪X ′1 ∪X ′2 such that TJ |L′∪X′

1
= T ′1 and TJ |L′∪X′

2
= T ′2

2: if L′ ∪X ′1 = ∅ then
3: Return T ′2
4: else if L′ ∪X ′2 = ∅ then
5: Return T ′1
6: else if X ′1 ∪X ′2 = ∅ then
7: Return T ′1
8: Set r1 = root of T ′1, u, v the children of r1
9: Set r2 = root of T ′2, w, z the children of r2

10: Set X1u = descendants of u in X ′1, L1u = descendants of u in L′

11: Set X1v = descendants of v in X ′1, L1v = descendants of v in L′

12: Set X2w = descendants of w in X ′2, L2w = descendants of w in L′

13: Set X2z = descendants of z in X ′2, L2z = descendants of z in L′

14: if L1u = L2w and L1v = L2z then
15: Set Tleft = join-trees(T ′1|L1u∪X1u , T

′
2|L1u∪X2w , L1u, X1u, X2w)

16: Set Tright = join-trees(T ′1|L1v∪X1v , T
′
2|L1v∪X2z , L1v, X1v, X2z)

17: else if L1u = L2z and L1v = L2w then
18: Set Tleft = join-trees(T ′1|L1u∪X1u , T

′
2|L1u∪X2z , L1u, X1u, X2z)

19: Set Tright = join-trees(T ′1|L1v∪X1v , T
′
2|L1v∪X2w , L1v, X1v, X2w)

20: else if L1u =∅ then
21: Set Tleft = join-trees(T ′1|X1u , T

′
2|∅, ∅, X1u, ∅)

22: Set Tright = join-trees(T ′1|L′∪X1v , T
′
2, L

′, X1v, X
′
2)

23: else if L1v = ∅ then
24: Set Tleft = join-trees(T ′1|L′∪X1u , T

′
2, L

′, X1u, X
′
2)

25: Set Tright = join-trees(T ′1|X1v , T
′
2|∅, ∅, X1v, ∅)

26: else if L2w = ∅ then
27: Set Tleft = join-trees(T ′1|∅, T ′2|X2w , ∅, ∅, X2w)
28: Set Tright = join-trees(T ′1, T

′
2|L′∪X2z , L

′, X ′1, X2z)
29: else if L2z = ∅ then
30: Set Tleft = join-trees(T ′1, T

′
2|L′∪X2w , L

′, X ′1, X2w)
31: Set Tright = join-trees(T ′1|∅, T ′2|X2z , ∅, ∅, X2z)

. If none of the above cases holds, then T ′1|L′ 6= T ′2|L′ , contradicting the requirements on
the input

32: Set TJ = the tree on L′ ∪X ′1 ∪X ′2 whose root has Tleft and Tright as children.
33: Return TJ .

15

x ec g hba c d f y

T1

a ec f hyb c d x g

T2

x1 y2 f ha b

e

x2

TJ

y1

c d

g

Figure 4: Construction of the tree TJ , given two trees T1, T2, with X = {x, y} such that
T1 −X = T2 −X.

This concludes the proof that no triple in confset(T1, T2) contains a label in R. Having
shown this, we may conclude that any minimal disagreement between T1 and T2 is disjoint from
R, and so our returned set S only needs to contain labels in L ∪X.

Now consider the tree T ∗ = TJ |X1∪X2 , i.e. the subtree of TJ restricted to the labels in
X1 ∪X2. Thus in the example of Figure 4, T ∗ is the subtree of TJ spanned by {x1, x2, y1, y2}.
We will now use the edges of T ∗ to form a partition of L, as follows. For any edge uv in T ∗

with u the parent of v, let s(uv) denote the set of labels y ∈ X such that y has an ancestor
which is an internal node on the path from u to v in TJ , but y is not a descendant of v itself.
For example in Figure 4, if u is the least common ancestor of x1, y1 and v is the least common
ancestor of x1, y2, then uv is an edge in T ∗ and s(uv) = {c, d, e}.

Observe that {s(uv) : uv ∈ E(T ∗)} forms a partition of L. (Indeed, for any l ∈ L, let u be
the minimal element in T ∗ on the path in TJ between l and lcaTJ

(X1 ∪X2) (note that u exists
as lcaTJ

(X1∪X2) itself is in T ∗). As u is in T ∗, both of its children are on paths in TJ between
u and a child of u in T ∗. In particular, the child of u which is an ancestor of l is an internal
node on the path between u and v in TJ , for some child v of u in T ∗, and l is not descended
from v by construction. It is clear by construction that all s(uv) are disjoint.)

The main idea behind the construction of S is that we will add X to S, together with O(d)
labels from s(uv) for each edge uv in T ∗. As the number of edges in T ∗ is 2(|X1∪X2|−1) = O(d),
we have the required bound of O(d2) on |S|.

So now consider s(uv) for some edge uv in T ∗. In order to decide which labels to add to S,
we need to further partition s(uv). Let u = u0u1 . . . ut = v be the path in TJ from u to v. For
each i ∈ [t− 1] (note that this does not include i = 0), we call the set of labels descended from
ui but not ui+1 a dangling clade. Observe that the dangling clades form a partition of s(uv).
Thus in the example of Figure 4, if u is the least common ancestor of x1, y1 and v is the least
common ancestor of x1, y2, then for the edge uv the dangling clades are {c} and {d, e}f.

16

We now make the following observations about the relation between s(uv) and triples in
confset(T1, T2).

Observation 1: if {x, y, z} is a conflict triple and x ∈ s(uv), y, z /∈ s(uv), then {x′, y, z} is
also a conflict triple for any x′ ∈ s(uv). (The intuition behind this is that there are no labels
appearing ’between’ x and x′ that are not in s(uv).)

