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ORBITAL COUNTING FOR SOME CONVERGENT
GROUPS

by Marc PEIGNÉ, Samuel TAPIE & Pierre VIDOTTO (*)

Abstract. — We present examples of geometrically finite manifolds with pinched
negative curvature, whose geodesic flow has infinite non-ergodic Bowen–Margulis
measure and whose Poincaré series converges at the critical exponent δΓ. We obtain
an explicit asymptotic for their orbital growth function. Namely, for any α ∈ ]1, 2[
and any smooth slowly varying function L : R → (0,+∞), we construct N -
dimensional Hadamard manifolds (X, g) of negative and pinched curvature, whose
group of oriented isometries possesses convergent geometrically finite subgroups Γ
such that, as R→ +∞,

NΓ(R) := ]{γ ∈ Γ | d(o, γ · o) 6 R} ∼ CΓ(o)
L(R)
Rα

eδΓR,

for some CΓ(o) > 0 depending on the base point o.
Résumé. — Nous construisons des variétés géométriquement finies à courbure

strictement négative pincée, dont le flot géodésique possède une mesure de Bowen-
Margulis non ergodique infinie, et dont la série de Poincaré converge à l’exposant
δΓ, et nous obtenons une estimation précise du comportement asymptotique de
la fonction orbitale de ce groupe. Plus précisément, pour tout α ∈ ]1, 2[ et toute
fonction à variations lentes L : R → (0,+∞), nous construisons des variétés de
Hadamard (X, g) de dimension N > 2 dont le groupe des isométries qui préservent
l’orientation possède des sous-groupes discrets et géométriquement finis Γ tels que,
lorsque R→ +∞,

NΓ(R) := ]{γ ∈ Γ | d(o, γ · o) 6 R} ∼ CΓ(o)
L(R)
Rα

eδΓR,

où CΓ(o) est une constante strictement positive qui dépend du point o.

1. Introduction

We fix N > 2 and consider a N -dimensional Hadamard manifold X

of negative, pinched curvature −B2 6 KX 6 −A2 < 0. Without loss of
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1308 Marc PEIGNÉ, Samuel TAPIE & Pierre VIDOTTO

generality, we may assume A 6 1 6 B. Let Γ be a Kleinian group of X, i.e.
a discrete, torsion free group of isometries of X, with quotient XΓ = Γ\X.

In this paper, we study the asymptotic behavior of the orbital function:

NΓ(x,y;R) := ]{γ ∈ Γ | d(x, γ · y) 6 R}

for x,y ∈ X. The function NΓ has been the subject of many investiga-
tions since Margulis [11]; see Roblin’s book [17] and references therein for
an overview of the subject. The first step is to consider its exponential
growth rate

δΓ = lim sup
R→∞

1
R

ln(NΓ(x,y;R));

by the triangular inequality, δΓ does not depend on the chosen base points
x and y. The exponent δΓ coincides with the exponent of convergence of
the Poincaré series associated with Γ:

PΓ(x,y; s) :=
∑
γ∈Γ

e−sd(x,γ·y), x,y ∈ X.

The real δΓ is called the critical exponent of Γ. It coincides with the topo-
logical entropy of the geodesic flow (φt)t∈R on the unit tangent bundle
T 1XΓ of XΓ, restricted to its non-wandering set [12].
Recall that any orbit Γ · x accumulates on a closed subset ΛΓ of the

geometric boundary ∂X of X which does not depend on x. This set is
called the limit set of Γ, it contains 1, 2 or infinitely many points; in the
last case, one says that Γ is non elementary. A point x ∈ ΛΓ is said to
be radial when it is approached by orbit points in some M -neighborhood
of any given ray issued from x, for some M > 0. The critical exponent
also equals the Hausdorff dimension of the radial limit set ΛradΓ of Γ with
respect to some natural metric on ∂X.
The group Γ is said to be convergent if PΓ(x,y; δΓ) <∞, and divergent

otherwise. Divergence can also be understood in terms of dynamic. Indeed,
by Hopf–Tsuji–Sullivan theorem, it is equivalent to ergodicity and total
conservativity of the geodesic flow with respect to the Bowen–Margulis
measure mΓ on the non-wandering set of (φt)t∈R in T 1XΓ (see again [17]
for a complete description of the construction of mΓ and for a proof of this
equivalence).
The following statement is the most general one concerning the asymp-

totic behavior of the function NΓ(x,y;R).

