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Abstract: Predicting how a genetic change affects a given character is a major challenge in biology,
and being able to tackle this problem relies on our ability to develop realistic models of gene networks.
However, such models are rarely tractable mathematically. In this paper, we propose a mathematical
analysis of the sigmoid variant of the Wagner gene-network model. By considering the simplest case,
that is, one unique self-regulating gene, we show that numerical simulations are not the only tool
available to study such models: theoretical studies can be done too, by mathematical analysis of
discrete dynamical systems. It is first shown that the particular sigmoid function can be theoretically
investigated. Secondly, we provide an illustration of how to apply such investigations in the case
of the dynamical system representing the one self-regulating gene. In this context, we focused on
the composite function fa(m.x) where fa is the parametric sigmoid function and m is a scalar not in
{0, 1} and we have proven that the number of fixed-point can be deduced theoretically, according to
the values of a and m.

Keywords: gene-network model; Wagner model; discrete dynamical systems

1. Introduction

Predicting the effect of a genetic change (differences in the DNA molecule) on a character of
interest (which can be related to, e.g., human health, plant and animal production, or evolutionary
differences between species) remains a major challenge in biology [1]. This is mainly due to the fact
that cell physiology is heavily regulated by complex gene networks, which are able to compensate
various genetic defects or environmental disturbances. Understanding how DNA variation translates to
observable (phenotypic) variation, due for instance to a modification of the conformation of proteins [2]
or DNA [3] a is of obvious importance, although very complex. Being able to tackle this complexity
relies, among other things, on our ability to develop realistic models of such gene networks.

There exist several kinds of biological interactions that can be modeled as gene networks
(e.g., signal transduction, metabolism, or transcription regulation). The literature proposes several
modeling frameworks for each of them based on various biological hypotheses and different time
scales [4–7]. More generally, [8] provides a complete review of biological systems inspired by network
science. An interesting subset of gene network models does not aim at predicting the behavior of a
specific group of identified genes in an organism, but are rather used as a general abstraction of a
gene network, in order to study their evolutionary properties in individual-based simulations [9,10].
Although naive in terms of biological hypotheses, these models are particularly important because
they could contribute to unifying systems biology and evolutionary genetics.
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The most popular framework in this field is the so-called “Wagner Model” (after [9,11]).
This model is an abstraction of the interactions between transcription factors (genes that regulate
the expression of other genes). The structure of the n-gene network is encoded into a n× n matrix
(W in the original model, thereafter noted M), which is constant for an organism, and the status of
the gene network (the expression of the n genes of the network) is encoded into a vector S of size n.
The dynamics of the gene network over a finite number of discrete time steps is modeled as a system
of n linear difference equations, often written as St+1 = F(MSt), where F(x) = [ f (x1), f (x2), ..., f (xn)],
in which f is a scaling function. The n2 elements of matrix M are real numbers representing the
influence of gene j on gene i (Mij < 0 for repression, Mij > 0 for up-regulation, and Mij = 0 for
the absence of interaction). Self regulation is possible (and realistic), i.e., Sii can be different from 0.
The purpose of the scaling function f is to ensure that gene expressions S remain in their domain of
definition. The gene network starts from an initial vector of gene expressions S0, generally set at an
arbitrary level.

In the original setting from [11], gene expressions were discrete and could take only two
values, −1 for no expression and 1 for an expressed gene, f (x) was thus a step function
( f (x < 0) = −1; f (0) = 0; f (x > 0) = 1). Alternative parameterization include e.g., scaling between 0
and 1 [12]. An overview of the diversity of similar settings is provided in [13]. Recent implementations
of the model consider continuous gene expressions, and the step function was turned into a sigmoid,
scaling gene expressions between −1 and 1 ( f (x) = 2/(1 + e−x)− 1, see [14,15]). For more realism,
the sigmoid function can also be further modified to ensure that genes are only weakly expressed
in absence of regulators, by considering that f (0) = a < 1/2, as in [16], and which is the model
studied below.

The main purpose of such models is to ensure that any combination M, S0 can be solved
computationally (e.g., as the state of the network ST after T time-steps) within a predictable (most of the
time, constant) amount of time. This is of major importance in individual-based computer simulations
or other numerical studies in which the network structure M can mutate and evolve over time.
The lack of mathematical tractability remains, however, problematic, as it makes it difficult to compare
simulation results with classical predictions from population and quantitative genetics models [17,18].