Observation 2: for any triple {x, y, z} with x, y ∈ s(uv), {x, y, z} is a conflict triple if
and only if x, y are in different dangling clades and z ∈ X with zi descended from v, z3−i not
descended from u1 for some i ∈ [2] (recall that z1 ∈ X1 and z2 ∈ X2). To prove one direction,
it is easy to see that if the conditions hold, then Ti displays either xz|y or yz|x (depending on
which dangling clade appears ’higher’), and T3−i displays xy|z. For the converse, observe first
that z ∈ X as X is a hitting set for confset(T1, T2) and x, y /∈ X. Then if xy are in the same
dangling clade, we have that both T1 and T2 display xy|z. So x, y must be in different dangling
clades. Next observe that each of z1, z2 must either be descended from v or not descended from
u1, as otherwise v would not be the child of u in T ∗. If z1, z2 are both descended from v or
neither are descended from u1, then T1 and T2 display the same triplet on {x, y, z}. So instead
one must be descended from v and one not descended from u1, as required.

Using Observations 1 and 2, we now prove the following:
Observation 3: for any minimal disagreement X ′ between T1 and T2, one of the following

holds:

• X ′ ∩ s(uv) = ∅;

• s(uv) ⊆ X ′;

• s(uv) \X ′ forms a single dangling clade.

To see this, let X ′ be any minimal hitting set of confset(T1, T2) with s(uv) ∩ X ′ 6= ∅ and
s(uv) \ X ′ 6= ∅. As X ′ is minimal, any x ∈ s(uv) ∩ X ′ must be in a conflict triple {x, y, z}
with y, z /∈ X ′. As X is a hitting set for confset(T1, T2), at least one of y, z must be in X. If
y, z /∈ s(uv), then by Observation 1 {x′, y, z} is also a conflict triple for any x′ ∈ s(uv) \ X ′.
But this is a contradiction as {x′, y, z} has no elements in X ′. Then one of y, z must also be in
s(uv). Suppose without loss of generality that y ∈ s(uv). We must also have that z ∈ X, as X
is a hitting set for confset(T1, T2) and x, y /∈ X. By Observation 2, we must have that one of
z1, z2 is descended from v, and the other is not descended from u1. This in turn implies (again
by Observation 2) that for any x′ ∈ s(uv) \X ′, if x′ and y are in different dangling clades then
{x′, y, z} is a conflict triple. Again this is a contradiction as {x′, y, z} has no elements of X ′,
and so we may assume that all elements of s(uv) \X ′ are in the same dangling clade.

It remains to show that every element of this dangling clade is in s(uv) \ X ′. To see this,
suppose there exists some x ∈ X ′ in the same dangling clade as the elements of s(uv)\X ′. Once
again we have that x is in some conflict triple {x, y, z} with y, z /∈ X ′, and if y, z /∈ s(uv) then
{x′, y, z} is also a conflict triple for any x′ ∈ s(uv)\X ′, a contradiction. So we may assume that
one of y, z is in s(uv) \X ′. But all elements of s(uv) \X ′ are in the same dangling clade as x,
and so by Observation 2 {x, y, z} cannot be a conflict triple, a contradiction. So finally we have
that all elements of s(uv) \X ′ are in the same dangling clade and all elements of this clade are
in s(uv) \X ′, as required.

With the proof of Observation 3 complete, we are now in a position to construct S. For
any minimal hitting set X ′ of confset(T1, T2) with size at most d, by Observation 3 either
X ′ ∩ s(uv) = ∅, or s(uv) ⊆ X ′ (in which case |s(uv)| ≤ d), or s(uv) \X ′ forms a single dangling
clade C (in which case |s(uv) \ C| ≤ d).

So add all elements of X to S. For all uv ∈ E(TJ) and any dangling clade C of labels in
s(uv), add s(uv) \ C to S if |s(uv) \ C| ≤ d. Observe that this construction adds at most 2d
labels from s(uv) to S.

17

Thus, in total, we have that the size of S is at most |X|+2d|E(TJ)| ≤ d+2d(2(|X1∪X2|−1)) ≤
d + 2d(4d− 2) = 8d2 − 3d ≤ 8d2.

Algorithm 2 describes the full procedure formally. The construction of TJ occurs once and
as noted above takes O(n2) time. As each other line in the algorithm is called at most n times
and takes O(n) time, the overall running time of the algorithm O(n2).

Algorithm 2 Algorithm to construct a d-disagreement kernel between T1 and T2

1: procedure disagreement-kernel(d, T1, T2)
T1 and T2 are trees on X ,d an integer.

Output: A set S ⊆ X such that for every minimal disagreement X between T1 and T2

with |X| ≤ d, X ⊆ S.
2: Find X such that |X| ≤ d and T1 −X = T2 −X
3: Set S = X
4: Let X1, X2 be copies of X and replace T1, T2 with corresponding trees T ′1, T

′
2 on (X \

X) ∪X1, (X \X) ∪X2.
5: Let TJ = join-trees(T ′1, T

′
2, (X \X), X1, X2)

6: Let T ∗ = TJ |X1∪X2

7: for uv ∈ E(T ∗) do
8: Let u = u0u1 . . . ut = v be the path in TJ from u to v
9: Let s(uv) = {l ∈ X \X : l is descended from u1 but not from v}

10: Set p = |s(uv)| − d . Any clade C has |C| ≥ p iff |s(uv) \ C| ≤ d
11: for i ∈ [t] do
12: Set C = {l ∈ s(uv) : l is descended from ui but not from ui+1} . C is a single

’dangling clade’
13: if |C| ≥ p then
14: Set S = S ∪ (s(uv) \ C)

15: Return S.

The last ingredient needed for Theorem 4.1 is Lemma 10, which shows that if a leaf x of T1

as described in Lemma 6 has to be moved, then there are not too many ways to regraft it in
order to get closer to T ∗.

In the course of the following proofs, we will want to take observations about one tree and
use them to make statements about another. For this reason it’s useful to have a concept of
one node ”corresponding” to another node in a different tree. In the case of leaf nodes this
concept is clear - two leaf nodes are equivalent if they are assigned the same label- but for
internal nodes there is not necessarily any such correspondence. However, in the case that one
tree is the restriction of another to some label set, we can introduce a well-defined notion of
correspondence:

Given two trees T, T ′ such that T ′ = T |X for some X ⊆ X (T), and a node u ∈ V (T ′), define
the node uT of T by uT = lcaT (LT ′(u)). That is, uT is the least common ancestor, in T , of the
set of labels belonging to descendants of u in T ′. We call uT the node corresponding to u in T .