ANNALES DE L’INSTITUT FOURIER



ORBITAL COUNTING FOR SOME CONVERGENT GROUPS 1309

Theorem 1.1 ([17]). — Let Γ be a non elementary, discrete subgroup
of isometries of X. Then δΓ is a true limit. Furthermore, if Γ has a non-
arithmetic length spectrum(1), then it holds, as R→ +∞,

(1) if ‖mΓ‖ <∞, then NΓ(x,y;R) ∼ ‖µx‖.‖µy‖
δΓ‖mΓ‖ e

δΓR,

(2) if ‖mΓ‖ =∞, then NΓ(x,y;R) = o(eδΓR),
where (µx)x∈X is the family of Patterson δΓ-conformal densities of Γ, and
mΓ the Bowen–Margulis measure on T 1XΓ.

By the Poincaré Recurrence Theorem, if ‖mΓ‖ < +∞ then Γ is divergent.
When the Bowen–Margulis measure has infinite mass, Γ may be divergent
or convergent.
In this paper, we study the asymptotic behavior of NΓ(x,y;R) for a class

of convergent groups Γ; thus, their Bowen–Margulis measure is infinite.
As far as we know, the only known convergent groups Γ with a precise
asymptotic for NΓ are normal subgroups ΓC Γ0 of a co-compact group Γ0
such that the quotient Γ0/Γ is virtually isometric to the lattice Zk for some
k > 3, see [16].
The finiteness ofmΓ is not easy to establish in general. A precise criterion

ensuring this finiteness for geometrically finite groups has been obtained
in [6] and recently generalized to all non elementary groups in [15].
Recall that a discrete group Γ (or the quotient manifold X/Γ) is said

geometrically finite if its limit set ΛΓ decomposes into the radial limit set
and the Γ-orbit of finitely many bounded parabolic points x1, . . . , x`, fixed
respectively by some parabolic subgroups Pi, 1 6 i 6 `, acting co-compactly
on ∂X\{xi}. We refer to [3] for a complete description of geometrical finite-
ness in variable negative curvature. Finite volume manifolds XΓ (possibly
non compact) are particular cases of geometrically finite manifolds.
For geometrically finite groups, the orbital functions NPi(x,y; · ) of the

parabolic subgroups Pi, 1 6 i 6 `, contain the relevant information about
the metric inside the cusps, which may imply mΓ to be finite or infinite.
On the one hand, it is proved in [6] that the divergence of the para-
bolic subgroups P ⊂ Γ implies δP < δΓ, which yields that Γ is diver-
gent and ‖mΓ‖ < ∞. On the other hand, there exist geometrically finite
groups with parabolic subgroups P satisfying δP = δΓ: we call such groups
exotic and say that the parabolic subgroup P (or the corresponding cusps C)
is dominant when δP = δΓ. Thus, dominant parabolic subgroups of ex-
otic geometrically finite groups Γ are necessarily convergent. However, the

(1) It means that the set {`(γ) | γ ∈ Γ} of lengths of closed geodesics of XΓ is not
contained in a discrete subgroup of R.

TOME 70 (2020), FASCICULE 3



1310 Marc PEIGNÉ, Samuel TAPIE & Pierre VIDOTTO

group Γ itself may be convergent or divergent. Explicit constructions of
such groups are given in [6] and [14]; we present a similar construction in
Section 2 below.

In this paper, we consider a Schottky product Γ of elementary subgroups
Γ1, . . . ,Γp+q, of isometries of X (see Section 3 for the definition) with
p+q > 3. Such a group is geometrically finite. We assume that Γ is conver-
gent; thus, by [6], it is exotic and possesses factors (say Γ1, . . . ,Γp, p > 1)
which are dominant parabolic subgroups of Γ. We assume that, up to the
dominant factor eδΓR, the orbital functions NΓj (x,y; · ) of these groups
satisfy some asymptotic condition of polynomial decay at infinity.

