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Abstract 
 
Phenotyping is a major challenge in international agronomic competition. In a perspective of modern and sustainable 
agriculture, understanding the relationship between genotype and phenotype according to the environment is one of the 
major projects of agronomic research. Artificial vision devices embedded on robotic platforms, working in visible or 
hyperspectral color fields permit to carry out many geometric and colorimetric measurements on crops. From this 
information, operations like crop varieties comparisons and disease detection are realized. For sugar beet crops, 
phenotyping operations are made from a two small leaf stage up to the final stage just before harvesting task. Two 
robotic devices were used to make colorimetric and geometrical measurements on sugar beet plants. An autonomous 
mobile robot navigating in crop lines for little growth stages, embedded two cameras. A first one, with an oblique 
orientation permitted to realize autonomous crop raw tracking and the second one in a vertical position was used to 
record cartographic images and make detailed measurements on sugar beet plants. The second robotic platform was a 
manipulator arm with 6 degrees of freedom, fixed on a mobile linear axis to make measurements for advanced growing 
stages. Active perception operations realized with the embedded camera fixed at its extremity, consisted in locating by 
artificial vision the plant leaves in 3D environment and from this information, the camera was automatically positioned 
at various desired heights and orientations for each detected leaf, for carrying out, with accuracy, image acquisitions 
and measurements. Experimentations realized with both robotic platforms, for various sugar beet growing stages, shown 
the interest of these devices for following and analyzing in detail the geometric and colorimetric evolution of sugar beet 
plants in the fields, in order to carry out some phenotyping measurements and particularly for detecting some diseases. 
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1. Introduction 

 

In recent years, the use of new technologies has become widespread in agriculture, through precision farming, with 
the aim of improving agricultural operations. The evolution of increasingly sophisticated perception sensors has enabled 
the development of high performance autonomous navigation systems, which can in particular perform agricultural 
tasks of crop monitoring, and measurements for different types of plants, while limiting human intervention, relatively 
restrictive. An important point of growing interest for the agricultural community is the protection of crops against a 
variety of factors that lead to reduced yields, such as diseases, that can affect plants during the growth process. 
Agriculture has become much more than just a way to feed ever-growing populations. Indeed, plants have become an 
important source of energy, and are a fundamental piece in the puzzle to solve the problem of global warming. There 
are several diseases that affect plants with the potential to cause devastating economic, social and ecological losses. In 
this context, diagnosing diseases in an accurate and quick way is of utmost importance. There are several ways to detect 
plant pathologies. Vision devices are currently used to detect some diseases, which can be seen in the visible or 
invisible lighting spectrum. So, it is necessary to work with RGB cameras and also with hyperspectral devices to 
develop image processing tools for disease detection. A large amount of information on the subject can be found in the 
papers by (Bock et al., 2010), (Mahlein et al., 2012) and (Sankaran et al., 2010). Fungal diseases have recently led to 
losses in world production, especially for sugar beet, wheat or maize. Also, in (Sharr et al., 2016), we find a comparison 
of leaf detection algorithms presented at the Leaf Segmentation Challenge in 2014. Article in (Barbedo et al, 2013) 
contains a state of the art of disease detection from different types of sensors (RGB, thermal, hyperspectral ...). The 
improvement of disease detection by automatic objective tools, which could replace tedious and imperfect human visual 
detection, has therefore become a major concern for agricultural producers. Reliable disease detection methods at the 
microscopic scale are also used (Henson et al., 1993) and (Hobbs et al., 1987), but are destructive because they require 
samples of plants. There is therefore a need for new innovative techniques to detect diseases as quickly as possible in 
crops, to prevent the spread of these diseases over large areas. The implementation of sensors technologies and 
algorithms for automatic phenotyping are of increasing importance. Sensors such as 3D Time-of-Flight cameras can be 
used for phenotyping under outdoor conditions (Kloze et al, 2011) and (Paulus et al, 2014). The influences of direct 
light, speed, humidity and dust on the measurements of the characteristics of the cameras and color dependence, noise 
level and depth resolution were analyzed by the application of phenotyping.  
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The benefit of analyzing the information is the ability to develop strategies to optimize the quality of their 
processing, e.g. next to spectral information on these important phenotyping methods is the exact measurement of the 
plant's morphological characteristics, for example, leaf size, leaf configuration, angle of the tree, plant height or stem 
thickness. In this paper, we will focus on the development of phenotyping tools and techniques to realize automatically 
by artificial vision, geometric and colorimetric measurements on sugar beet plants. In this application, we will be 
interested in two phenotyping platforms, to work on different stages of plant growth. On the one hand, a mobile robot 
carrying two vision systems to navigate crops for low lift stages and perform different measurements, and on the other 
hand, a mobile manipulator was carrying a camera for high growth stages. With regard to this second platform, the 
objective is to develop an autonomous robotic system allowing the camera to be placed at the desired location with 
respect to the plants, by means of active perception techniques. Its goal is to realize precise image acquisitions, in order 
to detect and identify leaf diseases, which usually appear when the plants have reached an advanced stage of maturity, 
and to quantify the diseased surfaces. During the first year of this project, a feasibility study, related to the development 
of a robotic system intended to perform measurements by artificial vision for the detection of diseases on beet leaves 
and the study of their propagation in crops, was carried out. This study led to the choice of the robotic system named 
BettyBot chosen for phenotyping operations and particularly for disease detection on sugar beet plants. 