This is why, in this article, a mathematical analysis of the sigmoid variant of the Wagner
gene-network model is presented, focusing on the simplest case, that is, one unique self-regulating gene.
It is demonstrated that, in addition to classical numerical simulations, this model can be theoretically
studied too, by the means of mathematical analysis of discrete dynamical systems. It is first shown that
the particular sigmoid function, usually studied within this model, can be theoretically investigated,
and such investigations are secondly partially applied to the dynamical system representing the one
self-regulating gene. Finally, some ways to extend the analysis to the multiple gene case are sketched.

The remainder of this article is structured as follows. In the next section, the parameterized
sigmoid function is deeply studied by the means of mathematical analysis. Effects of parameter
changes on its shape are discussed too, and a systematic investigation of its fixed points is finally
provided. Section 3, for its part, focuses on the discrete dynamical system of the modified Wagner
model. The one self-regulating gene model is next partially studied, in a particular situation and then
in its most general formulation. This article ends by a conclusion section, in which the contribution is
summarized and intended future work is outlined.

2. Studying the Sigmoid Function

We first provide some rationales about the sigmoid function usually considered in the variant of
the Wagner gene-network model studied here [16]. They will be used in the next section, when studying
the one self-regulating gene system.
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2.1. Introducing the Considered Sigmoid

Let us consider a ∈]0, 1[ and the particular sigmoid function defined by:

∀x ∈ R, fa(x) =
1

1 + λ e−µx (1)

with λ =
1− a

a
> 0 and µ =

1
a(1− a)

=
1
a
+

1
1− a

> 1.

This function, and its parameters, have been chosen in order to have:

• a continuous increasing function,
• the limit of fa as x approaches negative infinity is 0,
• the limit of fa as x approaches infinity is 1,
• fa(0) = a and f ′a(0) = 1,

which corresponds to the curve depicted in Figure 1.

Figure 1. Graph of the sigmoid function fa(x) =
1

1 + λ e−µx with λ =
1− a

a
> 0, µ =

1
a(1− a)

and

a ∈]0, 1[.

fa is a smooth function, with

∀x ∈ R, f ′a(x) =
λµ e−µx

(1 + λ e−µx)2 > 0. (2)

We can thus verify that fa is strictly increasing. Additionally, we can reformulate this derivative,
to relate it to the logistic map:

f ′a(x) = µ fa(x) (1− fa(x)) . (3)

2.2. About λ and µ Parameters

Let us now investigate the two parameters inside fa that both depend on a. λ(a) =
1
a
− 1 has a

curve depicted in Figure 2a. µ(a) =
1
a
+

1
1− a

, for its part, has a derivative equal to:

µ′(a) =
2a− 1

a2(1− a)2 , (4)

whose variation table is as described in Figure 3.
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(a) λ(a) =
1− a

a
> 0 (b) µ(a) =

1
a(1− a)

Figure 2. Parameter dependence against a ∈]0, 1[.

a

µ′(a)

Cµ

0
1
2

1

− 0 +

+∞+∞

44

+∞+∞

Figure 3. Variation table of µ.

Let us thus remark that λµ =
1
a2 > 1, next that

λ

µ
= (1− a)2 ∈]0, 1[ and finally that h is always

greater or equal than 4.

2.3. Fixed Point of fa

One of the most important elements to study, when investigating the Wagner model, is the
existence and meaning of fixed points. We will show that the fixed points of the one self-regulating
gene model are related to those of the modified sigmoid function fa, which are studied hereafter.

We can first remark that, as ∀a ∈ [0, 1], fa is continuous and such that fa([0, 1]) ⊂ fa([0, 1]), it is
thus a function mapping a compact convex set to itself. Due to Brouwer’s fixed-point theorem, fa has
at least one fixed point in [0, 1]. Let us prove that,

Theorem 1. ∀a ∈ [0, 1], fa has one unique fixed point in R, which is within [0, 1].

