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Introduction

We recently introduced a new real-time area-light shading technique dedicated to lights with polygonal shapes [Heitz et al. 16]. In this chapter, we extend this area-lighting framework to support linear (line-shaped) lights in addition to polygons. Linear lights are cheaper to shade than polygons and they provide a good approximation for thin emitting cylinders (fluorescent tubes, lightsabers, etc.), as shown in Figure 1.1. Our area-lighting framework is based on a spherical distribution called Linearly Transformed Cosines (LTCs) introduced in our previous article [Heitz et al. 16]. While not required, we encourage anyone interested in the mathematical details to consult it (or the associated slides) before reading this chapter.
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1. Linear-Light Shading with Linearly Transformed Cosines

The Linear-Light Shading Model Linear lights share a limitation with point lights in that they cannot be found in the real world, since no real emitter is infinitely thin. However, in Section 1.2 we show that, in many scenarios, linear lights are a good approximation for cylindrical lights with a small but non-zero radius. We describe how to approximate these lights with linear lights that have similar power and shading, and discuss the validity of this approximation. Note that in this chapter we use the classic definition of linear lights 1 , where they are modeled as cylinders with a diffuse emission profile and an infinitely small radius [Nishita et al. 85,Bao and Peng 93]. Since these linear lights only model the lengths of the cylinders, we discuss the addition of their emitting end caps in Section 1.5.

Finally, in Section 1.6, we briefly discuss an alternative definition of a linear light that models a rectangle with an infinitely small width instead of a cylinder with an infinitely small radius. The shading of these rectanglelike linear lights remains essentially the same as the cylinder-like linear lights: it is just modulated by the orientation of the rectangle's normal.

The Material Model The key to real-time shading is the ability to integrate the product of the material (i.e., the BRDF) and the light. In the case of linear lights, we need to compute a line integral over the spherical distribution given by the BRDF. In the literature, the only spherical distributions with analytic line integrals are the diffuse distribution (we recall its derivation Section 1.3) and the Phong distribution for glossy materials [Nishita et al. 85,Bao and Peng 93]. However, the Phong distribution is an inaccurate approximation for recent physically based shading models. Furthermore, the complexity of the line integral over a Phong distribution grows linearly with the exponent of the distribution. Hence, integrating almost specular materials over a linear light can be prohibitively costly for real-time shading.

These limitations were the same for polygonal lights, and we overcame them thanks to LTCs [Heitz et al. 16]. LTC distributions yield good approximations for physically based materials based on the GGX microfacet distribution [Walter et al. 07] that are considered state of the art today in the video game industry [Hill et al. 15] and can be analytically integrated over arbitrary polygons in constant time due to their polygon-integral invariance property. In Section 1.3, we recall the definition of LTCs and show 1 An alternative definition of linear lights can be found in the literature [Poulin and Amanatides 91,Picott 92]. With this definition, the linear light is modeled as an infinite series of point lights instead of as a cylinder with an infinitely small radius. Hence, this model lacks the Jacobian that accounts for the light emission profile and its inclination, which yields incorrect shading behavior. Because of this, it cannot be used as an approximation for actual geometric shapes such as a cylinder. Associated Demo This book chapter is distributed with a WebGL demo that implements all the code snippets from the chapter (Figure 1.3). Note that the code provided in the chapter and the demo prioritizes readability over performance and is not meant to be shipped as-is to production. In this section, we show that linear lights yield a good approximation to cylinder lights in many configurations. In order to validate the domain of validity of this approximation, we recall how the integrals of the BRDF over cylinders and lines are defined, and we implement numerical integration shaders to compute them. Thus, the goal of this section is to provide shader code for validating the approximation; the actual code one would use in practice is covered in the subsequent sections.

The Local Illumination Integral

Shading with area lights requires computing the illumination integral over the spherical domain Ω L covered by the light:

I = Ω L ρ(ω v , ω l ) cos θ l dω l , (1.1)
where ω v is the view direction, ω l is the light direction, and ρ the BRDF.

The Spherical Distribution

We use D(ω l ) = ρ(ω v , ω l ) cos θ l to denote the cosine-weighted BRDF, and we show how to compute the integral of Equation (1.1) for cylindrical lights or lights composed of line segments. 

