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A posteriori error estimation for isogeometric analysis

using the concept of Constitutive Relation Error

H.P. Thaia, L. Chamoina,∗, C. Ha-Minha

aLMT, ENS Cachan, CNRS, Université Paris Saclay
61 Avenue du Président Wilson, 94235 Cachan, France

Abstract

The paper deals with the Isogeometric Analysis (IGA) technology, which has received much
attention over the last decade due to its increased flexibility, accuracy, and robustness in
many engineering simulations compared to classical Finite Element Analysis (FEA). In this
context, we present a verification method, based on duality and the concept of Constitutive
Relation Error (CRE), that enables to derive fully computable a posteriori error estimates
on the numerical solution provided by IGA. Such estimates, which can be used for a wide
class of structural mechanics models, thus constitute effective and practical tools to quan-
titatively control the numerical accuracy and drive adaptive algorithms. The focus is here
on the construction of so-called admissible flux fields which is a key ingredient of the CRE
concept, and which was until now almost exclusively addressed in the FEA framework alone.
We show that this construction can be performed in a similar way for FEA and IGA, pro-
vided some technical issues (due to the use of B-Spline/NURBS basis functions instead of
Lagrange polynomials) are carefully addressed. We also use the CRE concept along with
adjoint techniques and local enrichments in order to derive accurate goal-oriented error esti-
mates. Two- and three-dimensional numerical experiments are presented, for thermal, linear
elasticity and nonlinear damage problems, to illustrate the capabilities and versatility of the
proposed approach.

Keywords: Isogeometric analysis, Model verification, A posteriori error estimation,
Constitutive relation error, Duality

1. Introduction

Performing numerical simulations from complex models based on partial differential equa-
tions has now become a common practice in engineering activities. Focusing on structural
mechanics applications, a classical framework to address such simulations is the finite el-
ement method leading to the so-called Finite Element Analysis (FEA). However, a major

∗. Corresponding author
Email addresses: hpthai@lmt.ens-cachan.fr (H.P. Thai), chamoin@lmt.ens-cachan.fr

(L. Chamoin), cuong.ha-minh@lmt.ens-cachan.fr (C. Ha-Minh)

Preprint submitted to Computer Methods In Applied Mechanics and Engineering May 2, 2019

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0045782519302919
Manuscript_dc7a3c172dfde4143d5ec44f969ccc4c

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0045782519302919
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0045782519302919


drawback and practical issue of FEA is that it intrinsically suffers from a complex link with
Computer-Aided-Design (CAD) softwares which are employed to generate and design the
geometry of mechanical structures. On the one hand, the geometry representation which is
involved in FEA is based on piecewise low-order polynomial functions (i.e. Lagrange poly-
nomials, supported by polygonal meshes); it is dictated by the finite dimensional subspace
considered to compute an approximate solution of the problem. On the other hand, the ex-
act structural geometry generated by CAD is classically built from splines or NURBS (Non
Uniform Rational B-Splines) functions which are smooth functions that enable to represent
complex objects. Due to this difference in the geometry representation, the transfer from
a CAD model to a FEA model requires powerful mesh generation tools and is in practice
a very time-consuming process. In addition, when dealing with the approximate solution
itself, it is well-known that low-order FEA requires a very fine mesh size to produce accurate
results in high gradients regions (e.g. in the case of singular solution with stress concentra-
tion phenomena) whereas high-order FEA has some restrictions on element topologies and
continuity, so that it is hardly implemented in commercial FEA software.
After pioneering attempts [48, 43] to foster the link between CAD and FEA, and there-
fore facilitate numerical simulations with domains generated by CAD, a general computa-
tional framework proposing a direct link and referred to as Isogeometric Analysis (IGA)
was introduced in [45, 23]. The idea consists of constructing the approximation basis, still
using a standard isoparametric formulation, from the B-Spline or NURBS functions rep-
resenting the CAD geometry. IGA thus aims at directly using the CAD representation
of the geometry in the analysis step. It enables the simple use of smooth functions with
high-order continuity (compared with C0-continuity associated with Lagrange polynomi-
als), so that fewer dofs are necessary compared to FEA to represent solutions of PDEs
with high-order derivatives. Furthermore, it simplifies mesh refinement as the geometry is
represented exactly at the lowest level of discretization and is unchanged throughout the
refinement process, so that no further communication with CAD is required. IGA was
thoroughly studied and analyzed in the last decade [7, 33, 46, 63, 9, 4, 76], and its poten-
tial was demonstrated by successful applications to a wide range of structural mechanics
problems [22, 8, 31, 41, 84, 49, 10, 14, 63, 80, 25, 12, 67, 27, 44, 51, 30]. Extensive numer-
ical studies showed that beyond the reinforced link between CAD and analysis, IGA was a
powerful computational mechanics technology bringing both accuracy and robustness. Fur-
thermore, it was shown that the IGA concept could be easily incorporated into existing FE
codes by using the Bezier extraction [11, 77]. Several open source IGA codes are available
nowadays, such as PetIGA [24], and IGA implementations in commercial simulation soft-
ware exist such as in Abaqus or LS-Dyna. Let us also quote a related method, proposed
in [79] and denoted NURBS enhanced FEM (NEFEM), that involves NURBS functions to
construct the boundary of the mechanical structure alone while the interior remains dis-
cretized using FEA Lagrange basis functions.

Despite its performance, and as for any numerical method, IGA is associated with dis-
cretization error that needs to be effectively assessed to control the quality of the approxima-
tion and drive automated adaptive procedures. This verification step is a crucial engineering
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topic as the massive use of virtual prototyping, with possibly very complex models, relies
on the capacity to warrant the relevance of the numerical solutions usually obtained from
limited computational resources. On the one hand, some a priori error estimates were first
developed in parallel with the IGA framework in order to evaluate its convergence properties
and compare to the classical FEA setting [7, 9]. On the other hand, and contrary to the
wide literature available for FEA (see e.g. [81, 1, 59, 19] for an overview), few a posteri-
ori error estimates are currently available for IGA in order to quantitatively estimate the
distance between the unknown exact solution and its numerical approximation. However,
they would represent useful tools to indicate on the error level and distribution, to identify
areas where further refinement is needed, and thus to drive adaptive algorithms efficiently to
achieve a given tolerance error. Most a posteriori error estimation tools which are currently
available for IGA are essentially dedicated to linear elliptic problems. For instance, an a
posteriori error estimate was introduced in [29], based on the hierarchical method initially
developed in [6] for FEA, and in which the residual equation is approximately solved using
hierarchical bases and bubble functions. Its reliability and efficiency is subjected to satu-
ration assumption on the enlarged underlying space and the constants in the strengthened
Cauchy inequality; consequently, bounding results are not guaranteed and problem depen-
dent. In [85], a rather crude error assessment method was proposed for IGA; it consists
of solving the residual equation with k-refinement steps, which may be very expensive. A
goal-oriented error estimation procedure was developed in [53] for IGA computations, in
which a classical dual-weighted residual (DWR) technique is used with p-refinement of the
adjoint solution. In [52], a ZZ-type method with superconvergent patch recovery (SPR) was
proposed to construct a posteriori error estimates in adaptive IGA; even though the method
was developed for general meshes by computing superconvergent points, it is restricted to
specific (i.e. scalar self-adjoint elliptic) problems for which superconvergence properties oc-
cur. A functional-type a posteriori error estimate was proposed in [50] leading to guaranteed
and sharp upper bounds on the exact error in the energy norm provided constants can be
accurately estimated or bounded (which is not always possible in practice). The previous
method, using H(div,Ω) spaces which are easily reachable when considering NURBS ba-
sis functions, is closely related to the approach proposed in the present paper even though
there are fundamental differences (e.g. the verification of balance equations is not imposed
in [50] for the construction of the estimate). A posteriori error estimation for adaptive IGA
boundary element methods with weakly-singular integral equations was addressed in [34].
Eventually, an a posteriori error estimate together with hierarchical B-splines local adap-
tivity were constructed in [15, 16] for elliptic second-order PDEs, using a residual-type error
estimation method.

In the present work, we develop a robust and fully computable (i.e. with no unknown
constants) a posteriori error estimate for IGA computations. For that purpose, we propose
to use the Constitutive Relation Error (CRE) concept which has been extensively employed
for FEA over the last 40 years (see [59, 62] for an overview). It provides for a general frame-
work that enables to obtain such robust, accurate, and fully computable error bounds. In
particular, and compared to the approach proposed in [50], it can be applied with irregu-
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lar meshes, geometries, or solutions, still providing with accurate local estimates for mesh
adaptation and avoiding large overestimations. Furthermore, a suitable advantage of this
concept is that it naturally extends to nonlinear evolution problems such as viscoplasticity,
contact, or damage, using thermodynamical considerations and convexity properties [57, 58].
In addition, it can be used for goal-oriented error estimation when employed in conjunction
with adjoint techniques [17, 60, 18]. The CRE concept is based on duality and requires
to recover fully equilibrated fields as all error estimation techniques providing for guaran-
teed and computable bounds [28, 64, 37, 13, 65]; this is the main technical issue, and this
constitutes the scientific core of the paper. Among the various techniques which enable
to perform such a recovery, we focus here on the hybrid-flux (or EET) technique initially
developed in [54] then extended and enhanced in several works thereafter [55, 71, 74, 2].
Some alternative techniques for the construction of equilibrated fields can also be found
in [69, 38, 32]. The hybrid-flux technique, in the FEA context, performs at the element level
and involves the construction of equilibrated tractions on element edges before solving local
and cheap Neumann problems on each element. We propose here to revisit this technique in
order to extend it to IGA; the difficulty lies in the modified notion of locality for IGA basis
functions (i.e. B-Spline or NURBS functions), as they have a larger support over knot spans
than FE basis functions (Lagrange polynomials) have over elements. We show in the paper
that equilibrated tractions can be recovered along knot spans boundaries, from the solution
of local small size linear systems, before constructing equilibrated fields at the knot span
level. The proposed procedure thus enables one to apply CRE error estimates for linear and
nonlinear structural mechanics problems solved with IGA. It provides for an a posteriori
error control either in a global way (i.e. in energy norm) or in a goal-oriented way (i.e.
with respect to outputs of interest). The hybrid-flux technique being general (as merely
based on balance equations), and in order to keep notations simple and avoid unnecessary
details, we develop it for IGA on a simple scalar elliptic problem. Nevertheless, numerical
applications with problems involving more elaborated mathematical models are provided to
assess the performance and potential of the approach (in terms of behavior of the computed
CRE estimate) for a large scope of structural mechanics activities. Moreover, we deliber-
ately choose here not to address adaptive strategies with local mesh refinement too much,
as they refer to classical and now well-known adaptivity techniques provided error estimates
are available. However, as the scope of the paper is on the definition of such an estimate,
we briefly describe how the construction of a CRE estimate can be performed for locally
refined meshes, and we provide associated numerical results.

The paper is organized as follows: in Section 2, we introduce useful notations related
to the IGA framework, and we define the reference problem as well as its IGA approxi-
mation; Section 3 is dedicated to the CRE concept for the computation of bounds on the
discretization error, for both measure in the energy norm or with respect to specific outputs
of interest; the construction of equilibrated fields in the IGA context, which is a requirement
of the CRE concept and the main point of the paper, is detailed in Section 4; numerical
results on two- and three-dimensional physical domains, with linear or nonlinear models are
reported in Section 5; eventually, conclusions and prospects are drawn in Section 6. The

4



paper is complemented with two appendices giving basics on B-Spline/NURBS functions,
and the definition of the CRE functional for nonlinear structural mechanics models.