Proof. Let us first remark that, if fa has a fixed point x, then it satisfies:

x =
1

1 + λ e−µx . (5)

Moreover, as fa(x) = x on the one hand, and fa(R) =]0, 1[ on the other hand, we necessarily have:

x ∈]0, 1[. (6)
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Additionally, 0 < x and fa is strictly increasing, so fa(0) < fa(x), which leads to a < x. To sum
up, if fa has a fixed point x, then this latter satisfies:

0 < a < x < 1. (7)

Let us consider a fixed point x for fa. So we have:

fa(x) = x ⇐⇒ 1
1 + λ e−µx − x = 0⇐⇒ h(x) =

1
1 + λ e−µx

(
1− x− λx e−µx) = 0.

Let us define H(x) = 1− x− λx e−µx, so x is a fixed point for fa if and only if it is a zero of H:
H(x) = 0. Let us study the variations of H function.

H′(x) = −1− λ e−µx +λµx e−µx = λ e−µx(µx− 1)− 1
H′′(x) = −λµ e−µx(µx− 1)λµ e−µx

= λµ e−µx(2− µx)

> 0⇐⇒ x <
2
µ

,

which leads to the variations depicted in Figure 4.

x

H′′(x)

CH′

−∞
2
µ

+∞

+ 0 −

−∞−∞

λ e−2−1λ e−2−1

−1−1

Figure 4. Variations for H′.

Depending on the sign of λ e−2−1, H′ can be either negative on the whole R set, or positive on a

bounded interval containing
2
µ

. More precisely,

λ e−2−1 > 0⇐⇒ λ > e2 ⇐⇒ 1
a
− 1 > e2 ⇐⇒ a 6

1
e2 +1

∈]0, 1[. (8)

• If a >
1

e2 +1
, then H′ 6 0 on R, and we have lim

x→−∞
H(x) = lim

x→−∞
1− x− λx e−µx = +∞ and

lim
x→+∞

H(x) = −∞, which leads to the variations depicted in Figure 5.

Consequently, if a >
1

e2 +1
, then H(x) = 0 has one unique solution, i.e., fa has one unique fixed point.

• If a 6
1

e2 +1
, then there exist two real numbers x1 and x2 such that the variation table of Figure 6

is satisfied for H.

– H
(

2
µ

)
=

(
1− 2

µ
− 2λ

µ
e−2
)

. As µ > 4, we deduce that
2
µ
6

1
2

. Additionally, e−2 <
1
4

and

λ

µ
= (1− a)2 ∈]0, 1[, then

2λ

µ
e−2 <

1
2

. As a conclusion, H
(

2
µ

)
> 0.
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As H
(

2
µ

)
> 0, H is increasing on [

2
µ

, x2], H decreases on [x2,+∞[, and the limit of H of x

as x approaches +∞ equals −∞, we can deduce that H(x) = 0 has an unique solution on[
2
µ

, ∞
[

, on a point x > x2. In particular, fa has one unique fixed point in this interval.

– We show that H(x1) > 0, and so fa has no fixed point on
]
−∞,

2
µ

]
.

H′(x1) = 0, then λ e−µx1(µx1 − 1)− 1 = 0⇐⇒ λ e−µx1 =
1

µx1 − 1
. So:

H(x1) = − (λx1 e−µx1 +x1 − 1)

= −
[

x1

µx1 − 1
+ x1 − 1

]
=
−(µx2

1 − µx1 + 1)
(µx1 − 1)

.

Furthermore, H′
(

1
µ

)
= λ e−1(1− 1)− 1 < 0, and H′ is increasing on

]
−∞,

2
µ

]
(as H′′ > 0

on this interval). As H′(x1) = 0, we can deduce that x1 >
1
µ

. Consequently, µx1 − 1 > 0.

Let j(x) = µx2− µx + 1. Since 1+ λ e−µx1 > 0, thus H(x1) is negative if and only if j(x1) > 0.
We now investigate the sign of j.

