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ABSTRACT 20 

Fossil fuel emissions and changes in net land use lead to an increase in atmospheric CO2 21 

concentration and a subsequent decrease of ocean pH. Noticeable effects on organisms’ 22 

calcification rate, shell structure and energy metabolism have been reported in the literature. To 23 

date, little is known about the molecular mechanisms altered under low pH exposure, especially in 24 

non-calcifying organisms. We used a suppression subtractive hybridisation (SSH) approach to 25 

characterise differentially expressed genes isolated from Platynereis dumerilii, a non-calcifying 26 

marine polychaeta species, kept at normal and low pH conditions. Several gene sequences have 27 

been identified as differentially regulated. These are involved in processes previously considered as 28 

indicators of environment change, such as energy metabolism (NADH dehydrogenase, 2-29 

oxoglutarate dehydrogenase, cytochrome c oxidase and ATP synthase subunit F), while others are 30 

involved in cytoskeleton function (paramyosin and calponin) and immune defence (fucolectin-1 and 31 

paneth cell-specific alpha-defensin) processes. This is the first study of differential gene expression 32 

in a non-calcifying, marine polychaete exposed to low pH seawater conditions and suggests that 33 

mechanisms of impact may include additional pathways not previously identified as impacted by 34 

low pH in other species. 35 

 36 
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pH, acidification, polychaete, gene expression 38 

39 



 - 3 - 

Highlights 40 

 41 

 Differentially expressed genes were isolated from P. dumerilii kept at low pH conditions. 42 

 43 

 Transcripts indicating change in energy metabolism, cytoskeleton and immunity were 44 

observed. 45 

 46 

 The results indicate that non-calcifying organisms are impacted at low pH exposures. 47 

 48 

  49 
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1. Introduction  50 

The ocean and atmosphere exchange large amounts of carbon dioxide (CO2) with the atmos-51 

pheric concentration of CO2 increasing by 40% since pre-industrial times (IPCC, Climate Change 52 

2013). For the past 200 years the oceans have absorbed approximately one-third of the CO2 pro-53 

duced by human activity (Sabine et al., 2004) resulting in a measurable decrease of ocean pH. The 54 

ocean’s surface pH has dropped by 0.1 pH-units which is equivalent to a 26% increase in hydrogen 55 

(H
+
) ion concentration (IPCC, Climate Change 2013) leading to a current average pH of ocean sur-56 

face water at around pH 8.1 (IGBP, Ocean Acidification Summary for Policymakers, 2013). Fur-57 

thermore, global ocean surface pH is predicted to decrease to ~7.8 by 2100 (IPCC, Climate Change 58 

2013). For the last 800 000 years the CO2 concentration in the atmosphere has thus remained rela-59 

tively stable (172-300 ppmv) (Lüthi et al., 2008) as compared to the predicted values expected for 60 

the end of the century (1071 ppmv) (Plattner et al., 2001).  61 

Rapid changes in water chemistry, termed ocean acidification, are predicted to lower the 62 

stability and productivity of ecosystems by loss of biodiversity and keystone sensitive species 63 

(Barry et al., 2011). The precise mechanisms are predicted to include many different physiological 64 

processes such as photosynthesis, calcification, acid-base homeostasis, respiration / gas exchange 65 

and metabolic rate (Melzner et al., 2009; Gattuso et al., 1999; Seibel and Walsh, 2003). To date, the 66 

main focus of research has resided on calcifying organisms and molecular-level gene expression 67 

impacts following short term low pH exposure (O’Donnell et al., 2010; Todgham and Hoffmann 68 

2009; Stumpp et al., 2011; Martin et al., 2011; Parker et al., 2011; Tomanek et al., 2011; Wong et 69 

al., 2011; Moya et al., 2012; Dineshram et al., 2012, 2013; Pespeni et al.. 2013; Vidal-Dupiol et al., 70 