The Cylinder-Light Integral

Configuration A cylinder is defined by two end points p 1 and p 2 and a radius R, as shown in Figure 1.5. We use L = p 2 -p 1 to denote the length of the cylinder, ω t = p 2 -p 1 p 2 -p 1 the tangent direction of the cylinder, and (ω ⊥ t , ω t ) two orthonormal directions such that (ω t , ω ⊥ t , ω t ) forms an orthonormal basis. Integral We rewrite Equation (1.1) in the space of the light instead of the sphere. With a cylinder parameterization (φ, l) for the cylinder surface the integral is

p ω n ω p ω t ω ⊥ t ω t p 1 p 2 L 2 R
I cyl = L 0 2π 0 D (ω p ) |-ω p • ω n | p 2 R dφ dl. (1.2)
With this parametrization, a point (φ, l) on the cylinder surface has a normal The helper function buildOrthonormalBasis(in vec3 n, out vec3 b1, out vec3 b2) takes a normalized direction as input and computes two orthonormal directions. We use the code snippet from [Frisvad 12]. Integral We rewrite Equation (1.1) in the space of the light instead of the sphere. With a 1D parameterization of variable l for the line, the integral is

ω n (φ, l) = cos φ ω ⊥ t + sin φ ω t , (1.3) 3D coordinates p(φ, l) = p 1 + l ω t + R ω n (φ), ( 1 
// code from [ Frisvad2012 ] void b u i l d O r t h o n o r m a l B a s i s ( in vec3 n , out vec3 b1 , out vec3 b2 ) { if ( n . z < -0.9999999) { b1 =
I line = L 0 D (ω p ) 2 ω p × ω t p 2 dl. (1.6)
We set the origin of the parameterization to p 1 , and it increases in the direction ω t , such that at abscissa l on the line, the 3D coordinates of the point are

p(l) = p 1 + l ω t , (1.7)
and the normalized direction towards this point is Approximation If the radius R is small enough, we can use the line integral as an accurate approximation for the cylinder integral:

ω p (φ, l) = p p . ( 1 
I cyl (R) ≈ R I line .
(1.10)

In cases where the radius is too large, the approximation can be inaccurate and produce overly high values (for instance if D is a specular material and if the linear light overlaps with the specular peak). In order to avoid this, we use the property that I cyl cannot be greater than the integral of D over the sphere:

I cyl ≤ Ω D(ω) dω. (1.11)
This property is intuitive: I cyl represents the integral of D over the spherical domain covered by the cylinder, so it can only be smaller than the integral of D over the entire sphere. Hence, we can prevent the approximation from overshooting by clamping it to Ω D(ω) dω. In practice, we use distributions D that are normalized, so we clamp the approximation to 1.

Implementation We provide the shader code for approximating the result of I cylinder (from Listing 1.2) in Listing 1.5. Results of the Approximation In Figure 1.8, we compare the results obtained by the cylinder-light integral and the linear-light integral approximation with a GGX BRDF. We can see that the approximation is most accurate with:

• cylinders of small radius,

• cylinders far from the shading point, or

• low-frequency (large roughness parameter α) materials.

In summary, the approximation works well when the width of the solid angle covered by the cylinder is small compared to the variation of the distribution. However, the approximation typically cannot be used with specular materials and very large/close cylindrical light sources. Clamping the Line Below the Horizon The first step is to ensure that the parts of the light contributing to the diffuse integral are limited to the upper hemisphere (z ≥ 0). To achieve this, we start by clamping the line to the upper part of the hemisphere. If one of the vertices is below the horizon-i.e., its z component is less than zero-we replace it with the intersection of the line with the plane z = 0, as illustrated in Figure 1.10. The abscissas of the end points of the linear light are

l 1 = p 1 • ω t ,
(1.12)

l 2 = p 2 • ω t .
(1.13)

The 0 abscissa is the orthonormal projection of the shading point onto the line, denoted p o (it is not a problem if p o is outside segment [p 1 , p 2 ]). The distance between the line and the shading point is the norm of this point: (1.16)

p o = p 1 -l 1 ω t , ( 
Integration of the Line We rewrite Equation (1.6) using the new parameterization. The terms in the integrand become

p(l) = d 2 + l 2 , (1.17) ω p (l) × ω t = d √ d 2 + l 2 , (1.18) D (ω p (l)) = 1 π (p o + l ω t ) √ d 2 + l 2 • z, (1.19) i i i i i i i i 1.3. Line-Integral of a Diffuse Material 13
and the integral becomes

I line = 2 d π l2 l1 (p o + l ω t ) • z (d 2 + l 2 ) 2 dl, (1.20)
which has the analytic closed form:

I line = 1 π F p o (l 2 ) -F p o (l 1 ) p o + [F ωt (l 2 ) -F ωt (l 1 )] ω t • z, (1.21)
with

F p o (l) = l d(d 2 + l 2 ) + 1 d 2 atan l d , (1.22) F ωt (l) = l 2 d(d 2 + l 2 )
.