As 0 <
1
µ
< x1 <

2
µ
6

1
2

, it is sufficient to study j on the interval I =
[

0,
1
2

]
.

j′(x) = µ(2x− 1), so j is strictly decreasing on I. The discriminant of the quadratic equation

j(x) = 0 being µ(µ− 4) > 0, the latter has two solutions
µ±

√
µ(µ− 4)
2µ

, which are equal

when µ = 4 (i.e., when a =
1
2

). Note that only
µ−

√
µ(µ− 4)
2µ

may belong to I, and that the

latter is equal to
1
2
−
√

1
4
− 1

µ
=

1
2
−
√

1
4
− a(1− a) =

1
2
−

√(
a− 1

2

)2
. We successively have

1
2
−

√(
a− 1

2

)2
=

1
4
−
(

a− 1
2

)2

1
2
+

√(
a− 1

2

)2

=
−a2 + a

1
2
+

√(
a− 1

2

)2

=
−a(a− 1)

1
2
+

√(
a− 1

2

)2

which is positive for each a ∈]0, 1[ and less than
1
2

. Thus
µ−

√
µ(µ− 4)
2µ

∈]0, 1/2[ and

we have the variations depicted in Figure 7.

If x1 belongs to

[
0,

µ−
√

µ(µ− 4)
2µ

]
, then j(x1) is positive and H(x1) is negative.
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Let us show that x1 ∈
[

µ−
√

µ(µ− 4)
2µ

,
1
2

]
. As a 6

1
e2 +1

, we then have a− 1
2
< 0, and so√(

a− 1
2

)2
=

1
2
− a. Finally,

µ−
√

µ(µ− 4)
2µ

= a. As stated at the beginning of the proof,

since x1 is a root of H, x1 is a fixed point for fa and thanks to (7).

a < x1, and so j(x1) < 0, as j is decreasing with j(a) = 0. To put it in a nutshell, H(x1) > 0.

x

H′(x)

CH

−∞ +∞

−

+∞+∞

−∞−∞

Figure 5. Variations of H.

x

H′(x)

CH

−∞ x1
2
µ

x2 +∞

− 0 + + 0 −

+∞+∞

H(x1)H(x1)

H(x2)H(x2)

−∞−∞
H
(

2
µ

)
> 0

Figure 6. Variation of H when a 6
1

e2 +1
.

x

j′(x)

j(x)

Cj

0
µ−

√
µ(µ− 4)
2µ

1
2

− −

+ 0 −

11

1− µ

4
1− µ

4
0

Figure 7. Variations of j.

A numerical simulation based on a dichotomic approach to solve the equation

x =
1

1 + λ(a) e−µ(a)x

on ]0, 1[, leads to the curve depicted in Figure 8.
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Figure 8. Graph of numerical solution of equation x =
1

1 + λ(a) e−µ(a)x
when a is varying in ]0, 1[.

Let us now establish the following result:

Proposition 1. For all x ∈]0, 1[ , | f ′a(x)| < 1.

Proof. As stated previously (Equation (3)), f ′a(x) = µ fa(x) (1− fa(x)). So, we have

f ′′a (x) = µ f ′a(x) (1− fa(x))− µ fa(x) f ′a(x)

= µ f ′a(x) (1− 2 fa(x)) .

Thanks to inequation (2) it can be deduced that f ′′a (x) shares then the same sign than 1− 2 fa on
R, and consequently on [0, 1] where the fixed point x is located. Furthermore,

1− 2 fa(x) 6 0 ⇐⇒ fa(x) >
1
2
⇐⇒ 1

1 + λe−µx >
1
2
⇐⇒ 1 + λe−µx 6 2

⇐⇒ e−µx 6
1
λ
⇐⇒ x >

ln(λ)
µ

.

But
ln(λ)

µ
> 0⇐⇒ λ > 1⇐⇒ 1

a
− 1 > 1⇐⇒ a 6

1
2

.

So, if a >
1
2

, then
ln(λ)

µ
6 0, and thus ∀x ∈ [0, 1], x >

ln(λ)
µ

. This implies that

∀x ∈ [0, 1], 1− 2 fa(x) 6 0, and so ∀x ∈ [0, 1], f ′′a (x) 6 0. In other words, if a >
1
2

, then f ′a decreases in

[0, 1], and so:
∀x ∈ [0, 1], 0 6 f ′a(x) 6 f ′a(0) = a < 1.

To sum up, if a >
1
2

, then fa is a contraction mapping such that | f ′a| is bounded by a.