Theorem 1.2. — Fix p, q ∈ N such that p > 1, p + q > 2 and let Γ be
a Schottky product of elementary subgroups Γ1,Γ2 . . . ,Γp+q of isometries
of a pinched negatively curved manifold X, where Γ1, . . . ,Γp are parabolic.
Fix o ∈ X and assume that the metric g on X satisfies the following
assumptions.
(H1) The group Γ is convergent with Poincaré exponent δΓ.
(H2) There exist α ∈ ]1, 2[, a smooth slowly varying function L(2) and

positive constants c1, . . . , cp such that, for any 1 6 j 6 p and ∆ > 0,

lim
R→+∞

Rα

L(R)
∑
γ∈Γj

R6d(o,γ·o)<R+∆

e−δΓd(o,γ·o) = cj∆.

(H3) For any p+ 1 6 j 6 p+ q and ∆ > 0,

lim
R→+∞

Rα

L(R)
∑
γ∈Γj

R6d(o,γ·o)<R+∆

e−δΓd(o,γ·o) = 0.

Then, for any x,y in X, there exists a constant CΓ(x,y) > 0 such that, as
R→ +∞,

]{γ ∈ Γ | d(x, γ · y) 6 R} ∼ CΓ(x,y) L(R)
Rα

eδΓR.

Remark 1.3. — Hypothesis (H1) (resp. (H2)) deals with the asymptotic
behavior of the convergent Poincaré series PΓj (o,o; δΓ) for 1 6 j 6 p (resp.
p+1 6 j 6 p+q). When they are satisfied, the same properties hold for the
series PΓj (x,y; δΓ), for any x,y in X, up to the following modification: for
1 6 j 6 p, the constant cj has to be replaced by cj(x,y) = e−δBxj (y,x)cj
where xj is the fixed point of the parabolic group Γj .

(2)A function L is said to be “slowly varying” if it is positive, measurable and
L(λt)/L(t)→ 1 as t→ +∞ for every λ > 0.

ANNALES DE L’INSTITUT FOURIER
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Remark 1.4. — The constants CΓ(x,y) can be explicited (see Equal-
ity (4.21) and Proposition 4.6 for explanations when x = y = o). It is
(non explicitly but) closely related to similar constant appearing in [18,
Theorem C].

Remark 1.5. — In this paper we prove Theorem 1.2 when p+ q > 3. In
Section 3, we briefly explain how to extend the proof to the case p+ q = 2.

The importance of the convergence hypothesis (H1) in the previous the-
orem is illustrated by the following result, previous work of one of the
authors [18], which concerns the case when Γ is divergent with infinite
Bowen–Margulis measure.

Theorem 1.6 ([18, Theorem C]). — Let Γ be a Schottky product of
p+ q > 2 elementary subgroups Γ1,Γ2 . . . ,Γp+q of isometries of a pinched
negatively curved manifold X with p > 1. Let us fix o ∈ X and assume that
Γ is divergent with infinite Bowen–Margulis measure and hypotheses (H2),
(H3) hold.
Then, for any x,y in X, there exists a positive constant C ′Γ(x,y) such

that, as R→ +∞,

]{γ ∈ Γ | d(x, γ · y) 6 R} ∼ C ′Γ(x,y) eδΓR

R2−αL(R) .

The difference of asymptotic behaviors between Theorems 1.2 and 1.6
may seem surprising, since it is possible to vary smoothly the Riemannian
metric gα,L from a divergent to a convergent case, preserving hypothe-
ses (H2) and (H3), cf. [14] and Paragraph 2.3 below. Let us explain briefly
the reasons of this difference; the details are given in Section 4.
Let Γ = Γ1 ∗ · · · ∗ Γp+q be a Schottky product of elementary subgroups.

For any γ ∈ Γ, γ 6= Id, there exists k > 1 such that γ may be decomposed
as γ = a1 . . . ak, with ai ∈ Γ1 ∪ · · · ∪ Γp and ai, ai+1, 1 6 i < k, do not
belong to the same subgroup Γj ; the integer k is called the symbolic length
of Γ and we denote Γ(k) the set of γ ∈ Γ with symbolic length k. When
Γ satisfies hypotheses (H2) and (H3) (it is either convergent or divergent)
then for all k ∈ N, there exists Ck > 0 such that as R→ +∞,

]{γ ∈ Γ(k) | d(o, γ · o) 6 R} ∼ Ck
L(R)
Rα

eδΓR.