 

2. Materials and Methods  
Two robotic platforms were used for phenotyping operations: a light mobile robot for low level stages and a big one 

composed of a linear axis and a manipulator arm, for high level stages.  

 

2.1 Mobile robot 
For little vegetation stages, a light mobile robot (weight: 30 kg, length: 50 cm, width: 30 cm) was used (Figure 1). 

This one embedded two cameras to carry out two operations: a Webcam and a Gigaethernet device. The first one, in an 
oblique position, permits to achieve a crop row tracking by visualizing three beet lines and the second one realizes 
image acquisitions on the central line to obtain a cartographic image and make measures for phenotyping operations. 
Both operations were achieved in parallel and in real time. Image processing algorithms were developed in order to 
autonomously follow the crop lines, realize measurements and record images of the central line. At the end of the 
navigation, the 2D cartography of the central line was obtained. From this one, geometric and colorimetric information 
were obtained (beet counting, spacing between plants, leaf area, level of red, green and medium blue, presence of black 
areas in the leaves, ...).  

 

               
Figure 1 - Mobile robot with both embedded cameras 

 
Various robotic platforms carrying vision systems to perform various agricultural operations have been developed, 

for phenotyping operations, as example (Subramanian et al., 2012) and  (Gustavo et al., 2012). (Åstrand and  Baerveldt, 
2012) have developed a robotic platform, similar to our platform, with the use of two vision devices for weed control on 
sugar beet crop lines, one for crop raw tracking and the other for detection and measurements on crops. Different 
methods are used for vision tracking by detecting the vanishing point (Ding et al., 2014 ) or (Kong et al., 2013). The 
intuitive idea is to make an assumption about the relative position between the vehicle and the crop lines that must be 
corrected by observing the image. With the development of precision agriculture, a lot of work has been done in order 
to be able to use assistance robots (assistance to the driving of agricultural machines) or even autonomous ones. For this 
purpose, it is necessary to be able to follow cultures in a precise way. Concerning the use of a camera for those crop raw 
tracking, different approaches are used. Hough method is often applied on images to find crop lines, after applying 
thresholding and morphological operations, such as (Rovira-Mas et al., 2005) or  (Montalvo et al., 2012). An interesting 
way of determining the position and orientation of crop lines in the image is outlined in (Gee et al., 2008). The author 
starts from a wide view of the rows (at least 6 visible) that segment from the function of excess of green, and applied 
two successive Hough methods to finally obtain the vanishing point and the width of the rows. One way to detect crop 
lines when many weeds are present is also exposed in the literature. To that end, two thresholding operations are used. 
The first one permit to isolate plants and the second one is applied to distinguish the plants from the weeds.  

