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Abstract

Reconciliation methods explain topology differences between a species tree and a gene tree by evolutionary
events other than speciations. However, not all phylogenies are trees: hybridization can occur and create new
species and this results into reticulate phylogenies. Here, we consider the problem of reconciling a gene tree with
a species network via duplication and loss events. Two variants are proposed and solved with effcient algorithms:
the first one finds the best tree in the network with which to reconcile the gene tree, and the second one finds
the best reconciliation between the gene tree and the whole network.

Background
Reconciliations explain topology incompatibilities between
a species tree and a gene tree by evolutionary events -
other than speciation - affecting genes [[1], for a review].
However, not all phylogenies are trees: indeed, hybridiza-
tion can occur and create new species [2] and this results
into reticulate phylogenies, i.e. species (phylogenetic) net-
works [3]. In [4], the authors presented a first contribution
toward solving a problem similar to the reconciliation pro-
blem, namely the cophylogeny problem [5-8], on net-
works. In their article, they first propose a polynomial
algorithm to solve this problem on dated host trees taking
into account codivergence, duplication, host switching,
and loss events. This model is similar to the DTL model
in gene tree reconciliation - that takes into account specia-
tion, duplication, transfer, and loss events [[9], among
others]. However, when extending the cophylogeny pro-
blem to species networks, their model may not be the
more pertinent one for the DTL problem. Indeed, in [4]
the parasite tree that is “reconciled” with the host network
can take any path in the latter, modeling the fact that
some hybridization species can receive the parasites of
both parents. In the problem of gene tree reconciliation,

their model is more adapted to novel hybridizations,
where the genes still keep trace of the polyploidy due to
the hybridization. But, for ancient hybridizations, the poly-
ploidy of the extant species being reduced, a model where
each gene of an hybridization species can be inherited
from at most one of its two parents is more pertinent. In
other words, for solving the latter problem, we are inter-
ested in finding a tree that is “displayed” by the species
network such that its reconciliation with a given gene tree
is optimum. We propose an efficient algorithm that takes
into account duplication and loss events whose complexity
does not depend on the number of hybridization events in
the species network but only on the level of the network,
where the level is a measure of how much the network is
“tangled”. Moreover, we propose a faster algorithm solving
the problem described in [4] when restricting to duplica-
tion and loss events (that is, host switching is not taken
into account).

Basic notions
We start by giving some basic definitions that will be
useful in the paper.
Definition 1 (Rooted phylogenetic network)A rooted

phylogenetic network N on a label set X is a rooted
directed acyclic graph with a single root where each out-
degree-0 node (the leaves) is labelled by an element of X .
The root of N, denoted by r(N), has indegree 0 and
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outdegree 2. All other internal nodes have either indegree
1 and outdegree 2 (speciation node), or indegree 2 and
outdegree 1 (hybridization node).
Denote by V(N), I(N), E(N), L(N) and L(N) respec-

tively the set of nodes, internal nodes (nodes with out-
degree greater than 0), edges, leaves and leaf labels of N.
The size of N, denoted by |N|, is equal to |V(N)| + |
E(N)|. Given x in V(N), we denote by Nx the subnetwork
of N rooted at x, i.e. the subgraph of N consisting of all
edges and nodes reachable from x. If x is a leaf of N, we
denote by s(x) the label of x in L(N). If x is a speciation
node, we denote by p(x) the only parent of x.
Given two nodes x and y of N, we say that x is lower

or equal to y in N, denoted by x ≤N y (resp. lower,
denoted by x <N y), if and only if there exists a path
(possible reduced to a single node) in N from y to x
(resp. and x ≠ y). If x ≤N y, then, for every path p from
y to x, denote by length(p) the number of speciation
nodes in N such that x <N z ≤N y. If N is a tree, then,
for every two nodes u, v of N, LCAN (u, v) [10] is the
lowest node of N that is above or equal to both u, v.
Given a speciation node x in N, two paths of N start-

ing from x are said to be separated if each path contains
a different child of x. Let x, y be two nodes of N. Denote
by MN(x, y) the set of nodes z of N such that there exist
two separated paths in N from z to x and y. For exam-
ple, in Figure 1(d), MN′(x, y) = {m1,m2,m3}. Note that
all nodes in MN(x, y) are speciation nodes and, when N
is a tree and x, y are not comparable, MN (x, y) contains
exactly one node, which coincides with LCAN (x, y).
If every biconnected component of N has at most k

hybridization nodes, we say that N is of level-k [11]. A
rooted phylogenetic tree is a rooted phylogenetic net-
work with no hybridization nodes, i.e. a level-0 network.
In the following, we will refer to rooted phylogenetic
networks and rooted phylogenetic trees simply as net-
works and trees, respectively. In this paper, we allow
trees to contain artificial nodes, i.e. nodes with indegree
and outdegree 1.
Let B be a biconnected component of a network N.

Then B contains exactly one node r(B) without ances-
tors in B [[12], Lemma 5.3]; we call r(B) the root of B. If
B is not trivial, i.e. B consists of more than one node, we
can contract it by removing all nodes of B other than r
(B), then connect r(B) to every node with indegree 0
created by this removal. Then the following definitions
are well-posed.
Definition 2 (Tree bc(N)) Given a network N, the tree

bc(N) is obtained from N by contracting all its bicon-
nected components.
For example, Figure 1(a, b) shows respectively a level-

2 network N and its associated tree bc(N).
Let denote by ◦

B the node in bc(N) that corresponds to
a biconnected component B in N. Given two

biconnected component Bi, Bj , we say that Bi ≤ N Bj

(resp. Bi <N Bj ) if and only if
◦
Bi ≤bc(N)

◦
Bj (resp.

◦
Bi <bc(N)

◦
Bj). We say that Bi is the parent (resp. a child)

of Bj if
◦
Bi

is the parent (resp. a child) of
◦
Bj in bc(N). We

also denote by LCAN(Bi, Bj) the biconnected component

corresponding to LCAbc(N)(
◦
Bi,

◦
Bj) in N.

Definition 3 (Elementary network) Given a network
N, each biconnected component B that is not a leaf of N
defines an elementary network, denoted by N(B), consist-
ing of B and all cut-edges coming out from B.
Definition 4 (Switchings of a network [13]) Given a

network N, a switching S of N is obtained from N by
choosing, for each hybridization node, an incoming edge
to switch on and the other to switch off. Once this is
done, we also switch off all switched-on edges with the
target node having only switched-off outgoing edges (see
Figure 1(e) for an example). For each bi-connected com-
ponent B of N, we also denote by S(B) the subgraph of S
restricted to N(B).
Switchings will be used in the next section to model

gene histories for genes evolving in a species network.
For example, Figure 1 presents in (c) a switching of the
level-2 network in (a). We denote by Von(S) the set of
nodes of S that are not an endpoint of any switched-off
edge. A path of S is a path of N that uses only
switched-on edges.
Hereafter, G will denote a tree and N a network such

that there is a bijection between L(N) and L(N) and
L(G) ⊆ L(N). In the gene tree reconciliation problem,
G represents a gene tree such that each leaf corresponds
to a contemporary gene and is labeled by the species
containing this gene, while N is a species network such
that each leaf represents an extant species. In the cophy-
logeny problem, G represents a parasite tree such that
each leaf corresponds to a parasite species that is labeled
by the species that hosts it, while N is a host network
such that each leaf represents an extant species.