On the one hand, when Γ is convergent, the estimates of ]{γ ∈ Γ(k) |
d(o, γ · o)} are summable and the Lebesgue dominated convergence Theo-
rem, yields the asymptotic given in Theorem 1.2.
On the other hand, when Γ is divergent, these estimates are no longer

summable and the asymptotic of {γ ∈ Γ | d(o, γ · o) 6 R} as R → +∞

TOME 70 (2020), FASCICULE 3



1312 Marc PEIGNÉ, Samuel TAPIE & Pierre VIDOTTO

only depends on the γ = a1 . . . ak with k � R. A more refined estimate is
needed and yields Theorem 1.6.

Remark 1.7. — In Section 2.2, we present parabolic groups satisfying
Hypothesis (H2). The condition α > 1 ensures that the parabolic groups
Γ1, . . . ,Γp are convergent. The additional condition α < 2 is used in Lem-
ma 4.3 to obtain a uniform upper bound for the powers of some Markov
operator P̃ introduced in Section 4. The proof of this lemma relies on [18],
cf. Proposition 4.5, which is only valid for α ∈ (1, 2). The statement of
Theorem 1.2 remains open when α > 2.

Remark 1.8. — Hypothesis (H3) is satisfied as soon as factors Γj , p+1 6
j 6 p+ q, have a critical exponent δΓj < δΓ: thus, the quantity∑

γ∈Γj
R6d(o,γ·o)<R+∆

e−δd(o,γ·o)

decreases exponentially quickly and (H3) holds. For instance, if all the Γj
are generated by an hyperbolic isometry ofX, their critical exponents equal
all 0 and (H3) is satisfied.

This article is organized as follows. In Section 2, we recall some back-
ground on negatively curved manifolds, and we construct examples of met-
rics for which the hypotheses of Theorem 1.2 are satisfied.

In Section 3, we introduce the Ruelle operator; this is the key analytical
tool to establish the asymptotic of the orbital counting function. Eventually,
Section 4 is devoted to the proof of Theorem 1.2; firstly, we assume x =
y = o and then explain in Subsection 4.5 how to extend it for any points
x and y in X.

2. Convergent parabolic groups and Schottky groups

2.1. Geometry of negatively curved manifolds

In the sequel, we fix N > 2 and consider a N -dimensional complete con-
nected Riemannian manifold X with metric g whose sectional curvatures
satisfy: −B2 6 KX 6 −A2 < 0 for fixed constants A and B.

We denote by d the distance on X induced by the metric g.
Let ∂X be the boundary at infinity of X and z ∈ X. The family of

functions (y 7→ d(z,x)− d(x,y))x∈X converges uniformly on compact sets
to the Busemann function Bx(z, · ) when x → x ∈ ∂X. The Busemann

ANNALES DE L’INSTITUT FOURIER
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function satisfies the fundamental cocycle relation: for any x ∈ ∂X and
any x, y, z in X,

Bx(x, z) = Bx(x,y) + Bx(y, z).

The Gromov product between x, y ∈ ∂X × ∂X, x 6= y, is defined by

(x|y)o = Bx(o, z) + By(o, z)
2

where z is any point on the geodesic (x, y) joining x to y.
We fix once for all an origin o ∈ X. For x ∈ ∂X, the horoballs Hx and

the horospheres ∂Hx centered at x are respectively the sup-level sets and
the level sets of the function Bx(o, · ). For any t ∈ R, we set Hx(t) :=
{y/Bx(o,y) > t} and ∂Hx(t) := {y/Bx(o,y) = t}; the parameter t =
Bx(o,y)−Bx(o,x) is the height of y with respect to x. When no confusion
is possible, we omit the index x ∈ ∂X.

By [2], the expression

D(x, y) = e−A(x|y)o

defines a distance on ∂X satisfying the following property: for any γ ∈ Γ

D(γ · x, γ · y) = e−
A
2 Bx(γ−1·o,o)e−

A
2 By(γ−1·o,o)D(x, y).

In other words, the isometry γ acts on (∂X,D) as a conformal transfor-
mation with coefficient of conformality |γ′(x)|o = e−ABx(γ−1·o,o) at x and
satisfies the following equality

(2.1) D(γ · x, γ · y) =
√
|γ′(x)|o|γ′(y)|oD(x, y).

