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A framework for learning depth from a flexible
subset of dense and sparse light field views

Jinglei Shi, Xiaoran Jiang, Christine Guillemot Fellow, IEEE

Abstract—In this paper, we propose a learning based depth
estimation framework suitable for both densely and sparsely
sampled light fields. The proposed framework consists of three
processing steps: initial depth estimation, fusion with occlusion
handling, and refinement. The estimation can be performed from
a flexible subset of input views. The fusion of initial disparity
estimates, relying on two warping error measures, allows us to
have an accurate estimation in occluded regions and along the
contours. In contrast with methods relying on the computation
of cost volumes, the proposed approach does not need any prior
information on the disparity range. Experimental results show
that the proposed method outperforms state-of-the-art light fields
depth estimation methods, including prior methods based on deep
neural architectures.

Index Terms—light fields, depth estimation, deep neural net-
work, occlusion handling.

I. INTRODUCTION

L IGHT fields, by recording the radiance of light rays along
different orientations yield a very rich description of the

scene, enabling 3D scene geometry estimation and 3D scene
reconstruction. Scene depth (or equivalently disparity) estima-
tion methods have been recently proposed for light fields that
can be broadly classified in two categories. The first category
of approaches analyze specific linear structures in Epipolar
Plane Images (EPI) [1] [2] for depth computation from dense
light fields. Indeed, the corresponding pixels in different views
of a light field form a line in EPI, whose slope is proportional
to the disparity value [3]. Another category of methods adopts
techniques from classical stereo reconstruction, i.e., matching
corresponding pixels in all sub-aperture images (SAI) or views
of the light field, essentially using robust patch-based block
matching [4] [5] [6]. A cost volume is constructed in [4] to
evaluate the matching cost defined as similarity between the
sub-aperture images and the central image shifted at different
sub-pixel locations.

EPI based methods are only suitable for densely sampled
light fields. While stereo methods allow estimating larger
disparities, they need to discretize the disparity space to
compute cost volumes, using also some prior knowledge
on the disparity range. A high discretization level improves
estimation accuracy but yields a heavy computational cost,
leading often to estimating depth at the central viewpoint
only. The authors in [6] estimate disparity maps for every
viewpoint from only a subset of light field views (in partic-
ular the four corner views). These estimated disparity maps
are then propagated by warping to the target view, using
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a low rank completion approach to cope with holes due to
occlusions. The author in [5] recently proposed an empirical
Bayesian framework to estimate scene-dependent parameters
for inferring scene depth. In [7], by dividing a light field into
several stereo image pairs, the authors estimate corresponding
disparities through a multiscale and multiwindow (MSMW)
stereo matching method and then process them with an optical
flow based interpolation. The final disparity is obtained by a
median fusion of the initial disparities.

Besides the above disparity estimation methods, a disparity
map can be also estimated with an optical flow estimator, as
both disparity and optical flow measure pixel displacement
between two images. Recently, the field of optical flow esti-
mation has known significant advances thanks to the use of
deep neural networks trained in a supervised or unsupervised
manner. An end-to-end trainable encoder-decoder network,
called FlowNet, is proposed in [8] for optical flow estimation.
The architecture is further improved in [9] by stacking several
elementary networks, each of them being similar to FlowNet.
The resulting architecture, called FlowNet 2.0, significantly
improves the prediction accuracy and is further refined in [10]
to improve the performance in occluded regions and contours.
A pyramid structure for flow estimation is proposed in [11],
which generates competitive results with less parameters. The
authors in [12] achieve state-of-the-art results by combining
a pyramid structure, warped features correlation and cost
volume. Deep learning methods have also been successfully
applied to many light fields processing tasks such as view
synthesis [13] [14] and super-resolution [15] [16]. Although
a few architectures have been proposed for scene depth (or
disparity) estimation from dense light fields based on EPI [17],
[18], very few methods have been proposed so far for sparse
light fields.

In this paper, we propose a supervised deep learning frame-
work for estimating scene depth, taking at the input a flexible
subset of light field views. In order to compute scene depth,
the proposed approach estimates disparity maps for every
viewpoint of the light field. Hence, in the rest of the paper, we
will refer to disparity estimation only. The use of subsets of
input views allows us, compared to stereo estimation methods,
to increase the estimation accuracy, while limiting compu-
tational complexity. Initial disparity estimates are computed
between aligned stereo pairs using the FlowNet 2.0 optical
flow estimation architecture that we fine-tuned to be suitable
for disparity estimation in dense and sparse light fields. These
initial estimates are used to warp a flexible set of anchor
views onto a target viewpoint. The fusion of these initial
estimates relying on a winner-takes-all (WTA) strategy with
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two measures of warping errors reflecting disparity inaccuracy
in occlusion-free and occlusions respectively, allows us to
have an accurate disparity estimation in occluded regions and
along the contours. A refinement network is then proposed
to learn the disparity maps residuals at different scales. The
proposed new architecture relies in part on the one considered
in [19], by however extending the approach into a more
general framework, which enables to perform estimation from
a flexible subset of input views.

The training of the proposed neural networks based archi-
tecture requires having ground truth disparity (or depth) maps.
Although a few synthetic datasets exist for dense light fields
with ground truth depth maps, no such dataset exists for sparse
light fields with large baselines. This lack of training data
with ground truth depth maps is a crucial issue for supervised
learning of neural networks for depth estimation. We therefore
created two datasets, called SLFD and DLFD, respectively
containing sparsely and densely sampled synthetic light fields.
DLFD contains light fields having a disparity range within the
interval [-4,4] between adjacent views, i.e. of the same order
of magnitude as light fields captured with plenoptic cameras.
SLFD contains light fields with a larger disparity range, i.e.
within the interval [-20,20], which is comparable to the one
of light fields captured with camera rigs. To our knowledge,
SLFD is the first available dataset providing sparse light field
views and their corresponding ground truth depth and disparity
maps. The created datasets will be made publicly available
upon acceptance of the paper, together with the code and the
trained models.

According to the metrics defined in [20] [21], experimental
results show that the proposed approach outperforms state-of-
the-art light field disparity estimation methods for both densely
and sparsely sampled LF. In addition, it does not require any
prior information on disparity range as in [2], [4], [5] for
example.

II. RELATED WORK

A. Stereo depth estimation
Depth estimation from stereo image pairs is a highly-studied

vision problem. Scene depth is indeed needed for a variety
of processing problems such as 3D reconstruction and view
synthesis. The scene depth can be derived by computing the
disparity between a stereo pair of views. As categorized in
[22], most stereo algorithms consist of the following opera-
tions: matching cost computation, cost aggregation, disparity
optimization and refinement. The matching cost measuring
pixel dissimilarity can be based on the l1 or l2 norms computed
within a fixed or adaptive window. The authors in [23] [24]
use a winner-takes-all strategy to optimize the final disparity
by choosing at each pixel the disparity associated with the
minimal cost value. Other methods like graph cut [25] or
coarse-to-fine refinement [26] are instead used for optimizing
the final disparity. Besides the above methods computing cost
volumes, methods based on statistical models, i.e. on Markov
Random Field (MRF) [27] and Conditional Random Fields
(CRFs) [28], have also been proposed.