Reconciliations
We will now extend the definition of DL reconciliation
in [14] to networks. In a DL reconciliation, each node
of G is associated to a node of S and an event - a spe-
ciation (S), a duplication (D) or a contemporary event
(C) - under some constraints. A contemporary event C
associates a leaf u of G with a leaf x of S such that s
(u) = s(x). A speciation in a node u of G is constrained
to the existence of two separated paths from the map-
ping of u to the mappings of its two children, while the
only constraint given by a duplication event is that evo-
lution of G cannot go back in time. More formally:
Definition 5 (Reconciliation) Given a tree G and a

network N such that L(G) ⊆ L(N), a reconciliation
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between G and N is a function a that maps each node u
of G to a pair (ar(u), ae(u)) where ar(u) is a node of V
(N) and ae(u) is an event of type S or D or C, such that:

• αe(u) = C if and only if u ∈ L(G), ar(u)∈L(N) and s
(u) = s(ar(u));
• for every u ∈ I(G) with child nodes {u1, u2}, if
αe(u) = S, then αr(u) ∈ MN(αr(u1),αr(u2));
• for any two nodes u, v of V(G) such that v <G u, if
αe(u) = D, then ar (v) ≤N ar(u). Otherwise, ar (v) <N

ar(u).

Note that, if N is a tree, this definition coincides with
the one given in [14].
The number of duplications of a, denoted by d(a) is

the number of nodes u of G such that αe(u) = D. Since
in a network there can be several paths between two
nodes, we count the number of losses on shortest paths,
as done in [4]. In more details, given two nodes x, y of
N, the distance between x and y, denoted by dist(x, y), is
defined as follows:

• If y ≤N x, then dist(x, y) = minp length(p) over all
possible paths p from x to y;
• otherwise, dist(x, y) = +∞.

Then, for every u ∈ I(G) with child nodes {u1, u2}, the
number of losses associated with u in a reconciliation a,
denoted by la(u), is defined as follows:

• if αe(u) = S, then la(u) = min{dist(x1, ar(u1)) + dist
(x2, ar(u2)), dist(x1, ar(u2))+dist(x2, ar(u1))} where x1,
x2 are the two children of ar(u);
• if αe(u) = D, then la(u) = dist(ar(u), ar(u1)) + dist
(ar(u), ar(u2)).

The number of losses of a reconciliation a, denoted by
l(a), is the sum of la(·) for all internal nodes of G. Thus,
the cost of a, denoted by cost(a), is d(a)·δ + l(a)·l,
where δ and l are respectively the cost of a duplication
and a loss event. We use cost(G,N) to denote the cost of
the minimum reconciliations between G and N. A
reconciliation having the minimum cost is called a most
parsimonious reconciliation.
Let S be a switching of N, then a reconciliation

between G and S is defined similarly to Definition 5
except that only switched-on edges are considered when
defining paths, and only nodes in Von(S) are counted for
calculating the length of the shortest path in the defini-
tion of dist. This is done to model the fact that, since
each gene of an hybridization species is inherited from

Figure 1 (a) An example of a level-2 network N, (b) the tree bc(N), (c) a switching of N where the switched-off edges are dotted, (d) a

network N’ such that MN′
(
x, y

)
= {m1, m2, m3}, (e) another switching of a network. Note that the edge (a; b) will also be

switched off since all out-going edges of b are off.
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one of its two parents, we should not count as a loss the
fact that the other parent does not contribute. More-
over, note that, for every two nodes x, y of S such that
x ≤S y, there is a unique path from y to x in S.
When N is a tree, there is a unique reconciliation

(the LCA reconciliation) between G and N which has
minimum cost and this reconciliation can be found in
O(|G|) time [15-18] as follows:

• for each node u in L(G), ar(u) is defined as the
only node x of S such that s(u) = s(x), and αe(u) = C;
• for each node u in I(G) with child nodes {u1, u2},
ar(u) = LCAN (ar(u1), ar(u2)); if ar(u1) ≤N ar(u2) or
ar(u2) ≤N ar(u1) then αe(u) = D; otherwise αe(u) = S.

In the LCA reconciliation, the mapping ae is totally
defined by ar, hence it can be omitted, and we will use
a to refer to ar. Note that the algorithms used on trees
to find the LCA reconciliation can also be used on
switchings, which - when only switched-on edges are
considered - are actually trees. Hereafter, when we refer
to the reconciliation between a tree and a switching, we
refer to the LCA reconciliation between them. The pro-
blems in which we are interested in here are defined as
follows:
Problem 1 BEST SWITCHING FOR THE DL

MODEL
Input A tree G, a network N such that L(G) ⊆ L(N),

and positive costs δ and l for respectively D and L

events.
Output A switching S of N such that the cost(G, S) is

minimum over all switchings of N.
Problem 2 MINIMUMDL RECONCILIATION ON

NETWORKS
Input A tree G, a network N such that L(G) ⊆ L(N),

and positive costs δ and l for respectively D and L

events.
Output A minimum reconciliation between G and N.
Remark 1 For the sake of simplicity, we suppose that G

does not contain any internal node u such that
|L (Gu) | = 1 (i.e. all nodes of Gu are mapped to a leaf of
N). If it is not the case, we can simplify the instance by
replacing in G each such subtree Gu by a leaf labeled by
the unique label in L (Gu) and compute a reconciliation
for the simplified tree G’. A parsimonious reconciliation for
G can be easily obtained from a parsimonious one for G’.

Method
Best switching
We start by proving that finding the best switching for
the DL model is NP-hard:
Theorem 1 Problem 1 is NP-hard.
Proof: To prove the theorem, we reduce Problem 1 to

the TREE CONTAINMENT problem, which is NP-hard

[19]. The TREE CONTAINMENT problem asks the fol-
lowing “Given a network N and a tree T, both with
their leaf sets bijectively labeled by a label set X , is there
a switching S of N such that T can be obtained by S
deleting all switched-off edges and nodes with indegree
and outdegree 1?”. Now, assume there is an algorithm
A to solve Problem 1 in polynomial time. Then, it is
easy to see that, since l, δ > 0, there is a solution of
Problem 1 with cost 0 if and only if G is contained in
N. Therefore, this method would provide a polynomial-
time algorithm to solve the TREE CONTAINMENT
problem, which is impossible.
In the following, we present a fixed-parameter tract-

able algorithm [20] in the level of the network to solve
Problem 1. To do so, we need to introduce some
notations.
Definition 6 (Mapping B) For every u ∈ V(G), B(u) is

defined as the lowest biconnected component B of N such
that L(Nr(B)) contains L(Gu).
Then the following remark holds:
Remark 2 If u ∈ L(G), then B(u) is the only leaf of N

such that s(u) = s(B(u)). If u ∈ L(G), then B(u) = LCAN

(B(u1), B(u2)) where u1, u2 are child nodes of u in G.
We define by GN the tree obtained from G by adding

some artificial nodes on the edges of G and label each
node of GN by a biconnected component of N via an
extension of the labeling function B(·) as follows:
Definition 7 (Tree GN ) The tree GN is obtained from

G as follows: for each internal node u in G with child
nodes u1, u2 such that there exist k biconnected compo-
nents Bi1>N.. .>NBikstrictly below B(u) and strictly
above B(u1), we add k artificial nodes v1 > ... >vk on the
edge (u, u1), and B(vj ) is fixed to Bij. We do the same for
u2.
See Figure 2 for an example of GN . We have the fol-

lowing lemma:
Lemma 1 Let u be a node of I(GN ), and u’ be one of

the children of u. If u is an artificial node, then B(u) is
the parent of B(u’) and a child of B(p(u)); otherwise, B
(u’) is either equal to B(u) or one of its children.
Proof: Suppose that u is an artificial node. Then, by