Webcam camera 
Resolution: 1280 x 720 

GigaEthernet camera 
Resolution: 2044 x 2044 
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Finally, to find the culture lines, a linear regression is made around the average position of the rows. This method is 
certainly very powerful, but the model used imposes that the variations of position of the lines in the image is weak. 
Given the requirements of the specifications and a priori knowledge of the environment, a bottom-up approach seems to 
be preferred. Indeed, there are two general principles for a procedural approach: the so-called top-down approach and 
the bottom-up approach. In the first case, we start from a large amount of data that must be broken down and sorted in 
order to obtain a result. In the second case, we try to confirm a hypothesis thanks to the data of the sensors (which 
requires information on the environment in which the system evolves). 

In our application, for crop raw tracking with mobile robot, a geometric model of the robot has been defined, taking 
into account the position of the Webcam on the robot as well as the geometry of the ground and the spacing between the 
beet lines (Figure 2), to achieve a line tracking task with the Webcam, which was positioned so that it could visualize 
the vanishing point of the crop lines on the images.  

 
 

     
 
 

Figure 2 - Mobile robot geometric model for crop row tracking 
 
The technique used in this application is to define restricted search areas, from the knowledge of the environment, in 

which the objects to be detected (beet leaves) must be located. One of the major interests of these methods is to reduce 
the computation time by only looking at interesting parts of the image while ensuring a result consistent with reality. To 
be able to find the lines of culture, one estimates at first (from the knowledge a priori) the state of the mobile robot, in 
real time. Then, the lines around their estimated position are searched for the current state of the system. To carry out 
these operations, a model of the robot with the camera, in the given environment, must be developed. The complete 
image processing method is the following: first, the original image is thresholded and binarized, using image processing 
algorithms such as color classification and mathematical morphology operations (OpenCV functions), to detect beet 
leaves. Then, the image is divided into different horizontal and vertical zones (3 columns corresponding to three crop 
lines, in which the gravity centers of each leaf are searched). A linear regression operation allows obtaining sugar beet 
rows for the three lines. From this information, the application of a Kalman filtering makes it possible to automatically 
define and limit the search zones of the three beet lines, during the successive searches of beet leaves on the images 
acquired by the camera (Figure 3). Finally, visual control operations are applied for the crop row autonomous tracking 
task. 

 

                         
               Line detection 1st step                       Line detection Medium step                  Line detection final step    

Figure 3 – Detection of crop lines using Kalman filtering 

 
2.2 Bettybot Robot 

Figure 4 below shows Bettybot robot in a laboratory with a camera at its extremity, which will be used for 
phenotyping measurements for advanced level stages. It included a motorized linear axis, on which a manipulator arm 
with six degrees of freedom is mounted/fixed (UR5 Universal Robot model). At the end of this arm, a vision sensor 
such as a color camera or a hyperspectral camera was embedded to collect/take images on sugar beet crops, with the 
possibility to acquire images with various desired heights and orientations. Figure 5 presents this robot embedded on a 
tractor for the application in the fields.  

  Geometric parameters of the robot model
 
- X0 lateral deviation of the robot from the central line 
-Y0 the distance from the robot's center to the camera 
following the direction of robot moving 
- Z0 the height of the camera relative to the center of the 
robot 
- α   yaw angle   
- β   pitch angle 
- γ angle of the camera relative to the plane of robot 
moving 
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    Figure 4 -  Bettybot robot with GigaEthernet camera                        Figure 5 -  Bettybot embedded on a tractor   
 

The general application with this robotic platform is shown in Figure 6. The tractor navigates outside the crop lines 
and stops when the linear axis is aligned with a crop line. Then, the mobility of linear axis and manipulator arm permit 
to acquire and compute images on lengths of beet line of about 3m. 
 
 
 
 
 
 
 
 
 