2013). Recent work also suggests that non-calcifying organisms, such as fish, may also be impacted 71 

by acidification (Fabry et al., 2008; Wittmann and Pörtner, 2013). Even where taxa are able to tol-72 

erate high CO2 water exposure, there are still apparent impacts in terms of altered energy require-73 

ments for basic biological functions, enzyme activities and metabolic shifts (Pörtner et al., 2000; 74 

Seibel and Welsh, 2003; O’Donnell et al., 2010; Wong et al., 2011; Pespeni et al., 2013; Vidal-75 

http://de.wikipedia.org/wiki/Ü


 - 5 - 

Dupiol et al., 2013). Specifically, genes involved in energy metabolism and biomineralisation in 76 

Japanese rice fish (Oryzias latipes), larval sea urchins (Strongylocentrotus purpuratus) and oyster 77 

(Crassostrea hongkongensis) have been shown to be down regulated (Tseng et al., 2013; Todgham 78 

and Hofmann, 2009; Dineshram et al., 2013), while genes for ion regulation and acid-base balance 79 

pathways have been reported as up-regulated (O’Donnell et al., 2010) in organisms kept at low pH 80 

relative to control pH exposure conditions. The data is inconsistent however in that up regulation of 81 

energy metabolism genes have also been reported in sea urchin (S. purpuratus) and coral 82 

(Pocillopora damicornis) studies under similar exposure conditions (Stumpp et al., 2011; Vidal-83 

Dupiol et al., 2013). Further biological processes that are potentially impacted by acidification in-84 

clude cell signalling and cytoskeleton assembly (Dineshram et al., 2012). An experimental exposure 85 

using oysters (C. virginica and C. hongkongensis) exposed to high pCO2 conditions for two weeks, 86 

revealed up-regulation of several proteins involved in cytoskeleton and oxidative stress (Tomanek 87 

et al., 2011; Dineshram et al., 2013). It is therefore clear that changes in seawater pH have an im-88 

pact on aquatic organisms, both calcifying and non-calcifying, and that multiple cellular processes 89 

may be affected.  90 

In order to understand the molecular-level impacts of acidic pH exposure on the polychaeta 91 

species, P. dumerilii, differentially - regulated pH-specific mRNA transcripts from worms main-92 

tained at control (8.2) and acidified (7.8) pH levels were isolated and identified. P. dumerilii is a 93 

model organism used for the study of molecular development, evolution, neurobiology, ecology and 94 

toxicology (Hardege, 1999; Hutchinson et al., 1995; Tessmar-Raible and Arendt, 2003)
 
and, 95 

relevantly, can be found in, and perhaps adapted to, naturally occurring acidified habitats (Cigliano 96 

et al., 2010; Calosi et al., 2013). The experimental conditions used in this study represent a pH 97 

stress scenario predicted to occur in the surface ocean water column within the next century (Gat-98 

tuso and Lavigne, 2009).  99 

 100 
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2. Methods 101 

2.1. Animals and experimental exposure 102 

P. dumerilii (mean mass ± SEM: pH 8.2 worms 1 week: 13 ± 1.55 mg, n=8; pH 7.8 worms 1 week: 103 

10.94 ± 1.76 mg, n=8) from the laboratory culture supplied by EMBL Heidelberg (Germany) were 104 

used for the experiment. Atokus worms, a sexually immature stage of the worm, were used to 105 

reduce natural variation linked to maturation, reproduction and sex. Specimens were raised in 106 

filtered natural seawater (~pH 8.2). For the low pH exposure regime, 8 worms were kept in closed 107 

plastic containers (2000 cm
3
) with approximately 800 ml filtered natural seawater of pH 7.8 108 

(salinity 35 ppt) at a light regime of 16 hrs light/ 8 hrs dark at 18 °C simulating summer conditions. 109 

A further 8 worms were kept at pH 8.2 and in the same experimental conditions as for controls. A 110 

complete water change was conducted each day. Hydrochloric acid (1M) and sodium hydroxide 111 