The function x 7→ b(γ, x) := Bx(γ−1 · o,o) plays a central role to describe
the action of the isometry γ on the boundary at infinity ∂X. It satisfies
the following “cocycle property”: for any isometries γ1, γ2 of X and any
x ∈ ∂X,

(2.2) b(γ1γ2, x) = b(γ1, γ2 · x) + b(γ2, x).

If P is a parabolic group of isometries ofX (not necessarily cyclic), it fixes a
unique point xP ∈ ∂X. We write p→ +∞, p ∈ P for any sequence (pn)n>1
of elements of P such that limn→+∞ d(o, pn · o) = +∞. Note that

lim
p∈P

p→+∞

p · o = xP .

The following lemma is an immediate consequence of the definition of the
Busemann functions and the Gromov product. It is of great use in the
sequel.

TOME 70 (2020), FASCICULE 3
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Lemma 2.1.

(1) For any hyperbolic isometry h with repulsive and attractive fixed
point x−h = limn→+∞ h−n ·o and x+

h = limn→+∞ hn ·o respectively,
we have

b(h±n, x) = d(o, h±n · o)− 2(x±h |x)o + εx(n)

with limn→+∞ εx(n) = 0, the convergence being uniform on the
compact sets of ∂X \ {x∓h }.

(2) For any parabolic group P with fixed point xP , we have

b(p, x) = d(o, p · o)− 2(xP |x)o + εx(p)

with lim p∈P
p→+∞

εx(p) = 0, the convergence being uniform on the

compact sets of ∂X \ {xP}.

2.2. On the existence of convergent parabolic groups

In this section, we present briefly some known results about the existence
of convergent parabolic groups satisfying hypothesis (H2). We refer to [14]
and [18] for the details.
We consider on RN−1 × R a Riemannian metric of the form

gT = T 2(t)dx2 + dt2

at point xt = (x, t) where dx2 is a fixed euclidean metric on RN−1 and
T : R → R∗+ is a C∞ decreasing function. The group of isometries of gT
contains all the translations (x, t) 7→ (x+~τ , t) on RN−1×R fixing the last
coordinate.
By [4, Chapter 8, Section 3], the sectional curvature at x = (x, t) equals
• KgT (t) = − T ′′(t)

T (t) on any plane
〈

∂
∂Xi

, ∂∂t
〉
, 1 6 i 6 N − 1;

• −K2
gT (t) on any plane

〈
∂
∂Xi

, ∂
∂Xj

〉
, 1 6 i < j 6 N − 1

Note that gT has negative curvature if and only if T is convex. When
T (t) = e−t, this provides a model of the hyperbolic space of constant
curvature −1.

Let us consider the decreasing function

(2.3) u :
{
R∗+ → R

s 7→ T−1( 1
s

)
which satisfies the following implicit equation T (u(s)) = 1

s . This function u
is of interest since it gives precise estimates of the distance between points

ANNALES DE L’INSTITUT FOURIER
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lying on the same horosphere Ht := {(x, t) : x ∈ RN−1}, t ∈ R. Namely,
the distance between xt = (x, t) and yt = (y, t) for the metric T 2(t)dx2

induced by gT on Ht is equal to T (t)‖x − y‖. Hence, this distance equals
1 when t = u(‖x− y‖) and for this value of t, the union of the 3 segments
[x0,xt], [xt,yt] and [yt,y0] lies at a bounded distance of the hyperbolic
geodesic joining x0 and y0 (see [6, Lemma 4]) : this readily implies that
d(x0,y0)− 2u(‖x− y‖) is bounded.

Now, let P be a discrete group of isometries of RN−1 spanned by k lin-
early independent translations p~τ1 , . . . , p~τk in RN−1, with respective vectors
~τ1, . . . , ~τk.
For any n = (n1, . . . , nk) ∈ Zk, we set ~n = n1~τ1 + · · · + nk~τk. The

translations p~n are isometries of (RN , gT ) and the corresponding Poincaré
series of P is given by, up to finitely many terms,

(2.4) PP(s) =
∑
‖~n‖>sα

e−sd(o,p~n·o) =
∑
‖~n‖>sα

e−2su(‖~n‖)+sO(1).