We note two useful properties of uT here:

Lemma 8. For any T, T ′, X ⊆ X (T) such that T ′ = T |X and any u, v ∈ V (T ′), uT is an
ancestor of vT if and only if u is an ancestor of v.

Proof. If u is an ancestor of v then LT ′(v) ⊆ LT ′(u), which implies that uT is an ancestor of vT .
For the converse, observe that for any Z ⊆ X, any label in X descending from lcaT (Z) in T is
also descending from lcaT ′(Z) in T ′. In particular letting Z = LT ′(u), we have LT (uT) ∩X =
LT (lcaT (Z)) ∩ X ⊆ LT ′(lcaT ′(Z)) = LT ′(lcaT ′(LT ′(u))) = LT ′(u) ⊆ LT (uT) ∩ X. Thus
LT ′(u) = LT (uT) ∩ X and similarly LT ′(v) = LT (vT) ∩ X. Then we have that uT being

18

an ancestor of vT implies LT (vT) ⊆ LT (uT), which implies that LT ′(v) = LT (vT) ∩ X ⊆
LT (uT) ∩X = LT ′(u), which implies that u is an ancestor of v.

Lemma 9. For any T ′′, T ′, T and Y ⊆ X ⊆ X (T) such that T ′ = T |X and T ′′ = T ′|Y ,
(uT ′)T = uT .

Proof. It is sufficient to show that any node in V (T) is a common ancestor of LT ′(lcaT ′(Z))
if and only if it is a common ancestor of Z, where Z = LT ′′(u) (as this implies that the least
common ancestors of these two sets are the same). It is clear that if v ∈ V (T) is a common
ancestor of LT ′(lcaT ′(Z)) then it is also a common ancestor of Z, as Z ⊆ LT ′(lcaT ′(Z)). For
the converse, observe that as T ′ = T |X and Z ⊆ X, any label in X descended from lcaT ′(Z) in
T ′ is also descended from lcaT (Z) in T . This implies LT ′(lcaT ′(Z)) ⊆ LT (lcaT (Z)), and so
any common ancestor of Z in T is also a common ancestor of LT ′(lcaT ′(Z)).

We are now ready to state and prove Lemma 10

Lemma 10. Suppose that d < dLR(T1, T2) ≤ d′+ d with d′ ≤ d, and that there are X1, X2 ⊆ X ,
and a tree T ∗ such that T1 − X1 = T ∗ − X1, T2 − X2 = T ∗ − X2, |X1| ≤ d′, |X2| ≤ d, and let
x ∈ X1 \X2. Then, there is a set P of trees on label set X that satisfies the following conditions:

• for any tree T ′ such that dLR(T ′, T ∗) < dLR(T1, T
∗) and T ′ can be obtained from T1 by

pruning a leaf x and regrafting it, T ′ ∈ P ;

• |P | ≤ 18(d + d′) + 8;

• P can be found in time O(n(log n + 18(d + d′) + 8)).

The idea behind the proof is as follows: by looking at a subtree common to T1 and T2,
we can identify the location that T2 “wants” x to be positioned. This may not be the correct
position for x, but we can show that if x is moved too far from this position, we will create a
large number of conflicting triplets between T2 and the solution T ∗. As a result, we can create
all trees in P by removing x from T1 and grafting it on one of a limited number of edges.

Proof. For the purposes of this proof, we will treat each tree T as “planted”, i.e. as having an
additional root of degree 1, denoted r(T), as the parent of what would normally be considered
the “root” of the tree. (That is, r(T) is the parent of lcaT (X (T)). Note that trees are otherwise
binary. We introduce r(T) as a notational convenience to avoid tedious repetition of proofs -
grafting a label above a tree T can instead be represented as grafting it on the edge between
r(T) and its child. For the purposes of corresponding nodes, if T ′ = T−X then (r(T ′))T = r(T).
This allows us to assume that every node in T is a descendant of uT for some node u in T ′.

A naive method for constructing a tree in P is the following: Apply an LPR move (x, e)
on T1, such that x is moved to a position that T2 “wants” x to be in. There are at least two
problems with this method. The first is that, since T1 and T2 have different structures, it is
not clear where in T1 it is that T2 “wants” x to be. We can partially overcome this obstacle by
initially considering a subtree common to both T1 and T2. However, because T2 will want to
move leafs that will not be moved in T1, it can still be the case that even though T2 “agrees”
with T ∗ on x, T2 may want to put x in the “wrong” place, when viewed from the perspective of
T1. For this reason we have to give a counting argument to show that if x is moved “too far”
from the position suggested by T2, it will create too many conflicting triplets, which cannot be
covered except by moving x. We make these ideas precise below.

Let P ∗ be the set of all trees T ′ such that dLR(T ′, T ∗) < dLR(T1, T
∗) and T ′ can be obtained

from T1 by an LPR move on x. Thus, it is sufficient to construct a set P such that |P | ≤
18(d + d′) + 8 and P ∗ ⊆ P .

19

We first construct a set Xm ⊆ X such that |Xm| ≤ d+ d′, x ∈ Xm, and T1−Xm = T2−Xm.
Note that the unknown set (X1 ∪X2) satisfies these properties, as T1− (X1 ∪X2) = T ∗− (X1 ∪
X2) = T2 − (X1 ∪X2), and so such a set Xm must exist. We can find Xm in time O(n log n) by
applying MAST on (T1 − {x}, T2 − {x}) [6].

Now let Tm be the tree with labelset X \Xm such that Tm = T1−Xm = T2−Xm. Note that
for any T ′ in P ∗, we have that T ′ − {x} = T1 − {x} and therefore T ′ −Xm = T1 −Xm = Tm.

Informally, we now have a clear notion of where T2 “wants” x to go, relative to Tm. There is
a unique edge e in Tm such that grafting x on e will give the tree T2− (Xm \ {x}). If we assume
that this is the “correct” position to add x, then it only remains to add the remaining labels of
Xm back in a way that agrees with T1 (we will describe how this can be done at the end of the
proof). Unfortunately, grafting x onto the obvious choice e does not necessarily lead to a graph
in P ∗. This is due to the fact that T2 can be “mistaken” about labels outside of Xm.