       Figure 6 – General operations in sugar beet crop lines 

 
The use of such a system makes it possible to observe the beet leaves according to different points of view, thanks to 

the complementarity between the manipulator arm and the linear axis, which enables the sensor to reach a large number 
of positions and orientations in relation to the leaves and to be able to work on different plants. However this 
association causes difficulties in the control. Indeed, this system is redundant, that is to say it has more control variables 
(degrees of freedom) than sensor position data. Here, our system has seven joints, so seven variables of commands on 
which one can act, to place the sensor to a pose (position and orientation) defined by 6 values (3 for the position and 3 
for the orientation). There are infinite configurations of the system to place the sensor in a desired pose. 
Control/command algorithms have been developed for this operation, by acting on the six degrees of freedom of the 
UR5 arm and taking into account the problems of redundancy. The interest of the phenotyping platform is that its 
behavior adapts according to the perception of the state of the vegetation. Thus, the movements of the system must be 
enslaved from observation algorithms of beet plants, to ensure the most accurate detection as possible. It is also 
necessary to take into account the specificities related to the evolution in natural environments in these controls, such as 
the variation of the brightness, to adapt the behavior of the robot. The main task is to detect the beet leaves and then 
observe them using the sensor located at the end of the manipulator arm, in order to detect diseases. This task can be 
broken down into different functions: the first will be to detect the different leaves to be observed, then to place the 
sensor close enough above them, and finally to move around to determine the angle of view allowing obtaining the 
maximum relevant information for the detection of diseases. The work done so far is focused on two areas: perception, 
through crop detection, and control, including, among other things, the management of system redundancy. 

 

2.3 Sugar beet leaf detection 
A pixel color classification in RGB color space, using SVM method,  was made, in order to discriminate both pixel 

types (sugar beet leaf and ground pixel)  (Figure 7), considering different ground colors and beet leaves corresponding 
to various level stages (various green colors). 

 

                                                                     
 

Figure 7 – Color  discrimination between sugar beet leaf / ground points using SVM classification 

Sugar beet leaf 

Ground 

2,5 m 

Tractor navigation 

sensor 45-50 cm 

3,3 m 

2,5 m 

Vision sensor 

Hyperspectral camera 

Color camera 

Color camera 



AgEng conference  July 8–12, 2018, Wageningen, the Netherlands 
 

· 5 · 

3. Results and Discussion 
3.1 Crop row tracking result 

Figure 8 shows an example of a result obtained from monitoring beet line detection, with Webcam camera with the 
three steps of the developed algorithm: in (a) thresholding operations with the application of SVM classification and 
morphological operations to detect sugar beet crops and remove noise, in (b) the gravity centers of leaves in each 
defined rectangular area are obtained, and in (c) an example of final result obtained is presented, with the use of a 
Kalman filtering operation for improving the crop line detection. From this information and taking into account the 
position and orientation data of the camera embedded on the robot, the lateral deviation between the robot and the 
central line was obtained. Then a referenced vision command was applied for autonomous robot navigation. 

 

                                                            
                 (a)                                                  (b)                                                                     (c) 

Figure 8 – Sugar beet line detection with Webcam camera 
 
3.2  2D mapping of beet crop lines 

With the GigaEthernet camera, the objective was to acquire images on the central line, to obtain, after image 
processing, a cartographic image. From this cartographic image, geometric measurements can be made, such as the 
counting of plants and leaves, the spacing between the plants, the leaf area, but also colorimetric measurements, 
allowing to analyze in detail the colorimetric variations. on the different leaves (Figure 9).  

 

 
Figure 9 -  Cartographic image of a sugar beet line obtained with GigaEthernet camera 

 
From this 2D mapping, geometric and colorimetric measurements were carried out, such as beet plant counting, leaf 

area of each plant, distance between plant, mean color in RGB or in HSV color space, in order to analyze the color 
difference between leaves, to detect some disease and to see the growing level of the culture.  Also, data obtained with 
these cartographic images, at different time during the growing evolution, permit to make comparisons between crop 
varieties and also between fields. 
 
3-3 Detection and localization of beet leaves with Bettybot robot  

An image processing job has been performed. The objective was to detect the beet leaves of a potted plant in a 
global manner and to achieve measures on this set of pixels belonging to the beet leaves, such as the position of the 
gravity center and total leaf area (Figure 10). From these image data, control/command operations of UR5 manipulator 
arm was performed. The goal was to use the image data to position the robot extremity above a plant. 