While classical algorithms for extracting depth information
from a rectified image pair compute pixel dissimilarity within

a finite window as a matching cost, the authors in [29] train a
CNN (convolution neural network) to predict similarity scores
between two image patches, and compute the stereo matching
cost. The authors in [30] propose a deep embedding model
to map intensity values of image patches into an embed-
ding feature space. Pixel dissimilarities are then measured
by computing Euclidean distances between feature vectors.
While the above methods compute matching costs on feature
representations of rectified image pairs, the estimation problem
still requires regularization or left-right consistency checks to
have reliable estimates. The authors in [31] propose instead an
end-to-end CNN framework with 3D convolutions to learn to
regularize the cost volume as well as a soft argmin function
to regress sub-pixel disparity values from the disparity cost
volume.

In parallel of the above methods for estimating dispar-
ity between rectified image pairs, deep learning techniques
have given momentum to a significant progress in optical
flow estimation. The authors in [8] developed an end-to-end
trainable encoder-decoder architecture with a correlation layer
that explicitly provides matching capabilities between image
pairs. Being a variant of FlowNet, instead of considering 2D
correlation, DispNet [32] considers 1D correlation to better
adapt to the disparity estimation task. The FlowNet network
has been improved in FlowNet 2.0 [9] by stacking several
elementary networks similar to FlowNet. The structure of
two parallel branches of sub-networks, one for large dis-
placements prediction and another for small displacements,
makes FlowNet 2.0 applicable for variable flow ranges. In the
continuity of their work, the authors in [10] perform a joint
estimation of occlusions and optical flow in order to improve
accuracy in occluded regions and along the contours. The
authors in [11] construct a spatial pyramid using deep neural
networks to learn the optical flow in a coarse-to-fine manner. A
pyramid structure is also used in [12] to avoid computing a full
cost volume that is computationally prohibitive for real-time
optical flow estimation. Partial cost volumes are constructed
by computing the distance between warped features of the
second image and the features of the first image, within
a limited search range, at each pyramid level. In [33], the
authors propose a cascade network to refine the initial disparity
estimation by learning, in a supervised fashion, residual signals
across multiple scales.

B. Light field depth estimation

Different types of approaches have been proposed for scene
depth estimation from light fields. A first category of methods
derives the disparity by analyzing the epipolar plane images
(EPI). Pixels in the different views corresponding to the same
3D point form a line in the EPI, whose slope is proportional
to the disparity between the views [3]. The authors in [1] use
structure tensors to locally estimate these slopes, this local
estimation being then placed in a global optimization frame-
work using a variational approach. The authors in [2] propose
a spinning parallelogram operator for disparity estimation in
the EPI, accompanied with a confidence measure to handle
ambiguities and occlusions.
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In contrast to EPI-based methods, the authors in [4] [5] [6]
estimate disparity by searching for pixel matches between sub-
aperture images (SAI). The authors in [4] estimate disparity
by computing a matching cost volume between the central
sub-aperture image and sub-aperture images warped using the
phase shift theorem. The approach in [6] consists in estimating
disparities between the four corner views, then propagating
them to the target viewpoint. Correlation between viewpoints
is exploited by a low rank approximation model to cope with
occlusions. The authors in [5] employ an empirical Bayesian
framework to estimate scene-dependent parameters for infer-
ring scene disparity. This algorithm is free of additional cues
exploiting dense view sampling, hence it is relevant for both
dense and sparse light fields.

A deep learning architecture is proposed in [17] by introduc-
ing 3D convolutions on EPI volumes. The recently proposed
EPINet approach [18] using a multistream approach achieves
state-of-the-art performance. Each stream exploits one angular
direction of light field views, horizontal, vertical, left or right
diagonal directions. But these approaches are well suited for
dense light fields only. The goal here is to design a neural
architecture that would work well for both dense and sparse
light fields.

III. ARCHITECTURE OVERVIEW

Let L(x, y, u, v) denote a 4D representation of a light field,
where (x, y) denote the spatial coordinates and (u, v) denote
the angular coordinates. To simplify the notations, we will
refer to a light field view by the index of its angular position,
e.g., Li where i = (ui, vi), and denote dji the disparity between
two views Li and Lj normalized by the distance between the
two views.

The proposed learning framework to estimate depth (or
disparity) for any light field viewpoint, from a subset of input
views is depicted in Fig. 1. The approach is composed of three
main steps, i.e. stereo estimation, fusion and refinement. We
denote Lt the target view for which the disparity map is to
be estimated. Multiple coarse disparity maps on this target
position are first estimated by a convolutional network trained
for stereo estimation. The model, that we call FN2-ft-stereo,
is obtained by fine-tuning a pre-trained FlowNet 2.0 network
with light field stereo pairs (the details of this fine-tuning
process will be explained in Section IV-A). Each of these
disparity maps is computed between Lt (shadowed in blue)
and a stereo view Ls located on the same row (framed in
yellow) or on the same column (framed in red). For vertical
image pairs, a rotation of 90 degrees is applied such that the
displacement flow between these two images only contains
the horizontal component. Accordingly, the obtained disparity
map should be also rotated by 90 degrees in the reversed
direction. The disparity maps between the target and the stereo
views are denoted dst, s ∈ S, with S being the set of used
stereo view positions.

These multiple estimates of the disparity information on
the target view Lt should be fused to a single disparity
map. To achieve this, we leverage the warping error from a
set of anchor views (framed in blue) La, a ∈ A, with A

denoting the set of anchor view positions. The disparity value
corresponding to the smallest error per pixel is selected for
the fused disparity map. In order to better handle the object
boundary, the warping error is computed differently for pixels
within occlusion areas or those within occlusion-free areas.

This fusion is simple and efficient, but is prone to noise
and discontinuity because the decision is made pixel by pixel.
Further refinement is realized by a second CNN which learns
in a supervised fashion the residual signals of the disparity
at multiple scales by an encoder-decoder architecture. Our
network structure is flexible with respect to the anchor views,
i.e. anchor views can be located at any viewpoint of the light
field, and no additional training is required if the anchor view
positions are changed.