To address this, we have try grafting x on other edges of Tm. There are too many edges
to try them all. We therefore need the following claim, which allows us to limit the number of
edges to try.

Claim: In O(n) time, we can find y ∈ V (Tm) and Z ⊆ V (Tm), |Z| ≤ 4, such that:

• For any T ′ in P ∗, x ∈ LT ′(yT ′) \
⋃

z′∈Z LT ′(z′T ′)

• |LTm(y) \
⋃

z′∈Z LTm(z′)| ≤ 8(d + d′)

Informally, the claim identifies a node y and set of nodes Z in Tm, such that x should be
added as a descendant of y but not of any node in Z, and the number of such positions is
bounded. Algorithm 3 describes the formal procedure to produce y and Z. The proof of the
claim takes up most of the remainder of our proof; the reader may wish to skip it on their first
readthrough.

Proof. Let T ′m = T2 − (Xm \ {x}). Note that T ′m − {x} = Tm. We will use the presence of x in
T ′m to identify the node y and set Z. (Technically, this means the nodes we find are nodes in
T ′m rather than Tm. However, we note that apart the parent of x and x itself, neither of which
will be added to {y} ∪ Z, every node in T ′m is the node vT ′

m
corresponding to some node v in

Tm. For the sake of clarity, we ignore the distinction and write v to mean vT ′
m

throughout this
proof. The nodes in {y} ∪ Z should ultimately be replaced with the nodes in Tm to which they
correspond.)

We first identify two nodes z, y of Tm as follows:

• Let z be the least ancestor of x in T ′m such that |LT ′
m

(z)\{x}| ≥ d+d′. If no such x exists,
then X (T ′m) ≤ d + d′ and we may return y = r(T ′m), Z = ∅.

• Let y be the least ancestor of z in T ′m such that |LT ′
m

(y) \ LT ′
m

(z)| ≥ d + d′. If no such y
exists, set y = r(T ′m).

Using this definition, we will show that x must be a descendant of yT ′ for any T ′ ∈ P ∗. We
first describe a general tactic for restricting the position of x in T ′, as this tactic will be used a
number of times.

Suppose that for some T ′ ∈ P ∗ there is a set of d + d′ triplets in confset(T ′, T2) whose only
common element is x. Then let X ′ ⊆ X be a set of labels such that T ′−X ′ = T ∗−X ′ and |X ′| =
dLR(T ′, T ∗) ≤ dLR(T1, T

∗)−1 ≤ d′−1. Note that T2−(X ′∪X2) = T ∗−(X ′∪X2) = T ′−(X ′∪X2),
and therefore (X ′ ∪X2) is a hitting set for confset(T ′, T2). As |X ′ ∪X2| ≤ d + d− 1 and there
are d + d′ triplets in confset(T ′, T2) whose only common element is x, it must be the case that
x ∈ X ′∪X2. As x /∈ X2, we must have x ∈ X ′. But this implies that T1−X ′ = T ′−X ′ = T ∗−X ′
and therefore dLR(T1, T

∗) ≤ |X ′| = dLR(T ′, T ∗) ≤ dLR(T1, T
∗) − 1, a contradiction. Thus we

may assume that such a set of triplets does not exist.

20

Algorithm 3 FPT algorithm to restrict possible locations of x given (Tm, T1, T2, x, d, d
′)

1: procedure location-restriction(Tm, T2, Xm, x, d, d′)
T1, T2 are two trees, Tm is a common subtree of T1 and T2 such that Tm = T2 − Xm, x is
a label that cannot be moved in T2 (but must be moved in T1), d is the maximum number
of leaves we can remove in a tree, d′ is the maximum number of leaves we can move in
T1. Output is a pair (y, Z) with y ∈ V (Tm), Z ⊆ V (Tm), such that we may assume x is a
descendant of y but not a descendant of any z′ ∈ Z, and the number of labels like this in
Tm is O(d). For this pseudocode, every tree T has a degree-1 root r(T).

2: Set T ′m = T2 − (Xm \ {x})
3: Set z = lowest ancestor of x in T ′m such that |LT ′

m
(z) \ x| ≥ d + d′, or return (r(T ′m), ∅)

if no such z exists.
4: Set y = lowest ancestor of z in T ′m such that |LT ′

m
(y) \ LT ′

m
(z)| ≥ d + d′, or r(T ′m) if no

such ancestor exists.
5: . Find sets Z = Z1 ∪ Z2 of nodes that cover all but a bounded number of the

descendants of y, and such that we can rule out x being descended from any z′ in Z.
6: Let z1, z2 be the children of z such that x is descended from z1 in T ′m
7: Set Z1 = {z′ descended from z2 : |LT ′

m
(z′)| ≥ d + d′ and |LT ′

m
(z2) \ LT ′

m
(z′)| ≥ d + d′,

and this does not hold for any ancestor of z′}
8: Let y1, y2 be the children of y such that x is descended from y1 in T ′m
9: Set Z2 = {y′ descended from y2 : |LT ′

m
(y′)| ≥ d + d′ and |LT ′

m
(y2) \ LT ′

m
(y′)| ≥ d + d′,

and this does not hold for any ancestor of y′}
10: . Note that |Z1| ≤ 2, |Z2| ≤ 2.
11: Set y∗ = node of Tm for which y is the corresponding node in T ′m
12: Set Z = {z∗ in Tm : z′ ∈ Z1 ∪ Z2 is the node corresponding to z∗ in Tm}
13: Return (y∗, Z)

We now use this idea to show that x ∈ LT ′(yT ′), for any T ′ ∈ P ∗. Indeed, suppose x /∈
LT ′(yT ′). We may assume y 6= r(T ′m) as otherwise yT ′ = r(T ′) by definition and so LT ′(yT ′) =
X (T ′). Then let z1, . . . , zd+d′ be d + d′ labels in LT ′

m
(z) \ {x}. Let y1, . . . , yd+d′ be d + d′ labels

in LT ′
m

(y)\LT ′
m

(z). Observe that for each i ∈ [d+d′], T ′m (and therefore T2) contains the triplet
(zix|yi), but T ′ contains the triplet (ziyi|x). Therefore confset(T ′, T2) contains d+d′ sets whose
only common element is x. As this implies a contradiction, we must have x ∈ LT ′(yT ′).