(1M) were used to maintain pH levels. Although not identical to the seawater carbonate chemistry 112 

changes expected for 2100, the procedure is based on the Le Chatelier’s principle and the carbon 113 

equilibrium system. Adjusting pH with CO2 or mineral acid (in a closed system) leads to the same 114 

partial pressure of CO2 and the same CO2 concentration (Gattuso et al., 2010). After 7 days, chosen 115 

to reflect an acclimation time point used in a number of ocean acidification studies (Tomenek et al., 116 

2011; Parker et al., 2011; Moya et al., 2012), each single worm was immediately immersed in 117 

800 l of RNALater solution (Sigma-Aldrich Company Ltd., Gillingham, U.K.) and stored at -80
o
C 118 

until molecular analysis.  119 

 120 

2.2. Total RNA isolation  121 

Total RNA was extracted from individual worms kept at normal and low pH using High Pure RNA 122 

Tissue (Roche, Burgess Hill, U.K.) reagents using the protocol described in the manufacturer’s 123 

procedures. The RNA concentration was measured using a Qubit
®
 Fluorometer (Life Technologies, 124 

Paisley, U.K.) and the integrity of the RNA checked using a standard ethidium bromide stained 1% 125 

formaldehyde agarose gel.  126 
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 127 

2.3. Suppressive Subtractive Hybridization (SSH), sub-cloning and sequencing 128 

The SSH technique was used to isolate and enrich differentially expressed genes between P. 129 

dumerilii kept at normal and low pH conditions. Equal amounts of RNA were pooled from each 130 

worm (n=8 worms/group), with a total of 2.5 µg RNA for each pool. cDNA was synthesised using 131 

the SMARTer
TM

 PCR cDNA Synthesis Kit reagents and manufacturer’s protocol (Clontech, Saint-132 

Germain-en-Laye, France). The forward and reverse subtracted libraries were produced using PCR-133 

Select cDNA Subtraction reagents (Clontech, Saint-Germain-en-Laye, France) according to the 134 

manufacturer’s protocol. The differential PCR products generated by SSH were inserted in a 135 

pCR
R
2.1 linearized vector (Life Technologies, Paisley, U.K.) and the constructs were transformed 136 

into competent DH10B-T E.coli (Life Technologies, Paisley, U.K.). Two hundred randomly 137 

selected colonies from each subtracted library were inoculated in LB broth and screened by PCR for 138 

inserts using vector-based primers. Fifty two clones were sent for commercial sequencing 139 

(Macrogen Europe, Amsterdam, Netherlands). Sequence identities were obtained by BLAST 140 

searches against the NCBI nucleic acid and protein databases as well as the PLATYpopsys database 141 

(http://hydra.cos.uni-heidelberg.de/pps/). Using the BLAST search results, sequence reads with an 142 

E-value <10
-5

 were discarded.  143 

2.4. Quantitative RT-PCR (qRT-PCR) validation 144 

Target mRNAs, identified using SSH, were selected for validation using qRT-PCR according to 145 

MIQE guidelines (Bustin et al., 2009). Total RNA was isolated from 8 individual worm tissues per 146 

exposure group using High Pure RNA Tissue Kit reagents (Roche, Burgess Hill, U.K.) and treated 147 

with RNA-free DNase I (Qiagen, Manchester, U.K.). Template RNA was then removed using 148 

RNase H enzyme and 10 × buffer (Thermo Fisher Scientific, Loughborough, U.K.) with a 45 min 149 

incubation at 37˚C. The RNA concentrations were measured with the Quant-iT RNA assay kit and 150 

Qubit
®
 fluorometer (Life Technologies, Paisley, U.K.). Reverse transcription of 140 ng of total 151 

http://hydra.cos.uni-heidelberg.de/pps/
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RNA from each individual worm sample (based on the typical yield from each RNA extraction) 152 

was carried out using SuperScript VILO cDNA Synthesis reagents (Life Technologies, Paisley, 153 