Hence, it is sufficient to choose the function u in a suitable way in order
that the series PP(s) converges at its critical exponent.
We present here two main explicit examples. Example 2.2 comes from [6]

where the existence of convergent parabolic groups appeared for the first
time. Example 2.3, where we assume N = 2 to simplify, is a refinement of
Example 2.2.

Example 2.2. — For any α > 0, let us consider the increasing C2-function
u = uα from R∗+ to R such that

uα(s) =
{

ln s if 0 < s 6 1
ln s+ α ln ln s if s > sα.

We denote Tα the function associated with uα by relation (2.3); the con-
stant sα > 1 is chosen in such a way the metric

gα = T 2
α(t)dx2 + dt2

on RN−1 × R has pinched negative curvature on X, bounded from above
by −A2.
In this case, Estimation (2.4) of the Poincaré series of P becomes, up to

finitely many terms,

PP(s) =
∑
‖~n‖>sα

esO(1)

‖~n‖2s
(
ln ‖~n‖

)2sα .
Hence, the Poincaré exponent of P equals k/2 and P is convergent if and
only if α > 1

k .

TOME 70 (2020), FASCICULE 3
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Example 2.3. — Without loss of generality, we assume N = 2; indeed,
the metrics gT are totally geodesics, hence the geodesic segments
[o, p · o], p ∈ P, are included in the vertical plane passing through o and
p · o and the computation of the distance d(o, pn · o) is a 2-dimensional
problem.
We fix α > 1 and a smooth slowly varying function L : [0,+∞[ →

(0,+∞). For any real t greater than some a > 0 to be chosen(3), let us set

T (t) = Tα,L(t) = e−t
tα

L(t) .

We denote by uα,L the function related to Tα,L by the implicit equa-
tion (2.3) and gα,L the associated metric on R2. We denote p the isometry
(x, t) 7→ (x+ 1, t) on R2.

The following statement corresponds to [18, Lemma 2.2.3 and Proposi-
tion 2.2.4], where explicit examples of functions L are also given.

Proposition 2.4. — For s large enough,

u(s) = ln s+ α ln ln s− lnL(ln s) + ε(s)

with ε(s)→ 0 as s→ +∞.
Consequently, the parabolic group P = 〈p〉 on (R2, gα,L) satisfies the

following property: for any n ∈ N large enough,

d(o, pn · o) = 2
(
lnn+ α ln lnn− lnL(lnn)

)
+ ε(n)

with limn→+∞ ε(n) = 0.
In particular, for α > 1, the group P is convergent with respect to gα,L

and satisfies the assumption (H2).

The improvement between Example 2.2 and Example 2.3 relies on the
observation that the cylinder R2/P endowed with the metric gα,L is a
surface of revolution. This allows to use the Clairaut’s relations (see for
instance [5, Section 4.4, Example 5]) to estimate the distance between o
and pn · o; computations are detailed in [18, Section 2.2.3].

2.3. On the existence of non elementary exotic groups

Explicit constructions of exotic groups, i.e. non-elementary groups Γ con-
taining a parabolic P whose Poincaré exponent equals δΓ, have been de-
tailed in several papers; first in [6], then in [8], [14], and [18]. Let us describe
them in the context of the metrics g = gα,L presented above.

(3)For technical reasons, we assume in particular a > 4α, see [18].
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For any a > 0 and t ∈ R, we write

Tα,L,a =
{
e−t if t 6 a
e−aTα,L(t− a) if t > a,

where Tα,L is defined in the previous paragraph. As in [14], we consider the
metric on R2 given by gα,L,a = T 2

α,L,a(t)dx2 + dt2. It is a complete smooth
metric, with pinched negative curvatures, and with constant curvature −1
on R × (−∞, a). Note that gα,L,0 = gα,L and gα,L,+∞ is the hyperbolic
metric on H2. From the previous subsection, it follows that for any a ∈
(0,+∞) and any τ ∈ R∗, a parabolic group of the form P = 〈(x, t) 7→
(x + τ, t)〉 is convergent for the metric gα,L,a. This allows to reproduce
the construction of a non-elementary group given in [6] and [14]; let us we
present it.
Let h be a hyperbolic isometry of H2 and p be a parabolic isometry in

Schottky position with h (see next section for a precise definition). They
generate a free group Γ = 〈h, p〉 which acts discretely without fixed point
on H2. Up to a global conjugacy, we can suppose that p is given by (x, t) 7→
(x+ τ, t) for some τ ∈ R∗. The surface S = H2/Γ has a cusp, isometric to
R/τZ × (a0,+∞) for some a0 > 0. Therefore, we can replace in the cusp
the hyperbolic metric by gα,L,a for any a > a0; we also denote by gα,L,a
the lift of gα,L,a to R2.