Note however that |LT ′
m

(y)| maybe be very large. In order to provide a bounded range of
possible positions for x, we still need to find a set Z of nodes such that |LT ′

m
(y)\

⋃
z′∈Z LT ′

m
(z′))|

is bounded, and such that we can show x /∈ LT ′(z′T ′) for any z′ ∈ Z.
We now construct a set Z1 of descendants of z as follows:

• Let z1, z2 be the children of z in T ′m such that x is descended from z1.

• If |LT ′
m

(z2)| ≤ 3(d + d′) then set Z1 = ∅.

• Otherwise, let Z1 be the set of highest descendants z′ of z2, such that |LT ′
m

(z′)| ≥ d + d′

and |LT ′
m

(z2) \ LT ′
m

(z′)| ≥ d + d′ (i.e. by highest descendant we mean such that z′ has no
ancestor z′′ with the same properties).

Note that |LT ′
m

(z1)| ≤ d + d′ by our choice of z. It follows that if |LT ′
m

(z2)| ≤ 3(d + d′) then
|LT ′

m
(z)| ≤ 4(d+d′). If on the other hand |LT ′

m
(z2)| > 3(d+d′) then Z1 is non-empty. Indeed, let

z′ be a lowest descendant of z2 with |LT ′
m

(z′)| ≥ d + d′, and observe that |LT ′
m

(z′)| ≤ 2(d + d′).
Then either z′ ∈ Z1, or |LT ′

m
(z2) \ LT ′

m
(z′)| ≤ d + d′, in which case |LT ′

m
(z2)| ≤ |LT ′

m
(z2) \

LT ′
m

(z′)|+ |LT ′
m

(z′)| ≤ d + d′ + 2(d + d′) = 3(d + d′).
We also have that |Z1| ≤ 2. Indeed, let z′1, z

′
2, z
′
3 be three distinct nodes in Z1, and suppose

without loss of generality that (z′1z
′
2|z′3) ∈ tr(T ′m). Then setting z′ = lcaT ′

m
(z′1, z

′
2), we have that

21

z′ is an ancestor of z′1 such that |LT ′
m

(z′)| ≥ d+ d′ and |LT ′
m

(z2) \LT ′
m

(z′)| ≥ |LT ′
m

(z′3)| ≥ d+ d′,
a contradiction by minimality of z1.

We have that |LT ′
m

(z) \
⋃

z′∈Z1
LT ′

m
(z′))| ≤ 4(d + d′). Indeed, if Z1 = ∅ then |LT ′

m
(z)| ≤

4(d+d′) as described above. Otherwise, let z′ be an element of Z1 and zp its parent, zs its sibling
in T ′m. Clearly |LT ′

m
(zp)| ≥ |LT ′

m
(z′)| ≥ d + d′, and so as zp /∈ Z1 we have |LT ′

m
(z2) \ LT ′

m
(zp)| <

d + d′. If |LT ′
m

(zs)| ≥ d + d′ then zs ∈ Z1 (since |LT ′
m

(z2) \ LT ′
m

(zs)| ≥ |LT ′
m

(z′)| ≥ d + d′),
and so |LT ′

m
(z) \

⋃
z′∈Z1

LT ′
m

(z′))| ≤ |LT ′
m

(z1)| + |LT ′
m

(z2) \ LT ′
m

(zp)| ≤ 2(d + d′). Otherwise,
|LT ′

m
(z) \

⋃
z′∈Z1

LT ′
m

(z′))| ≤ |LT ′
m

(z1)|+ |LT ′
m

(z2) \ LT ′
m

(zp)|+ |LT ′
m

(zs)| ≤ 3(d + d′).
We have now shown that |Z1| ≤ 2 and that |LT ′

m
(z) \

⋃
z′∈Z1

LT ′
m

(z′))| ≤ 4(d+ d′). The final
property of Z1 we wish to show is that for any z′ ∈ Z1 and any T ′ ∈ P , x /∈ LT ′(z′T ′).

So suppose x ∈ LT ′(z′T ′). Let ẑ1, . . . , ẑd+d′ be d + d′ labels in LT ′
m

(z2) \ LT ′
m

(z′). Also,
z1 and z2 were already taken. Let w1, . . . , wd+d′ be d + d′ labels in LT ′

m
(z′). Then for each

i ∈ [d + d′], T ′m (and therefore T2) contains the triplet (ẑiwi|x), but T ′ contains the triplet
(xwi|ẑi). Therefore confset(T ′, T2) contains d + d′ sets whose only common element is x. As
this implies a contradiction, we must have x /∈ LT ′(z′T ′).

We now define a set Z2 of descendants of y:

• If y = r(T ′m), set Z2 = ∅.

• Otherwise, let y1, y2 be the children of y in T ′m such that z is descended from y1.

• If |LT ′
m

(y2)| ≤ 3(d + d′) then set Z2 = ∅.

• Otherwise, let Z2 be the set of highest descendants y′ of y2, such that |LT ′
m

(y′)| ≥ d + d′

and |LT ′
m

(y2) \ LT ′
m

(y′)| ≥ d + d′ (i.e. such that y′ has no ancestor y′′ with the same
properties).

In a similar way to the proofs for Z1, we can show that |Z2| ≤ 2, that |(LT ′
m

(y) \ LT ′
m

(z)) \⋃
y′∈Z2

LT ′
m

(y′))| ≤ 4(d + d′), and that x /∈ LT ′(y′T ′) for any y′ ∈ Z2 and any T ′ ∈ P ∗.
Note that |LT ′

m
(y1)\LT ′

m
(z)| ≤ d+d′ by our choice of y. It follows that if |LT ′

m
(y2)| ≤ 3(d+d′)

then |LT ′
m

(y) \ LT ′
m

(z)| ≤ 4(d + d′). If on the other hand |LT ′
m

(y2)| > 3(d + d′), then Z2 is non-
empty. Indeed, let y′ be a lowest descendant of y2 with |LT ′

m
(y′)| ≥ d + d′, and observe that

|LT ′
m

(y′)| ≤ 2(d + d′). Then either y′ ∈ Z2, or |LT ′
m

(y2) \ LT ′
m

(y′)| ≤ d + d′, in which case
|LT ′

m
(y2)| ≤ |LT ′

m
(y2) \ LT ′

m
(y′)|+ |LT ′

m
(y′)| ≤ d + d′ + 2(d + d′) = 3(d + d′).