U.K.) and following the manufacturer’s instructions. qRT-PCR reactions were performed in 154 

duplicate, in a final volume of 20 µl containing 10 µl of qPCR Fast Start SYBR Green Master Rox 155 

(Roche, Burgess Hill, U.K.). 1 µl of cDNA and the corresponding primers (see concentrations used 156 

in Table 1) were used. Amplification were performed in a CFX96 Real Time PCR Detection 157 

System (Bio-Rad, Hemel Hempstead, U.K.) and using the following conditions: after 2 min at 95˚C, 158 

45 cycles at 95˚C for 10 sec, 60˚C for 1 min and 72˚C for 1 min. To generate the melt curve, a 159 

heating step gradient from 5 sec at 60˚C to 5 sec at 95˚C, was added to the end of the PCR run. For 160 

each of the target mRNAs, the melting curve, gel picture and sequences were analysed in order to 161 

verify the specificity of the amplified products. The amplification efficiency of each primer pair 162 

was calculated using a ten times dilution series of cDNA. Additionally, the crossing point (Cp) was 163 

detected for each target mRNA and normalised to the reference genes α-tubulin (Tub), and 18S 164 

rRNA (18S) (Zheng et al., 2011; Won et al., 2011).  165 

 166 

2.5 Statistical analyses 167 

Statistical analyses were carried out using GraphPad InStat v3 (GraphPad Software Inc., La Jolla, 168 

U.S.A.). All data were tested for normality of residuals and the homogeneity of variance. 169 

Significance for relative gene expression was tested using an unpaired t-test. Outliers were 170 

identified, and removed, if they differed by more than twice the standard deviation of the mean. For 171 

paramyosin (pH 8.2) one value was identified as an outlier (as defined by the MIQE guidelines, 172 

Bustin et al., 2009) and excluded from the statistical analysis. Statistical significance was accepted 173 

at p<0.05.  174 

 175 

 176 
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 177 

Table 1. Target and reference gene primer sequences, amplicon sizes and primer 178 

concentrations used for qPCR.  179 

 180 

3. Results  181 

3.1. SSH analysis 182 

A total of fifty-two differentially expressed mRNA sequences were isolated and then compared 183 

with sequences in the NCBI GenBank database and PLATYpopsys database (http://hydra.cos.uni-184 

heidelberg.de/pps/styled-2/) using the blastn and blastx algorithms. 32% of the sequences libraries 185 

matched to genes from different organisms, predominantly invertebrates (Table 2). The remaining 186 

sequences showed either similarity to unidentified hypothetical proteins or showed no similarity 187 

with the sequences available on the database.  188 

 189 

 190 

 191 

 192 

 193 

 194 

 195 

 196 

Gene 

name 

Forward primer (5’-3’) Reverse primer (5’-3’) Amplicon 

size (bp) 

Primer  

concentration  

(nM) 

1.1.1. 18S rRNA GCGCATTTATCAGCACAAGA CTTGGATGTGGTAGCCGTTT 239 50 

α-Tub CTTCAAGGTCGGCATCAACT TGGCAGTGGTATTGCTCAAC 101 100 

Calponin GGAGCCAGTGTGCTTGGT AGCCTGTCCAGACTTGTCCA 126 100 

Paramysin AGAACGCTGAGGGTGAATTG CGAGCTGGAGCCTGTCGGCA 183 80 

Cytochrome 

c oxidase 

GCGCAGATGTTCGTATGCTA 

 

GAGCCTACTCGGCATCTGTC 

 

197 100 

NADH CGAACCGGATTATGGCTTTG GGGAATTTGTCCCGTCTGCA 147 100 

http://hydra.cos.uni-heidelberg.de/pps/styled-2/
http://hydra.cos.uni-heidelberg.de/pps/styled-2/
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Clone 

accession 

no. 