Definition 7, B(p(u)), B(u), B(u’) are three consecutive
nodes of GN , thus B(u) is the parent of B(u’) and a
child of B(p(u)). Suppose now that u is not an artificial
node, and let u” be the child of u in G such that u” ≤Gn
u’ ≤Gn u. If B(u”) = B(u’), then by definition, u” = u’
because no artificial node is added between u and u”,
and thus the claim holds. If B(u’) ≠ B(u”), then by Defi-
nition 7, B(u’) is the highest biconnected component of
N that is below B(u) and above B(u”), which is then a
child of B(u).
Definition 8 (GB ) Let B be a biconnected component

of N different from a leaf, then GB is the set of all
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maximal connected subgraph H of GN such that B(u) =
B for every u ∈ I(H).
For example, in Figure 3, GB1 consists of one binary

tree, GB2 consists of one edge, and GB3 contains 1 tree
and 1 edge.
Lemma 2 Let B be a biconnected component of N dif-

ferent from a leaf, then we have the following:
(i) for every H ∈ GB, H is either a binary tree or an

edge whose upper extremity is an artificial node. More-
over, for every leaf u of H, B(u) is a child of B.
(ii) if B = B(r(G)), then GB consists of one binary tree.
Proof: (i) First, suppose that I(H) contains an artificial

node u. Then this artificial node is the only internal node
of H; indeed, by Lemma 1, the value of B(·) for the parent
and the child of u are both different from B. Thus, H
consists of only one edge whose upper extremity is u. If I
(H) does not contain any artificial node, it follows that H
is a binary tree. Moreover, by Lemma 1 and Definition 8,
B(u) is a child of B for every leaf u of H.
(ii) Suppose now that B = B(r(G)), and GB contains at

least two components H1, H2, rooted at two different
nodes r1, r2 where B(r1) = B(r2) = B. Let r = LCAGN(r1, r2),
then, by Definition 6, B(v) = B for every node v on the two
paths from r to r1 and to r2, because B(r(G)) = B(r1) = B
(r2) = B and r1, r2≤GNr ≤GNr (G). But this contradicts the
maximality of H1 and H2 since they can both be extended.
Hence GB contains only one component. Suppose that
this component is an edge; thus, its upper extremity is an

artificial node that has been added on the path from a
node u to a node v of G where u is strictly higher than r
(G). But this is not possible, because r(G) is the highest
node of G. Therefore, GB contains one binary tree.
Given a biconnected component Bi different from a leaf,

denote by Gt
Bi
the set of binary trees of GBi, and Ge

Bi
the set

of edges of GBi. Let Si be a switching of N(Bi), and let H be
a tree in Gt

Bi
. By Lemma 2, for every u ∈ L(H), B(u) is a

child of Bi and thus r(B(u)) is a leaf of N(Bi), which is also
a leaf of Si. Hence, we can define a reconciliation between
H and Si, denoted by βH

Si , such that each leaf u of H is
mapped to the leaf r(B(u)) of Si.
Lemma 3 Let S be a switching of N, and let a be the

reconciliation between G and S. For every u ∈ I(G), there

exists H ∈ Gt
B(u) such that u ∈ I(H), and α (u) = βH

S(B(u)(u).
The proof of this lemma is deferred to the appendix.

The following definition will be useful later on.
Definition 9 (cost(H,Si)) Let Bi be a biconnected com-

ponent of N different from a leaf, and Si a switching of
N(Bi); then cost(H,Si) is defined as follows:

• ∀H ∈ Gt
Bi
, cost(H, Si) = cost(βH

Si ) if Bi = B(r(G)), and
cost(H, Si) = cost(βH

Si ) + λ dist(r (Si) ,βH
Si (r (H)) otherwise;

• ∀H ∈ Ge
Bi
, cost (H, Si) = λ dist(r (Si) ,βH

Si (r (B (u))) where
u is the only leaf of H.

As we will see later, this cost corresponds to the con-
tribution of H to a reconciliation between G and any

Figure 2 (a) A gene tree G and (b) the tree GN along with the labeling B(·) of its nodes (N here is the network in Figure 1(a)).

Figure 3 An example of execution of Algorithm 1 on the tree G in Figure 2(a) and the network N in Figure 1(a). (a) GB1 and a switching
of N(B1) on which its reconciliation with GB1 contains 1 duplication and 2 losses. (b) GB2 and a switching of N(B2) on which the reconciliation

with GB2 contains one loss. (c) GB3 and a switching of N(B3) on which the reconciliation with GB3 contains 2 losses.
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switching of N that contains Si. For example, in Figure 3
(b), H is the edge (B2, a) and, if Si is the switching on
the left, then cost(H,Si) = l.
The next lemma is a central one, and it permits to

solve Problem 1 independently per each biconnected
component of N :
Lemma 4 Let {B1,..., Bp} be the biconnected compo-

nents of N that are not leaf nodes, and let S be a switch-
ing of N where each elementary network N(Bi) has Si as

switching. Then cost (G, S) =
∑ p

i=1

∑
H∈GBi

cost(H, Si).
Proof: Let a be the reconciliation between G and S.

Denote by da(Si) the number of nodes in I(Si) associated
to a duplication by a. By Remark 1, no duplication hap-
pens at leaves of S. Additionally, ∪Bi∪H∈Gt

Bi
I (H) = I (G)

and the sets of internal nodes of Gt
Bi
are disjoint. Hence,

we have d(α) =
∑ p

i=1dα(si) =
∑ p

i=1

∑
H∈Gt

Bi
d(βH

SI )

because βH
Si (u) = α(u) for every internal node u of H

(Lemma 3).
Let us now consider the loss count. Note that a

node/edge is on (resp. off) in Si if and only if it is also
on (resp. off) in S. Let x, y be two nodes of S such that
y ≤S x. Then we define distSi

(
x, y

)
as the number of

nodes z in Von(Si) \ L(Si) such that y <S z ≤S x. Then,
for each internal node u of G, we define the number of
losses associated with u in Si, denoted by la(u, Si), simi-
larly to la(u) but using the function distSi instead of

dist. Then, lα (u) =
∑p

i=1
lα(u, Si). Now, let u1, u2 be

two children of u in G, then la(u, Si) >0 only if the
path from a(u) to either a(u1) or a(u2) in S contains at
least a node of Bi. Therefore, we have three possible
cases: (1) a(u) is in is in Bi, (3) a(u) is above r(Bi)
while either a(u1) or a(u2) is in a biconnected compo-
nent below Bi. In case (1), by Lemma 3, there exists a
binary tree H of Gt

Bi
such that u∈I(H), and α (v) = βH

Si (v)

for every v∈I(Si), thus lα (u, Si) = lβH
si

(u). Now, let sup-
pose Si that case (2) holds for u1, then u1 must be the
root of a binary tree H1 of Gt , and the contribution of

u1 to la(u, Si) is dist
(
r (Si) ,β

H1
Si (r (H1))

)
. Note that in

this case, u1 ≠ r(G). Finally, let suppose that case (3)
holds for u1 and let ua, ub be the artificial nodes added
on the edge (u, u1) of G such that B(ua) = Bi and B(ub)
is a child of Bi. Hence, (ua, ub) ∈ Ge

Bi
, and the contribu-

tion of u1 to la(u, Si) is dist(r(Si), r(B(ub))). Let call

V1
i ,V

2
i ,V

3
i the set of nodes u in the first, second, and

third case. By construction, V1 is disjoint from V2
i and

V3
i . Moreover, V2

i and V3
i are disjoint because if a

node u has two children u1, u2 such that u1 is in Bi,
and u2 is below Bi, then u must be in Bi, i.e. cannot be
above r(Bi). Thus,

l(α) =
∑

u∈I(G)
lα(u) =

∑
u∈I(G)

p∑
i=1

lα(u, Si) =
p∑
i=1

∑

u∈V1
i ∪V2

i ∪V3
i

lα(u, Si).