We also have that |Z2| ≤ 2. Indeed, let y′1, y
′
2, y
′
3 be three distinct nodes in Z2, and suppose

without loss of generality that (y′1y
′
2|y′3) ∈ tr(T ′m). Then setting y′ = lcaT ′

m
(y′1, y

′
2), we have that

y′ is an ancestor of y′1 such that |LT ′
m

(y′)| ≥ d+d′ and |LT ′
m

(y2) \LT ′
m

(y′)| ≥ |LT ′
m

(y′3)| ≥ d+d′,
a contradiction by minimality of y1.

We have that |(LT ′
m

(y) \ LT ′
m

(z)) \
⋃

y′∈Z2
LT ′

m
(y′))| ≤ 4(d + d′). Indeed, if y = r(T ′m) then

by construction |LT ′
m

(ŷ) \ LT ′
m

(z)| < d + d′ for any ancestor ŷ of z (noting that otherwise there
would be no reason to set y as r(T ′m) rather than the child of r(T ′m)), and so in particular
|LT ′

m
(y) \ LT ′

m
(z)| < d + d′. If y 6= r(T ′m) and Z2 = ∅ then |LT ′

m
(y) \ LT ′

m
(z)| ≤ 4(d + d′) as

described above. Otherwise, let y′ be an element of Z2 and yp its parent, ys its sibling in T ′m.
Clearly |LT ′

m
(yp)| ≥ |LT ′

m
(y′)| ≥ d + d′, and so as yp /∈ Z2 we have |LT ′

m
(y2) \ LT ′

m
(yp)| < d + d′.

If |LT ′
m

(ys)| ≥ d + d′ then ys ∈ Z2 (since |LT ′
m

(y2) \ LT ′
m

(ys)| ≥ |LT ′
m

(y′)| ≥ d + d′), and so
|(LT ′

m
(y) \ LT ′

m
(z)) \

⋃
y′∈Z2

LT ′
m

(y′))| ≤ |LT ′
m

(y1) \ LT ′
m

(z)| + |LT ′
m

(y2) \ LT ′
m

(yp)| ≤ 2(d + d′).
Otherwise, |(LT ′

m
(y) \ LT ′

m
(z)) \

⋃
y′∈Z2

LT ′
m

(y′))| ≤ |LT ′
m

(y1) \ LT ′
m

(z)|+ |LT ′
m

(y2) \ LT ′
m

(yp)|+
|LT ′

m
(ys)| ≤ 3(d + d′).

We have now shown that |Z2| ≤ 2 and |(LT ′
m

(y) \ LT ′
m

(z)) \
⋃

y′∈Z2
LT ′

m
(y′))| ≤ 4(d + d′).

The final property of Z2 we wish to show is that for any y′ ∈ Z2 and any T ′ ∈ P ∗, we have that
x /∈ LT ′(y′T ′).

So suppose x ∈ LT ′(y′T ′). Let ŷ1, . . . , ŷd+d′ be d + d′ labels in LT ′
m

(y2) \ LT ′
m

(y′). Let
w1, . . . , wd+d′ be d + d′ labels in LT ′

m
(y′). Then for each i ∈ [d + d′], T ′m (and therefore T2)

22

contains the triplet (ŷiwi|x), but T ′ contains the triplet (xwi|ŷi). Therefore confset(T ′, T2)
contains d + d′ sets whose only common element is x. As this implies a contradiction, we must
have x /∈ LT ′(y′T ′).

Now that Z1 and Z2 have been constructed, let Z = Z1∪Z2. Note that |Z| ≤ 4. Algorithm 3
describes the construction of y and Z formally (see Figure 5).

y

y1

z
z2

z1

x

y2

Z1

Z2

Figure 5: Construction of y and Z = Z1 ∪ Z2, see Algorithm 3. Dashed edges represent parts
of the tree that were omitted. Triangles represent parts of the tree that may contain more than
d + d′ leaves.

We have shown above that for any T ′ ∈ P ∗, x is descended from yT ′ in T ′ and not from z′T ′ for
any z′ ∈ Z, and so x ∈ LT ′(yT ′) \

⋃
z′∈Z LT ′(z′T ′). As |LT ′

m
(z) \

⋃
z′∈Z1

LT ′
m

(z′))| ≤ 4(d+ d′) and
|(LT ′

m
(y)\LT ′

m
(z))\

⋃
y′∈Z2

LT ′
m

(y′))| ≤ 4(d+d′), we have |LT ′
m

(y)\
⋃

z′∈Z LT ′
m

(z′))| ≤ 8(d+d′).
To analyze the complexity, note that we can calculate the value of |LT ′

m
(u)| for all u in O(n)

time using a depth-first search approach, together with the fact that |LT ′
m

(u)| = |LT ′
m

(u1)| +
|LT ′

m
(u2)| for any node u with children u1, u2. Then we can find z in O(n) time, and once we

have found z we can find y, and thence z1, z2, y1, y2, in O(n) time. Similarly, once these nodes
are found we can find the members of Z in O(n) time.

Using the claim, we may now construct a set P ′ of O ≤ 16(d+d′)+8 trees on X \(Xm \{x}),
such for any T ′ ∈ P ∗, P ′ contains the tree T ′′ = T ′ − (Xm \ {x}). Indeed, let F be the set
of arcs uv in Tm that exist on a path from y to a node in (LTm(y) \

⋃
z∈Z LTm(z′)) ∪ Z. As

|LTm(y)\
⋃

z′∈Z LTm(z′)| ≤ 8(d+d′), |Z| ≤ 4 and Tm is a binary tree, we have |F | ≤ 16(d+d′)+8.
For each e ∈ F , let Te be the tree obtained from Tm by grafting x onto the arc e . Let
P ′ = {Te : e ∈ F}.