Gene identity  Len

gth 

(bp) 

Homolog 

species  

E-

value 

GenBank 

accession 

no. 

Functional 

category 

 Up-regulated in pH 7.8:      

JZ820677 Paramyosin* 380 Mytilus 

galloprovincialis 

0.0 O96064.1 Cytoskeleton 

 Calponin* 50 Echinococcus 

granulosus 

4E-143 CDJ18009.1 Cytoskeleton 

KP640621 ribosomal protein L34 (Rpl34) 230 Cerebratulus 

lacteus 

1E-15 KJ526218.1 Protein  

synthesis 

JZ820678 DNA replication complex GINS 

protein PSF3 

765 Saccoglossus 

kowalevskii 

8E-13 NM_001184840

.1 

DNA  

replication 

 
      

 Down-regulated in pH 7.8:      

JZ820679 NADH dehydrogenase [ubiquinone] 1 

beta subcomplex subunit 7-like 

292 Ceratitis capitata 3E-7 XM_004520945

.1 

Energy  

metabolism 

JZ820680 Cytochrome c oxidase subunit 6A 489 Poecilia formosa 4E-14 XM_007557010

.1 

Energy  

metabolism 

JZ820681 2-Oxoglutarate dehydrogenase* 316 Pseudopodoces 

humilis 

0.0 XP_005532951.

1 

Energy  

metabolism 

JZ820682 ATP synthase F chain 350 Ixodes scapularis 4E-6 XM_002399310

.1 

Energy  

metabolism 

KP640622 16S ribosomal RNA 500 Hediste diadroma 8E-150 AB703100.1 Protein  

synthesis 

JZ820683 Serine protease 55* 168 Pteropus alecto 2E-22 XP_006906396.

1 

Hydrolysis of 

peptide bonds 

JZ820684 Ferritin  571 Perinereis aibuhit-

ensis  

 

1E-173 KJ784305.1 Iron storage 

JZ820685 WNK lysine deficient protein kinase 

1 (WNK1) 

234 H. sapiens 3E-05 NG_007984.2 Ion transport 

JZ820686 Calcium-binding and coiled-coil 

domain-containing protein 2* 

363 Peromyscus 

maniculatus bairdii 

1E-6 XP_006971971.

1 

 

JZ820687 IQ and ubiquitin-like domain-

containing protein 

711 S. purpuratus 

 

7E-64 XM_789342.3 Predicted: cilia 

formation 

JZ820688 fucolectin-1 323 Anguilla japonica 1E-05 AB037867.1 Immune defense  

JZ820689 Paneth cell-specific alpha-defensin 366 Equus caballus 5E-5 NM_001166074

.1 

Host defence 

 197 

Table 2 - Differentially expressed (subtracted) mRNAs in P. dumerilii maintained at normal 198 

or low pH conditions. * indicates hits with PLATYpopsys only and corresponding E-value 199 

represents the re-blast result of the matched sequence.  200 

 201 

3.2. Validation of differentially expressed mRNA transcripts 202 

Four target mRNAs were selected to validate the SSH differential transcription results by qRT-PCR 203 

(Figure 1). Calponin and paramyosin, were significantly (p=0.0440; p=0.0386) up-regulated in 204 

worms kept at low pH compared with worms kept at normal pH (Figure 1A-1B). Cytochrome c 205 