IV. PROCESSING WORKFLOW

A. Fine-tuned FlowNet 2.0 for disparity estimation

FlowNet 2.0 (FN2) [9] is an efficient CNN-based optical
flow estimator. Two parallel branches of sub-networks are
combined, the first specialized in large displacements estima-
tion and the second in small displacements. The final stage of
the network merges the two previously estimated flows taking
into account the flow magnitude. Thanks to this structure, it
is relevant to apply FN2 to estimate disparity for light field
views with variable disparity ranges.

Let us denote f(Li, Lj) = (fxi→j, f
y
i→j)

> the flow estimation
operator between the views Li and Lj. Assuming that the
light field is well rectified and regularly spaced in both
angular directions, the disparity map between the view Li

and Lj, normalized by the distance between the views, can
be computed as

dji =
fxi→j

vi − vj
=

fyi→j

ui − uj
. (1)

In order to well adapt the operator f(·, ·) to disparity
estimation between two light field views, we fine-tune the pre-
trained FN2 model. Two strategies have been considered. The
first one feeds the model with pairs of light field views Li

and Lj with no constraint on view positions, and the model
learns dense optical flows both on the horizontal and vertical
directions. The obtained model is denoted FN2-ft. Another
approach is to learn the model using image pairs Li and Lj

on the same row (ui = uj) or on the same column (vi = vj).
Note that images on the same column are rotated 90 degrees
to become a horizontal stereo pair (rot(Li), rot(Lj)). The
obtained model is thus named FN2-ft-stereo. Formally, with
FN2-ft-stereo, the disparity map for the view Li is computed
as

dji =


fx
i→j

vi−vj , if ui = uj
rot−1(fx

i∗→j∗ )

ui−uj
, if vi = vj

(2)

where fxi∗→j∗ denotes the horizontal flow component between
Li∗ and Lj∗ with Li∗ = rot(Li). The symbols rot(·) and
rot−1(·) are counterclockwise and clockwise rotation of 90◦.

In Fig. 2, we compare the estimation accuracy of the
FN2-ft-stereo model against three other models: FN2 (the pre-
trained FlowNet 2.0 model), FN2-ft and DispNet-ft, which is
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Fig. 1. Overview of proposed framework. We take a 5 × 5 LF as example. The blue masked view, called target view Lt, is the view for which we search
to estimate the disparity. Views in the yellow and red rectangles are respectively horizontal and vertical stereo views denoted Ls. Target and stereo views are
used to compute the initial disparity maps di using a fine-tuned FlowNet 2.0 model. Anchor views La (in dark blue rectangles) can be any subset of views,
except the target view, that are used to compute the warping error for the fusion of initial estimates. A multi-scale residual learning network corrects fusion
artifacts and smoothes the final disparity map in a last refinement step.

obtained by finetuning a pre-trained DispNet model [32] with
our stereo light field views. The models FN2 and FN2-ft can
estimate displacement both in x and y dimensions, whereas
DispNet-ft and FN2-ft-stereo focus on 1D (horizontal or verti-
cal displacements) estimation. On one hand, FN2-ft-stereo per-
forms better than FN2 and FN2-ft, which shows the necessity
of concentrating on 1D estimation. In addition, FN2-ft-stereo
is significantly better than DispNet-ft, both being finetuned
using the same training set of stereo light field views.

Therefore, we choose to use FN2-ft-stereo for computing a
set Dt

Dt = {dst, s ∈ S} (3)

of multiple estimates of disparity dst between the target view
Lt and one of the stereo views Ls. As each of the candidates
dst is normalized by the distance between the views in the
considered pair, it represents the amount of disparity between
the view and its immediate neighboring views. In the sequel,
we will denote this set of normalized disparity maps as Dt =
{dk, k = 1..K}, with K the number of candidate maps.

B. Fusion based on warping error maps

Although our FN2-ft-stereo model provides satisfying re-
sults for disparity estimation with stereo pairs, information in
other available views of the light field is not exploited. In this
subsection, we propose to fuse the candidate maps in Dt into a
single disparity map based on the error of warping the anchor
views La, a ∈ A onto the target view.

Based on one of the disparity maps dk ∈ Dt, backward
warping is applied to project the anchor view La to the
target position t. The warped view is denoted L̃k

a→t. The

(a) FN2 (b) FN2-ft (c) DispNet-ft (d) FN2-ft-stereo

Fig. 2. Disparity estimation errors (display range between 0 and 1) using
different models: (a) FN2, (b) FN2-ft, (c) DispNet-ft and (d) FN2-ft-stereo.
The first row corresponds to the estimation errors using a stereo pair L2,2

and L2,8. On the second and third row, for FN2 and FN2-ft, the estimation
has been done between the views L5,5 and L8,8, and the horizontal (second
row) and vertical (third row) flow components are shown. Since DispNet-ft
and FN2-ft-stereo only take stereo pairs, the horizontal flows are estimated
between L5,5 and L5,8 (the second row), and the vertical flows are estimated
between L5,5 and L8,5 (the third row).

corresponding warping error eak is computed by summing on
the three R, G, B color channels:

∀a ∈ A, eak =
∑

R,G,B

(Lt − L̃k
a→t)

2 (4)

Warping errors are then fused by taking into account all the
warped views L̃k

a→t with a ∈ A. The fusion is performed
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Fig. 3. Disparity error (compared to the ground truth) at each step of the fusion process. d−1 , d
−
2 and d+1 , d

+
2 are coarse disparity estimates using FN2-ft-stereo,

computed with horizontal or vertical image pairs (‘-’ indicates horizontal image pairs and ‘+’ indicates vertical ones). dnocc and docc are respectively fused
disparity maps via emean and emin, and d̃ is the final resulting map using the binary mask Mf .

either by the “average” or by “min” operations as

emean
k (p) = meanaeak(p), a ∈ A (5)

emin
k (p) = minae

a
k(p), a ∈ A. (6)

Both the error maps emean
k and emin

k suggest the reliability on
values in the disparity map dk, but possess complementary
properties. The error map emean

k reflects well the disparity
inaccuracy in the occlusion-free zones, since it averages the
contribution from all the warped views. Nevertheless, in oc-
cluded areas, interpolation in large holes becomes the main
cause of warping errors instead of disparity inaccuracy. In this
case, emin

k turns out to be a more relevant measure. Indeed,
at a pixel p that can be seen in the warped view L̃k

a′ , but
not in another warped view L̃k

a,a ∈ A,a 6= a′, the value
emean
k (p) is misleading because of the high contribution of the

error eak(p). On the contrary, the “min” operation gets rid of
the perturbation from the occluded views. However, if a pixel
p is occluded in all the warped views, neither emean

k (p) nor
emin
k (p) gives a reliable measure of disparity inaccuracy. It is

preferable that the anchor view positions a are dispersed in
the light field such that a pixel occluded in one view may be
seen in another view. The impact of anchor view positions
on the quality of the final disparity map will be discussed in
Section VII-B.