Let T ′ be a tree in P ∗ and consider T ′′ = T ′−(Xm\{x}). Note that T ′′−{x} = T ′−Xm = Tm.
Therefore uT ′′ is well-defined for every node u ∈ V (Tm), and every node in T ′′ is equal to uT ′′

for some u ∈ V (Tm), except for x and its parent in T ′′. So let w be the parent of x in T ′′, uT ′′

the parent of w in T ′′, and vT ′′ the child of w in T ′′ that is not x. Observe that T ′′ can be
obtained from Tm by grafting x onto the arc uv. Then it is enough to show that uv ∈ F .

To see that uv ∈ F , first note that for each z′ ∈ {y}∪Z, z′T ′′ is well-defined and (z′T ′′)T ′ = z′T ′

(see Lemma 9). Then as x is descended from (yT ′′)T ′ = yT ′ in T ′, x is descended from yT ′′ in
T ′′ (Lemma 8). Similarly, as x is not descended from (z′T ′′)T ′ = z′T ′ in T ′ for any z′ ∈ Z, x is
not descended from zT ′′ in T ′′. Thus x ∈ LT ′′(yT ′′) \

⋃
z′∈Z LT ′′(z′T ′′). It follows that uT ′′ is a

descendant of yT ′′ in T ′′ (note that yT ′′ 6= w, as w is not the least common ancestor of any set of
labels in X (Tm)). Also, vT ′′ is not a descendant of zT ′′ for any z′ ∈ Z, unless vT ′′ ∈

⋃
z∈Z zT ′′ , as

otherwise x would be a descendant of such a zT ′′ . Thus, vT ′′ is either a member or an ancestor
of (LT ′′(yT ′′)\

⋃
z′∈Z LT ′′(z′T ′′)))∪

⋃
z′∈Z z′T ′′ . It follows using Lemma 8 that u is a descendant in

Tm of y, and v is an ancestor of (LTm(y)\
⋃

z′∈Z LTm(z′)))∪
⋃

z′∈Z z′. Then uv ∈ F , as required.

23

Now that we have constructed our set P ′, it remains to find, for each Te ∈ P ′, every tree T ′

on X such that T ′ − (Xm \ {x}) = Te and T ′ − {x} = T1 − {x}. This will give us our set P , as
for every T ′ ∈ P ∗, T ′ − (Xm \ {x}) is a tree Te in P ′, and T ′ − {x} = T1 − {x}.

Let e = uv, where u, v ∈ V (Tm), and let T1e be the subtree of T1 − {x} whose root is v, and
has as its label set v together with all labels in Xm \ {x} descended from u but not v. Then we
have to try every way of adding x into this tree. If T1e contains t labels from Xm, then there are
2t− 1 places to try adding x. Therefore P will have at most 2|Xm| ≤ 2(d + d′) additional trees
compared to P ′, and so |P | ≤ 18(d + d′) + 8. Algorithm 4 gives the full procedure to construct
P .

Algorithm 4 FPT algorithm to find candidate trees for (T1, Ti, x)

1: procedure candidate-trees(T1, T2, x, d, d
′)

T1, T2 are two trees, x is a label that cannot be moved in T2 (but must be moved in T1), d
is the maximum number of leaves we can remove in a tree, d′ is the maximum number of
leaves we can move in T1. For this pseudocode, every tree T has a degree-1 root r(T).

2: Find X ′m such that |X ′m| ≤ d′ + d− 1 and (T1 − {x})−X ′m = (T2 − {x})−X ′m
3: Set Xm = X ′m ∪ {x}
4: Set Tm = T1 −Xm

5: Set (y, Z) = location-restriction(Tm, T2, Xm, x, d, d′) . y, Z are nodes in
Tm such that roughly speaking, we may assume x must become a descendant of y but not
of any z′ ∈ Z.

6: Set U = {u ∈ V (Tm) : u ∈ Z or u is a leaf descended from y but not from any z′ ∈ Z}
7: Set F = {uv ∈ E(Tm) : uv is on a path from y to U} . F is the set of edges we could

graft x onto.
8: Set P = ∅ . Given F we now begin constructing P .
9: Set T ′1 = T1 − {x}

10: for e = uv ∈ F with u the parent of v do . Try grafting x on e
11: Set uT ′

1
= the node in T ′1 corresponding to u

12: Set vT ′
1

= the node in T ′1 corresponding to v
13: Set Xe = set of labels l in Xm \ {x} for which l has an ancestor v′ in T ′1 with v′

descended from uT ′
1
, vT ′

1
descended from v′

14: . Xe is the set of leaves of T1 for which we have to subdivide e.
15: Set U = vT ′

1
∪Xe

16: Set Ee = {u′v′ ∈ E(T ′1) : u′v′ is on a path from uT ′
1

to U}
17: for u′v′ ∈ Ee do
18: Constuct T ′ from T ′1 by grafting x on u′v′

19: Set P = P ∪ {T ′}
20: Return P

To analyze the complexity, recall that we find Xm, and therefore construct Tm and T ′m, in
O(n log n) time. As shown above, we can find the node y and set Z in O(n) time. Given y and Z,
the set of arcs F can be found in O(n) time using a depth-first search approach. For each e ∈ F
it takes O(n) time to construct Te, and so the construction of P ′ takes O(|F |n) = O((16(d+d′)+
8)n) time. Finally, the construction of of P from P ′ takes O(|P |n) = O((18(d+ d′) + 8)n) time.
Putting it all together, we have that the construction of P takes O(n(log n + 18(d + d′) + 8))
time.

We will call the set of trees P described in Lemma 10 the set of candidate trees for (T1, T2, x).
We are finally ready to give the proof of Theorem 4.1

Theorem 4.1 (restated). AST-LR-d can be solved in time O(cdd3d(n3 + tn log n)), where c is a
constant not depending on d or n.