Therefore,

cost(G, S) = δ · d(α) + λ · l(α) =
p∑
i=1

(δ · dα(Si)+

λ ·
∑

u∈I(G)
lα(u, Si)) =

p∑
i=1

(δ ·
∑
H∈Gt

Bi

d(βH
i )+

λ ·
∑

u∈V1
i ∪V2

i ∪V3
i

lα(u, Si) =
p∑
i=1

([λ ·
∑

u∈V3
i

(u, Si)]+

+[δ ·
∑
H∈Gt

Bi

d(βH
Si ) + λ ·

∑

u∈V1
i

lα(u, Si)+

λ ·
∑

u∈V2
i

lα(u, Si)]).

As proved above (in case (3)), the first term between

squared brackets is equal to
∑

H∈Gt
Bi
cost(H, SI) by Defini-

tion 9. In the second term between squared brackets, the

sum of the two first factors is exactly
∑

H∈Gt
Bi

cost(βH
Si )

(as proved in case (1)), while the last factor is equal to

λ ·
∑

H∈Gt
Bi

dist(r(Si),βH
Si (r(H)) (as proved in case (2)).

Note that as mentioned in case (2), only nodes that are
not the root of G are considered. Hence, the second term
between squared brackets corresponds to∑

H∈Gt
Bi

cost(H, Si) by Definition 9.

Therefore, cost (G, S) =
∑p

i=1

∑
H∈GBi

cost(H, Si) and

this concludes the proof.
Algorithm 1 computes the switching of N for which its

reconciliation with G has the smallest cost, by analyzing
each biconnected component of N independently. See
Figure 3 for an example of application of this algorithm
to the species network in Figure 1(a) and the gene tree in
Figure 2(a).
Algorithm 1 Solving Problem 1
1: Input: A species network N and a gene tree G such

that L(G) ⊆ L(N), and positive costs δ, l for duplica-
tion and loss events, respectively.
2: Output: A switching S of N that is optimal in the

sense of Problem 1.
3: Compute the tree GN and its labeling function B(·);
4: Compute GBi for each biconnected component Bi of

N that is not a leaf;
5: for each biconnected component Bi of N do
6: for each switching Sji of N(Bi) do

7: costj =
∑

H∈GBi

cost
(
H, Sji

)
;
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8: Smi ← the switching of N(Bi) with the lowest
value of costj over all j;
9: Return the switching S of N in which each elemen-

tary network N(Bi) has S
m
i as switching.

Theorem 2 Let N be a level-k network with p bicon-
nected components. Algorithm 1 runs in O(|N| + 2k·p·|
G|) time and returns a switching S of N such that cost
(G,S) is minimum.
Proof: Complexity: It is well-known that all bicon-

nected components of N can be computed in linear
time, i.e. O(|N|), by using depth-first-search [10]. After a
linear preprocessing, LCA operations on a tree can be
performed in constant time [21,22]. Thus, from Remark
2, the mapping B(·) can be computed in O(|GN|). Hence,
the tree GN can be constructed in times O(|GN | + |N|).
By a simple traversal of GN which takes time O(|GN |),

we can compute GBi for all Bi. Each biconnected compo-
nent Bi of N has at most k hybridization nodes, then N
(Bi) has at most 2k switchings. For each switching Sji of N
(Bi), it takes O(|GB |) to compute costj [23,24]. The over-
all size of all GBi is the size of GN . Therefore, the total
complexity of the loop at lines 5 - 8 is O(2k ·|GN |). Each
edge of G can have at most p artificial nodes added to it.
Hence in the worst case O(|GN |) = O(|G|·p), i.e. the total
complexity of Algorithm 1 is O(|N| + 2k·p·|G|).
Correctness: Let S be a switching of N where each

elementary network N(Bi) has Si as the switching. By

Lemma 4, cost(G,S) =
∑p

i=1

∑
H∈GBi

cost(H, Si). Hence

cost(G,S) is minimum if and only if
∑

H∈GBi
cost(H, Si) is

minimum for every Si. Lines 5-8 in Algorithm 1 search,
for each network N(Bi), the tree Smi such that∑

H∈GBi
cost(H, Si) is minimum, which implies the cor-

rectness of the algorithm.

Minimum Reconciliation on Networks
Given a tree G and a network N, in [4] the authors
prove that reconciling G on N can be solved in polyno-
mial time, when host switchings (or transfer events, in
the DTL reconciliation terminology) are also accounted
for. In their model, each node of N is dated by a single
date while each node of G is dated by a set of dates,
and they search for a parsimonious reconciliation
between G and N, i.e. one that has minimum cost,
under the constraint that an event associated to a node
u of G can only happen at a node/edge of N whose date
is contained in the set of possible dates of u. Although
the algorithm complexity stays polynomial, it is very
high: O(τ3·|G|·|N|5) for a binary tree and a binary net-
work, where τ is the number of possible dates of the
nodes of G and N, which is at most O(|G| + |N|). A
drawback of this model is that it requires information
on the dates that is often not available. Moreover, trans-
fers are not always possible in all parts of Tree of Life.

Here, we take into account only speciation, duplication
and loss events, and consider G and N as undated (see
Problem 2 and Definition 5 for more details). Using a
similar dynamic algorithm on this simpler model, and
by some further analyses, we provide an algorithm that
is a generalization of the LCA algorithm to networks
that has a much smaller complexity than the algorithm
in [4], namely O(h2·|G|·|N|), where h is the number of
hybridization nodes of N.
Let x, y be two nodes of N. Denote by MinN

(
x, y

)
the

subset of MN
(
x, y

)
such that, for every z ∈ MinN

(
x, y

)
,

there does not exist any z′ ∈ MinN
(
x, y

)
such that every

path from z to x and to y passes through z’. For example,
in Figure 1(d), m1, m2, m3 are in MN

(
x, y

)
but only m1

and m2 are in MN
(
x, y

)
because every path from m3

to x, y must pass m2.
For the sake of simplicity, we consider only reconcilia-

tions without duplications on hybridization nodes:
indeed, since losses are not counted at hybridization
nodes, a duplication on such nodes can be moved to its
only child without changing the total cost of the
reconciliation.
Lemma 5 Let a be a reconciliation of minimum cost

between G and N, then for every node u of G that has
two children u1, u2, we have:

(i) if αe (u) = S, then αr (u) ∈ MinN(αr (u1) ,αr (u2));
(ii) if αe (u) = D, then either ar (u1) ≤N ar(u2) and ar

(u) = ar(u2), or ar(u2) ≤N ar(u1) and ar(u) = ar(u1).