To fuse at each pixel p the candidate disparity values
dk(p), k = 1..K, a winner-takes-all strategy is employed
according to error values emean

k (p) and emin
k (p):

k′ = arg min
k

emin
k (p) (7)

docc(p) = dk′(p) (8)

and

k′′ = arg min
k

emean
k (p) (9)

dnocc(p) = dk′′(p) (10)

Two fused disparity maps are obtained, dnocc for occlusion-
free zones and docc for occluded areas. To reduce local
inconsistency, a 3× 3 mean filter is applied on the error maps
emean
k and emin

k . A binary mask Mf defined as

Mf (p) =

{
1 mink(emean

k (p)) > θ

0 otherwise
(11)

is used to merge these two resulting disparity maps. The value
Mf (p) equals to 1 if mink(emean

k (p)) exceeds a certain scene-
dependent threshold θ, which is fixed at the value at the 90
percentile (errors at the occluded pixels are generally higher
than those at the non-occluded ones). Note that Mf is not the
real occlusion mask contrary to that used in [6]. However, it
can be computed much more efficiently, and it approximates
well the real mask.

Finally, one unique disparity map at the target position t is
obtained as

d̃t = dnocc �Mf + docc � (1−Mf ) (12)

where � denotes pixel-wise Hadamard product. Fig. 3 demon-
strates the gain in the fusion process. The errors on the
estimated disparity compared to the ground truth are illustrated
for each step of the process.

C. Multi-scale disparity refinement

The fusion step enables us to take advantage of multiple
estimates and significantly improves the estimation accuracy.
Nevertheless, as the fusion is implemented by a per pixel
winner-takes-all (WTA) selection, discontinuity may exist in
the resulting disparity map. Further refinement operation is
useful for quality enhancement.

The work in [33] proposed a two-stage disparity learning
framework. The learned disparity between a stereo pair is
refined with a multi-scale residual learning network. As input,
their network takes two stereo color images, the previously
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estimated disparity map, the warped image, as well as the
corresponding warping error image. In a multi-view stereo
scenario where we exploit the color information from multiple
stereo views Ls, s ∈ S and anchor views La,a ∈ A, it is
obvious that this structure is no longer applicable. Indeed,
the large number of input views, as well as the number of
initialized disparity maps, will rapidly enlarge the size of the
network and increase the computational cost during training.
Moreover, the scheme is not flexible with respect to the
varying number of input views.

The fusion of disparity estimates (Section IV-B) partially
resolves this problem. Regardless of the variable number
of stereo views, as well as that of the initialized disparity
maps, only one single disparity map d̃t has been obtained
for the target position t. Besides d̃t, two other images are
fed to our refinement network: the target view Lt serving
as color guidance and a binary mask M indicating contour
misalignment. The mask M is computed as

M = |Γ(Ψ(d̃t))− Γ(Ψ(d̃t))� Γ(Ψ(Lt))| (13)

with Γ(·) being the dilation operator and Ψ(·) being the canny
contour detector.

Compared to the network used in [33], we change the inputs
and the first layer of the refinement network, and we construct
a 9-layer convolutional encoder to extract features and a 16-
layer decoder to retrieve the estimated disparity map. The pro-
posed network contains about 3.6× 107 trainable parameters.
During training, the residual signals of the disparity are learned
at different resolution scales n ∈ [0, N ], supervised by the
ground truth disparity. At each scale n, the network generates
the residual signal R(n), which is added to the downsampled
disparity map d̃(n)t

d̂
(n)
t = d̃

(n)
t +R(n), (14)

where d̂(0)t denotes the final obtained full resolution disparity
map.

The loss is summed over all the resolution scales n ∈ [0, N ]
as

L =
N∑

n=0

µnL(n), (15)

where µn is the contribution weight for the loss at the scale
n and L(n) is the sum of two losses

L(n) = λ1N (d̂
(n)
t , d

(n)
GT ) + λ2G(d̂

(n)
t , d

(n)
GT ), (16)

where N denotes the sum of absolute differences (SAD)

N (d1, d2) =
∑
p

|d1(p)− d2(p)| (17)

and where G is a gradient term defined as

G(d1, d2) =
∑
p

‖G(d1, d2,p)‖2 (18)

with

G(d1, d2,p) =
(
∇xd1(p)−∇xd2(p),∇yd1(p)−∇yd2(p)

)>
.

(19)

V. DATASETS

The effectiveness of data-driven algorithms significantly
depends on the quality and the quantity of training data.
Supervised learning of neural models for depth or disparity
estimation [32] [17] requires large datasets with ground truth
disparity information. A few datasets of synthetic light fields
are publicly available. The MIT Light Field Archive [34]
includes 17 light fields with angular resolution of 5×5 or 7×7
views, but the ground truth disparity maps are not provided.
Two HCI synthetic light field datasets exist. The dataset [35]
contains 8 light fields with disparity information for all the
views, each light field containing 9 × 9 views of 768 × 768
pixels. Recently, a second dataset [20] is released containing
24 light field scenes with a spatial resolution of 512×512 and
an angular resolution of 9 × 9. Among them, 16 scenes are
provided with disparity maps for all the views, whereas for
the 8 others the disparity information is available only for the
central view. In addition, these datasets are limited to densely
sampled light fields with narrow baselines.

Since our goal is to propose a framework applicable to both
densely and sparsely sampled light fields, we have created
two synthetic datasets: a Sparse Light Field Dataset (SLFD)
including 53 scenes with disparity range [−20, 20] pixels
between adjacent views, and a Dense Light Field Dataset
(DLFD) containing 43 scenes with disparity range [−4, 4]
pixels. Each light field has the same resolution 512×512×9×9
as those in the HCI dataset [20]. Both SLFD and DLFD are
provided with the disparity and the depth maps for every
viewpoint in the light fields. To the best of our knowledge,
SLFD is the first sparse synthetic light field dataset which
provides ground truth depth and disparity information for
every light field view.

The rendering of the light field scenes is performed with the
open source software Blender [36]. The elementary models are
downloaded from the websites Chocofur [37] and Sketchfab
[38] with a non-commercial CC license, and are assembled to
create various 3D, mostly indoor scenes. The scenes contain
textureless background, specular reflection, diffusion and ob-
ject occlusion, which makes our dataset useful to measure the
effectiveness of depth estimation algorithms. The 3D scene
models in SLFD and DLFD are partly shared, but they are
rendered with different camera baselines.

The dataset SLFD is split into a training set of 44 scenes and
a valid set of 9 scenes, whereas DLFD is split into a training
set of 38 scenes and a test set of 5 scenes. Fig. 4 shows some
examples of light field scenes and their corresponding disparity
maps. For training the network, we have also used 16 scenes
of the HCI 4D light field benchmark dataset [20] together with
our DLFD.