Let us now consider a <
1
2

, and x̌ =
ln(λ)

µ
. x̌ is in [0, 1], as

ln(λ)
µ

=

ln
(

1− a
a

)
1

a(1− a)

6

1− a
a
− 1

1
a(1− a)

= (1− 2a)(1− a),
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and each term of the right-side product is in [0, 1]. Additionally, as 1− 2 fa(x) 6 0⇐⇒ x >
ln(λ)

µ
= x̌

and as x̌ < 1, we can deduce that the sigh of f ′′a , which is the one of 1− 2 fa(x), is negative for x > 1.

Finally, limx−→+∞ f ′a(x) = limx−→+∞
λµe−µx

(1 + λe−µx)2 = 0. All these information are summarized in

Figure 9.

f ′a(x) has a maximum in x̌, but f ′a(x̌) =
µ

4
< 1, since µ < 4. In fact the function a(1− a) has

a maximum in a = 1/2. Since f ′a is also positive on [0, 1] we have proven that | f ′a(x)| < 1, for all
x ∈ [0, 1].

x

f ′′a

C f ′a

f ′a

C fa

0 x̌ 1 +∞

+ 0 − −

11

µ

4
µ

4
00

f ′a(1)

+ + +

aa

11
1/2

fa(1)

Figure 9. Behavior of fa.

From all the material detailed previously, we can thus conclude that,

Theorem 2. The unique fixed-point of fa is an attractive one.

Proof. As | f ′a(x)| < 1, fa is a contraction mapping. By applying the Banach fixed-point theorem,
we can deduce again the existence and uniqueness, and in addition the exponential convergence of the
dynamical system to this fixed point.

Note that:

1. The unique fixed-point can be found as follows: start with an arbitrary element x0 in R and define
a sequence (xn)n∈N by xn = fa(xn−1), then xn −→ x(a).

2. For a > 1/2, as | f ′a(x)| < a, we can deduce that fa is Lipschitz continuous, with a Lipschitz
constant equal to a. As a well-known consequence, the convergence of the aforementioned
sequence is at least geometric, with a common ratio of a. For a < 1/2 the same conclusion holds
but for a constant γ < 1.

3. The 1-Dimensional Situation (n = 1)

3.1. The Discrete Dynamical System under Consideration

Let us firstly recall the general model to study gene networks. Let n ∈ N∗, M ∈ Mn (R) be a
square real matrix of size n× n, and let X0 ∈ Rn. We consider the discrete dynamical system:

(Σ) ∀k ∈ N, Xk+1 = Fa(MXk) (9)
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where
Fa : Rn −→ Rn

(x1, . . . , xn) 7−→ ( fa(x1), . . . , fa(xn)) .

Note that, most of the times, X0 = (a, . . . , a)T . We will now focus on its most simplest cases.

3.2. A Fundamental Case: M = (1)

Let us consider first that n = 1 and that the matrix M is the identity: M = (1). The (Σ)
system becomes: {

x0 = a
xk+1 = fa(xk).

Let us recall that, if the recurrent sequence uk+1 = f (uk) converges, then the limit is a fixed
point of f . And, from the study of the previous section concerning the sigmoid fa, we know that this
fixed-point x(a):

1. exists and is unique,
2. is such that 0 6 a < x(a) < 1,
3. the convergence speed is geometric, of ratio equal to a (γ).

As fa is increasing, then the sequence (xk)k∈N is monotonic. Being bounded, as fa outputs are
in ]0, 1[, we can conclude that the sequence converges, and thus its limit is xa. Finally, if x0 < x(a),
then the sequence (xn)n∈N increases to its limit, and otherwise it decreases to its limit x(a), as depicted
in Figure 10.

(a) a = 0.3, x0 = 0.3 (b) a = 0.4, x0 = 1.5

Figure 10. Iterations of xn+1 = fa(xn).

3.3. General 1-D Case: M = (m)

In that case, (Σ) becomes: {
x0 = a
xk+1 = fa(mxk), m /∈ {0, 1}.

Let us introduce ga,m(x) = fa(mx). We investigate the fixed points of ga,m according to the sign
of m.