Proof: (i) Suppose that αe(u) = S, then by definition ar(u)
must be a node of MN(αr (u1) ,αr (u2)). Let x1, x2 be two
children of ar(u) such that la(u) = dist(x1, ar(u1))+dist(x2,
ar(u2)). Suppose that αr (u) /∈ MinN(αr (u1) ,αr (u2)),
then there exists a node y in MinN(αr (u1) ,αr (u2)) such
that every path from ar(u) to ar(u1) (resp. to ar(u2)) passes
for y. Let y1, y2 be the two children of y.
First, we suppose that the shortest path from x1 to

ar(u1) passes through y, y1, while the one from x2 to
ar(u2) passes y, y2. Consider the reconciliation a’ such
that α′

r (v) = αr (v) and α′
e (v) = αe (v) for every v ≠ u,

while α′
r (u) = y and α′

e (u) = S. It is easy to see that a’
respects Definition 5, and that d(a) = d(a’). Denote
by f = dist(ar(u), y), then f >0. The numbers of losses
in a and a’ are different on those associated with u
and p(u) (if u is not the root of G). We thus have la
(p(u)) ≥ la’(p(u)) - f if u ≠ r(G). Moreover, la(u) = dist
(x1, ar(u1)) + dist(x2, ar(u2)) = dist(x1, y) + 1 + dist
(y1, ar(u1)) + dist(x2, y) + 1 +dist(y2, ar(u2)) ≥ dist
(ar(u), y) + dist(y1, a’ (u1) + dist(ar(u), y)+dist(y2, a’
(u2))) ≥ 2·f +la’ (u). Hence, whether u coincides with
r(G) or not, l(a) > l(a ’), i.e. cost(a) > cost(a ’), a
contradiction.
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Suppose now that both the shortest paths from x1 to
ar(u1) and to ar(u2) pass through y, and then pass
through y1 (or y2). This means that y1 is above both ar

(u1) and ar(u2). Let y’ be one of the lowest nodes below
or equal to y1 that is above both ar(u1) and ar(u2). Let
y′2, y′2 be the two children of y’, and sup-1 2 pose, with-
out loss of generality, that y′1 is above or equal to ar(u1)
and y′2 is above or equal to ar(u2). Hence, the shortest
path from x1 to ar(u1) must pass, in the order, through
y, y1, y’, and y’, while the shortest path from x2 to ar(u2)
must pass through y, y1, y’, and y′1. By defining the
reconciliation a’as done above apart for a’(u), which is
fixed to y’, we arrive at a contradiction by a similar
argument.
(ii) Suppose that αe(u) = D, and ar(u1), ar(u2) are not

comparable. Hence, MinN(αr (u1) ,αr (u2)) is not empty.
If αr (u) /∈ MinN(αr (u1) ,αr (u2)), then there exists a
node y ∈ MinN(αr (u1) ,αr (u2)) such that every path
from ar(u) to ar(u1) and to ar(u2) must pass through y.
Similarly to case (i), we have that the reconciliation a’
that coincides with a apart for the fact that α′

r (u) = y and
α′
e (u) = S has smaller cost than a, a contradiction.

Hence, ar(u) 2 ℳinN (ar(u1), ar(u2)). Considering now
the reconciliation a’ that coincides with a but for a’ (u),
which is fixed to S. Hence d(a) = d(a’)+1, and
lα

(
p (u)

)
= lα′

(
p (u)

)
if u ≠ r(G). Let x1, x2 be the two

children of ar(u). If the shortest path from ar(u) to ar(u1)
passes through x1 while the shortest path from ar(u) to
ar(u2) passes through x2, then lα (u) = 2 + lα′(u). There-
fore, cost(a) > cost(a’), a contradiction. Thus, both the
two shortest paths from ar(u) to ar(u1) and ar(u2) must
pass through x1 (or x2). Let y be one of the lowest nodes
located on both of these paths. Then, y ∈ ℳinN (ar(u1),
ar(u2)). By the same argument as in the previous case,
the reconciliation a” coinciding with a but for α′′

r (u) = y
and α′′

e (u) = S must have smaller cost than a, a
contradiction.
Hence, either ar(u1) ≤N ar (u2) or ar(u2) ≤N ar (u1).

Suppose that the first case holds (the second case is
similar), but ar(u) ≠ ar(u2), i.e. ar(u2) <N ar (u). Let x1,
x2 be two children of ar(u). If the shortest path from ar

(u) to ar(u1) passes through x1 while the shortest path
from ar(u) to ar(u2) passes through x2, then by repla-
cing ae(u) by an S event, we obtain a reconciliation with
a smaller cost. Thus, both shortest paths from ar(u) to
ar(u1) and ar(u2) must pass through x1 (or x2). Let y be
a node that is located on both paths such that there is
no other node below y on these two paths. Then, y ≠
ℳinN (ar(u1), ar(u2)). By the same argument as in the
case (i), the reconciliation a’ such that α′

r (v) = αr (v),
α′
e (v) = αe (v) for every v ≠ u, α′

r (u) = y, α′
e (u) = S must

have smaller cost than a, a contradiction.
Now, we are ready to describe a dynamic algorithm to

compute a reconciliation of minimum cost between G

and N. Let a be a reconciliation between G and N. For
every u ∈ V(G), denote by costa(u) the cost of the
reconciliation of a restricted to Gu. Hence, if a is a
most parsimonious reconciliation, then costa(u) is the
minimum cost among all reconciliations between Gu

and N that maps u to ar(u). Algorithm 2 aims at com-
puting, for each u, the set C(u) containing all pairs (x,c)
such that c is the minimum cost among all reconcilia-
tions between Gu and N mapping u to x. It is straight-
forward to see that the cost of a most parsimonious
reconciliation between G and N is the minimum cost
involved in a pair in C(r(G)).
The function merge(L1, L2) used in Algorithm 2 takes

as input two lists of pairs (x,c) - where x is a node of N
and c is a real number - and merges them keeping, for
each x, the pair (x,c) with the smallest value of c. The
method computeMin(y, z) used in Algorithm 2 is
detailed in Algorithm 3. This method computes, for two
nodes y, z of N, the set MinN

(
y, z

)
by using two

breath-first-searches (BFS) starting respectively from y
and z up to the root of N (note that, to perform the
breath-first-searches, the edges are considered as direc-
ted in the inverse order). For this, it labels each node v
in such a way that, if v is not strictly above y and z,
then label (v) = ∅. Otherwise, label(v) is the lowest
node such that every path from v to y and z passes
through it. This method also computes the value of the
function dist between y (resp. z) and each node visited
in the corresponding breath-first-search.
Algorithm 2 Solving Problem 2
1: Input: A network N and a tree G such that