2. The IGA framework

2.1. Model problem

We consider a linear elliptic problem defined over a body occupying the closure of an
open bounded domain Ω ⊂ Rd (d=1, 2 or 3 being the space dimension), with regular
Lipschitz boundary ∂Ω. We assume that homogeneous Dirichlet boundary conditions are
prescribed on a non-zero measured part ∂uΩ ⊂ ∂Ω, whereas Neumann boundary conditions
with given normal flux Fd ∈ L2(∂qΩ) are prescribed on the complementary part ∂qΩ ⊂ ∂Ω,
with ∂uΩ ∩ ∂qΩ = ∅ and ∂uΩ ∪ ∂qΩ = ∂Ω. A given source term fd ∈ L2(Ω) may also be
active in Ω. We denote by K ∈ [L∞(Ω)]d×d the diffusion tensor, assumed to be symmetric,
continuous and uniformly elliptic, i.e.:

∃α > 0,∃β > 0 such that α|τ |2 ≤ τ ·Kτ ≤ β|τ |2 ∀τ ∈ Rd (1)

The reference mathematical problem consists in finding the solution u (with associated flux
q = K∇u) to the following system of equations:

−∇ · (K∇u) = fd in Ω

u = 0 on ∂uΩ

K∇u · n = Fd on ∂qΩ

(2)

n denoting the unit outgoing normal vector to Ω. Introducing the functional space U =
H1

0 (Ω) = {v ∈ H1(Ω), v|∂uΩ = 0}, the weak formulation of the problem reads:

Find u ∈ U such that a(u, v) = l(v) ∀v ∈ U (3)

where bilinear form a(·, ·) and linear form l(·) are defined as:

a(u, v) =

∫
Ω

K∇u · ∇vdx ; l(v) =

∫
Ω

fdvdx +

∫
∂qΩ

FdvdS (4)

From the previous assumptions, and referring to the Lax-Milgram theorem, the mathemat-
ical problem (3) has a unique solution u, which will be taken as the reference when dealing
with discretization error in the remainder of the paper. In addition, we introduce the energy
norm ‖u‖K =

√
a(u, u) which is equivalent to the H1-norm in U . The norm ‖ · ‖K, directly

linked to the properties of the problem operator, will be used in order to define a global
measure of the discretization error.

5



2.2. Representation of the domain geometry

We consider the usual context in which the geometry of the physical domain Ω is de-
scribed from CAD tools, that involve B-Spline functions or more generally NURBS functions.
Univariate 1D B-Spline functions are piecewise polynomial functions Ni,p : [a, b]→ R of or-
der p defined over a parametric space [a, b]. A basis of n B-Spline functions can be defined
from a knot vector Ξ = {a = ξ1, ξ2, . . . , ξn+p+1 = b}, in which the knots ξj are sorted in
the ascending order (with possible multiplicity rj ≤ p + 1 of the same knot) and divide
the parametric space into knot spans. The knot vector is said to be open when first and
last knots have the maximal multiplicity p+ 1 (the basis then becomes interpolatory at the
boundary knots); in the paper, only open knots are considered. B-Spline basis functions
Ni,p (i = 1, . . . , n) are defined recursively from the knot vector Ξ using the Cox-de Boor
algorithm; they are non-negative and non-zero in the interval [ξi, ξi+p+1] only. Furthermore,
the set of B-Spline functions constitutes a partition of unity (

∑n
i=1 Ni,p(ξ) = 1).

We may also introduce the vector Λ = {ζ1, . . . , ζm} ⊂ Ξ of knots without repetitions, and
the vector {r1, . . . , rm} of corresponding multiplicities (with

∑m
j=1 rj = n + p + 1). A B-

Spline of order p has at most Cp−1 continuity; besides, at a knot ζj with multiplicity rj, the
number of continuous derivatives decreases to p− rj (so that multiplicity rj = p leads to C0

continuity). A set of order 2 B-Spline functions is represented in Fig. 1.

9
0 1 2 3 4 5
0

0.5

1
N1,2 N2,2

N3,2 N4,2 N5,2

N6,2

N7,2

N8,2

Figure 1: Quadratic basis functions for an open knot vector Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5}.

Contrary to B-Spline functions, NURBS xfunctions have the ability to exactly describe
conic geometries (such as circles of ellipses in 2D) which can not be exactly represented by
polynomials. A set of n order p NURBS functions Ri,p : [a, b] → R is constructed from the
associated set of B-Spline functions Ni,p by introducing additional weights wj, j = 1, . . . , n.
The NURBS functions, which are then rational weighted spline functions, read:

Ri,p(ξ) =
wiNi,p(ξ)∑n
j=1wjNj,p(ξ)

(5)

NURBS functions inherit all properties of B-Spline functions (local support, partition of
unity, pointwise non-negativity,. . . ). When all weights are equal, the NURBS functions re-
duce to the B-Spline ones.

A set {Ni,p}ni=1 (resp. {Ri,p}ni=1) of B-Spline (resp. NURBS) functions of order p enables
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one to define parametric curves CBS : [a, b]→ Rd (resp. CNURBS : [a, b]→ Rd), as:

CBS(ξ) =
n∑
i=1

BiNi,p(ξ) ; CNURBS(ξ) =
n∑
i=1

BiRi,p(ξ) (6)

The n points Bi (coordinate vector of size d× 1) are non-interpolatory control points that
define the geometry of the curve. A piecewise linear interpolation between these control
points defines the so-called control mesh (or polygon).
The extension to the definition of 2D (surface) or 3D (volume) geometrical entities can be
easily performed using tensor product spaces with multi-variate functions. For instance,
introducing the vector of space parameters ξ = {ξ, η, µ}T defined over a 3D domain or
patch, parametric B-Spline and NURBS volumes can be described as:

VBS(ξ) =

n1∑
i=1

n2∑
j=1

n3∑
k=1

Bi,j,k (Ni,p1(ξ)Nj,p2(η)Nk,p3(µ)) =
n∑

Aijk=1

BAijk
Np1,p2,p3

Aijk
(ξ)

VNURBS(ξ) =

n1∑
i=1

n2∑
j=1

n3∑
k=1

Bi,j,k

(
wi,j,kNi,p1(ξ)Nj,p2(η)Nk,p3(µ)∑n1

î=1

∑n2

ĵ=1

∑n3

k̂=1
wî,ĵ,k̂Nî,p1

(ξ)Nĵ,p2
(η)Nk̂,p3

(µ)

)

=
n∑

Aijk=1

BAijk
Rp1,p2,p3

Aijk
(ξ)

(7)

where Ni,p1(ξ), Nj,p2(η), and Nk,p3(µ) are univariate B-Spline functions of order p1, p2, and
p3, respectively, n = n1.n2.n3, and Aijk = n1.n2(k − 1) + n1(j − 1) + i.

Remark 1. The partition of unity property holding for univariate B-Splines or NURBS
functions still holds in the context of multi-variate functions. Indeed, the following equality
is straightforward:

n1∑
i=1

n2∑
j=1

n3∑
k=1

Ni,p1(ξ)Nj,p2(η)Nk,p3(µ) =

(
n1∑
i=1

Ni,p1(ξ)

)(
n2∑
j=1

Nj,p2(η)

)(
n3∑
k=1

Nk,p3(µ)

)
= 1

(8)

From a domain Ω ⊂ Rd with geometry described by B-Spline/NURBS functions, the
construction by tensorization of d knot vectors Ξj (j = 1, . . . , d) defined in each space
dimension induces several description spaces that may be used (Fig. 2):
• the index space, formed by giving a unique integer value for each component, repeated

or not, of the knot vectors. It identifies each knot (among Πd
j=1(nj + pj + 1) knots)

and discriminates among knots having multiplicity greater than one;
• the parametric space Ω which considers only non-zero intervals between knots (i.e.

non-zero measured knot spans). Defining the set Λj ⊂ Ξj of mj knots without
repetitions in each direction, a regular mesh ⊗dj=1Λ

j made of Πd
j=1(mj − 1) elements

can be defined. In this space, lines or surfaces between knots constitute a natural
definition of element boundaries;
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• the physical (real) space Ω which provides for the geometrical representation of the
domain. In this space, the location of control points and the definition of associ-
ated weights are design variables. Furthermore, a geometrical mapping F transforms
coordinates of the parametric space to the physical space Ω, and conversely.

η1

η2

η3

η4

η5η5

η6

η7

ξ1 ξ2 ξ3 ξ4 ξ5ξ5 ξ6 ξ7

η = 1

ξ = 1

η = 1

η = 0

ξ = 0

Ω
1

Ω
2

Ω
3

Ω
4

⌦1

⌦2

⌦3

⌦4

y

x

Figure 2: Index space (left), parametric space (center) and physical space with control mesh in dashed line
(right) in a 2D representation with knot vectors Ξ1 = {0, 0, 0, 0.5, 1, 1, 1} and Ξ2 = {0, 0, 0, 0.5, 1, 1, 1}.

Consequently, two meshes coexist in the physical space: (i) the control mesh which is defined
by control points and does not conform to the geometry; (ii) the physical mesh which is a
decomposition of the exact geometry (using possibly several patches) with non-zero mea-
sured knot spans; they are equivalent to elements in a FE mesh.

Further details on the use of B-Spline and NURBS functions to describe geometries can
be found in [70, 45, 23].

2.3. IGA approximation and discretization error

In its original formulation, IGA consists of searching an approximate solution to (3) by
means of a Galerkin formulation and a finite dimensional subspace of U spanned by the
same set of B-Splines/NURBS basis functions as these describing the geometry of Ω. We
thus introduce the functional space Uh = Span{ϕI , 1 ≤ I ≤ n} ∩ U , where ϕI are defined
from multi-variate B-Splines or NURBS functions introduced in Section 2.2 (e.g. Np1,p2,p3

Aijk

or Rp1,p2,p3

Aijk
in 3D). The IGA formulation then reads:

Find uh ∈ Uh such that a(uh, v) = l(v) ∀v ∈ Uh (9)

and leads to a linear system to solve. This formulation shares similarities with FEA as: (i)
it is still based on an isoparametric formulation through the geometrical mapping F; (ii) im-
posing boundary conditions is standard, provided open knot vectors are considered; (iii) the
code architecture remains identical. However, and contrary to FEA, basis functions are now
dictated by the geometrical model which is constructed during the design (CAD) process,
prior to the analysis; therefore, IGA facilitates interaction with CAD. In this framework,
the prescribed control points of the geometry play the role of (non-interpolating) nodes on
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which dofs are defined.
Another major difference between FEA and IGA, which will be a main concern in Section 4,
deals with locality properties of basis functions ϕI . Indeed, it is easy to show that order p B-
Splines or NURBS functions are non-zero over p+1 knot spans (possibly with zero measure).
Consequently, IGA basis functions are compactly supported but have an increased spatial
support (for p ≥ 2) compared to FEA. An illustration of this aspect is given in Fig. 3. A con-
sequence is that the isoparametric mapping from the parameric space to the physical space is
not local in the sense that it maps a cube (for d = 3) to many elements (defined as non-zero
measured knot spans), not to a single element as in FEA. Considering for instance B-Spline
functions NI , the mapping for a given element (knot span) Ω̂e reads Fe(ξ) =

∑n
I=1NI(ξ)xeI ,

and associated basis functions in the physical space read ϕI = NI ◦ F−1
e . Nevertheless, a

standard Gauss quadrature is possible as in FEA, even though it has to be achieved in an
additional parent space [−1, 1]d. As a result, an extra (affine) mapping between the para-
metric space and the parent space is required. Then the information is transmitted to the
physical space with the global mapping, and the assembly process is performed.