3.3.1. Fixed Points of ga,m When m > 0

First, ga,m(x) = x⇐⇒ x =
1

1 + λ e−µmx ⇐⇒
1

1 + λ e−µmx (1− x− λx e−µmx) = 0.
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As in the fundamental case of Section 2.3, we are left to study the zeroes of function
Hm(x) = 1− x− λx e−µmx, by investigating first its variations. We have H′m(x) = λ e−µmx(µmx− 1)− 1,
and so H′′m(x) = λµme−µmx(2− µmx). The second order derivative H′′m is positive if and only if (1) m > 0

and 2− µmx > 0, or (2) m < 0 and 2− µmx < 0. Both cases are equivalent to x <
2

µm
. We then have

two variations for H′m, depending on the sign of m. First of all, Figure 11 depicts the case m > 0.

x

H′′m(x)

CH′m

−∞
2

µm
+∞

+ 0 −

−∞−∞

λ e−2−1λ e−2−1

−1−1

Figure 11. Variations of H′m for m > 0.

• If a >
1

e2 +1
, then λe−2 − 1 is negative and then H′ 6 0 over R, and after the computation of the

limits of Hm as x approaches ±∞, we can deduce the table of variations depicted in Figure 12
(and which is independent of m).

Consequently, if a >
1

e2 +1
, then Hm(x) = 0 has one unique solution, i.e., ga,m has one unique

fixed point.

• If a 6
1

e2 +1
, then we obtain a curve similar to the fundamental case for Hm, see Figure 13.

As previously, we remark that H′m(x1) = 0 = λ e−µmx1(µmx1 − 1)− 1, so λ e−µmx1 =
1

µmx1 − 1
.

As a consequence,

Hm(x1) = −
(

x1

µmx1 − 1
+ x1 − 1

)
=
−(µmx2

1 − µmx1 + 1)
(µmx1 − 1)

.

Again as previously, H′m

(
1

mµ

)
= −1 < 0, H′m is increasing over

]
−∞,

2
µm

]
, and H′m(x1) = 0,

so x1 >
1

µm
. Consequently, since m > 0, then µmx1 − 1 > 0, and Hm(x1) has the opposite sign of

jm(x1) where jm(x) = µmx2 − µmx + 1.

Let us study the quadratic polynomial jm(x) on R. Its discriminant ∆(jm) is equal to
µ2m2 − 4µm = µm(µm− 4), and it has the sign table described in Figure 14.

– If m ∈
]

0,
4
µ

[
, then jm(x1) = µmx2

1 − µmx1 + 1 = µm
(

x1 −
1
2

)2
− µm

4
+ 1. As 0 < m <

4
µ

,

we can conclude that jm(x1) > 0. So Hm(x1) < 0. For the same reasons, Hm(x2) is negative
and Hm has thus only one root, which belongs to ]−∞, x1[. Thus gm,a has only one fixed point
in this interval.

– If m =
4
µ

, then

H 4
µ
(x1) =

−(2x1 − 1)2

(1 + λ e−4x1) (4x1 − 1)
,
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which is of the sign of 1− 4x1. But x1 >
1

mµ
=

1
4
=⇒ 4x1 > 1 =⇒ 1− 4x1 < 0. So, for

m =
4
µ

, H 4
µ
(x1) is strictly negative and H 4

µ
(x2) similarly. Again, g 4

µ ,a has only one fixed point

in the interval ]−∞, x1[.

– If m >
4
µ

, then ∆(jm) > 0. So jm is positive outside its two roots and negative

otherwise.
1
2
±
√

1
4
− 1

mµ
. The largest one is outside I =

[
0,

1
2

]
. Let us first focus on

z1 =
1
2
−
√

1
4
− 1

mµ
=

1
µm

1
2
+

√
1
4
− 1

µm

. Since 0 6
1

µm
6

1
4

then
1
2
6

1
2
+

√
1
4
− 1

µm
6 1

and thus
1

µm
6 z1 6

2
µm

. From
1

µm
6 z1 6

1
2

, one can thus deduce that
2

µm
6 z2 6 1. Thus,

2
µm

is in ]z1, z2[ and jm(
2

µm
) < 0. In other words,

Hm(x2) > Hm(
2

µm
) > 0.