L(G) ⊆ L(N), and positive costs δ, l for duplication
and loss events, respectively.
2: Output: The set C(u) of pairs (x,c) for every

u ∈ V (G).
3: for each node u of G in post-order do
4: C(u) ¬ ∅;
5: if u is a leaf then
6: Let x be the leaf of S such that s(x) = s(u);
7: C(u) ¬ {(x, 0)};
8: else
9: Let u1, u2 be the two children of u;
10: for each (y, c1) ∈ C(u1) and each (z, c2) ∈ C(u2)

do
11: computeMin(y, z);
12: C ¬ ∅;
13: for each x ∈ MinN

(
y, z

)
do

14: Let x1, x2 be the two children of x in N ;
15: c = c1 + c2 + l·min{dist(x1, y) + dist(x2, z),

dist(x2, z) + dist(x1, y)};
16: C ¬ C ∪ {(x, c)};
17: if y ≤N z then
18: c = δ + l·dist(z, y)+ c1 + c2;
19: C ¬ C ∪ {(z, c)};
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20: else if z ≤N y then
21: c = δ + l·dist(y, z) + c1 + c2;
22: C ¬ C ∪ {(y, c)};
23: C(u) = merge(C(u),C);
24: Return C.
The following theorem proves the correctness of Algo-

rithm 2:
Theorem 3 Algorithm 2 returns a matrix C such that,

for every u ∈ V(G), (x,c) is contained in C(u) if and only
if there exists a most parsimonious reconciliation
between Gu and N mapping u to x with cost c.
Algorithm 3 computeMin(y, z)
1: Proceed a BFS from y, store the ordered list of vis-

ited nodes in BFS(y) and compute, for each u in BFS(y),
dist(y,v);
2: Do the same from z;
3: for each node v ∈ BFS(y) do
4: if v = y or v = z or v is not in BFS(z) then label(v)

= ∅
5: else if v has only one child v1 that is in BFS(z) or

BFS(y) then
6: label(v) = label(v1);
7: else
8: Let v1, v2 be the two children of v;
9: if label(v1) = label(v2) ≠ ∅ then
10: label(v) = label(v1);
11: else
12: label(v) = {v}; Add v into MinN

(
y, z

)
;

Proof: For each u ∈ V(G), we need to prove that, if a’
is a reconciliation of minimum cost between Gu on N,
then (a’(u), costa’) is contained in C(u). This is obviously
true for every leaf of G (by lines 5-7). Let now u be an
internal node having two children u1, u2. Then, follow-
ing Lemma 5, C(u) can be computed from C(u1) and
C(u2) by using the information contained in MinN and
dist. Lines 10-23 in Algorithm 2 computes C(u) follow-
ing this lemma.
It remains now to prove that Algorithm 3 correctly

computes MinN
(
y, z

)
. For every node v that is above y,

z, denote by low(v) the lowest node such that every path
from v to y, z must pass through this node. There is
only one such node. Indeed, suppose that there are two
such nodes m, m’, then every path from v to y must
pass through both m, m’, i.e. either m <N m’ or m’ <N
m, contradicting the lowest property of m, m’. To prove
the claim, we need to show that if v is a node of BFS(y),
then:
(i) if v is not strictly above y and z, then label(v) = ∅;
(ii) otherwise, label(v) = low(v) and line 12 of Algo-

rithm 3 is performed if and only if v is actually in
MinN

(
y, z

)
.

Let v be a node of BFS(y), then (i) holds by line 4.
Now consider the case where v is strictly above y and z.
We will prove (ii) by recursion on v following the order

of the nodes in BFS(y). The recursion begins from the
set of lowest nodes that are strictly above y and z, i.e.
the set of nodes of v in MinN

(
y, z

)
such that there is

not any node in MinN
(
y, z

)
that is below v. Let v1, v2

be two children of v, then by hypothesis v1, v2 are not
strictly above y, z, i.e. label(v1) = label(v2) ≠ ∅; and low
(v) = v. Thus, due to line 12, label(v) = v = low(v). Now
let v be a node strictly above y, z such that (ii) is correct
for each node below v which is strictly above or equal
to y, z. If v is a hybridization node, then it is evident
that low(v) = low(v1) where v1 is the only child of v.
Moreover, since label(v1) = low(v1) (by the hypothesis of
recurrence), then label(v) = label(v1) = low(v1) = low(v).
If v is a speciation node having two children v1, v2 such
that v2 is not in either BFS(y) or BFS(z), then we also
have low(v) = low(v1). Hence, due to lines 5 - 6, we have
label(v) = label(v1) = low(v1) = low(v). Now consider the
last case, i.e. v is a speciation node having two children
v1, v2 that are both in BFS(y) and BFS(z). If there exists
a node q = low(v1) = low(v2), then low(v) = q because
every from v to y, z must pass either through v1 or v2,
i.e. always pass through q. Following line 10, we fix
label(v) = label(v1) = q = low(v). Moreover, in this case
v can not be in MinN

(
y, z

)
because every path from v

to y, z passes through a node q below v. In the last case,
we have label (v1) 
= label (v2). Since both v1, v2 are above
y, z, then there exists a node q1 = label(v1), and a differ-
ent node q2 = label(v2). We will prove that
v ∈ MinN

(
y, z

)
. Indeed, suppose otherwise, then there

is a node q such that every path from v to y, z must
pass through q. Hence, every path from v1 (resp. v2) to y, z
must also pass through q, so q1 ≤N q (resp. q2 ≤N q). It means
that there is a path from v1 to q to q2 and then to y, z that
does not pass through q1, a contradiction. Hence v is in
MinN

(
y, z

)
, and thus by definition the only node that every

path from v to y, zmust pass through is v itself (line 12).
We now present some intermediate results that will be

useful to prove the complexity of Algorithm 2.
We extend the definition of MN to a subset of leaves.

Let L be a subset of L(N ). If |L| = 1, then MN (L) = L.
Otherwise, MN (L) is the set of nodes m of N such that
m is above all leaves in L and there exist at least two
separated paths from m to two distinct leaves of L.
Given a node u of G, LN (u) is defined as the set of

leaves of N to which a maps the leaf set of Gu, i.e.
LN (u) = {x ∈ L (N) |∃u ∈ L (Gu) and s(u) = s(x)}.
Lemma 6 Let a be a most parsimonious reconciliation

between G and N, then, for every node u of
G,αr (u) ∈ MN (LN (u)).
Proof: It is true for every leaf u of G. Let u now be an

internal node having two children u1, u2.
If u1, u2 ∈ L(G), then following Remark 1, LN (u)

consists of two distinct nodes ar(u1), ar(u2). By
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Lemma 5, αe(u) = S, i.e. there exist two separated paths
from ar(u) to ar(u1) and ar(u2). It means that
αr (u) ∈ MN (LN (u)).
Let u1 ∉ L(G), then following Remark 1, |LN (u1)| ≥ 2,

then there always exist two distinct leaves x, y of LN (u)
such that x ∈ LN(u1), y ∈ LN(u2), i.e. x is below ar(u1)
and y is below ar(u2). If αe(u) = S, then following
Lemma 5, αr (u) ∈ MinN(αr (u1) ,αr (u2)), i.e. there exist
two separated paths from ar(u) to ar(u1), ar(u2). By
extending these two paths from ar(u1) to x, and from ar

(u2) to y, we have to two separated paths from ar(u) to
x, y. In other words, ar(u) ∈ ℳN (LN (u)). If ae(u) = D

and suppose that ar(u2) ≤N ar (u1), then ar(u) = ar(u1)
following Lemma 5, and ar(u) is not a leaf of N follow-
ing Remark 1. Let u’ be the highest node such that
u’ ≤G u1 and αe(u′) = S. Then following Lemma 5,
αr(u′) = αr (u), and there exists two separated paths
from ar(u’), i.e. from ar(u), to two distinct leaves of LN
(u’), i.e. two distinct leaves of LN (u). We can prove the
claim similarly for the case when ar(u1) ≤N ar (u2).
Lemma 7 If N is a network that contains h hybridization

nodes, then for every subset L of L (N) , |MN (L) | ≤ h + 1
holds.
The proof of this lemma is deferred to the appendix.