http://www.ncbi.nlm.nih.gov/protein/42559342?report=genbank&log$=prottop&blast_rank=2&RID=T0MMEDYR015
http://www.ncbi.nlm.nih.gov/protein/556514783?report=genbank&log$=prottop&blast_rank=3&RID=T0R0Z35001R
http://www.ncbi.nlm.nih.gov/nucleotide/632795327?report=genbank&log$=nucltop&blast_rank=1&RID=988M8AXJ01R
http://www.ncbi.nlm.nih.gov/nucleotide/296434196?report=genbank&log$=nucltop&blast_rank=2&RID=988H74F501R
http://www.ncbi.nlm.nih.gov/nucleotide/296434196?report=genbank&log$=nucltop&blast_rank=2&RID=988H74F501R
http://www.ncbi.nlm.nih.gov/nucleotide/498938719?report=genbank&log$=nucltop&blast_rank=1&RID=987KHYUU01R
http://www.ncbi.nlm.nih.gov/nucleotide/498938719?report=genbank&log$=nucltop&blast_rank=1&RID=987KHYUU01R
http://www.ncbi.nlm.nih.gov/nucleotide/617416455?report=genbank&log$=nucltop&blast_rank=1&RID=9894BG1701R
http://www.ncbi.nlm.nih.gov/nucleotide/617416455?report=genbank&log$=nucltop&blast_rank=1&RID=9894BG1701R
http://www.ncbi.nlm.nih.gov/protein/543379508?report=genbank&log$=prottop&blast_rank=3&RID=T09KVV8D014
http://www.ncbi.nlm.nih.gov/protein/543379508?report=genbank&log$=prottop&blast_rank=3&RID=T09KVV8D014
http://www.ncbi.nlm.nih.gov/nucleotide/393715959?report=genbank&log$=nucltop&blast_rank=4&RID=988ZDEEZ01R
http://www.ncbi.nlm.nih.gov/protein/586542518?report=genbank&log$=prottop&blast_rank=1&RID=SYF30EV1014
http://www.ncbi.nlm.nih.gov/protein/586542518?report=genbank&log$=prottop&blast_rank=1&RID=SYF30EV1014
http://www.ncbi.nlm.nih.gov/nucleotide/671706275?report=genbank&log$=nucltop&blast_rank=2&RID=987A607901R
http://www.ncbi.nlm.nih.gov/nucleotide/297206808?report=genbank&log$=nucltop&blast_rank=1&RID=989H8XEY01R
http://www.ncbi.nlm.nih.gov/protein/589917314?report=genbank&log$=prottop&blast_rank=2&RID=T0T22RBY01R
http://www.ncbi.nlm.nih.gov/protein/589917314?report=genbank&log$=prottop&blast_rank=2&RID=T0T22RBY01R
http://www.ncbi.nlm.nih.gov/nucleotide/390356667?report=genbank&log$=nucltop&blast_rank=2&RID=9897RKJG01R
http://www.ncbi.nlm.nih.gov/nucleotide/9651020?report=genbank&log$=nucltop&blast_rank=1&RID=988U8EYK01R
http://www.ncbi.nlm.nih.gov/nucleotide/260655643?report=genbank&log$=nucltop&blast_rank=1&RID=989TAECU01R
http://www.ncbi.nlm.nih.gov/nucleotide/260655643?report=genbank&log$=nucltop&blast_rank=1&RID=989TAECU01R
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oxidase and NADH dehydrogenase were down-regulated in worms kept at pH 7.8 compared with 206 

worms kept at pH 8.2 (Figure 1C-1D), though the results were not significant (p=0.2615; 207 

p=0.2757). 208 

A      B 209 

 210 
 211 

C      D 212 

 213 
Figure 1.  qPCR analysis of selected transcripts identified by SSH as differentially expressed in 214 

worms maintained at low pH seawater conditions relative to normal pH conditions. n=8, (with the 215 

exception of n=7 for paramyosin at pH 8.2), *p<0.05. 216 

 217 

4. Discussion  218 

Using the SSH approach we generated libraries enriched for genes that vary between normal pH 219 

(pH 8.2) and simulated acidification (of pH 7.8) conditions from the marine polychaete worm P. 220 
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dumerilii. In the subtractions reported here two separate libraries were constructed using: a) cDNA 221 

from worms exposed to normal pH for one week as driver (reverse library), and b) cDNA from 222 

worms exposed to acidified pH conditions for one week as tester (forward library). From these li-223 

braries, 33% of the sequences obtained were identified, which is comparable to similar studies using 224 

invertebrates (6–44%, Boutet et al., 2008; Craft et al., 2010; Ciocan et al., 2011; Ciocan et al., 225 