Figure 3: Quadratic 1D B-Spline and Lagrange functions for a mesh composed of two elements. The plots
are realized in the parametric space [0, 1].

In the following, we deal with the discretization error eh associated with the formula-
tion (9). It is defined as:

eh = u− uh (10)

and may be measured either with a global measure Eglob defined from the energy norm
(Eglob = ‖eh‖K) or with a local measure EQ defined with respect to an output of interest Q
(EQ = Q(eh)).

2.4. Mesh enrichment

Even though it is not the core of the paper, we briefly mention here some aspects related
to mesh refinement in IGA, as it would be a natural adaptive process after computing error
estimates, using marking at the knot span level or over larger subdomains. Furthermore, such
enrichment techniques will be used for the computation of the error estimates proposed here
(see Sections 3 and 4). There are actually flexible and very effective algorithms performing
mesh refinement while exactly preserving the original geometry described at the coarsest level
of discretization (Fig. 4). The adaptive procedure only refers to the initial representation of
the geometry and does not require any feedback from CAD. The adaptive process enables
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η = 1

ξ = 1η = 0
ξ = 0

η = 1

ξ = 1η = 0
ξ = 0

η = 1

ξ = 1η = 0
ξ = 0

Coarser mesh

Parametric domain Physical domain

First refinement

Second refinement

Figure 4: Mesh refinement with quadratic NURBS from open knot vectors Ξ1 = {0, 0, 0, 1, 1, 1} and Ξ2 =
{0, 0, 0, 1, 1, 1}. The geometrical map F and weighting functions w are unchanged during the refinement.

to control element size, order of the basis, but also continuity of the basis. There are three
refinement techniques:

— h-refinement (see Fig. 5) which consists in knot insertion. Inserting new knots is
associated with the automatic definition of new control points in order to preserve
the initial geometry.

— p-refinement which consists in order elevation. It is achieved by order elevation and
knot insertions at all knot positions in order to increase multiplicities rj and preserve
the continuity of the original curve.

— k-refinement (see Fig. 6), with higher order and higher continuity, which consists in
order elevation and insertion of new knot values to define new elements across whose
boundary functions will be Cp−1.

Due to the tensorized structure in the parametric space (see Section 2.2), IGA basis
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Figure 5: Illustration of h-refinement for p = 2, with knot insertion from Ξ = {0, 0, 0, 1, 1, 1} (left) to
Ξ = {0, 0, 0, 0.5, 1, 1, 1} (right).

functions are not suited to local refinement (generating non-tensor product meshes) in their
straightforward definition. However, advanced numerical tools have been investigated to
address this issue, such as hierarchical B-Splines/NURBS with addition of local patches [36,
82, 75], locally-refinable splines (LR-splines) [47], truncated hierarchical B-Splines (THB-
Splines) [40], polynomial splines over hierarchical T-meshes (PHT-splines) [26], localized
multigrid resolution [20], or promising T-splines [78, 29] with T-junction (similar to hanging
nodes in standard FEA). The interested reader is referred to the associated bibliography for
further details.

3. Error estimation through the CRE concept

In this section, we define the CRE concept which provides for suitable a posteriori veri-
fication tools in order to assess the error between the exact solution u and the approximate
IGA solution uh.

3.1. CRE functional and properties

The CRE concept, explained in full details in [59, 62], has similitudes with various
methods in the literature such as equilibrated residual [1] or flux-free [69, 21] approaches.
They all share the idea of constructing a fully equilibrated dual field, which is actually the
only way to recover guaranteed and fully computable error estimates in the energy norm. For
the considered problem, the CRE concept applies to a so-called admissible solution (û, q̂) ∈
U ×S satisfying boundary conditions and balance equations of the model problem (2). The
functional space S is defined as:

S = {τ ∈ H(div,Ω),

∫
Ω

τ · ∇vdx =

∫
Ω

fdvdx +

∫
∂qΩ

FdvdS ∀v ∈ U} (11)

with H(div,Ω) = {τ ∈ [L2(Ω)]d,∇·τ ∈ L2(Ω)}. Only the constitutive relation associated to
diffusion is relaxed for such an admissible couple (û, q̂). The CRE measure ECRE computed
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Figure 6: Illustration of k-refinement from an initial configuration with p = 1 and Ξ = {0, 0, 1, 1} (piecewise
linear functions). Top: k-refinement using order elevation to p = 2 with Ξ = {0, 0, 0, 1, 1, 1} (left) then
knot insertion with Ξ = {0, 0, 0, 0.5, 1, 1, 1} (right); it results in piecewise quadratic functions that are
C1 at internal knots. Bottom: alternative approach (similar to p-refinement) using knot insertion with
Ξ = {0, 0, 0.5, 1, 1} (left) then order elevation to p = 2 with Ξ = {0, 0, 0, 0.5, 0.5, 1, 1, 1} (right); it results in
piecewise quadratic functions that are C0 at internal knots.

from (û, q̂) is then a representative of the constitutive relation residual; it is defined as:

E2
CRE(û, q̂) =

∫
Ω

(q̂−K∇û) ·K−1(q̂−K∇û)dx = ‖q̂−K∇û‖2
K−1 (12)

where ‖ · ‖K−1 is the energy norm in terms of flux over Ω. It is obvious that:

(u,q) = argmin(û,q̂)∈U×SE
2
CRE(û, q̂) (13)

The Prager-Synge equality links the CRE measure ECRE to a global measure (in the energy
norm) of the discretization error between u and the considered admissible field û ∈ U :

E2
CRE(û, q̂) = ‖q− q̂‖2

K−1 + ‖q−K∇û‖2
K−1 ≥ ‖q−K∇û‖2

K−1 = ‖u− û‖2
K (14)

It results from the orthogonality property
∫

Ω
(q̂ − q) · K−1(q − K∇û)dx, with q = K∇u,

which is ensured for any admissible couple (û, q̂).

Choosing û = uh ∈ U , and provided a flux field q̂ ∈ S is available, the CRE measure
thus defines a guaranteed and fully computable bound on the global error Eglob.
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Similarly, introducing the flux q̂∗ =
1

2
[q̂ + K∇û] enables to derive a variant of the Prager-

Synge equality:
E2
CRE(û, q̂) = 4‖q− q̂∗‖2

K−1 (15)

which is in practice used for goal-oriented error estimation (see Section 3.2).
Local error contributions can also be identified by means of the estimate ECRE defined
in (12). This merely comes down to defining local error indicators by splitting the estimate
(in the integral form) over subregions (e.g. elements in FEA or knot spans in IGA). These
contributions are in practice further used to implement effective adaptive procedures.

The construction of a relevant admissible flux field q̂ ∈ S, which determines the perfor-
mance of the error estimate ECRE(û, q̂), is a key technical aspect of the procedure. It is the
topic of Section 4, where we will show that an admissible flux field q̂h can be recovered from
the IGA field qh at hand.

Remark 2. An alternative to (14), when merely considering a flux field z ∈ H(Ω, div) ⊃ S
(and ∂uΩ = ∂Ω), reads:

‖q−K∇û‖K−1 ≤ ‖z−K∇û‖K−1 + CΩ‖∇ · z + fd‖ (16)

where CΩ is the constant in the Friedrich’s type inequality, which depends on matrix K
and domain Ω, but not on the mesh. This inequality is used in [50] for a posteriori error
estimation in IGA simulations. The recovery of z ∈ H(Ω, div) (i.e. not fully equilibrated
with the external loading contrary to q̂ ∈ S) is quite simple due to the regularity of IGA
basis functions, but the practical use of (16) requires the evaluation of a constant which
may be crude and lead to large over-estimations in the general case.

Remark 3. The CRE functional can be more generally defined as:

E2
CRE(û, q̂) = 2

∫
Ω

[ψ(∇û) + ψ∗(q̂)− q̂ · ∇û] dx (17)

where ψ and ψ∗ are dual (in the Legendre-Fenchel sense) convex potentials. For the consid-
ered model and constitutive law, these potentials are quadratic and read ψ(∇v) = 1

2
∇v ·K∇v

and ψ∗(τ ) = 1
2
τ · K−1τ . This general formulation using potentials enables to define CRE

estimates for complex nonlinear models such as viscoplasticity with or without soften-
ing [57, 58, 62], as illustrated in Section 5.4. A detailed presentation of the CRE functional
in this context is given in AppendixA.
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3.2. Goal-oriented error estimation

In many engineering applications, one is interested in specific quantities of interest.
In such cases, energy-norm driven adaptive algorithms often fail to provide the required
accuracy in these quantities. In order to construct strategies that minimize the number of
dofs while providing the required accuracy of the solution in a given quantity of interest,
the so-called goal-oriented adaptivity emerged. It is based on the definition of an adjoint
problem [68, 73]. Following this classical adjoint-based technique, the CRE concept provides
for error bounds on outputs as explained below.
We consider an output of interest, in terms of a linear functional Q(u), and defined globally
as:

Q(u) =

∫
Ω

(qΣ · ∇u+ fΣu)dx +

∫
∂qΩ

FΣudS +

∫
∂uΩ

QΣ · ∇udS (18)

Functions qΣ and fΣ, referred to as extraction operators or extractors, may be defined
explicitly or implicitly (depending on the quantity Q). An adjoint problem is then defined
from Q and from the adjoint operator of the problem. For the considered model, the operator
is self-adjoint (a = a∗) so that the adjoint problem consists in finding ũ (and q̃ = K∇ũ)
such that:

a(v, ũ) = a(ũ, v) = Q(v) ∀v ∈ U (19)

Computing an approximate adjoint solution (ũh, q̃h = K∇ũh) using IGA (with possibly
different discretization parameters compared to the direct problem), then recovering an
admissible flux field ˆ̃q ∈ S̃ such that:∫

Ω

ˆ̃q · ∇vdx =

∫
Ω

(qΣ · ∇v + fΣv)dx +

∫
∂qΩ

FΣvdS +

∫
∂uΩ

QΣ · ∇vdS ∀v ∈ U (20)

it is possible to recover bounds on the error EQ = Q(u)−Q(uh). Indeed, it is easy to show
that:

EQ = a(u− uh, ũ) =

∫
Ω

∇(u− uh) · q̃dx (ũ is solution to (19))

=

∫
Ω

∇(u− uh) · ˆ̃qdx (ˆ̃q ∈ S̃)

=

∫
Ω

∇(u− uh) · (ˆ̃q−K∇ũh)dx +

∫
Ω

∇(u− uh) ·K∇ũhdx

=

∫
Ω

∇(u− uh) · (ˆ̃q− q̃h)dx +

∫
Ω

(q̂− qh) · ∇ũhdx (q̂ ∈ S)

=

∫
Ω

(q− qh) ·K−1(ˆ̃q− q̃h)dx +Qcorr,1

(21)

where Qcorr,1 =
∫

Ω
(q̂−qh) ·∇ũhdx is a correction term on Q(uh), fully computable once q̂ is

appropriately recovered. Using the Cauchy-Schwarz inequality together with (14) and (21)
yields the guaranteed bound:

|EQ −Qcorr,1| ≤ ‖q− qh‖K−1 .‖ˆ̃q− q̃h‖K−1 ≤ ECRE(uh, q̂).ECRE(ũh, ˆ̃q) (22)
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An improved bounding can be obtained introducing average fluxes q̂∗ =
1