We are now ready to state the complexity of Algo-
rithm 2.
Theorem 4 The time complexity of Algorithm 2 is O

(h2·|G|·|N|) where h is the number of hybridization
nodes of N.
Proof: For every u ∈ V(G), |C(u)| is equal to the possi-

ble nodes of N that u can be mapped to, which is
bounded by |MN (LN (u)) | by Lemma 6, and so by O(h)
following Lemma 7.
The for loop at lines 3 - 23 is performed |G| times,

and, at each iteration, the for loop at lines 10-23 is
performed O(h2) times. In each iteration of the second
loop, the operation computeMin, as detailed in Algo-
rithm 3, requires two breath-first-search traversals,
which can be performed in time O(|N|). Moreover, for
every node x of MinN

(
y, z

)
, by definition there exists

two separated paths from x to y, z, which can be
extended to be two separated paths from x to two dis-
tinct leaves l1, l2 of LN (u) where l1 is a leaf below y of
and l2 is a leaf below z. This is always possible
because, by Remark 1, |LN (u)| > 1. Hence, x must be
in MN (LN (u)) by definition, i.e. MinN

(
y, z

) ⊆ MN (LN (u)),
and thus |MinN

(
y, z

) | ≤ |MN (LN (u)) | ≤ (h + 1).
Therefore, the loop at lines 13 - 16 can be performed
in time O(h). The operation merge(L1, L2) at lines 23
for two lists of size O(h) can be implemented in times
O(h), if we know that the resulting list is also of size O
(h). Hence, it takes O(|N| + h) = O(|N|) times for each
iteration of the loop 10 - 23. Therefore, the total com-
plexity is O(h2· |G|·|N|).

Finally, a reconciliation of minimum cost between G
and N can be then obtained by a standard back-track-
ing of the matrix C, starting from any pair (x,c) of
C(r(G)) such that c is the minimum value over all pairs
in C(r(G)).

Conclusions
In this paper, we have studied two variants of the recon-
ciliation problem between a gene tree and a species net-
work. In particular, for the problem of finding the “most
parsimonious” switching of the network, even though
the number of switchings can be exponential with
respect to the number of hybridization nodes, we pro-
posed an algorithm that is exponential only with respect
to the level of the network, which is often low for biolo-
gical data. Moreover, the problem of finding a reconci-
liation between a gene tree and a network, which was
solved in [4] for a more general model but with a very
high complexity, was re-studied here for a simpler
model, which is more pertinent for same parts of the
Tree of Life, and an algorithm with a much smaller
complexity was provided. In a further work, we intend
to implement the algorithms presented in this paper
and apply them to biological data.

Appendix
Proof of lemma 3
By Definition 8, for every u ∈ I(G), there must exist H ∈
GB(u) such that u ∈ I(H). If H is an edge, then u is the
only internal node of H, which must be an artificial
node by Lemma 2. But this is not possible because
nodes of G cannot be artificial. Hence, H must be a bin-
ary tree. Let denote Bi = B(u), and Si = S(B(u)). We will
prove now that α (u) = βH

Si (u) by recursion on the
height of u.
Let u be an internal node of G that has two children u1,

u2 in G, and let H be the binary tree of GBi such that u ∈ I
(H). Denote Bi1 = B (u1), Bi2 = B (u2), and Si1 = S (B (u1)),
Si2 = S (B (u2)). For j = 1, 2, if uj is a leaf, let Hj be equal
to uj , otherwise Hj is the binary tree of GBij such that uj ∈
I(Hj). For the sake of convenience, if uj is a leaf, we also
denote by β

Hj

Sij
the reconciliation that maps the only leaf

uj to the only leaf x of N such that s(x) = s(uj ). Note that
s(x) = a(uj ).
We now suppose that α

(
uj

)
= β

Hj

Sij

(
uj

)
for j = 1, 2

(which is evidently true if uj is a leaf), and we will show
that this implies that the claim is true for u.
Let u′

1(resp. u
′
2) be the child of u in GN such that

u1≤GNu
′
1<GNu (resp. u2 ≤GN u′

2) < GN u). We respec-
tively denote Bi′1 = B(u′

1) and Bi′2 = B(u′
2). By definition

of the LCA reconciliation, we have
βH
Si (u) = LCASi(β

H
Si (u

′
1),β(u

′
2)).

(i) If Bi1 = Bi2, then Bi = Bi1 = Bi′1 = Bi2 = Bi′2, and H =
H1 = H2. This implies that u′

1 = u1, because otherwise H
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will contain an artificial node. The same holds for u′
2

and u2. Thus,
α (u) = LCAS(α (u1) ,α (u2)) = LCAS(β

H1
Si1

(u1) ,β
H2
Si2

(u2)) = LCAS(βH
Si (u1) ,β

H
Si (u2))

= LCASi(β
H
Si (u1) ,βH

Si (u2)) = LCASi(β
H
Si

(
u′

1
)
,βH

Si

(
u′

2
)
) = βH

Si (u) .

(ii) If Bi1<NBi2, then Bi = Bi2, and H = H2. As in point (i),
this implies u′

2 = u2 and thus α(u) = LCAS(α(u1),α(u2)) = LCAS(β
H1
Si1

(u1),βH
Si (u

′
2)).

If u′
1 = u1, then we have LCAS(β

H1
Si1

(u1),βH
Si (u

′
2) = LCAS(βH

Si (u
′
1),β

H
Si (u

′
2) = βH

Si (u).
Otherwise, u′

1 is an artificial node which is a leaf of H that is

mapped to r(B′
i1) by βH

Si . By Lemma 1, Bi1≤NBi′1<NBi, so
all nodes of Bi are above all nodes of Bi1 and above r(Bi′1).
This implies that LCAS(β

H1
Si1

(u1) ,βH
Si (u

′
2)) = LCAS(r

(
Bi′1

)
,βH

Si (u
′
2)) = LCASi(β

H
Si (u

′
1),β

H
Si (u

′
2)) = βH

Si (u).
Similarly for the case where Bi2<NBi1.
(iii) Suppose now that Bi1, Bi1 are not comparable and

that u′
1 
= u1 and u′

2 
= u2 (the other cases can be shown
reusing the arguments of point (ii)). Then, similarly as
in point (ii), Bi1≤NBi′1<NBi,Bi2≤NBi′2<NBi, and u′

1, u
′
2

are leaves of H mapped respectively to r(Bi′1) and r(Bi′2)

by βH
Si . Since βH1

Si1
(u1) is a node of Bi1, βH2

Si2
(u2) is a node

of Bi2, then LCAS(β
H1
Si1

(u1) ,β
H2
Si2

(u2)) = LCAS
(
r
(
Bi′1

)
, r

(
Bi′1

))
= LCASi(β

H
Si

(
u′

1
)
,βH

Si

(
u′

2
)
) = βH

Si (u) .

Therefore, in all cases we always have α (u) = βH
S (u),

and thus the same is true for every u ∈ I(G) by
recursion.