 

                                                 
 

Figure 10 - Detection of sugar beet leaves by image processing 
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The desired pose of the sensor is estimated according to the sensor data. First, an image processing algorithm extracts 
the green areas of the observed image (by thresholding and morphology) then retrieves the different information that is 
the position of the barycenter of this area in the image and its size in pixels, as shown in the previous figure. The goal is 
to superimpose the center of gravity of this area with the center of the image. For that, one calculates the displacement 
to be carried out in the camera frame, for the moment simply by displacing the sensor in a plane parallel to the ground, 
then one expresses this displacement in the global coordinate system. The presented works, in this paper are based 
directly on the works of (Spong et al., 2001) and (Craig, 2005). The objective of this project is to detect beet leaves and 
then observe them using the sensor located at the end of the manipulator arm in order to detect diseases. This objective 
can be broken down into different tasks: the first will be to detect the different leaves to be observed, then to position 
themselves at the top close enough, then to move around to determine the angle of view allowing obtaining the 
maximum of relevant information for the detection of diseases. At first, the work done so far has been to move the 
camera attached to the manipulator arm above a plant. The position of the desired effector is then obtained. A 
performance criterion must be defined to reduce the possibilities. There are articles on trajectory generation and control 
mobile manipulators based on the value of manipulability. This criterion was defined in (Yoshikawa, 1984) and 
represents the ability of a manipulator robot to modify the pose of its effector in all directions. It is used in (Yamamoto 
and Yun, 1992) to determine the joint coordinates of the manipulator arm corresponding to maximum manipulability, 
these coordinates being subsequently fixed and only the mobile platform moves to follow the trajectory. In (Bayle et al., 
2003), the theory developed in (Yamamoto and Yun, 1992) has been extended to all mobile manipulators. Thus, this 
criterion defines the whole system, and makes it possible to generate, from kinematic models, coordinated movements 
of the whole system. More recently, this criterion has been optimized for manipulator arms with six degrees of freedom 
(Zang et al., 2016). There are also different ways to formulate the problem of control of mobile manipulators. In 
(Soetanto et al., 2003), three formulations are listed: the achievement of a desired pose by the terminal organ, path 
tracking or trajectory tracking. Finally, a second aspect that may be interesting to dig is the definition of an image 
quality metric. Indeed, the purpose of the system is to enable detection of diseases, which implies obtaining images of 
sufficiently good quality. The criteria for image resolution and sharpness are to be taken into account. Moreover, as the 
system must be used outdoors, it will be subject to variations in brightness, but also to glare due to the sun or the 
movement of leaves. 
 
3-4 Mobility control of Bettybot robot 

Once the installation of the desired effector is estimated, the system is set in motion according to a control law 
which has been developed to manage the redundancy of the system. To control the robot, we then base ourselves on 
optimizing the working space of the manipulator arm. The ultimate goal is to come to observe leaves according to 
different points of view, it is necessary that the orientation of the camera can be modified. Therefore, the working space 
of the manipulator arm should be as large as possible, when the camera is centered over a plant, to allow this change of 
orientation. To do this, we base ourselves on the distance between the desired position of the camera and the limits of 
the working space of the manipulator arm (Figure 11). If this position is inside the working space of the manipulator 
arm, only the latter is set in motion. On the other hand, if the position to be reached is too far away, the support translate 
to center the working space of the manipulator arm above the plant to be observed, ie in order to center the base of the 
manipulator arm to the maximum above the plant. In practice, a coefficient λ is defined as a function of the distance 
between the desired position of the sensor and the limits of the working space of the manipulator arm, along an axis 
parallel to that of the linear axis. Its values are in the range [-1; 1] so that when the desired pose of the sensor is close to 
the center of the working space, λ is zero and, in this case, only the manipulator arm is set in motion. On the other hand, 
if the desired pose is outside the working space, or close to the limit, then λ = ± 1 (the sign differs according to the 
direction of the displacement to be performed), and the Linear axis only moves in order to center the base of the 
manipulator arm above the plant. If the plant to be observed is between the two previous cases, then the manipulator 
arm and the linear axis move in a coordinated way. Once this coefficient λ is determined, two commands are sent: one 
for the linear axis which is proportional to λ, and one second for the manipulator arm joints, which is inversely 
proportional to λ. 
 