2
[q̂ + qh] and

ˆ̃q∗ =
1

2
[ˆ̃q + q̃h]. Indeed, rewriting (21) as:

EQ −Qcorr,1 =

∫
Ω

(q− q̂∗) ·K−1(ˆ̃q− q̃h)dx +

∫
Ω

(q̂∗ − qh) ·K−1(ˆ̃qh − q̃h)dx (23)

and using the Cauchy-Schwarz inequality together with (15), the following improved bound
holds:

|EQ −Qcorr,2| ≤ ‖q− q̂∗‖K−1 .‖ˆ̃q− q̃h‖K−1 =
1

2
ECRE(uh, q̂).ECRE(ũh, ˆ̃q) (24)

with Qcorr,2 = Qcorr,1 +
∫

Ω
(q̂∗ − qh) ·K−1(ˆ̃q− q̃h)dx =

∫
Ω

(q̂− qh) ·K−1 ˆ̃q∗dx. This enables
to define a computable bounding on the exact value Q(u) of the quantity of interest, under
the form:

Q− ≤ Q(u) ≤ Q+ (25)

with

Q− = Q(uh) +Qcorr,2 −
1

2
ECRE(uh, q̂).ECRE(ũh, ˆ̃q)

Q+ = Q(uh) +Qcorr,2 +
1

2
ECRE(uh, q̂).ECRE(ũh, ˆ̃q)

(26)

In practice, accurate bounds Q− and Q+ are obtained by an enrichment of the adjoint
solution alone, so that ECRE(ũh, ˆ̃q) tends to 0 and Qcorr,2 tends to Q(u)−Q(uh). Noticing
that the adjoint loading (qΣ, fΣ, FΣ,QΣ) usually applies on a local subdomain of Ω, and
therefore leads to an adjoint solution with localized high gradients (Saint-Venant principle),
the idea is to use local enrichment in the vicinity of the space region of interest where the
quantity Q is defined.

Remark 4. As an alternative to local mesh refinement, a non-intrusive approach (hence-
forth known as handbook technique) can be introduced for an accurate approximate solution
of the adjoint problem [18, 61, 83]. It consists in introducing (handbook) enrichment func-
tions for the construction of ũh, using a partition of unity property. Such an enrichment
technique is particularly well-suited to handle pointwise quantities of interest, as enrichment
functions then correspond to Green’s functions, and this yields accurate error bounds with-
out requiring to any regularization (e.g. mollification [73]) of the functional being considered
or any specific local remeshing technique. We do not implement this technique in the present
paper, even though it would particularly be of interest in the IGA context as no specific
local mesh refinement technique would be required.

4. Construction of an admissible flux field

We detail in this section a procedure that enables to recover a relevant admissible flux
field q̂h ∈ S from a post-processing of the approximate IGA flux field qh at hand, and
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using conventional tools available in commercial software. A similar procedure applies for
the recovery of an admissible adjoint flux field ˆ̃qh ∈ S̃ from q̃h. This procedure essentially
follows the same principles as the hybrid-flux (or EET) technique developed in the FEA
context [54, 55, 71, 74]. Nevertheless, as IGA shape functions ϕI are associated with non-
interpolating control points I (instead of physical nodes in FEA), and may be supported by
a large number of knot spans (compared to FEA where the support of the shape function ϕI
associated to node I is made of elements connected to this node alone), the EET technique
requires specific modifications.

4.1. General hybrid-flux technique

The proposed procedure for the recovery of q̂h ∈ S in the IGA context uses weak
equilibration properties (9) of the IGA approximate flux field qh = K∇uh /∈ S at hand.
It involves local independent computations on (non-zero) knot spans Ωe in the physical
space, associated with tensorized regular (line, rectangle, parallelepiped) knot spans Ω̂e in
the parametric space (see Section 2.2). Indeed, after defining an equilibrated traction field
F̂ e on the boundary ∂Ωe of each knot span Ωe, the following Neumann problems are solved
at the knot span level:

−∇ · q̂h = fd in Ωe ; q̂h · ne = F̂ e on ∂Ωe (27)

ne being the unit outgoing normal vector to Ωe. The recovery procedure is thus split in two
steps which are detailed below.

4.1.1. Step 1: computation of equilibrated tractions on the boundary of knot spans

For each knot span Ωe, equilibrated tractions F̂ e
Γ are computed on each edge/face Γ of

∂Ωe. These tractions should be such that:

F̂ e
Γ = Fd if Γ ⊂ ∂qΩ (satisfaction of Neumann boundary conditions)∫
Ωe

fddx +
∑

Γ⊂∂Ωe

∫
Γ

F̂ e
ΓdS = 0 ∀Ωe (satisfaction of equilibrium at the knot span level)

F̂ e
Γ = ηeΓF̂Γ with ηeΓ = ±1 (continuity of the normal admissible flux between knot spans)

(28)
where F̂Γ is a traction field specific to the edge/face Γ.

A key point to compute tractions F̂ e
Γ is the so-called prolongation condition, which is

a local energy relation between the IGA field qh and the recovered equilibrated field q̂h.
Denoting again by {ϕI}1≤I≤N the set of IGA basis functions (B-Splines or NURBS), the
prolongation condition reads:∫

Ωe

(q̂h − qh) · ∇ϕIdx = 0 ∀ϕI , ∀Ωe (29)

Using local properties (27) as well as the divergence theorem, (29) comes down to:∑
Γ⊂∂Ωe

∫
Γ

F̂ e
ΓϕIdS =

∫
Ωe

(qh · ∇ϕI − fdϕI)dx = Qe
I (30)
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where Qe
I is a computable quantity. For a given function ϕI , imposing (30) for all knot spans

supporting ϕI leads to a small-size system of equations SI to solve. It is important to notice
that:
• ensuring (30) naturally enables to verify (28) due to the partition of unity property∑n

I=1 ϕI = 1 ensured in the physical space (see Section 2.2);

• the unknowns of each system SI are quantities
∫

Γ
F̂ΓϕIdS i.e. projections, over ϕI ,

of unsigned tractions F̂Γ on edge/face Γ of the physical mesh;
• each system SI is usually rank deficient, but there is always at least one solution due

to the weak equilibration property verified by qh and resulting from (9). For a basis
function ϕI vanishing on ∂qΩ, this reads

∑
eQ

e
I =

∫
Ω

(qh · ∇ϕI − fdϕI)dx = 0;
• a unique solution for each system SI may be obtained, if necessary, by the minimiza-

tion of a cost function that involves the least square distances between unknowns∫
Γ
F̂ΓϕIdS and available average quantities

∫
Γ
〈qh〉 · nϕIdS. As the quantity qh · n

might be discontinuous across the interface Γ (even though is it usually not the case
due to the classical use of high-order IGA basis functions), 〈qh〉 denotes the average
of this field defined from values on the two knot spans connected to Γ.

After computing projection quantities
∫

Γ
F̂ΓϕIdS, (unsigned) tractions F̂Γ can be recov-

ered as a linear combination of IGA shape functions:

F̂Γ(x) =
∑
J∈JΓ

f̂JΓϕJ |Γ(x) (31)

where JΓ denotes the set of indices for non-zero shape functions on Γ. Nevertheless, as
non-zero functions ϕJ |Γ are usually not independent functions (contrary to the FEA case),
projections on independent functions should be recovered in order to define invertible ele-
mentary matrix systems giving coefficients f̂JΓ .

Details on the definition and solution of each system SI , as well as on the computation
of coefficients f̂JΓ , are given in Section 4.2 for an illustrative 2D case.

4.1.2. Step 2: local recovery of an equilibrated flux field

From the equilibrated traction field F̂ e computed in Step 1, an associated admissible
flux field q̂h verifying (27) is recovered over each knot span Ωe. The local equilibrium
property (27) may be recast in a weak form as:∫

Ωe

q̂h · ∇vdx =

∫
Ωe

fdvdx +

∫
∂Ωe

F̂ evdS ∀v ∈ U(Ωe) (32)

with U(Ωe) = H1(Ωe). A (non-unique) solution to (32) can be obtained analytically, using
polynomial functions with sufficiently high degree, provided the source term fd is polynomial
as well [56]. In practice, an alternative approach with numerical solution and higher-order
enrichment is preferred. Indeed, the optimal flux field satisfying (32) is the one that mini-
mizes over Ωe the local contribution ‖q̂h − qh‖K−1|Ωe of the error estimate E2

CRE(uh, q̂h) (or
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equivalently minimizes ‖q̂h‖K−1|Ωe). Duality arguments show that the underlying constrained
minimization problem is equivalent to taking q̂h|Ωe = K∇ρ, with ρ ∈ U(Ωe) satisfying the
following Neumann problem:∫

Ωe

K∇ρ · ∇vdx =

∫
Ωe

fdvdx +

∫
∂Ωe

F̂ evdS ∀v ∈ U(Ωe) (33)

A numerical approximation of the solution of (33) is in practice obtained from an IGA
approximation using mesh enrichment over the knot span Ωe. In the remainder of the
paper, we choose to use a k-refinement approach (see Section 2.4) with extra order 3; the
final order of local basis functions is therefore p+ 3.

Remark 5. The flux field obtained from a numerical approximation of ρ is not rigorously
equilibrated in each knot span Ωe, which means that the error estimate computed from this
flux field is not mathematically guaranteed. Nevertheless, choosing a p+ 3 order enables to
obtain in practice a negligible error due to non-equilibrium in the computation of the CRE
error estimate [5]. We also recall that when (32) is solved exactly with a dual approach
(searching a solution flux with polynomial form for instance), fully guaranteed bounds are
recovered from the CRE concept.

Remark 6. The solution of problem (33) is defined up to an additive constant (translation).
This constant is fixed by imposing ρ to zero at an arbitrary point by means of a Lagrange
multiplier.

4.2. Technical implementation on a 2D example

In this section, we focus on technical details related to Step 1 of the previously introduced
procedure, i.e. the computation of equilibrated tractions. For this purpose, and in order
the methodology to be easily understandable, we work in the parametric space (made of
regular knot spans) instead of the physical space; we recall that they are related each other
by means of a global mapping F in the isoparametric framework. Furthermore, in order to
keep notations simple, we consider a two-dimensional parametric space with order 2 B-Spline
functions and knot vectors Ξ1 = [0, 0, 0, 1/3, 2/3, 1, 1, 1] and Ξ2 = [0, 0, 0, 1/3, 2/3, 1, 1, 1]
(see Fig. 7). Consequently, the parametric space is made of 3 knot spans and 5 functions in
each direction (9 knot spans and 25 shape functions in the tensorized space). Tensorization
results in the fact that basis functions read:

ϕI(ξ, η) = Ni,2(ξ).Nj,2(η) = Ni(ξ).Nj(η) or equivalently ϕI = N ξ
i .N

η
j (1 ≤ i, j ≤ 5)

(34)
where we simplified the notation Ni = Ni,2 for better readability. These functions are
associated with control points BI in order to define the exact geometry in the physical
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Figure 7: 2D parametric space and shape functions constructed from the tensorization of knot vectors Ξ1

and Ξ2 (left), and plot of the basis function N3,2(ξ)N3,2(η).

space.
Similarly, each knot span in the parametric space reads:

Ω
e

= Ω
e1
1 × Ω

e2
2 (1 ≤ e1, e2 ≤ 3) (35)

where Ω
ed
d are 1D knot spans in the dimension d. In each 1D dimension, it can be easily

seen that several functions may be non-zero at a given knot (interface between knot spans)
compared to FEA where a single basis function is non-zero at each node position. Further-
more, the Cox-de Boor recursion formula leads to 3 (or p + 1 in the general case) different
basis functions supported by a given knot span, as illustrated in Fig. 8. The restrictions of
these functions to each individual 1D knot span will be used as independent functions on
which to perform projections and define expansions (31) of tractions F̂Γ.