Proof of lemma 7
We will prove this lemma by recursion on the number
of hybridization nodes. See the figure 4 for an example.
If there is no hybridization node, then N is a tree, and

it is evident that MN (L) contains exactly one node.
Suppose that the claim is correct for every network

having h hybridization nodes. Let N now be a network
that has h + 1 hybridization nodes. Let (a, b) be an edge
of N having as target a hybridization node (namely, b)
such that it does not exist any hybridization node above
a (such a node always exists because N is a directed
acyclic graph). Let N’ be the network obtained by
removing (a, b) from N (and also removing all nodes of
indegree 1 and outdegree 1 created by this removal),
then N’ has exactly h hybridization nodes. Let
Q = MN (L) \MN′ (L), then every node q in Q must be
above a. Indeed, if q is not above a, then every path
from q to every node of L does not contains (a, b), thus
q is in MN′ (L), a contradiction. Moreover, by hypoth-
esis, there is no hybridization node above a, hence all
nodes of Q must be contained in a path leading a, and
this path does not contain any hybridization to node.
Let enumerate the nodes in Q as q1,... qm from the low-
est to the highest one.
If |Q| ≤ 1, then|MN (L) = |MN′ (L) | + |Q| ≤ h + 1 + 1 = h + 2,

we are done.
Suppose now that |Q| = m >1. In the following,

we will define m - 1 edges of N having as target a
hybridization node such that if N” is the network
obtained from N ’ by removing these edges, then
MN′ (L) = MN′′ (L).

Denote by L* the set of nodes in L that are below qm
in N’. Hence L \ L* is not empty since otherwise qm
would be in MN′(L), a contradiction. For every qi, i =
1,..., m, let q′

i, q
′′
i be the two children of qi such that q′

i is
above or equal to a. Hence, q′′

i , is not above or equal to
a since there is no hybridization node above a, thus
every path from qi to L \ L* must pass through q′

i and a,
b. By definition, there must exist at least two separated
paths from qi to two leaves of L. Hence, for every i,
there exists always a path from qi to a node of L* that
passes through q′′

i . Denoted this node by l(qi).
Denote by Lm the set of nodes in L* such that, for

every l ∈ Lm, there is a path from q to l that passes
through q′′

m. As explained above, Lm is not empty. Recur-
sively, for every i< m, let Li be the set of nodes in L* \
Lm \... Li+1 such that, for every l ∈ Li, there is a path
from qi to l that passes q′′

i . Note that this set may be
empty if i< m, and for every i ≠ j, Li ∩ Lj = ∅.
We will define, for each i < m, an index c(i) that is

strictly greater than i such that Lc(i) ≠ ∅, together with
two paths pi (resp. p

′
i) from qi (resp. qc(i)) to a node of Lc

(i) as follows: if l(qi) is not in Li, then by the definition,
there exists a unique j such that Lj contains l(qi), and
j > i. We fix c(i) = j. Next, we define pi (resp. p

′
i) as a

path from qi (resp. qc(i)) to l(qi) that passes q′′
i (resp.

q′′
c (i) ). If l(qi) is in Li, then let c(i) be the smallest num-

ber that is greater than i and Lc(i) ≠ ∅ (such an index
always exists because Lm ≠ ∅). Let l’ be a node of Lc(i).
Since qi is in MN (L), then there must exist a path from
qi to l’, and we define pi as this path. The path p′

i is
defined as the one from qc(i) to l’ that passes through
q′′
c(i). Note that pi, p

′
i must contain at least one common

hybridization node since they start from different nodes
and end at a same leaf of L. Denote by hi the highest
common hybridization node of pi and p′

i. Hence, all his
are distinct since each pi starts at a different node qi,
and each p′

i starts at a node qc(i) that is strictly greater
than qi. We define (ai, bi) recursively in increasing order
of i from 1 to m - 1 as follows. If i = 1, then bi is the
highest hybridizatition node on pi. If i >1, then bi is the
highest hybridization node on pi and different from all
bk for every k < i. There exists always such a node bi,
for example hi. Therefore, all bis are distinct. Denote by
ai the parent of bi on the path pi.
Denote by N” the network obtained from N’ by

removing all edges (ai, bi). For every node x in MN′ (L),
we will prove that x is also in MN′′ (L). Denote by x’, x”
the two children of x. By definition, for every l ∈ L,
there exists a path, denoted by f’(l), in N’ from x to l
such that at least one path among them passes through
x’ and one other passes through x”. To prove that x is
in MN′′ (L), we will now construct another set of paths
in N” (i.e. in N’ and does not contain any (ai, bi)) from x
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Figure 4 An illustration for the proof of Lemma 7. In this example: L = {l1, l2, l3, l4}, Q = {q1, q2, q3}, L
* = {l1, l3, l4}, L3 = {l4}, L2 = {l3}, and L1 =

∅. For i = 1, let l(q1) = l3; thus, we have c(1) = 2 and the path p1 starts from q1, passes through q′′
1, b1 to l3, while the path p′

1 starts from q2,

passes through q′′
2, b1 to l3. In this case, we have h1 = b1. For i = 2, let l(q2) = l3; thus we have c(2) = 3 and the path p2 starts from q2, passes

through q′′
2, b1, b2, h2 to l4, while the path p′

2 starts from q3 passes through q′′
3 to l4. Let x be a node in MN′(L), then x is also in MN′′(L)

where N” is obtained from N’ by removing all edges (ai, bi).
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to each leaf l of L, denoted by f”(l), such that at least
one path among them passes through x’and one other
passes through x”.
Consider first the case that x is above qm (as shown in

the figure 4). Without loss of generality, suppose that x’
is above or equal to qm while x” is not. Suppose that f’(l)
contains qm, then l ∈ L* and f’(l) must pass through x’
because there is no hybridization node above qm. Sup-
pose that l ∈ L1 ∪ .. . Lm. Let k be the index such that
l ∈ Lk, then we can choose a path f”(l) in N’ from x to l
that does not contain any (ai, bi) as follows. This path
starts from x, passes through x’, goes down to qk , then
takes the path from qk to l that contains q”. Note that
this path does not include any pi since, by construction,
every path pi starts from qi and goes to a node in Lc(i)
that is different from Li, while this path passes through qk
and goes to a node in Lk . Moreover, this path and pi can
not have any common hybridization node above ai
because bi is the highest hybridization node on pi. Hence,
it can not pass through (ai, bi) for any i. If l is not in
L1 ∪ ... Lm, it means that every path from qm to l must
pass through q′

1, then we take the path starting from x,
going down to q′

i, then continuing to l. It is evident that
this path does not include any pi, and it cannot have with
pi any common hybridization node above ai because bi is
the highest hybridization node on pi. Hence it does not
pass through any (ai, bi). If f’(l) does not contain qm, then
we fix f”(l) = f’(l). It is easy to see that f’(l) does not con-
tain any edge (ai, bi) because otherwise f’(l) and pi must
have at least a common hybridization node above ai
(since there is no hybridization node above qi). But this is
not possible because bi is the highest hybridization node
on pi. Remark that at least one of the paths f’(l) in this
case must pass through x” since all paths in the first case
must pass through x’. Hence at least two of the paths f”(l)
are separated, thus x is in MN′′ (L) by definition.
Consider now the case that x is not above qm, then

similarly as in the previous case where f’(l) does not
contain qm, we deduce that f’(l) does not contain any
(ai, bi) for every l. Hence, by choosing f”(l) = f’(l) for
every l, we are done.
Therefore, we have MN′ (L) = MN′′ (L).
The network N” contains h - |Q| + 1 hybridization

nodes, then following the hypothesis of recurrence,
|MN′′ (L) ≤ h − |Q| + 2. This implies that
|MN′ (L) | = |MN′′ (L) |≤ h−|Q| + 2, thus
|MN (L) | = |MN′ (L) | + |Q| ≤ h − |Q| + 2 + |Q| = h + 2.
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