 
                                          a) Plant inside the working space of the arm                b) Plant outside the working space of the arm 

Figure 11 - Influence of the space between the desired position for the camera and the working space of manipulator arm 
 



AgEng conference  July 8–12, 2018, Wageningen, the Netherlands 
 

· 7 · 

In Figure (a), it may be noted that the plant is located almost under the base of the manipulator arm, fixed on the 
support in translation. In this case, the arm alone can be positioned above the plant, while keeping sufficient freedom of 
movement to allow the change of orientation of the camera. In contrast, in Figure (b), the plant being too far from the 
base of the manipulator arm, the translation of the support is then necessary to allow a change of orientation once the 
camera centered above the plant. The previously discussed command approach has been tested on the actual system. 
The following curves in (figure 12) represent the evolution of three elements: the lambda coefficient, the linear axis 
speed and the respective speeds of each of manipulator arm joints as a time function. The left column of each element 
shows the behavior of the system in the case where the plant to be observed is in the working space of the manipulator 
arm (Figure 11, case a), while the right one represents the case where the plant is located at outside the workspace 
(Figure 11, case b). 
 

                     
                    (a) Lambda evolution                                       (b) Evolution of linear axis speed           (c) Evolution of manipulator arm joints speed 

Figure 12 – Experimental results with Bettybot Robot 
 

In the first case, as the desired pose of the sensor is located in the working space, the coefficient λ is zero and only 
the manipulator arm is moving. Indeed, the speed of the linear axis is zero in this case, while the articular velocities of 
the manipulator arm evolve as a function of time, until becoming zero when the sensor is centered above the plant. 
In the second case, the desired pose of the sensor is located at the limit of the workspace. The value of λ then almost 
equal to 1 and the speed on the linear axis is therefore non-zero. It is also observed that the evolution of the speed of the 
axis follows the evolution of λ, it increases initially until reaching the maximum speed, then decreases at the same time 
as λ, which corresponds to the relationship of proportionality between the two sizes. During this time, the articular 
velocities are rather weak at the beginning, as λ is large, then increase as λ decreases, and become null when the sensor 
is above the plant. The developed algorithm for mobility and control of Bettybot robot, in order to move the camera at a 
desired position from a sugar beet crop position is satisfying. It makes it possible to weight the displacement of the 
linear axis and the manipulator arm as a function of the working space of the manipulator arm and permit to optimize 
this space in order to execute observation trajectories around the leaves. In addition, the calculation of the coefficient 
between the two commands can be parameterized according to the desired behavior: it is possible to give more weight 
to the movement of the manipulator arm, or, on the contrary, to promote the displacement of the linear axis. 

 
4. Conclusions 

 

In 2017, the robotic platform Bettybot was taken in hand, by looking at different aspects in the field of robotics, to 
meet the needs of the Phénaufol project: mobility of the linear axis and the arm UR5, perception with the using of a 
color camera, attached to the end of the manipulator arm, control / command operations, working on the one hand in 
open loop, by sending commands on the 7 degrees of freedom of Bettybot, to position the color camera at the desired 
locations to make acquisitions and image processing, and secondly in closed loop, to automatically control the 7 degrees 
of freedom, from the image data obtained, in real time, by image processing. Acquisition and image processing work 
was also carried out for early growth stages, with the Jaguar mobile robot, in order to obtain map images of beetroot 
lines and to perform geometric and colorimetric measurements. 

 

Next experimentations realized in laboratory and in the fields, will consist to apply and optimize the developed methods 
about perception by vision and control/command of Bettybot robot, working on several aligned sugar beet crops, at high 
growing stage, taking into account the redundancies of the seven degrees of freedom for robot control, and the lighting 
variations in the fields which can affect the sugar beet leaves detection. Concerning artificial vision, one important work 
will consist in the detection of each plant independently, using new image processing methods and for each plant, the 
aim will be to detect its leaves and to obtain some geometric data such as gravity center and the position of the central 
vein. Therefore, this will allow coming to observe the plant leaves one by one, and to test different observation 
trajectories. It will also be possible to integrate the calculation of an important image quality characteristic, such as 
brightness, for example, in order to determine the best point of view concerning this parameter. This approach could be 
extended to other parameters, depending on the characteristics of the image necessary for good detection.  Also, this 
robot could be also used to achieve measurements on other crops, such as maize, wheat or sunflower, for various 
precision agriculture operations. 
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