2012).  226 

Several mRNA transcripts were identified and validated as up regulated in P. dumerilii kept 227 

under low pH seawater conditions (Table 2; Figure 1). Amongst these transcripts were proteins 228 

involved in metabolism, cytoskeleton function (paramyosin and calponin), protein synthesis 229 

(Ribosomal protein L34 and 16S ribosomal RNA), and DNA replication (GINS protein Psf3) 230 

functions. For calponin, the sequence isolated is short (at 50 bp) and, as such, only a tentative 231 

identity can be assumed. In every case, further work is merited that would ideally seek full sequence 232 

lengths and additional functional protein studies. 233 

Changes to metabolic rates have often been observed in organisms under stress conditions. 234 

Down regulation of 2-oxoglutarate dehydrogenase, NADH-dehydrogenase, cytochrome c oxidase, 235 

and ATP synthase, collectively representing genes involved in the Krebs cycle and the 236 

mitochondrial electron transport chain, indicate a reduction in oxidative metabolism and capacity to 237 

generate ATP and NADPH. Similar down regulation of such metabolism-related genes has been 238 

reported in coral (A. millepora) and sea urchin (S. pupuratus) larvae after 28 days high pCO2 239 

exposure and 40 hours post hatching with medium level CO2 exposure treatment respectively 240 

(Kaniewksa et al., 2012; Todgham and Hoffmann, 2009). In a study using the scleractinian coral, P. 241 

damicornis, 2-oxoglutarate dehydrogenase was observed to be slightly up regulated at pH 7.8 and 242 

subsequently down-regulated at pH 7.4 (Vidal-Dupiol et al., 2013). Also, in contrast to our findings, 243 

Vidal-Dupiol et al. (2013) reported an enrichment of genes involved in oxidative phosphorylation 244 

(among them NADH dehydrogenase) at pH 7.8 and 7.2 in coral. Oyster (C. hongkongensis) and sea 245 

urchin (Lytechinus pictus) larvae behaved similary to the worms however, with an apparent down 246 
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regulation of cytochrome c oxidase and NADH dehydrogenase at low pH (Dineshram et al., 2013; 247 

O’Donnell et al., 2010). 248 

Of the cytoskeleton function transcripts identified, paramyosin is primarily a muscle thick 249 

filament protein that is common in invertebrate species (Hooper et al., 2008). Unusually, paramy-250 

osin has roles in both muscle contraction as well as immunoregulation (Gobert et al., 2005). Nema-251 

tode muscles consist of a contractile part made up of fibres with myosin, actin, tropomyosin and 252 

paramyosin, and a non-contractile part supplying energy requirements (Hooper et al., 2008). Re-253 

lated to this is another of the isolated transcripts, calponin. Calponin (calcium- and calmodulin-254 

binding troponin T-like protein) is a calcium-binding protein that inhibits ATPase activity of myo-255 

sin in smooth muscle (Castagnone-Sereno et al., 2001). An up regulation of paramyosin and 256 

calponin transcripts following acidic pH seawater exposure is consistent with other investigations 257 

reported in the literature. Adult oysters (C. virginica) and oyster larvae (C. hongkongensis) exposed 258 

to pH 7.9 – pH 7.5 displayed increased calponin-2 and myosin (light chain) expression respectively 259 

(Tomanek et al., 2011; Dineshram et al., 2013).  260 

In addition to muscle microfilament upregulation, there was also an apparent increase in 261 

protein synthesis related (ribosomal protein L34) and DNA replication (GINS protein Psf3) 262 

processes (Table 2). Such changes are common following stress conditions and consistent with 263 

findings for other invertebrate species, including oysters (C. virginica) exposed to low pH 264 