VI. IMPLEMENTATION DETAILS

A. Training data preparation

For fine-tuning FlowNet 2.0, stereo views are extracted
on the same row or the same column of a light field. Im-
age pairs located on the same column are rotated with a
counterclockwise 90◦ to convert vertical pixel displacement
to horizontal displacement. The two images in an extracted
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Furniture Lion Toy bricks Electro devices

[−13.55, 12.61] [−3.19, 14.38] [−0.40, 10.94] [−4.85, 8.23]

White roses Bowl&chair Kitchen board Toy friends

[−1.52, 3.38] [−1.87,−0, 04] [−1.61,−0.10] [−2.02, 2.54]

Fig. 4. Examples of scenes from our two datasets, the 1st and 2nd rows
show three scenes and the corresponding disparity maps from SLFD, while
the 3rd and the 4th rows show three examples of scenes and the corresponding
disparity maps from DLFD.

pair are separated by an angular distance corresponding to
a view index difference l ∈ [2, 3, ...8] for dense light fields,
which corresponds to a disparity range within [-32,32] pixels,
whereas for sparse light fields, this distance is set to be
l ∈ [1, 2, 3], corresponding to a disparity range within [-60,60]
pixels. In both cases, the extraction of views is done in such
a way that the different distances (or disparities) are well
represented (with same probability) in the training data.

B. Data augmentation

The authors in [8] [17] performed geometrical and chro-
matic transformations to increase diversity in the training data.
In our experiments, however, we have found that geometrical
transformations such as rotation, translation or scaling that
involve data interpolation bring extra errors in the ground truth
disparity values, and thus harm the learning convergence. As a
consequence, only chromatic transformation has been applied
by changing the hue, saturation, contrast and brightness of
training images. Concretely, we convert the images from the
RGB space to the HSV space, add an offset to the hue and
saturation channels, and then convert the images back to RGB
color space. The hue and saturation offsets are uniformly
picked from [−0.3, 0.3] and [0.7, 1.3]. To perform contrast
augmentation, we compute the mean pixel values c̄ of each
image channel c, then adjust c to (c− c̄)× ζ+ c̄, where ζ is a
contrast factor uniformly picked from [0.7, 1.3]. The brightness
augmentation is implemented by adding a brightness offset to

each of the RGB channels of an image, which is randomly
picked from [−0.1, 0.1].

C. Learning details

Different learning schedules are employed for fine-tuning
the FN2-ft-stereo model and for training the refinement net-
work. In the finetuning step, thanks to the pre-trained model,
a shorter learning schedule can be adopted with an initial
learning rate set to 0.0001 for the first 500 epochs. The
learning rate is then decreased by half every 200 epochs.
For the training of the refinement network which is randomly
initialized, the schedule is longer with an initial learning rate
of 0.0001 for the first 1200 epochs. The learning rate is then
divided by 2 every 200 epochs. We use the Adam optimizer
[39], and becaused of the limited GPU memory, a batch size of
4 is used. Tensorflow [40] is used to implement our network.
It takes about 2 days to train our network with a NVIDIA
Tesla P100 GPU with 16G memory.

VII. EXPERIMENTAL RESULTS

A. Setup

To validate the effectiveness of our proposed framework,
we conduct experiments on both public and self-rendered
synthetic datasets and with real light fields.

1) Synthetic Dataset: For sake of comparison, we use the
synthetic light fields of the HCI datasets [20] [35] and keep
the same test light fields as in [6]: Stilllife, Buddha, Butterfly,
MonasRoom from [35] and Boxes, Cotton, Dino, Sideboard
from [20]. The 12 additional scenes of [20] are added in the
training set as detailed in Section V.

We also evaluated the proposed framework using our own
sparse light fields datasets (that will be made publicly available
at the time of the paper publication). Four test light fields
Furniture, Lion, Toy bricks, Electro devices are used for eval-
uation. The scene Lion contains a single object and the other
three scenes contain multiple objects.

2) Real Light Fields: We have also tested our frame-
work with dense real light fields, using datasets captured by
plenoptic Lytro Illum cameras (we used light fields in the
INRIA [41] and EPFL [42] datasets). Compared with synthetic
datasets, light fields captured by plenoptic cameras are more
challenging due to the fact that the extracted views contain
noise and geometrical distortions. These real light fields have a
spatial resolution of 434×625 pixels and an angular resolution
of 15× 15 views. Finally, experiments have been also carried
out for sparse real world light fields captured with wide
baseline camera arrays [43].

B. Impact of the anchors views

In contrary to other deep learning frameworks [17], [18],
our network is flexible with respect to the number and the
positions of the input views. Indeed, it is possible to arbitrarily
select a subset of light field views as anchor views.

Fig. 5 evaluates the percentage of pixels below a certain
error threshold for different strategies to select anchor views.
The higher is this percentage, more accurate is the estimation.
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(a) Varying the number of anchor views:(i) 4 corner views; (ii) 12 views
on the diagonals; (iii) 24 border views.

(b) Anchor views at different positions: (i) 4 anchor views = 4 stereo views;
(ii) 4 anchor views = 4 corner views; (iii) 4 views located in the same
quadrant; (iv) 4 views randomly selected such that each quadrant contains
one anchor view.

Fig. 5. Percentage of pixels below a certain error threshold for different strategies to select anchor views: (a) varying the number of anchor views; (b) with
a fixed number (4) of anchor views at different positions.

TABLE I
QUANTITATIVE COMPARISON WITH NON-LEARNING-BASED METHODS ON SYNTHETIC LIGHT FIELDS DATASETS

Light fields
MSE BP1 BP2 BP3

[4] [2] [5] [6] Ours [4] [2] [5] [6] Ours [4] [2] [5] [6] Ours [4] [2] [5] [6] Ours
Stilllife 2.02 1.72 1.53 2.56 1.07 81.2 76.2 76.0 71.3 70.5 51.0 32.1 41.0 25.0 24.8 20.9 6.8 16.2 9.2 5.8
Buddha 1.13 0.97 0.49 0.82 0.41 57.7 41.2 52.6 34.9 35.3 24.4 14.8 15.0 12.3 7.7 10.1 6.7 2.9 5.4 2.2

MonasRoom 0.76 0.58 0.66 0.53 0.39 46.0 42.5 48.2 38.6 39.0 22.1 17.8 20.2 18.6 13.7 11.7 7.8 10.4 8.2 6.1
Butterfly 4.79 0.74 0.80 1.84 0.58 82.5 78.9 83.4 70.8 73.4 49.1 48.5 50.9 36.0 42.0 15.4 14.1 17.6 6.7 6.3