For any n ∈ Z∗, the group Γn = 〈hn, p〉 acts freely by isometries on
(R2, gα,L,a). It is shown in [6] that, for n > 0 large enough, the group Γn
also converges. This provides a family of examples for Theorem 1.2, since
by Remark 1.8 assumption (H3) is automatically satisfied.
By [14], if Γn is convergent for some a0 > 0, then there exists a∗ >

a0 such that for any a ∈ [a0, a
∗), the group Γn acting on (R2, gα,L,a) is

convergent, whereas for a > a∗, it has finite Bowen–Margulis measure and
hence diverges.
In the case when a = a∗, the group Γ also diverges but mΓ has infinite

measure for α ∈ ]1, 2[ (see [14]). A precise estimate of the function NΓ does
also exist in this case (cf. Theorem 1.6).

Remark 2.5. — In [8], the authors propose another approach based on
a “strong” perturbation of the metric inside the cusp. Starting from a N -
dimensional finite volume hyperbolic manifold with cuspidal ends, they
modify the metric far inside one end in such a way that the corresponding
parabolic group is convergent with Poincaré exponent > 1 and turns the
fundamental group of the manifold into a convergent group. In this con-
struction, the sectional curvature of the new metric along certain planes
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is < −4 far inside the modified cusp. With this construction, we may ex-
tend the validity of t Theorem 1.2 to finite volume manifolds with infinite
Bowen–Margulis measure. We will not do it here.

2.4. Schottky groups

Let us fix two integers p > 1 and q > 0 such that ` := p + q > 2
and consider ` elementary groups Γ1, . . . ,Γ` of isometries of X. For all
j ∈ {1, . . . , `}, we write Γ∗j = Γj\{Id}; similarly Γ∗ = Γ\{Id}.

The elementary groups Γ1, . . . ,Γ` are said to be in Schottky position if
there exist disjoint closed sets Fj in ∂X such that, for any 1 6 j 6 `

(2.5) Γ∗j (∂X \ Fj) ⊂ Fj .

We set F =
⋃
j Fj .

The group Γ = 〈Γ1, . . . ,Γ`〉 spanned by the Γj , 1 6 j 6 `, is called the
Schottky product of the Γj ’s.
In this section, we present general properties of such Schottky groups.

We emphasize on the coding of the elements of the group by words over a
countable alphabet, which is crucial for the proof of Theorem 1.2. We do
not require yet that conditions (H1), (H2) and (H3) hold: these hypotheses
are only needed in the last section of this paper.
Property (2.5) and Klein’s tennis table criterion imply that Γ is the free

product of the groups Γi:

Γ = Γ1 ? Γ2 ? · · · ? Γ`.

Hence, any γ ∈ Γ∗ can hence be uniquely written as the product

γ = a1 . . . ak

for some aj ∈
⋃

Γ∗j with the property that no two consecutive elements aj
belong to the same group Γj . The set A =

⋃
Γ∗j is called the alphabet of Γ,

and a1, . . . , ak the letters of γ. The number k of letters of γ = a1 . . . ak is
the symbolic length of γ; we denote by Γ(k) the set of elements of Γ with
symbolic length k. The last letter of γ plays a special role; the index of the
group it belongs to is denoted by lγ . Applying Property 4.1.3 from [18],
one gets

Proposition 2.6. — There exists a constant C > 0 such that for any
γ ∈ Γ = ?i Γi and any x ∈ ∂X \ Flγ ,

d(o, γ · o)− C 6 Bx(γ−1 · o,o) 6 d(o, γ · o).
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This proposition implies in particular the following crucial contraction
property [1].