Figure 8: Restrictions of 1D B-Spline functions to knot span 1 (in red), 2 (in blue), and 3 (in green).

Coming back to the 2D parametric space, we then consider all shape functions which are
non-zero at node positions (tensorization of knot positions). As an illustration, we consider
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the node i shown in Fig. 9, for which 4 functions are non-zero: N ξ
2 .N

η
2 , N ξ

2 .N
η
3 , N ξ

3 .N
η
2 ,

and N ξ
3 .N

η
3 . Consequently, 4 systems SI associated to each of these basis functions ϕI and
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Figure 9: Definition of shape functions and edges associated with node i (left), and configuration at node i

for the system associated to ϕI = Nξ
2 .N

η
3 (right).

resulting from (30) can be defined for this node (compared to one in classical FEA). They
are defined over supports of each function as illustrated in Fig. 10.

In order to detail systems SI for functions of the type ϕI = N ξ
i .N

η
j , we introduce the

following notations:∫
Γk

F̂Γk
N ξ
i .N

η
j dS = b̂ijΓk

;

∫
Ω

e
(qh · ∇(N ξ

i .N
η
j )− fdN ξ

i .N
η
j )dξ = Qe

ij (36)

4.2.1. Illustration of the system for ϕI = N ξ
2 .N

η
3

We use the numbering of Fig. 9, and write (30) for each knot span in the support of
N ξ

2 .N
η
3 . We thus come down to the configuration shown in Fig. 9, and the following system

holds: 

b̂23
Γ1
− b̂23

Γ7
= Q1

23

b̂23
Γ7
− b̂23

Γ2
= Q2

23

b̂23
Γ8
− b̂23

Γ1
+ b̂23

Γ4
= Q4

23

b̂23
Γ2
− b̂23

Γ8
− b̂23

Γ5
= Q5

23

b̂23
Γ9
− b̂23

Γ4
= Q7

23

b̂23
Γ5
− b̂23

Γ9
= Q8

23

(37)

where the sign convention used on the left-hand side follows the one which is arbitrarily
employed for coefficients ηeΓ and which is indicated on Fig. 10.

The previous system is simplified by gathering knot spans 4 and 7, and 5 and 8 (see
Fig. 11), so that the system becomes small-sized and similar to the FEA context with
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Figure 10: Support of the system SI associated to basis function Nξ
2 .N

η
2 (top left), Nξ

3 .N
η
2 (top right),

Nξ
2 .N

η
3 (bottom left), and Nξ

3 .N
η
3 (bottom right). The sign convention used for coefficients ηeΓ is indicated.

interior node i. It reads: 
b̂23

Γ1
− b̂23

Γ7
= Q1

23

b̂23
Γ7
− b̂23

Γ2
= Q2

23

b̂23
Γ8

+ b̂23
Γ9
− b̂23

Γ1
= Q4

23 +Q7
23

b̂23
Γ2
− b̂23

Γ8
− b̂23

Γ9
= Q5

23 +Q8
23

(38)

Noticing that Q1
23 + Q2

23 + Q4
23 + Q5

23 + Q7
23 + Q8

23 = 0 (weak equilibration property (9)
verified by qh), the previous system has an infinite number of solutions. The following cost
function is then introduced: ∑

Γ∈G

∣∣∣∣∣ b̂23
Γ − b̄23

Γ

|Γ|

∣∣∣∣∣
2

(39)

with G = {Γ1,Γ2,Γ7,Γ8,Γ9} and b̄23
Γ =

∫
Γ
〈qh〉 · nN ξ

2 .N
η
3 dS (〈qh〉 = qh here as C1 functions

are used). A constrained minimization is then performed to recover a unique solution to (38).
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Figure 11: Illustration of the gathering of knot spans around node i.

4.2.2. Final projections and expansion of tractions

Using a similar procedure, systems SI associated to node i and for basis functions N ξ
2 .N

η
2 ,

N ξ
3 .N

η
2 , and N ξ

3 .N
η
3 are solved (see Fig. 10). Values are thus obtained for the following

unknowns:
• b̂22

Γ1
, b̂22

Γ2
, b̂22

Γ7
, b̂22

Γ8
(for the system with basis function N ξ

2 .N
η
2 );

• b̂23
Γ1

, b̂23
Γ2

, b̂23
Γ7

, b̂23
Γ8

, b̂23
Γ9

(for the system with basis function N ξ
2 .N

η
3 );

• b̂32
Γ1

, b̂32
Γ2

, b̂32
Γ3

, b̂32
Γ7

, b̂32
Γ8

(for the system with basis function N ξ
3 .N

η
2 );

• b̂33
Γ1

, b̂33
Γ2

, b̂33
Γ3

, b̂33
Γ7

, b̂33
Γ8

, b̂33
Γ9

(for the system with basis function N ξ
3 .N

η
3 ).

Then, projections on edges over independent restrictions of 1D B-Spline functions (see
Fig. 8) can be obtained as a linear combination (using the partition of unity property) of
the previous values:∫

Γ1

F̂Γ1N2|1dS = b̂22
Γ1

+ b̂23
Γ1

;

∫
Γ1

F̂Γ1N3|1dS = b̂32
Γ1

+ b̂33
Γ1∫

Γ2

F̂Γ2N2|2dS = b̂22
Γ2

+ b̂23
Γ2

;

∫
Γ2

F̂Γ1N3|2dS = b̂32
Γ2

+ b̂33
Γ2∫

Γ3

F̂Γ3N3|3dS = b̂32
Γ3

+ b̂33
Γ2∫

Γ7

F̂Γ7N2|1dS = b̂22
Γ7

+ b̂32
Γ7

;

∫
Γ7

F̂Γ7N3|1dS = b̂23
Γ7

+ b̂33
Γ7∫

Γ8

F̂Γ8N2|2dS = b̂22
Γ8

+ b̂32
Γ8

;

∫
Γ8

F̂Γ8N3|2dS = b̂23
Γ8

+ b̂33
Γ8∫

Γ9

F̂Γ9N3|3dS = b̂23
Γ9

+ b̂33
Γ9

(40)

Performing a similar approach for all nodes and all basis functions enables one to obtain
all necessary projections, before recovering tractions themselves. For instance, considering
the node j shown in Fig. 12 enables to recover the last projection on edge Γ8:∫

Γ8

F̂Γ8N4|2dS = b̂24
Γ8

+ b̂34
Γ8

(41)

Eventually, the traction F̂Γ8 is recovered as:

F̂Γ8(ξ) = f̂ 2
Γ8
N2|2(ξ) + f̂ 3

Γ8
N3|2(ξ) + f̂ 4

Γ8
N4|2(ξ) (42)
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where coefficients f̂ 2
Γ8

, f̂ 3
Γ8

, and f̂ 4
Γ8

are solutions of a small linear system involving known

projections
∫

Γ8
F̂Γ8N2|2dS,

∫
Γ8
F̂Γ8N3|2dS, and

∫
Γ8
F̂Γ8N4|2dS. This system with symmetric

matrix reads:
∫

Γ8
N2

2|2dS
∫

Γ8
N2|2.N3|2dS

∫
Γ8
N2|2.N4|2dS∫

Γ8
N2|2.N3|2dS

∫
Γ8
N2

3|2dS
∫

Γ8
N3|2.N4|2dS∫

Γ8
N2|2.N4|2dS

∫
Γ8
N3|2.N4|2dS

∫
Γ8
N2

4|2dS

 f̂ 2
Γ8

f̂ 3
Γ8

f̂ 4
Γ8

 =


∫

Γ8
F̂Γ8N2|2dS∫

Γ8
F̂Γ8N3|2dS∫

Γ8
F̂Γ8N4|2dS


(43)

The overall procedure for the construction of equilibrated tractions thus involves the
solution of small-size independent systems, as in FEA.

Figure 12: Illustration of the gathering of knot spans around node j, for the system with basis function
Nξ

2 .N
η
3 .

4.3. Generalization to locally refined meshes

The previous approach for the construction of an admissible field q̂h, and in particular
for the computation of equilibrated tractions F̂ e

Γ, can also be used in the case of locally
refined IGA meshes. Two cases should be considered:

— when hierarchical refinement is performed, with the local addition of patches rep-
resenting finer details, the associated nested structure of the approximation space
makes the extension of the hybrid-flux approach straightforward. The procedure for
the construction of F̂ e

Γ naturally applies by using the prolongation condition over all
shape functions as well as equilibrium properties in the IGA sense verified by the ap-
proximate solution. A numerical example dealing with hierarchical local refinement
is given in Section 5.1;

— when T-splines are used, the local refinement procedure is equivalent to hanging nodes
in the FEA context. Consequently, the extension of the hybrid-flux approach is not
straightforward and should be conducted in a similar way as for FEA with hanging
nodes (see [55] for instance). Nevertheless, this new procedure is out of the scope of
the present paper.

5. Numerical results

In this section, we assess the performance of the error estimation approach based on
CRE, considering 2D and 3D physical domains, and with linear or nonlinear mechanical
models. In each case, the problem is chosen time-independent and the material is chosen
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isotropic. On average, the CPU time requested to compute global error estimates for all
examples was 24% that associated to compute the approximate IGA solution. This results
from the fact that many computations in the construction of the CRE estimate can be
performed in parallel.

5.1. Example 1: thermal problem on a quarter of an annulus

We first consider a heat transfer problem (Poisson equation) on a quarter of annulus
with prescribed homogeneous Dirichlet boundary conditions, similar to the one described
in [50]. The physical domain Ω is defined as (r, θ) ∈ [Ri, Re]× [0, π/2] in a polar coordinates
system, with Ri = 1 and Re = 4. It is represented using order 2 NURBS basis functions
in both directions of the parametric space (see Fig. 13), constructed from knot spans Ξ1 =
{0, 0, 0, 1, 1, 1} and Ξ2 = {0, 0, 1, 1}. The associated control points and weights are:

B1,1 = (0, Ri) ; w1,1 = 1 ; B2,1 = (Ri, Ri) ; w2,1 = 1/
√

2 ; B3,1 = (Ri, 0) ; w3,1 = 1

B1,2 = (0, Re) ; w1,2 = 1 ; B2,2 = (Re, Re) ; w2,2 = 1/
√

2 ; B3,2 = (Re, 0) ; w3,2 = 1
(44)
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Figure 13: IGA representation of the geometry with control mesh (left), and initial discretization with 5× 5
non-zero knot spans in the physical space. Control points are represented by red dots.

The problem reads:
−∆u = f in Ω ; u = 0 on ∂Ω (45)

and the body force is chosen as:

f(x, y) =(2x4 + 2y4 + 4x2y2 − 50x2 − 50y2 + 100) sin(x) sin(y)

+ (68x− 8x3 − 8xy2) cos(x) sin(y)

+ (68y − 8y3 − 8x2y) sin(x) cos(y)

(46)

so that the exact solution u(x, y) is analytical (manufactured solution): u(x, y) = (x2 + y2−
1).(x2 + y2 − 16). sin(x). sin(y). It is represented in Fig. 14.
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Figure 14: Exact solution for the 2D heat problem: u (left), q · ex (center), and q · ey (right).
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Figure 15: The various mesh sizes used, with 5× 5 (left), 10× 10 (center), and 20× 20 (right) knot spans.