Boxes 14.15 8.23 11.30 12.71 9.16 72.7 62.3 87.2 65.8 68.4 45.5 28.1 65.0 37.7 38.5 26.4 15.8 42.0 23.9 22.1
Cotton 9.98 1.44 2.04 1.18 0.94 60.5 41.7 75.8 42.6 38.2 23.3 11.1 37.5 10.7 10.6 8.9 2.7 10.4 4.1 3.3
Dino 1.23 0.29 0.67 0.88 0.50 76.6 57.5 84.8 49.1 45.6 48.4 17.9 57.2 20.0 14.5 20.9 3.4 24.1 9.5 4.7

Sideboard 4.16 0.92 1.34 10.31 1.37 67.8 64.3 78.6 61.7 63.6 39.3 31.0 44.1 37.5 26.3 23.0 10.4 15.0 19.6 10.1

Average 4.78 1.86 2.35 3.85 1.80 68.1 58.1 73.3 54.4 54.3 37.9 25.2 41.4 24.7 22.3 17.2 8.5 17.3 12.1 7.6

Furniture - - 0.37 1.94 0.39 - - 86.3 41.3 40.7 - - 73.1 41.3 23.0 - - 36.0 20.2 8.6
Lion - - 0.10 0.87 0.09 - - 35.9 73.0 47.6 - - 23.9 59.5 9.0 - - 5.5 9.5 2.6

Toy bricks - - 0.22 1.10 0.56 - - 59.5 66.4 50.5 - - 33.2 44.6 23.7 - - 4.7 11.2 12.4
Electro devices - - 0.20 0.63 0.19 - - 76.9 60.7 52.8 - - 57.4 43.4 30.5 - - 22.5 18.6 8.7

Average - - 0.22 1.14 0.31 - - 64.7 64.7 47.9 - - 46.9 47.2 21.6 - - 17.2 14.9 8.1
*Number of input views: [4]-49 views, [2]-49 views, [5]-5 views, [6]-4 views, Ours-5 views
*For the first 8 scenes (dense LFs), MSE denotes 100*Mean Square Error, BP1, BP2, BP3 denote Bad Pixel Ratios with thresholds 0.01, 0.03, 0.07.
*For the last 4 scenes (sparse LFs), MSE denotes Mean Square Error, BP1, BP2, BP3 denote Bad Pixel Ratios with thresholds 0.05, 0.1, 0.3.

We consider the 7×7 central views of the light field “Boxes” is
studied. Fig. 5(a) assesses the impact of the number of anchor
views on the final estimation accuracy. The 4 corner views, the
12 views on the diagonals and the 24 views on the border of
the light field are respectively used as the subset A of anchor
views. We observe that using more anchor views is useful
for improving estimation accuracy, though the improvement
may be limited. This suggests that when the time consumption
or GPU memory is the bottleneck, less anchor views can be
exploited without too much degrading the estimation accuracy.

In Fig. 5(b), the number of anchor views is fixed to 4, and
we evaluate the impact of the anchor view positions on the
performance. The assessed sets A of the anchor views can be:
(i) 4 stereo views (A = S), (ii) 4 corner views, (iii) 4 views

located in the same quadrant (the light field can be divided
into four quadrants, “northeast”, “southeast”, “southwest” and
“northwest”, according to the location with respect to the
target view), and (iv) 4 views randomly selected such that
each quadrant contains one anchor view. The strategy (iii)
achieves the worst performance, since the 4 views located in
the same quadrant do not contain occlusion information of the
other quadrants. The use of the stereo views as anchor views
(i) obtains worse performance than (ii), since the geometry
information of the stereo views is already exploited in the
coarse estimation step. And indeed, for a dense light field
such as “Boxes”, geometry information of the 3D scene can
be mostly recovered from the 4 corner viewpoints.
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(a) Jeon et al. [4] (b) Zhang et al. [2] (c) Huang [5] (d) Jiang et al. [6] (e) Ours (f) GT (g) Image

Fig. 6. Qualitative comparison with non deep learning-based methods. Each row shows the estimated disparity maps with two zoomed areas (homogeneous
area framed in red and contour area framed in blue) for different methods: (a) Jeon et al. [4], (b) Zhang et al. [2], (c) Huang [5], (d) Jiang et al. [6], (e) Our
framework. The (f) Ground truth and (g) Color image are also shown.
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TABLE II
QUANTITATIVE COMPARISON WITH LEARNING-BASED METHODS ON

SYNTHETIC LIGHT FIELDS DATASETS

Light fields
MSE BP1 BP2 BP3

[17] [18] Ours [17] [18] Ours [17] [18] Ours [17] [18] Ours
Stilllife 3.02 1.96 1.14 84.2 77.3 71.0 56.2 39.4 25.8 22.9 11.5 6.2
Buddha 0.52 0.26 0.43 75.9 39.9 35.7 37.3 5.2 8.0 9.1 1.4 2.3

MonasRoom 1.06 0.60 0.41 76.8 42.5 39.6 41.9 14.5 14.3 16.2 7.8 6.4
Butterfly 1.13 1.41 0.57 85.5 84.3 72.4 57.2 59.7 40.2 22.4 24.1 6.0

Boxes 9.06 5.20 9.97 82.5 62.4 68.4 53.7 27.4 39.6 30.5 15.1 23.6
Cotton 0.97 0.25 0.76 77.8 51.7 36.6 42.0 4.9 10.0 10.9 0.9 2.9
Dino 1.25 0.19 0.53 83.6 41.0 45.1 54.4 6.6 14.6 23.7 1.9 5.0

Sideboard 2.33 0.80 1.45 82.9 58.6 66.0 54.1 21.0 27.9 24.6 6.6 10.9

Average 2.42 1.33 1.91 81.2 57.2 54.4 49.6 22.3 22.6 20.0 8.7 7.9

Furniture 9.18 1.73 0.42 96.4 85.1 40.2 92.8 71.3 23.0 78.8 38.4 8.9
Lion 1.59 3.41 0.09 95.3 87.4 48.7 90.6 76.4 8.7 72.9 56.3 2.6

Toy bricks 3.70 0.36 0.57 96.0 85.1 49.5 92.0 70.6 23.3 76.5 29.6 12.6
Electro dev 7.82 0.74 0.20 95.0 80.3 51.5 89.9 60.6 29.2 72.0 22.8 8.9

Average 5.57 1.56 0.32 95.7 84.5 47.5 91.3 69.7 21.1 75.0 36.8 8.3
*Number of input views: [17]-7 views (dense), 3 views (sparse), [18]-25
views (dense), 9 views (sparse), Ours-5 views, MSE and BP are kept as
same as those in Table I.