∗ If µm is large (i.e.,
1

µm
is close to 0), z1 is close to

1
µm

. The left root of H, x1 would be s.t.

x1 ≥ z1 and jm(x1) < 0. In such a case Hm(x1) > 0 and there is only one fixed point in
]x2, ∞[.

∗ If µm is close to 4, z1 is close to
2

µm
. The left root of H, x1 would be s.t. x1 ≤ z1 and

jm(x1) > 0. In such a case Hm(x1) < 0 and there is one fixed point in ]−∞, x1[, one in]
x1,

2
µm

[
and one in ]x2, ∞[.

∗ if x1 = z1, jm(x1) = 0 and so Hm(x1) = 0. There is one fixed point x1 in
]
−∞, 2

µm

]
and

one in ]x2, ∞[.

x

H′m(x)

CHm

−∞ +∞

−

+∞+∞

−∞−∞

Figure 12. Variation of Hm for a >
1

e2 +1
.
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x

H′m(x)

CHm

−∞ x1
2

µm
x2 +∞

− 0 + + 0 −

+∞+∞

Hm(x1)Hm(x1)

Hm(x2)Hm(x2)

−∞−∞
Hm

(
2

µm

)

Figure 13. Variation of Hm for a 6
1

e2 +1
.

m

∆(jm)

0
4
µ

+ 0 − 0 +

Figure 14. Sign of ∆(jm).

3.3.2. Fixed Points of ga,m When m < 0

The existence of a unique fixed point can be proved without computations, however deeper
investigation to establish the nature of this fixed pointed are necessary.

Lemma 1. ga,m(x) has at least one fixed point.

Proof. Suppose for an absurdum that ga,m has no fixed points. Since ga,m is a continuous map and
ga,m(0) = a we have

Γ(ga,m) := {(x, y) : ga,m(x) = y} ⊂ {(x, y) : x < y},

that is trivially false since there are x ∈ R such that x > ga,m(x), (for instance x = 2/m).

Theorem 3. If m < 0, then ga,m has a unique fixed point.

Proof. Let P ⊂ R2 be the subset of the fixed points of f , i.e., P = {(x, x) ∈ R2 : f (x) = x}; since
P is a compact set, we can consider his minimum p1 ∈ P, that we may call the first fixed point of f .
In fact P = Γ( f ) ∩ Γ(y = x) ∩ [0, 1]2, thus P is compact because is a finite intersection of close subsets
contained in a compact set ([0, 1]2).

Suppose for an absurdum to have another fixed point p2; since p1 is the first fixed point, we have
p1 < p2. However ga,m is a decreasing function on [0, 1], in fact

g′a,m(x) =
λµm e−µmx

(1 + λ e−µmx)2 ,

thus we have
p1 = ga,m(p1) > ga,m(p2) = p2,

a contradiction that proves that p1 can be the only fixed point of ga,m.

As can be seen, the number of fixed-point of ga,m can be deduced theoretically, according to
the values of a and m. At each fixed-point x, we still have to study its attractive property thanks to
the value of |g′a,m(x)|. Although technical, this latter can be done by using usual methods from the
mathematical analysis.
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4. Conclusions and Future Work

In this article, the objective was to show that gene-network models like the Wagner one, based on
the iterations of some discrete dynamical systems defined using a sigmoid function, can be studied too
theoretically. Iterations of the sigmoid function has been deeply studied in a first section, emphasizes
the fact that the number of fixed points, their approximate location, and their attractivity, can be
computed mathematically. Furthermore, we shown that each iteration of this sigmoid function tends
to the fixed-point, no matter the initial condition. Elements showing how to extend this study to the
complete one self-regulating gene has then be provided in a second section, showing the possibility of
such studies. In future work, we intend to extend such investigations to a network of more than one
gene. We will first deeply studied the case of 2–4 genes. Such investigations will then be extended
to a larger number of genes, introducing qualitative methods that will depend on the shape of the
considered matrix.

Author Contributions: Christophe Guyeux outlined and structured the demonstration of the general case, in its
first version, and all the proofs have been checked and improved by Jean-François Couchot. and then Luigi
Marangio, who proposed the solution for the case m < 0 in Section 3. Finally, Arnaud Le Rouzic proposed the
framework and the related works, while Jacques M. Bahi supervised the work.
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