(1.23)

Implementation We provide the shader code for clamping, parameterizing and integrating the linear light against the diffuse BRDF in Listing 1.6. 

D(ω) = D o M -1 ω M -1 ω |M -1 | M -1 ω 3 . (1.24)
Note that this closed form is never used at runtime in the shader. It is only used to fit physically based materials with LTCs in an offline precomputation. In our shader, we approximate a GGX BRDF with LTCs whose parameters are stored in a look-up table that we access at runtime. The look-up table is the same as in [Heitz et al. 16].

LTC-Polygon Integral Invariance

LTCs are invariant to linear transformations, i.e., if a linear transformation is applied to both the polygon and the distribution, the value of the integral remains the same: 

P D (ω p ) |-ω p • ω n | p 2 dp = Po D o (ω p ) |-ω p • ω n | p 2 dp = E[P o ]. ( 1 

LTC-Line Integral Invariance

The invariance for linear lights is similar to the invariance for polygons given by Equation (1.25). If a linear transformation is applied to both the line segment and the distribution, then the value of the integral remains the same:

L D (ω p ) 2 ω p × ω t p 2 dp = 1 M T ω⊥ Lo D o (ω p ) 2 ω × ω t p 2 dp = 1 M T ω⊥ E[L o ] (1.26)
except for the additional width factor 1 M T ω ⊥ . Thanks to this invariance, an LTC can be integrated over a line segment by multiplying the (vertices of the) line segment by the inverse linear transformation L o = M -1 L, computing the irradiance E[L o ] of this new line segment using the method presented in Section 1.3, and multiplying the result by the width factor. Proof of the Line-Integral Invariance We can see in Figure 1.14 that the infinitely small width of a linear light is defined by vector ω⊥ = p 1 ×p 2 p 1 ×p 2 . After the linear transformation, this vector can be scaled and/or no longer orthonormal. The actual orthonormal vector-illustrated in red in the figure-is defined by

p 1 p 2 ω⊥ D = M -1 p 1 M -1 p 2 M -1 ω⊥ ω⊥ o D o
ω⊥ o = (M -1 (p 1 -p 2 )) × M -1 p 1 (M -1 (p 1 -p 2 )) × M -1 p 1 = M T [(p 1 -p 2 ) × p 1 ] M T [(p 1 -p 2 ) × p 1 ] = M T ω⊥ M T ω⊥ , (1.27)
and is different from the transformed orthonormal vector M -1 ω⊥ . The transformation of this vector (its length and orientation) affects the evaluation of the linear light proportional to the width factor 1 M T ω ⊥ . Indeed, the effective width after the transformation is the dot product between the transformed orthonormal vector and the actual orthonormal vector:

ω⊥ o • (M -1 ω⊥ ) = 1 M T ω⊥ (M T ω⊥ ) • (M -1 ω⊥) = 1 M T ω⊥ (M -T M T ω⊥) • ω⊥ = 1 M T ω⊥ , (1.28)
which is the expression of the width factor in Equation (1.26).

Implementation We provide the analytic LTC-line integral shader code in Listing 1.7. Note that, in practice, recovering the matrix M by inverting M -1 can be done in an optimized way, because the matrix is sparse (see demo and previous publication). So far, we have been using a line segment to approximate a cylindrical emitter. However, our line is only an approximation of the length of the cylinder, so it doesn't account for emission from the end caps of the cylinder. The shading with and without them is shown in Figure 1.15. We can see that a black spot shows up when the ends are not emitting. In order to remain consistent with the line-segment approximation of the cylinder's length, we approximate the two caps with infinitely small onesided disks located at p 1 and p 2 and with normals -ω t and ω t , respectively.

Numerical Integration

The contribution of the disk located at p 1 is 

I disk1 = R 0 2 π 0 D (ω p ) |ω p • ω t | p 2 r
I disk1 π R 2 = D(ω p 1 ) max(0, ω p 1 • ω t ) p 1 2 .
(1.32)

Hence, if the radius is small enough, the integral can be approximated by

I disk1 ≈ π R 2 D(ω p 1 ) max(0, ω p 1 • ω t ) p 1 2 .
(1.33)

Similarly, we approximate the integral of the second end by

I disk2 ≈ π R 2 D ω p 2 max(0, -ω t • ω p 2 ) p 2 2 .
(1.34)

Implementation In Listing 1.9, we provide the analytic approximation of Equations (1.33) and (1.34). For this we need the evaluation of D for an LTC, which is provided in Equation (1.24) and implemented in Listing 1.10. Summing the Contributions In order to account for the contribution of the caps, we simply add I disk1 + I disk2 to I line of Equation (1.6), and we clamp the sum to 1 as explained in Section 1.2.5.