5.1.1. Estimation of the error in the energy norm

When approximating the exact solution by means of IGA, we investigate the accuracy and
convergence of the CRE estimate ECRE(uh, q̂h) as an assessment of the exact discretization
error in the energy norm Eglob. For this purpose, we consider three uniform meshes with
different mesh sizes as shown in Fig. 15. The approximate IGA flux field qh obtained using
the 5× 5 mesh is represented in Fig. 16. For each mesh, we represent in Fig. 17, 18, and 19,
respectively, the admissible flux field recovered from the approach of Section 4, as well as
the associated CRE error map. For this problem, the value of the global effectivity index
ieff = ECRE/‖eh‖K is lower than 1.11 for the 3 previous meshes considered. Furthermore,
the maps of local effectivity indices (Fig. 20) show that the CRE estimate is a relevant and
robust tool for mesh adaptation. Eventually, we plot in Fig. 21 the convergence of the CRE
error estimate and effectivity index with respect to the number of dofs in uniform meshes.
We particularly observe that the effectivity index tends to one when the number of dofs
increases (i.e. the CRE estimate is asymptotically exact).

5.1.2. Performance with local mesh refinement

We now consider a locally refined mesh. It is constructed from an initial 10×10 mesh,
after a first adaptation step from the error distribution shown in Fig. 18, and it involves
hierarchical NURBS. It is obtained using hierarchical refinement tools available in the pack-
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Figure 16: Approximate IGA flux field obtained with the 5× 5 mesh: qh · ex (left) and qh · ey (right).
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Figure 17: Admissible flux q̂h · ex (left) and q̂h · ey (center), and CRE error map (right) for the 5× 5 mesh.

age available at https://github.com/canitesc/IGAPack. After applying the CRE approach
to this mesh, we represent in Fig. 22 the spatial distribution of the error estimate and local
effectivity indices. The global effectivity index is 1.054. Results indicate that the the CRE
strategy still applies and performs well with a locally refined mesh.

5.1.3. Estimation of the error on quantities of interest

In this section, we investigate goal-oriented error estimation from the CRE framework.
The first quantity of interest which is considered refers to a local average of the temperature

field. It reads Q1 =
1

|ω|

∫
ω

u(x)dx where ω is a local zone indicated in Fig. 23. This zone

consists in a single knot span associated with the primal 5 × 5 mesh; as this mesh is fixed
in this section, the local zone ω is fixed. In order to assess the discretization error on
this quantity, we introduce the adjoint problem as described in Section 3.2. Its loading is

made of a uniform body force fΣ =
1

|ω|
applied in ω. The approximate solution obtained

using IGA with a 10 × 10 mesh is given in Fig. 24. After computing an admissible adjoint
flux field ˆ̃qh, and the associated CRE error estimate ECRE(ũh, ˆ̃qh), bounds on Q1 can be
obtained (see Section 3.2). We give in Fig. 25 the map of the admissible adjoint flux field
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Figure 18: Admissible flux q̂h · ex (left) and q̂h · ey (center), and CRE error map (right) for the 10 × 10
mesh.
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Figure 19: Admissible flux q̂h · ex (left) and q̂h · ey (center), and CRE error map (right) for the 20 × 20
mesh.

ˆ̃qh and that of the CRE error estimate ECRE(ũh, ˆ̃qh). In addition, and from the bounding
result (26), we represent in Fig. 23 the evolution of the relative bounds Q−1h/(Q

−
1h + Q+

1h)
and Q+

1h/(Q
−
1h + Q+

1h) with respect to the mesh size of the adjoint problem alone; here, the
adjoint problem is refined uniformly. We observe that we get both accurate and guaranteed
bounds on the quantity of interest Q1, due to the fact that the CRE estimate for the adjoint
problem decreases, and that the correction term Qcorr,2 (which involves both primal and
adjoint approximate solutions) evolves, when refining the adjoint mesh.

As another quantity of interest, we now consider Q2 =
1

|ω|

∫
ω

q(x) · exdx. The loading of

the associated adjoint problem consists of a uniform pre-flux field inside ω. After computing
an approximate adjoint solution using IGA with a 10 × 10 mesh, then an admissible flux
field, the CRE error estimate ECRE(ũh, ˆ̃qh) is obtained; its spatial distribution is represented
in Fig. 26. We also represent in Fig. 26 the evolution of the relative bounds Q−2h/(Q

−
2h+Q+

2h)
and Q+

2h/(Q
−
2h +Q+

2h) with respect to the mesh size of the adjoint problem alone. We again
observe that very accurate bounds on the quantity of interest Q2 (or on the error EQ2) is
obtained.
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Figure 20: Maps of local effectivity indices for the three mesh sizes considered.

Figure 21: Convergence of the error estimate (left) and effectivity index (right) with respect to the number
of dofs.

5.1.4. Performance with higher order IGA

We now investigate the performance of the estimate for higher IGA order, i.e. p = 3 and
p = 4. Considering p = 3 first, we show in Fig. 27 (resp Fig. 28) the distribution of the CRE
estimate (resp. of the local effectivity indices) for regular 5×5, 10×10, and 20×20 meshes.
In Fig. 29, we represent the convergence of the CRE estimate and the global effectivity index
with respect to the number of dofs in uniform meshes. Similar plots are given for p = 4 in
Figs. 30, 31, and 32.
As for p = 2, we observe a correct behavior and asymptotic exactness of the estimate,
with performance comparable with that exhibited in [50, 52]. This illustrates that the CRE
estimate is robust for any order p.

5.2. Example 2: elasticity problem on a L-shape domain

We now investigate a non-smooth linear elasticity problem on a domain Ω consisting
of a L-shape console beam (see Fig. 33), as described in [50, 82]. The domain is defined
as Ω = [−1, 1]2\[0, 1]2, and specific Dirichlet boundary conditions are prescribed as shown
in Fig. 33. The material parameters are E = 1 (Young modulus) and ν = 0.3 (Poisson
ratio). Order 2 basis functions are used in both directions of the parametric space; they
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Figure 22: Map of the CRE error estimate (left) and of the local effectivity indices (right) for a locally
refined mesh.
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Figure 23: Definition of the local zone ω over which the quantity of interest Q1 is defined (left), and evolution
of the relative bounds Q−

1h/(Q
−
1h +Q+

1h) and Q+
1h/(Q

−
1h +Q+

1h) with respect to the adjoint mesh size (right).

are constructed from knot spans Ξ1 = {0, 0, 0, 0.5, 1, 1, 1} and Ξ2 = {0, 0, 0, 1, 1, 1}, and the
associated control points (with weights wi,j = 1) are:

B1,1 = (0, 4) ; B2,1 = B3,1 = (0, 0) ; B4,1 = (4, 0)

B1,2 = (1, 4) ; B2,2 = (1, 2) ; B3,2 = (2, 1) ; B4,2 = (4, 1)

B1,3 = (2, 4) ; B2,3 = B3,3 = (2, 2) ; B4,3 = (4, 2)

(47)

The approximate IGA solution in terms of displacement and stress fields is given in
Figs. 34 and 35, respectively.

5.2.1. Performance of the estimate on regular meshes

The interest of this problem is to check that the estimate enables to accurately detect
the local error due to the singularity at the re-entrant corner. After computing admissible
fields, the map of the CRE estimate is given in Fig. 36 for several uniform meshes with
10 × 10, 20 × 20, or 30 × 30 knot spans. These maps clearly indicate that the major error
source is located at the singularity. Furthermore, the global effectivity index is between 1.12
and 1.17 for all meshes.
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Figure 24: Approximate IGA adjoint solution: ũh (left), q̃h · ex (center), and q̃h · ey (right).

x
0 1 2 3 4

y

0

1

2

3

4
Admissible flux x

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

x
0 1 2 3 4

y

0

1

2

3

4
Admissible flux y

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

x
0 1 2 3 4

y

0

1

2

3

4
Map of adjoint CRE estimate  �10-6

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 25: Adjoint flux field ˆ̃qh ·ex (left) and ˆ̃qh ·ey (center), and map of the adjoint CRE estimate (right).

5.2.2. Performance of the estimate on highly graded meshes

We investigate here the robustness of the estimate when considering highly graded
meshes. For that, we generate meshes after modifying dimensions of the L-shape domain.
While keeping a bulk square domain of size 2 × 2, we shorten the length of the two edges
located in the vicinity of the re-intrant corner. This is changed from 2 (initial L-shape
configuration of the previous section) to 0.2 (Case 1) or 0.1 (Case 2). The resulting maps
of the CRE estimate and local effectivity indices are indicated in Fig. 37. They indicate as
expected that local effectivity indices deteriorate in very distorted elements, as observed for
FEA; better results could be obtained using the approach developed in [35, 72] and based on
local energy minimizations when computing the admissible flux/stress fields. Nevertheless,
the global error estimation with CRE remains relevant as the global effectivity index is 1.27
for Case 1 and 1.34 for Case 2.

5.3. Example 3: thermal problem on a 3D structure

We consider here the 3D geometry shown in Fig. 38. It is a quarter of hollow cylinder
with height h = 3, external radius Re = 4, and internal radius Ri = 1. The geometry is
represented using NURBS basis functions constructed from knot spans Ξ1 = {0, 0, 0, 1, 1, 1},
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Figure 26: Map of the adjoint CRE estimate for the quantity of interest Q2 (left), and evolution of the
relative bounds Q−

2h/(Q
−
2h +Q+

2h) and Q+
2h/(Q

−
2h +Q+

2h) with respect to the adjoint mesh size (right).

Figure 27: Map of the CRE estimate for the 5 × 5, 10 × 10, and 20 × 20 meshes (from left to right) and
p = 3.

Ξ2 = {0, 0, 1, 1}, and Ξ3 = {0, 0, 1, 1}. The associated control points and weights are:

B1,1 = (0, Ri, 0) ; w1,1 = 1 ; B2,1 = (Ri, Ri, 0) ; w2,1 = 1/
√

2 ; B3,1 = (Ri, 0, 0) ; w3,1 = 1

B1,2 = (0, Re, 0) ; w1,2 = 1 ; B2,2 = (Re, Re, 0) ; w2,2 = 1/
√

2 ; B3,2 = (Re, 0, 0) ; w3,2 = 1

B1,3 = (0, Ri, h) ; w1,3 = 1 ; B2,3 = (Ri, Ri, h) ; w2,3 = 1/
√

2 ; B3,3 = (Ri, 0, h) ; w3,3 = 1

B1,4 = (0, Re, h) ; w1,4 = 1 ; B2,4 = (Re, Re, h) ; w2,4 = 1/
√

2 ; B3,4 = (Re, 0, h) ; w3,4 = 1
(48)

A uniform body force fd = 1 is applied in the domain Ω, while homogeneous Dirichlet
boundary conditions are prescribed on the whole boundary ∂Ω. The approximate solution
is given in Fig. 39.

After computing admissible fields and the CRE estimate for this 3D structure, we observe
that the global effectivity index is 1.17. The map of the CRE estimate is given in Fig. 40.
Similar evolutions of the estimate to those shown for previous examples are observed when
increasing the number of dofs or the IGA order.
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Figure 28: Map of local effectivity indices for the 5× 5, 10× 10, and 20× 20 meshes (from left to right) and
p = 3.

Figure 29: Convergence of the CRE estimate (left) and the global effectivity index (right) with respect to
the number of dofs for p = 3.