24

Proof. The outline for our algorithm is as follows. We employ a branch-and-bound algorithm,
in which at each step we attempt to modify the input tree T1 to become close to a solution. We
keep track of an integer d′, representing the maximum length of an LPR sequence between T1

and a solution. Initially set d′ = d. At each step, if dLR(T1, Ti) ≤ d for each Ti ∈ T then T1 is a
solutioon, and we are done. Otherwise, there must exist sime Ti for which dLR(T1, Ti) ≥ d+d′. In
this case, we calculate the (d+d′) disagreement kernel S between T1 and Ti (using the procedure
of Lemma 7), and for each x ∈ S, attempt to construct a set P of trees as in Lemma 10. For each
T ′ ∈ P , we try replacing T1 with T ′, reducing d′ by 1, and repeating the procedure. Algorithm 5
describes the full procedure formally.

We claim that Algorithm 5 is a correct algorithm for AST-LR-d, and runs in time O(cdd3d(n2+
tn log n)), for some constant c not depending on n or d.

First notice that if, in a leaf node of the branch tree created by Algorithm 5, a tree T ∗ is
returned, this occurs at line 3 in which case it has been verified that T ∗ is indeed a solution.
As an internal node of the branch tree returns a tree if and only if a child recursive call also
returns a tree (the for loop on line 9), this shows that when the algorithm outputs a tree T ∗, it
is indeed a solution.

We next show that if a solution exists, then Algorithm 5 will return one. Suppose that T
admits a solution, and let T ∗ be a solution that minimizes d1 := dLR(T1, T

∗), with d1 ≤ d′. We
show that one leaf of the branch tree created by the algorithm returns T ∗ (and thus the root of
the branch tree also returns a solution, albeit not necessarily T ∗). This is done by proving that
in one of the recursive calls made to mastrl-distance on line 13, the tree T ′ obtained from
T1 satisfies dLR(T ′, T ∗) = d1 − 1. By applying this argument inductively, this shows that the
algorithm will find T ∗ at some node of depth d1 in the branch tree of the algorithm.

First notice that since dLR is a metric, for each Ti ∈ T , dLR(T1, Ti) ≤ dLR(T1, T
∗) +

dLR(T ∗, Ti) ≤ d′ + d, and so the algorithm will not return FALSE on line 5.
If T1 isn’t a solution, then there is a tree of T , say T2 w.l.o.g., such that dLR(T1, T2) > d.

Notice that in this case, all the conditions of Lemma 6 are satisfied, i.e. dLR(T1, T2) > d, and
there are sets X1, X2 ⊆ X both of size at most d such that T1−X1 = T ∗−X1, T2−X2 = T ∗−X2.
Thus there is a minimal disagreement X between T1 and T2, |X| ≤ d′ + d, and x ∈ X such that
x ∈ X1 \X2. By Lemma 3, there is an LPR sequence L = (x1, . . . , xk) turning T1 into T ∗, where
{x1, . . . , xk} = X1. As x ∈ X1, by Lemma 4, the leaves appearing in L can be reordered, and we
may assume that x = x1. Finally by Lemma 10, if T ′ satisfies dLR(T ′, T ∗) ≤ d1 − 1 and T ′ can
be obtained from T1 by an LPR move on x, then T ′ ∈ P . As we are making one recursive call
to mastrl-distancefor each tree in P , this proves that one such call replaces T1 by T ′ such
that dLR(T ′, T ∗) = d1 − 1.

As for the complexity, recall from Lemma 7 that the (d+d′)-disagreement kernel S computed
in line 8 contains at most 8d2 labels.Therefore when Algorithm 5 enters the ’for’ loop of line 9,
it branches into at most 8d2 cases, one for each x ∈ S. Within each of these cases, the algorithm
enters at most |P | recursive calls, each of which decrements d′. As |P | ≤ 18(d+d′)+8 ≤ 36d+8
by Lemma 10, a single call of the algorithm splits into at most 8d2(36d + 8) = O(d3), each of
which decrements d′. Therefore, the branching tree created by the algorithm has degree at most
cd3 (for some constant c) and depth at most d, and so O(cdd3d) cases are considered.

As dLR(T1, Ti) can be calculated in O(n log n) time for each Ti, a single call of lines 2-5 of
the algorithm takes O(tn log n) time. A single call of lines 6-8 takes O(n2) time by Lemma 10.
Thus the total time for all calls of lines 2-8 is O(cdd3dn(n2 + t log n). Each call of line 10 occurs
just before a recursive call to the algorithm, as so line 10 is called at most O(cdd3d) times. A
single call of line 10 takes O(n(log n + 18(d + d′) + 8)) = O(n(log n + 36d)) time by Lemma 10,
and so the total time for all calls of line 10 is O(cdd3dn(log n + 36d)). Thus in total, we have
that the running time of the algorithm is O(cdd3d(n2 + n(t log n + 36d)). As we may assume
d ≤ n, this simplifies to O(cdd3d(n2 + tn log n)).

25

Algorithm 5 FPT algorithm for parameter d.

1: procedure mastrl−distance(T = (T1, T2, . . . , Tt), d, d
′)

T is the set of input trees (represented as a sequence to distinguish T1 from the other trees),
d is the maximum number of leaves we can remove in a tree, d′ is the maximum number of
leaves we can move in T1, which should be initially set to d.

2: if dLR(T1, Ti) ≤ d for each Ti ∈ T then
3: Return T1

4: else if there is some Ti ∈ T such that dLR(T1, Ti) > d′ + d then
5: Return FALSE #handles the d′ ≤ 0 case
6: else . here we ‘guess’ a leaf prune-and-regraft move on T1

7: Choose Ti ∈ T such that dLR(T1, Ti) > d
8: Set S = disagreement-kernel(d + d′, T1, Ti)
9: for x ∈ S do . we are ‘guessing’ that x should go where Ti wants it.

10: Set P = candidate-trees(T1, Ti, x, d, d
′)

11: T ∗ = FALSE
12: for T ∈ P do
13: T ′ = mastrl−distance((T, T2, . . . , Tt), d, d

′ − 1)
14: if T ′ is not FALSE, let T ∗ := T ′

15: Return T ∗

26