(Tomanek et al., 2011). Specifically, Psf3, is a protein from the Psf family, involved in cell cycle, 265 

and has been observed herein as up regulated in worms kept at low pH (7.8) similarly to the Psf2 266 

transcript identified in sea urchin (S. purpuratus) larvae kept under a moderate level of acidification 267 

conditions (Todgham and Hofmann, 2009). In contrast, the marine coccolithophore, Emiliania 268 

huxleyi, responded to low pH, with a down-regulation in the chloroplastic 30S ribosomal protein S7 269 

(Jones et al., 2013).  270 

 Down regulation of the immune-related transcripts fucolectin and paneth cell-specific alpha 271 

defensin was observed in worms kept at low pH conditions (Table 1). Fucolectins are fucose bin-272 
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ding proteins that have a pathogen recognition role in fish (Honda et al., 2000), while alpha 273 

defensins are microbiocidal and cytotoxic peptides involved in host defence (Szyk et al., 2006). 274 

Defensins have previously been isolated from invertebrate species such as the horseshoe crab 275 

(Tachypleus tridentatus, Kawabata, 2010) and oyster (C.gigas, Rosa et al., 2011), but, to our 276 

knowledge, this represents the first such isolation from a polychaete species (Smith et al., 2010). 277 

Immunosuppression upon contaminant exposure is well documented for marine vertebrates (de 278 

Swart et al., 1996). To what extent pH changes will similarly impact the immune system of 279 

invertebrates is less extensively studied. Bibby et al. (2008) reported that several components of 280 

mussel (Mytilus edulis) immune response, including suppressed phagocytosis, were modulated 281 

following (32 day) exposure to acidified seawater. A similar trend in immune suppression has also 282 

been reported in the star fish Asterius rubens (Henroth et al., 2011). Calcium ion concentrations 283 

have been suggested as the mechanism by which acidification causes suppression of the immune 284 

system (Bibby et al., 2008).  285 

The other genes down regulated in worms exposed to low pH include (IQ ubiquitin-like 286 

domain-containing protein (IQUB), ferritin and WNK1 (Table 1). IQUB is a putative cilia protein 287 

(Lai et al., 2011) previously observed as down regulated in larvae hatched from gastropod egg mas-288 

ses that had been co-exposed to temperature and UVB stresses (Fischer and Phillips, 2014). Ferritin 289 

stores iron and protects cells from iron-induced redox damage while also controlling its’ release for 290 

different enzymatic reactions (Theil, 1987). In an investigation of the interactive effects of 291 

acidification (using elevated CO2 levels for a duration of 4 to 5 weeks) and metal exposure in 292 

oysters (C. virginica), Goetze et al. (2014) reported pCO2 potentiation of metal-induced ferritin ex-293 

pression. WNK1 down regulation in worms exposed to low pH is also interesting in that WNK1 in 294 

vertebrates is a serine-threonine kinase expressed in kidneys that phosphorylates synaptotagmin 2, 295 

leading to activation of the epithelial sodium channel and also stimulates endocytosis of ROMK1, 296 

an ATP dependent potassium channel (Kahle et al., 2006). The observed differential expression of 297 

the WNK1 gene is therefore interesting because no common sodium, calcium nor carbonate trans-298 
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porter protein transcripts are among those differentially expressed in the worms kept at low pH in 299 

this study, and as such WNK1 may represent an alternative mechanism of ion transport and balance 300 

in this worm relative to other species. 301 

 302 

5. Conclusion 303 

Using an SSH transcriptomic approach, differentially expressed genes were identified in 304 

worms kept a low pH seawater conditions. Such worms represent a non-calcifying marine species. 305 

Particularly novel findings are differentially regulated transcripts involved in cytoskeleton processes 306 

and the immune system. These findings demonstrate that non-calcifying organisms, as well as 307 

calcifying organisms, are also at risk of potential future ocean acidification impacts. 308 
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