5.4. Example 4: nonlinear problem on a plate with circular hole

As a final example, we consider a nonlinear damage problem (elasticity with isotropic
softening) on a plate with circular hole under in-plane tension, as described in [82]. The
geometry is represented using NURBS basis functions constructed from knot spans Ξ1 =
{0, 0, 0, 0.5, 1, 1, 1} and Ξ2 = {0, 0, 0, 1, 1, 1}. The associated control points and weights are:

B1,1 = (−R, 0) ; w1,1 = 1 ; B2,1 = (−(2 +
√

2)R/4,
√

2R/4) ; w2,1 = (2 +
√

2)/4

B3,1 = (−
√

2R/4, (2 +
√

2)R/4) ; w3,1 = (2 +
√

2)/4 ; B4,1 = (0, R) ; w4,1 = 1

B1,2 = (−(L+R)/2, 0) ; w1,2 = 1 ; B2,2 = (−(2 +
√

2)(L+R)/8,
√

2(L+R)/8) ; w2,2 = (2 +
√

2)/4

B3,2 = (−
√

2(L+R)/8, (2 +
√

2)(L+R)/8) ; w3,2 = (2 +
√

2)/4 ; B4,2 = (0, (L+R)/2) ; w4,2 = 1

B1,3 = (−L, 0) ; w1,3 = 1 ; B2,3 = B3,3 = (−L,L) ; w2,3 = w3,3 = 1 ; B4,3 = (0, L) ; w4,3 = 1
(49)

The geometry and boundary conditions are given in Fig. 41. We assume a plane stress
behavior, and specific boundary conditions are prescribed.

The considered damage law involves a delay effect in order to circumvent numerical issues
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Figure 30: Map of the CRE estimate for the 5 × 5, 10 × 10, and 20 × 20 meshes (from left to right) and
p = 4.

Figure 31: Map of local effectivity indices for the 5× 5, 10× 10, and 20× 20 meshes (from left to right) and
p = 4.

due to localization phenomena and mesh dependency. Such a model, described in [3, 57, 58],
has been extensively used for composite materials. Following the general framework given
in AppendixA, the material is split in two parts:
• state equations:

σ = (1− d)K0ε = ∂εψ
∗ (0 ≤ d ≤ 1)

Y =
1

2
K0ε : ε = ∂dψ

β = (Yc − Y0)α2 = ω(α) = ∂αψ

(50)

where d is the damage parameter, Y is the energy release rate, Y0 is a threshold for
damage appearing, Yc is the critical threshold from which the material breaks, α is
an additional internal variable, and β is the associated dual internal variable. The
behavior law β = ω(α), with ω(0) = 0 and ω′(x) ≥ 0, takes an hardening effect into
account. In this framework, the dissipation reads Y ḋ− βα̇, and potentials ψ and ψ∗

are defined as:

ψ(σ, d, α) =
1

2

K−1
0 σ : σ

(1− d)
+ Ψd≤1 + Yc

|α|3

3

ψ∗(ε, Y, β) = Y + ΨCd
(ε, Y ) +

2

3
Yc(
|β|
Yc

)3/2

(51)
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Figure 32: Convergence of the CRE estimate (left) and the global effectivity index (right) with respect to
the number of dofs for p = 4.
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Figure 33: IGA representation of the L-shape geometry (left), and physical mesh (right).

where Ψ is the indicatrix function.
• evolution laws:

ḋ =
k

a

(
1− exp(−a〈Y − Y0 − β

Yc − Y0

〉+)

)
= ∂Y ϕ

∗

−α̇ = −ḋ = ∂βϕ
∗

d = α = 0 at t = 0

(52)

The dissipation potential ϕ∗ is defined as:

ϕ(ḋ,−α̇) = ḋ
(a− 1)Y0 + Yc

a
+ (

k

a
− ḋ) ln(1− a

k
ḋ)

ϕ∗(Y, β) =
k

a

[
〈Y − Y0 − β〉+ +

Yc − Y0

a
(exp(− a

Yc − Y0

〈Y − Y0 − β〉+)− 1)

] (53)

As detailed in AppendixA, the residuals on state equations and evolution laws read,
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Figure 34: IGA displacement field u, with components u · ex (left) and u · ey (right).
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Figure 35: IGA stress field σ, with components σxx (left), σyy (center), and σxy (right).

respectively:

ηψ(ε, Y, β;σ, d, α) = ψ(σ, d, α) + ψ∗(ε, Y, β)− σ : ·ε− Y d− βα ≥ 0

ηϕ(ḋ,−α̇;Y, β) = ϕ(ḋ,−α̇) + ϕ∗(Y, β)− Y ḋ+ βα̇ ≥ 0
(54)

Remark 7. Gathering σ with variable d enables to obtain a convex potential ψ(σ, d, α).
This would not be the case gathering ε with d as ψ(ε, d) = 1

2
ε(1 − d)K0ε is not a convex

function.

The problem is solved using a classical incremental procedure, with parameter values
E0 = 6350 (Young modulus), Y0 = 0, Yc = 0.13, k = 7000, and a = 1.The approximate
damage fields at two different increments are represented in Fig. 41.

After computing an admissible set Σ̂h = (ε̂h, Ŷh, β̂h, σ̂h, d̂h, α̂h) from the approximate
IGA solution, the CRE error estimate is defined as (see AppendixA):

E2
CRE(Σ̂h) =

∫
Ω

[
ηψ

(
Σ̂h

)
+

∫ T

0

ηϕ

(
Σ̂h

)
dt

]
dx (55)

In practice, the procedure to recover the admissible set Σ̂h follows that described in [57];
it uses the incremental solution of the problem, as well as the general procedure given in
Section 4 for the recovery of an equilibrated stress field σ̂h. At each increment point k:
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Figure 36: Map of the CRE error estimate for the L-shape domain and with various discretizations: 10× 10
(left), 20× 20 (center), and 30× 30 (right) knot spans.

— we choose û
(k)
h = u

(k)
h , i.e. ε̂

(k)
h = ε

(k)
h ;

— we construct σ̂
(k)
h from a post-processing of σ

(k)
h using the procedure described in

Section 4.
A linear interpolation between increment points is then performed to define fields ε̂h and
σ̂h over the whole time-space domain. Eventually, admissible internal variables Ŷh, β̂h, d̂h,
and α̂h are chosen in order to minimize the CRE estimate. This constrained minimization
procedure is cheap as it is performed locally at each integration point, and incrementally in
time considering piecewise linear evolutions.

The obtained admissible stress field (at step 7) is represented in Fig. 42, whereas the
spatial map of the CRE estimate (in terms of error density, as local contributions to the CRE
estimate are normalized by the element size) as well as its evolution with step increments
are given in Fig. 43. We observe that the CRE estimate increases with time, which is
mechanically sound as damage grows in the same time. As for the normalized (relative)
CRE estimate, it remains almost constant over the time domain. Here again, the results
obtained from the CRE error estimate are consistent, with larger error in the vicinity of
the damage zone and boundary conditions, and are useful indication for quantitative error
assessment and mesh refinement.

6. Conclusions and prospects

In this work, we presented a general procedure based on the CRE framework for the com-
putation of a posteriori error estimates for IGA simulations of linear or nonlinear structural
mechanics models. It was shown that the main technical point, which is the construction of
equilibrated flux/stress fields, could be performed from an extension of the hybrid-flux tech-
nique classically employed in the FEA context. This technique was thus extended from clas-
sical C0-continuous Lagrange polynomials to Ck-continuous (k > 0) B-splines and NURBS
bases. Numerical results confirmed the performance and potential of the approach, with
effectivity indices above but very close to 1. It was mainly implemented on linear models,
but it was also illustrated on a nonlinear damage model in order to show preliminary results

36



Figure 37: Map of the CRE error estimate (left) and local effectivity indices (right) for the L-shape domain,
with two levels of graded meshes: Case 1 (top), Case 2 (bottom).

and some further potentialities of the approach. Consequently, the proposed work consti-
tutes a practical tool for engineers aiming at controlling and adapting IGA computations
efficiently. Forthcoming works will concentrate on the following points: (1) full analysis of
the CRE estimate on complex nonlinear models such as damage models used for compos-
ite materials, for which IGA was shown to tremendously improve the design and analysis
in recent works [27]; (2) goal-oriented error estimation using the CRE concept for nonlin-
ear problems solved with IGA; (3) optimization of the constructed admissible fields when
considering highly graded meshes; (4) implementation of the CRE error estimate into com-
mercial software; (5) related to the previous point, potential combination of the approach
with the facilitating Bézier extraction technology developed in [11, 77], in order to directly
reuse hybrid-flux procedures implemented for FEA; (6) application with local refinement
strategies based on recent technologies such as T-splines.

AppendixA. CRE functional for nonlinear material behaviors

From its original definition for linear thermal or elasticity problems [54], several for-
mulations of the CRE concept have been proposed over the years in the case of nonlinear
behaviors [59]. We focus here on the one described in [57, 58], which applies to the large
class of material behaviors with standard formulation (such as (visco-)plasticity), and which
is suited to material behaviors with softening.

The starting point is the formulation of the nonlinear material behavior in terms of state
equations and evolution laws [39, 42]. Using the thermodynamical framework, we introduce
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Figure 38: IGA representation of the 3D geometry.

Figure 39: Approximate IGA solution: temperature (left), flux (right).

the Helmholtz free energy potential ψ:

ψ := ψ(T, ε, εp,V) = ψ(T, εe,V) (A.1)

that depends on state variables, i.e. observable variables (temperature T and strain tensor
ε) and internal variables: (i) the inelastic part εp of the strain tensor, such that ε = εe +εp;
(ii) additional internal variables Vi gathered in a vector V. Then, the two first principles of
thermodynamics lead to the Clausius-Duhem inequality (A.2):(

σ − ρ ∂ψ
∂εe

)
: ε̇e − ρ

(
s+

∂ψ

∂T

)
Ṫ −

∑
i

ρ
∂ψ

∂Vi
◦ V̇i + σ : ε̇p −

q · ∇T
T

≥ 0 (A.2)

where ρ is the density, s is the entropy, and q is the thermal flux. Consequently, considering
particular non-dissipative transformations, the previous inequality yields:

σ = ∂εeρψ ; s = −∂Tψ (A.3)

Similarly, we can introduce thermodynamical loads Yi (gathered in a vector Y) associated
with internal variables Vi:

Yi = ∂Viψ (A.4)
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Figure 40: Map of the CRE estimate.
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Figure 41: The considered problem (left), and approximate damage fields at increasing increments (center
and right).

so that (A.2) can be recast in the following condensed format:

σ : ε̇p −Y · V̇ − q · ∇T
T

≥ 0 (A.5)

We mention that (A.3) and (A.4) constitute the state equations of the material behavior.

Remark 8. By duality, we can define the Gibbs free energy potential, denoted ψ?, as the
Legendre-Fenchel transform of the Helmholtz free energy (A.1):

ψ? (T,σ,Y) = sup
εe,V

(σ : εe + Y ·V − ψ (T, εe,V)) (A.6)

so that ψ (T, εe,V) + ψ? (T,σ,Y)− σ : εe −Y ·V ≥ 0.
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Figure 42: Admissible stress field: σxx (left), σyy (center), and σxy (right).
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Then, it can be shown using convex analysis [66] that state equations can be equivalently
recast as:

ψ (T, εe,V) + ψ? (T,σ,Y)− 〈(σ,Y) , (εe,V)〉 = 0 (A.7)

where we introduced the notation 〈(σ,Y) , (εe,V)〉 = σ : εe + Y ·V.