Discussion

In practice, we found out that the caps approximation is less robust and useful than expected. Figure 1.16 shows that

• The approximation can result in visually disturbing artifacts: the reflection of the cylinder on the left exhibits a strange bulb at one end due to the cap approximation.

• Adding the caps is not always worth the cost, nor the risk of having artifacts. The two reflections in the middle (with and without caps) have similar reflection. In Figure 1.15, we can see that the absence of caps leaves black holes that are less visible with the line integral than with the cylinder integral anyway.

Hence, we recommend shading without the caps by default and adding them only for specific needs. Test of the Approximation In Figure 1.18, we compare the results obtained by the rectangle-light integral and the linear-light integral approximation with a GGX BRDF. The approximation has the same properties as the cylinder light. 

Performance

To assess the performance of our linear-light technique, we used the same Sponza scene (including viewpoint) as the original article. Although this is not a real production game environment, it is a suitable proxy in terms of pixel-shader workload and divergence, on account of the range of materials and surface orientations.

In our timings, using an NVIDIA Quadro M6000 GPU and a screen resolution of 1920 × 1080 pixels2 , the primary lighting pass took 0.42ms for a linear light without end caps, compared to 0.58ms for a quadrilateral light. This demonstrates, as expected, that linear lights are cheaper to evaluate than their polygonal counterparts, since only a single line integral is involved.

Conclusion

We have presented an extension to our existing area-lighting framework to support linear light sources, which can be used to model common real-world lights such as fluorescent bulbs. As we have shown, this approximation works well in many cases (with the exception of wide cylindrical lights or highly specular materials) and is cheaper than a full polygonal area light solution. 
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 11 Figure 1.1. We use linear lights to approximate thin cylindrical light shapes.

  a similar line-integral invariance property. Again, thanks to this property, we can integrate them analytically over linear lights in constant time. Figure1.2 shows the result obtained by shading materials based on the GGX distribution with linear lights.
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 12 Figure 1.2. We shade linear lights with physically based materials that use the GGX microfacet BRDF.
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  Figure 1.3. Our WebGL demo.
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 14 Figure 1.4. The spherical distribution D to be integrated.
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 15 Figure 1.5. The cylinder-light integral.

  -Light Shading with Linearly Transformed Cosines Implementation We provide the shader code for integrating the distribution over a cylinder in Listing 1.2. float I _ c y l i n d e r _ n u m e r i c a l ( vec3 p1 , vec3 p2 , float R ) { // init orthonormal basis float L = length ( p2 -p1 ) ; vec3 wt = normalize ( p2 -p1 ) ; vec3 wt1 , wt2 ; b u i l d O r t h o n o r m a l B a s i s ( wt , wt1 , wt2 ) ; // integral discret ization float I = 0.0; const int nSamplesphi = 20; const int nSamplesl = 100; for ( int i = 0; i < nSamplesphi ; ++ i ) for ( int j = 0; j < nSamplesl ; ++ j ) { // normal float phi = 2.0 * PI * float ( i ) / float ( nSamplesphi ) ; vec3 wn = cos ( phi ) * wt1 + sin ( phi ) * wt2 ; // position float l = L * float ( j ) / float ( nSamplesl -1) ; vec3 p = p1 + l * wt + R * wn ; // normalized direction vec3 wp = normalize ( p ) ; // integrate I += D ( wp ) * max (0.0 , dot ( -wp , wn ) ) / dot (p , p ) ; } I *= 2.0 * PI * R * L / float ( nSamplesphi * nSamplesl ) ; return I ; } Listing 1.2. Numerical integration for the cylinder.
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 16 Figure 1.6. The linear-light integral.

  Linear-Light Shading with Linearly Transformed CosinesImplementation We provide the shader code for integrating the distribution over a line segment in Listing 1.4. float I _ l i n e _ n u m e r i c a l ( vec3 p1 , vec3 p2 ) { float L = length ( p2 -p1 ) ; vec3 wt = normalize ( p2 -p1 ) ; // integral discret ization float I = 0.0; const int nSamples = 100; for ( int i = 0; i < nSamples ; ++ i ) { // position vec3 p = p1 + L * float ( i ) / float ( nSamples -1) * wt ; // normalized direction vec3 wp = normalize ( p ) ; // integrate I += 2.0 * D ( wp ) * length ( cross ( wp , wt ) ) / dot (p , p ) ; } I *= L / float ( nSamples ) ; return I ; } Listing 1.4. Numerical integration for the line.