(a) Heber et al. [17] (b) Shin et al. [18] (c) Ours

Fig. 7. Qualitative comparison to deep learning-based methods, with methods
(a) Heber et al. [17], (b) Shin et al. [18], (c) Ours.

C. Results with Densely Sampled Synthetic Light Fields

We compare our approach with both traditional and learning
based state-of-the-art methods for densely sampled light fields.
First, 4 reference methods [2] [4] [5] [6] using traditional
approaches are considered. The disparity range is discretized
for the methods [2], [4], [5]. As suggested in the light field
depth estimation challenge held in 2017 LF4CV workshop
[21], the number of disparity levels is set to 100 for the
method [4] and 256 for the method [2]. For the method
[5], the disparity step is set to 0.01, which corresponds to
the minimal threshold of bad pixel ratios that we use. Both

explicit and implicit discretization operations in [4] [2] [5]
need disparity ranges as priors. To estimate the disparity map
for the central view, the methods [2] [4] exploit the whole light
field containing 49 views. The method in [6] takes four corner
views to infer the central view disparity while the method
in [5] chooses 5 images in the crosshair with target view in
the center. For our framework, we employ the same crosshair
pattern as [5] with 4 images serving as stereo and anchor views
at the same time.

The upper part of Table I compares the estimation accuracy
obtained with 8 HCI test scenes using different metrics:
Mean Square Error (MSE) and Bad Pixel Ratios (BP) with
thresholds 0.01, 0.03 and 0.07 (BP represents the percentage
of pixels having an error superior to a certain threshold). In the
experiment, we consider the central 7×7 sub-aperture images
of the light field and estimate the disparity of the central
view. The experiment shows that our framework achieves
superior performances compared with other methods for most
of the scenes both in terms of MSE and BP. In some cases,
our framework yields the second best results with a slight
difference only with the method ranked first. Compared with
the methods in [2] [4] which exploits all the light field views,
our method gives better results in spite of the fact that we
use only a subset of light field views. In comparison with the
other two methods [5] [6] using a subset of light field views,
our method is competitive and sometimes wins with a large
margin.

Fig. 6 shows the estimated disparity maps for the central
view. Readers are recommended to zoom and view these
results on the screen for visual comparison. The methods in
[4] and [6] obtain disparity maps with distorted boundaries,
while the method in [5] loses precision on slanted surfaces
where disparity values gradually vary. In contrast, the methods
[2] [5] as well as our framework can estimate disparities
with more precise boundaries. Our method, although it may
suffer from a subtle smoothness along boundaries, it yields
less artifacts within homogeneous and slanted areas, and gives
more visually pleasing results.

We also compare our method against two state-of-the-art
methods based on deep learning [17], [18]. Both of them
exploit epipolar geometry of the light field. The method in
[17] retrieves disparity values by exploiting 3D EPI volumes
containing texture information on two spatial dimensions and
one angular dimension, whereas the method in [18] constructs
the input volume by taking views on four different angular
directions: horizontal, vertical, left and right diagonals. As
these trained models are not publicly available for 7× 7 light
field views, we re-trained the models following the instructions
in the corresponding papers. Since the network in [18] was
implemented without zero-padding after each convolutional
layer, the resulting disparity map loses 11 pixels at each border.
For the sake of comparison, we cropped the same amount of
bordering pixels for the method in [17] and our method as
well (this explains the slight difference of measurement of our
method in Table I and Table II). Quantitative results are shown
in Table II. Our proposed method has several advantages. 1/-
With less input views (the number of input views for the
methods [17], [18] and our method are respectively 7, 25
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and 5), our method outperforms [17] and achieves competitive
results against [18]. 2/- Our method benefiting from the WTA
fusion and the CNN based refinement is more robust and
generates less artifacts for some light field scenes (c.f. Fig.
7). 3/- As [17], our method can predict disparity at each
viewpoint, whereas the method [18] only predicts for the
center view. 4/- Compared to EPI based learning frameworks,
training our model is less demanding. Indeed, it is required
in [18] to manually mark out and exclude all the reflection,
refraction and textureless regions when preparing training data,
which can be very time-consuming with a large dataset.

As learning-based methods may fail when characteristics
in the input images differ from that in the training dataset,
we have tested the robustness of our framework by adding
Gaussian noise to the test light fields in comparison with two
other learning-based methods [17], [18]. Fig. 8(a) shows the
averaged MSE and Bad Pixel Ratio (threshold 0.07) over 8
synthetic LFs as a function of the standard deviation of the
Gaussian noise. When increasing the standard variance of the
noise, the performances of all the reference methods degrade,
while the quality of depth maps estimated with the proposed
framework remains more stable. To explain this difference
in terms of robustness, we show in Fig. 8(b) 8(c), a clean
and a polluted EPI. The added Gaussian noise destroys the
geometric structures in the EPI that are used by methods like
[17], [18] for depth estimation, while our framework exploits
spatial information of each sub-aperture image, hence stays
more robust against noise. Apart from the above experimental
results on synthetic data, Fig. 10 also shows disparity maps
estimated from light fields captured by plenoptic cameras,
hence that are prone to noise and distortions. Fig. 10 shows
that our framework can still estimate satisfying disparity maps.

A general flexibility and complexity comparison is summa-
rized in Table III for all the compared methods. The proposed
framework can adapt to light fields with wide baselines and,
unlike methods using plane sweep volumes, does not require
a discretized depth range at the input. Furthermore, some
methods may be limited by their specific viewpoints selection
pattern and cannot be used for estimated disparity maps for
views located at the border of the light field. In contrast, the
proposed approach uses a flexible stereo and anchor view
selection pattern that allows us to estimate disparity maps
for all light field views. In terms of computational cost, our
framework takes less than 2 seconds to estimate one disparity
map, that is much faster than traditional methods, but a bit
slower than the two learning-based methods [17], [18]. Note
that the implementations of the methods [6], [17] estimate
disparity maps for all the views in a light field or for views
on one row at one time, consequently we divided their costs
by the number of estimated views. Since the codes of four
traditional methods are not available for GPU, they are tested
on an Intel i7 CPU with 16G RAM, whereas the three learning-
based methods are tested on a NVIDIA Tesla P100 GPU with
16G memory.

Additionally, Table IV gives the contribution of each build-
ing block to the performance of the proposed framework.
Thanks to our new dataset and our new finetuning strategy,
FN2-ft-stereo significantly improves the accuracy of the esti-

(a) Evolution of the MSE and BP (threshold = 0.07) measures obtained
with three learning-based estimation methods when increasing the
standard deviation of Gaussian noise added to the input light fields
∼ N (0, σ2).