The inequality (A.5) reflects the dissipative evolution phenomena associated with the
nonlinear material behavior. In particular, it imposes a consistency condition on the pair
of variables ((εp,V), (σ,Y)) in order to ensure that the intrinsic part σ : ε̇p −Y · V̇ of the
dissipation remains positive. To satisfy the previous condition, it is usual and convenient
to introduce a dissipation pseudo-potential, denoted ϕ(ε̇p,−V̇), as well as its dual potential
(defined using the Legendre-Fenchel transform):

ϕ?(σ,Y) = sup
ε̇p,V̇

(〈
(σ,Y) , (ε̇p,−V̇)

〉
− ϕ(ε̇p,−V̇)

)
(A.8)

Then, evolution laws are defined from the gradients of potential ϕ (or ϕ?), involving an
operator B: [

−V̇
ε̇p

]
= B

([
Y
σ

])
= ∂(σ,Y)ϕ

?(σ,Y) (A.9)
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so that the Clausius-Duhem inequality (A.5), which comes down to positive definite prop-
erties of the operator B: [

Y
σ

]
· B
([

Y
σ

])
≥ 0 (A.10)

is naturally satisfied when dissipation pseudo-potentials are chosen convex, with ϕ(0,0) =
ϕ∗(0,0) = 0.

From the previous thermodynamical formulation of nonlinear behaviors, a general CRE
measure was derived in [57] from residuals on: (i) the state equations; (ii) the evolution
laws. These residuals are defined using the Legendre-Fenchel inequality applied to the
corresponding thermodynamical potentials. They read:

— residual on the state equations:

ηψ(εe,V,σ,Y) = ψ(εe,V) + ψ?(σ,Y)− 〈(σ,Y) , (εe,V)〉 ≥ 0 (A.11)

— residual on the evolution laws:

ηϕ(ε̇p,−V̇,σ,Y) = ϕ(ε̇p,−V̇) + ϕ?(σ,Y)−
〈

(σ,Y) , (ε̇p,−V̇)
〉
≥ 0 (A.12)

We notice again that convex analysis yields ηψ = 0 (resp. ηϕ = 0) when state equations
(resp. evolution laws) are satisfied.

For the sake of simplicity, we denote Σ = (εe, εp,V,σ,Y) the whole set of variables.
From the two residuals (A.11,A.12), the local in space and time CRE measure eCRE is defined
as:

e2
CRE(Σ) = ηψ (Σ) +

∫ t

0

ηϕ (Σ) dt ∀x ∈ Ω,∀t ∈ It (A.13)

and a global measure can be obtained by integration over the space-time domain.

[1] Ainsworth M, Oden J.T. A posteriori error estimation in finite element analysis. Vol. 37, Wiley-
Interscience, New York 2000.
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[18] Chamoin L, Ladevèze P. A non-intrusive method for the calculation of strict and efficient bounds
of calculated outputs of interest in linear viscoelasticity problems. Computer Methods in Applied
Mechanics and Engineering 2008; 197(9-12):994–1014.

[19] Chamoin L, Diez P. Verifying calculations, forty years on: an overview of classical verification techniques
for FEM simulations. SpringerBriefs 2015.

[20] Chemin A, Elguedj T, Gravouil A. Isogeometric local h-refinement strategy based on multigrids. Finite
Elements in Analysis and Design 2015; 100(C):77–90.

[21] Cottereau R, Diez P, Huerta A. Strict error bounds for linear solid mechanics problems using a
subdomain-based flux-free method. Computational Mechanics 2009; 44(4):533–547.

[22] Cottrell J.A, Reali A, Bazilevs Y, Hughes T.J.R. Isogeometric analysis of structural vibrations. Com-
puter Methods in Applied Mechanics and Engineering 2006; 195(41-43):5257–5296.

[23] Cottrell J.A, Hughes T.J.R, Bazilevs Y. Isogeometric analysis: towards integration of CAD and FEA.
John Wiley & Sons, Chichester, UK 2009.

[24] Dalcin L, Collier N, Vignal P, Cartes A.M.A, Calo V.M. PetIGA: a framework for high-performance
isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 2016; 308:151–181.

[25] De Lorenzis L, Wriggers P, Zavarise G. A mortar formulation for 3D large deformation contact using
NURBS-based isogeometric analysis and the augmented Lagrangian method. Computational Mechanics
2012; 49(1):1–20.

[26] Deng J, Chen F, Li X, Hu C, Tong W, Yang Z, Feng Y. Polynomial splines over hierarchical T-meshes.
Graphical Models 2008; 70:76–86.

[27] Deng X, Korobenko A, Yan J, Bazilevs Y. Isogeometric analysis for continuum damage in rotation-free
composite shells. Computer Methods in Applied Mechanics and Engineering 2015; 284:349–372.

[28] Destuynder P, Métivet B. Explicit error bounds in a conforming finite element method. Mathematics
of Computation 1999; 68(288):1379–1396.

[29] Dorfel M, Juttler B, Simeon B. Adaptive isogeometric analysis by local h-refinement with T-splines.
Computer Methods in Applied Mechanics and Engineering 2010; 199(5-8):264–275.

[30] Dufour J-E, Antolin P, Sangalli G, Auricchio F, Reali A. A cost-effective isogeometric approach for
composite plates based on a stress recovery procedure. Computer Methods in Applied Mechanics and

42



Engineering 2010; 199(5-8):264–275.
[31] Elguedj T, Bazilevs Y, Calo V.M, Hughes T.J.R. B̄ and F̄ projection methods for nearly incompressible

linear and nonlinear elasticity and plasticity using higher-order NURBS elements. Computer Methods
in Applied Mechanics and Engineering 2008; 197(33-40):2732–2762.

[32] Ern A, Vohralik M. A posteriori error estimation based on potential and flux reconstruction for the
heat equation. SIAM Journal on Numerical Analysis 2010; 345(48):198–223.

[33] Evans J.A, Bazilevs Y, Babuska I, Hughes T.J.R. n-Widths, sup-infs, and optimality ratios for the
k-version of the isogeometric finite element method. Computer Methods in Applied Mechanics and
Engineering 2009; 198(21-26):1726–1741.

[34] Feischl M, Gantner G, Praetorius D. Reliable and efficient a posteriori error estimation for adaptive
IGA boundary element methods for weakly-singular integral equations. Computer Methods in Applied
Mechanics and Engineering 2015; 290:362–386.

[35] Florentin E, Gallimard L, Pelle J-P. Evaluation of the local quality of stresses in 3d finite element
analysis. Computer Methods in Applied Mechanics and Engineering 2002; 191:4441–4457.

[36] Forsey D, Bartels R. Hierarchical B-spline refinement. Computer Graphics 1988; 22(4):205–212.
[37] Fraeijs de Veubeke B. Displacement and equilibrium models in the finite element method. International

Journal for Numerical Methods in Engineering, Classical Reprint Series 2001; 52:287–342.
[38] Gallimard L. A constitutive relation error estimator based on traction-free recovery of the equilibrated

stress. International Journal for Numerical Methods in Engineering 2009; 78(4):460–482.
[39] Germain P, Nguyen Q.S, Suquet P. Continuum thermodynamics. Journal of Applied Mechanics 1983;

50:1010–1020.
[40] Giannelli C, Juttler B, Speleers H. THB-splines: the truncated basis for hierarchical splines. Computer

Aided Geometric Design 2012; 29(7):485–498.
[41] Gomez H, Calo V.M, Bazilevs Y, Hughes T.J.R. Isogeometric analysis of the Cahn-Hilliard phase-field

model. Computer Methods in Applied Mechanics and Engineering 2008; 197:4333–4352.
[42] Halphen B, Nguyen Q.S. Sur les matériaux standard généralisés. Journal de mécanique 1975; 14:39–63.
[43] Höllig K. Finite Element Methods with B-Splines. SIAM, Philadelphia 2003.
[44] Hosseini S, Remmers J, Verhoosel C, De Borst R. Propagation of delamination in composite ma-

terials with isogeometric continuum shell elements. International Journal for Numerical Methods in
Engineering 2015; 102:159–179.

[45] Hughes T.J.R, Cottrell J.A, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, ex-
act geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 2005;
194:4135–4195.

[46] Hughes T.J.R, Reali A, Sangalli G. Efficient quadrature for NURBS-based isogeometric analysis.
Computer Methods in Applied Mechanics and Engineering 2010; 199(5-8):301–313.

[47] Johannessen K.A, Kvamsdal T, Dokken T. Isogeometric analysis using LR B-splines. Computer Methods
in Applied Mechanics and Engineering 2014; 269:471–514.

[48] Kagan P, Fischer A, Bar-Yoseph P.Z. New B-spline finite element approach for geometrical design and
mechanical analysis. International Journal for Numerical Methods in Engineering 1998; 41:435–458.

[49] Kiendl J, Bletzinger KU, Linhard J, Wchner R. Isogeometric shell analysis with Kirchhoff-Love ele-
ments. Computer Methods in Applied Mechanics and Engineering 2009; 198(49-52):3902–3914.

[50] Kleiss S.K, Tomar S.K. Guaranteed and sharp a posteriori error estimates in isogeometric analysis.
Computers & Mathematics with Applications 2015; 70(3):167–190.

[51] Kruse R, Nguyen-Thanh N, De Lorenzis L, Hughes T.J.R. Isogeometric collocation for large deformation
elasticity and frictional contact problems. Computer Methods in Applied Mechanics and Engineering
2015; 296:73–112.

[52] Kumar M, Kvamsdal T, Johannessen K.A. Superconvergent patch recovery and a posteriori error
estimation technique in adaptive isogeometric analysis. Computer Methods in Applied Mechanics and
Engineering 2017; 316:1086–1156.

[53] Kuru G, Verhoosel C.V, Van der Zee K, Van Brummelen E.H. Goal-adaptive isogeometric analysis with
hierarchical splines. Computer Methods in Applied Mechanics and Engineering 2014; 270:270–292.

43
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[75] Schillinger D, Dedè L, Scott M, Evans J, Borden M, Rank E, Hughes T. An isogeometric design-
through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed bound-
ary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering
2012; 249-252:116–150.

[76] Schillinger D, Evans J, Reali A, Scott M, Hughes T. Isogeometric collocation: Cost comparison with
Galerkin methods and extension to adaptive hierarchical NURBS discretizations. Computer Methods
in Applied Mechanics and Engineering 2013; 267:170–232.

[77] Schillinger D, Ruthala P.K, Nguyen L.H. Lagrange extraction and projection for NURBS basis func-
tions: a direct link between isogeometric and standard nodal finite element formulations. International
Journal for Numerical Methods in Engineering 2016; 108(6):515–534.

[78] Sederberg T.W, Cardon D.L, Finnigan G.T, North N.S. T-spline simplification and local refinement.
ACM Transactions on Graphics 2004; 23(3):276–283.

[79] Sevilla R, Fernandez-Mendez S, Huerta A. 3D NURBS-enhanced finite element method (NEFEM).
International Journal for Numerical Methods in Engineering 2011; 88:103–125.

[80] Temizer I, Wriggers P, Hughes T. Contact treatment in isogeometric analysis with NURBS. Computer
Methods in Applied Mechanics and Engineering 2011; 200:1100–1112.

[81] Verfurth R. A review of a posteriori error estimation and adaptive mesh refinement techniques. Wiley-
Teubner, Stuttgart 1996.

[82] Vuong A.V, Giannelli C, Juttler B, Simeon B. A hierarchical approach to adaptive local refinement in
isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 2011; 200:3554–3567.
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