  Figure 1.7. The linear-light integral is the limit of the cylinder-light integral when its radius tends towards zero.

  The Linear-Light Shading Model

  float I _ c y l i n d e r _ a p p r o x ( vec3 p1 , float p2 , float R ) { return min (1.0 , R * I_line ( p1 , p2 ) ) ; } Listing 1.5. Approximation of the cylinder-light integral by the linear-light integral.
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 1 Figure 1.8. Results of the approximation with a GGX BRDF.

  Figure 1.9. The diffuse-line integral (or the irradiance of the line).

Figure 1 .

 1 Figure 1.10. Clamping the linear light below the horizon.

  Linear-Light Shading with Linearly Transformed CosinesParameterization of the Line In order to compute the diffuse-line integral, we need a 1D parameterization for the linear light. Our parameterization is shown in Figure1.11 and explained below.

Figure 1

 1 Figure 1.11. Line-integral parameterization.

  1.14) d = p o . (1.15) To simplify the line integral, we parameterize the points on the line relative to p o , with an abscissa l p(l) = p o + l ω t .

  if ( p1 . z <= 0.0 && p2 . z <= 0.0) return 0.0; if ( p1 . z < 0.0) p1 = (+ p1 * p2 . z -p2 * p1 . z ) / (+ p2 . z -p1 . z ) ; if ( p2 . z < 0.0) p2 = ( -p1 * p2 . z + p2 * p1 . z ) / ( -p2 . z + p1 . z ) ; // p a r a m e t e r i z a t i o n float l1 = dot ( p1 , wt ) ; float l2 = dot ( p2 , wt ) ; // shading point orthonormal projection on the line vec3 po = p1 -l1 * wt ; Analytic line-diffuse integration.
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 1 Figure 1.12. The parameterization of Linearly Transformed Cosines (LTCs).

  Line-Integral of a Glossy Material with LTCsClosed-Form Expression The magnitude of an LTC is the magnitude of the original distribution D o in the original direction ω o multiplied by the change of solid angle measure due to the distortion of the spherical transformation. It has the closed-form expression:

Figure 1

 1 Figure 1.13. Invariance of the polygonal integration. The configuration on the right is the left configuration multiplied by matrix M -1 .

Figure 1 .

 1 Figure 1.14. Invariance of the linear integration. The configuration on the right is the left configuration multiplied by matrix M -1 .

Figure 1

 1 Figure 1.15. Test of the approximation with a GGX BRDF.

  float I _ d i s k s _ n u m e r i c a l ( vec3 p1 , vec3 p2 , float R ) { // init orthonormal basis float L = length ( p2 -p1 ) ; vec3 wt = normalize ( p2 -p1 ) ; vec3 wt1 , wt2 ; b u i l d O r t h o n o r m a l B a s i s ( wt , wt1 , wt2 ) ; i = 0; i < nSamplesphi ; ++ i ) for ( int j = 0; j < nSamplesr ; ++ j ) { float phi = 2.0 * PI * float ( i ) / float ( nSamplesphi ) ; float r = R * float ( j ) / float ( nSamplesr -1) ; vec3 p , wp ; p = p1 + r * ( cos ( phi ) * wt1 + sin ( phi ) * wt2 ) ; wp = normalize ( p ) ; Idisks += r * D ( wp ) * max (0.0 , dot ( wp , + wt ) ) / dot (p , p ) ; p = p2 + r * ( cos ( phi ) * wt1 + sin ( phi ) * wt2 ) ; wp = normalize ( p ) ; Idisks += r * D ( wp ) * max (0.0 , dot ( wp , -wt ) ) / dot (p , p ) ; } Idisks *= 2.0 * PI * R / float ( nSamplesr * nSamplesphi ) ; return Idisks ; } Listing 1.8. Evaluating the end caps.

  the End Caps with Point LightsAs the radius of the cylinder tends towards zero, the end caps converge towards disk-like point lights. The integral of Equation (1.29) converges towards lim R→0

  ) * max (0.0 , dot (+ wt , wp1 ) ) / dot ( p1 , p1 ) + D ( wp2 ) * max (0.0 , dot ( -wt , wp2 ) ) / dot ( p2 , p2 ) ) ; return Idisks ; } Listing 1.9. Evaluating the end disks.
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 11 Figure 1.16. The caps approximation is not always worth it and can result in visually disturbing artifacts.

Figure 1

 1 Figure 1.18. Test of the rectangle-light approximation with a GGX BRDF.
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We used an RGBA 8-bit render target and 1x MSAA to minimize bandwidth overhead and additional shading work.