(b) EPI without Gaussian noise

(c) EPI with additive Gaussian noise ∼ N (0, 0.022)

Fig. 8. (a) Impact of noise on the quality (in terms of MSE and BP) of
estimated depth maps. (b) EPI from scene stilllife without Gaussian noise. (c)
Same EPI but with Gaussian noise.

TABLE III
FLEXIBILITY COMPARISON

Property [4] [2] [5] [6] [17] [18] Ours
Adaptability to wide baselines × ×

√ √
× ×

√

Estimation for any view × ×
√ √ √

×
√

Without disparity discretization × × ×
√ √ √ √

Computational cost (one view) 960s >1h 127s 16s 0.04s 0.52s 1.93s

mated disparity maps compared with the original FN2 model.
By taking into account multiple anchor views at different
viewpoints (the occluded regions for these views are unlikely
all overlapping), the disparity fusion step is able to cope with
errors in occluded regions. And the refinement aims at coping
with disparity discontinuities that may be introduced by the
fusion step. However, due to the fact that the occluded regions
have a much smaller pixel number compared to the whole
image, the fusion and refinement steps bring less quantitative
improvement on the entire disparity map than the stereo
estimation step.

TABLE IV
CONTRIBUTION OF EACH BLOCK IN FRAMEWORK

Processing step FN2 FN2-ft-stereo Fusion Refinement
MSE 10.94 2.27 2.00 1.91
BP 90.5 63.6 56.2 54.4

*MSE denotes 100*Mean Square Error, BP denotes Bad Pixel Ratios with
threshold 0.01. The values for FN2 and FN2-ft-stereo are averaged values
of the estimations between 4 stereo views and the target view.
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D. Results with Sparsely Sampled Synthetic Light Fields

Among the state-of-the-art approaches mentioned above, the
methods in [2] and [4] derive the disparity estimate from
EPI analysis, thus are hardly applicable for sparse light fields
with large baselines. For sparsely sampled light fields, we
compare our framework with the methods in [6], [5], [17] and
[18], using the objective metrics: Mean Square Error (MSE)
and Bad Pixel Ratios with larger thresholds 0.05, 0.1, 0.3.
We consider the central 3 × 3 views of the light field, and
the evaluation is performed for the estimated disparity of the
central view. The step length in the method in [5] is set to 0.05,
corresponding to the minimal Bad pixel ratio threshold. Both
the input view number in [17] and the stream length in [18] are
set to be 3. The rest of the setup is identical to the experiments
for dense light fields. The lower parts of Table I and II show
that our framework yields better Bad Pixel Ratios with large
margins when compared with other methods. In terms of MSE,
our method ranks the second, slightly lagging behind [5]. The
first two columns in Fig. 9 show disparity maps estimated
with different methods. Compared with the first two non deep
learning-based methods, our algorithm functions well in both
contours and homogeneous zones. Although our method gives
smoother boundaries than those with [5], it works well in
slanted zones where the method in [5] tends to fail. For the
two deep learning-based methods [17], [18], even though we
have re-trained the corresponding models with our sparse light
field data, the results contain severe deformations and artifacts,
since epipolar line continuity is no longer guaranteed with
sparse light fields.

E. Results with Real Light Fields

To assess the disparity estimation performance of our net-
work with real light fields, we consider both dense light
fields (7 × 7 central views are considered) captured with the
Lytro Illum plenoptic camera [41] [42] and sparse light fields
(3 × 3 central views are considered) captured with camera
arrays [43]. Because of the lack of ground truth disparity
values, the prior disparity range required by these methods
is set using our estimation results, with a margin of 10%:
[dmin−0.05(dmax−dmin), dmax+0.05(dmax−dmin)]. Fig. 10
shows the estimated disparity maps for dense light fields using
different methods. Two sparse light fields are tested in Fig. 9.
Compared with other methods, our framework gives more
accurate estimates on object boundaries, especially for the
scenes which have more texture details. Among all results,
our disparity maps have less artifacts in spite of the fact that
relatively less views are used for the estimation. Note that our
network has been trained with only noise-free synthetic light
fields. An additional fine-tuning with noisy images could still
improve the estimation accuracy of our network for real light
fields.

Overall, regardless their limitations in terms of view number
and view selection, the methods in [4], [6] show inaccuracies
at the boundaries, while methods in [2], [5] can give relatively
more accurate estimates at the boundaries. The method in
[2] often contains artifacts in homogeneous regions, while
the method in [5] fails on slanted surfaces. Our experiments

Fig. 9. Visual comparison for estimated disparity maps for sparse light fields.
The first two columns are obtained with synthetic data, while the last two
columns are obtained for real-world data. From top to the bottom: Huang [5],
Jiang et al. [6], Heber et al. [17], Shin et al. [18], and ours. The final row is
the ground truth disparity (when available) or the color image of the central
viewpoint.

with noisy light fields have shown that the performance of the
learning-based methods [17] and [18] depends on the quality
of EPI. On the contrary, our method can estimate accurate
depth maps both at the boundaries of objects, and in homo-
geneous and slanted regions with an acceptable computational
cost. It has also been show to be more robust to noise than
the other two learning-based methods.

VIII. CONCLUSION

In this paper, we have proposed a learning based approach
to estimate disparity maps between all light field views. The
algorithm takes a variable subset of input views and estimates
accurate disparity maps for both densely and sparsely sampled
LF data.

The proposed framework starts with a stereo estimation step
which takes a flexible number of light field views to give first
disparity maps estimates. A fusion step then aggregates these
disparity maps into a single one by conducting pixel-wise
selection based on the warping error. A multiscale residual
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Fig. 10. Qualitative comparisons for estimated disparity maps. The first three light fields are from the INRIA Dataset [41], and the last two light fields are
from the EPFL dataset [42]. From top to bottom, figures show the disparity maps estimated with methods in Jeon et al. [4], Zhang et al. [2], Huang [5],
Jiang et al. [6], Heber et al. [17], Shin et al. [18] and our proposed method. The final row shows the central views of the light fields.

refinement step is then used to eliminate noise and improve
spatial coherence. In order to train the model so that it can
apply to both sparsely and densely sampled light fields, we
have also created two synthetic light fields datasets with
different disparity ranges. To our knowledge, this is the first
publicly available dataset for sparsely sampled synthetic light
fields given together with ground truth disparity maps for all
the views.

The effectiveness of our algorithm has been demonstrated
with both synthetic and real light fields datasets, in comparison
with several state-of-the-art reference methods. The proposed
algorithm outperforms state-of-the-art algorithms despite of
the use of less input views. It is robust in both homogeneous
areas and along the contours, as well as in slanted zones. Ex-
perimental results with real light fields show that our algorithm
estimates consistent objects boundaries, and preserves details

in the scene, although the network has been only trained using
synthetic data.
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