Proposition 2.7. — There exist a real number r ∈ ]0, 1[ and C > 0
such that, for any γ with symbolic length n > 1 and any x belonging to
the set ∂X \ Flγ , it holds

|γ′(x)| 6 Crn.

The coding of elements of Γ extends to a coding of a large subset of ΛΓ;
let us restate Proposition 1 of [13].

Proposition 2.8. — Denote by Σ+ the set of sequences (an)n>1 for
which each letter an belongs to the alphabet A =

⋃
Γ∗i and such that no

two consecutive letters belong to the same group (these sequences are called
admissible). Fix a point x0 in ∂X \ F . Then

(1) For any a = (an)n>1 ∈ Σ+, the sequence (a1 . . . an·x0)n>1 converges
to a point π(a) in the limit set of Γ, independent on the choice of x0.

(2) The map π : Σ+ → ΛΓ is one-to-one and π(Σ+) is contained in the
radial limit set of Γ.

(3) The complement of π(Σ+) in the limit set of Γ equals the Γ-orbit
of the union of the limits sets ΛΓi .

Hence, up to a countable set of points, the limit set ΛΓ of Γ coincides
with π(Σ+). Note that the set ΛΓ is contained in F =

⋃
j Fj , by (2.5).

For any 1 6 i 6 `, let Λi = ΛΓ ∩ Fi be the closure of the set of limit
points with first letter in Γi (not to be confused with the limit set of Γi,
which is a finite set). Since the Fi are closed disjoint subsets, we get the
following useful description of ΛΓ:

(a) ΛΓ is the finite union of the sets Λi,
(b) the closed sets Λi, 1 6 i 6 `, are pairwise disjoint,
(c) each of these sets is partitioned into a countable number of closed

disjoint subsets:

Λi =
⋃
a∈Γ∗

i

∪j 6=i a.Λj .

Let us fix a point x0 ∈ ∂X \F . There exists a one-to-one correspondence
between Γ · x0 and Γ. Furthermore, the point γ · x0 ∈ Fj for any γ ∈ Γ∗

with first letter in Γj . We set Σ̃+ = Σ+∪Γ and notice that, by the previous
Proposition, the natural map π : Σ̃+ → ΛΓ∪Γ ·x0 is one-to-one with image
π(Σ+) ∪ Γ · x0. Thus we introduce the following notations:

(a) Λ̃ = ΛΓ ∪ Γ · x0;
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(b) Λ̃i = Λ̃Γ ∩ Fi for any 1 6 i 6 `.
The set Λ̃ is the disjoint union of {x0} and the sets Λ̃i, 1 6 i 6 `.

Furthermore, each Λ̃i is partitioned into a countable number of subsets
with disjoint closures:

Λ̃i =
⋃
a∈Γ∗

i

a

⋃
j 6=i

Λ̃j ∪ {x0}

 .

The cocycle b defined in (2.2) plays a central role in the sequel. Now,
we introduce an extension of this cocycle (denoted also b) which allows to
control the distance (and not the value of the Buseman function) between
two points of the orbit Γ · o. It is defined on Λ̃ as follows: for any γ ∈ Γ
and x ∈ Λ̃,

b(γ, x) :=
{
Bx(γ−1o,o) if x ∈ ΛΓ;
d(γ−1 · o, g · o)− d(o, g · o) if x = g · x0 for some g ∈ Γ.

The cocycle equality (2.2) is still valid for this extended function b; fur-
thermore,

b(γ, x0) = d(o, γ · o).

3. Ruelle operators for Schottky groups

Let X be a Hadamard manifold with origin o ∈ X, and Γ = Γ1 ? · · · ?Γ`
a Schottky product of elementary groups of isometries of X, as defined in
the previous section.

3.1. Orbital counting function and Ruelle operators

Let us decompose the orbital counting function according to the symbolic
length of the elements of Γ, then introduce in a natural way the main
analytical tool of the proof: the Ruelle operators.
We write δ = δΓ and NΓ(o;R) = NΓ(o,o;R). For all R > 0,

NΓ(o;R) =
∑
γ∈Γ

∑
n∈N

1[n,n+1[(R− d(o, γ · o))

= eδR
∑
γ∈Γ

e−δd(o,γ·o)
∑
n∈N

en(R− d(o, γ · o))

= eδR
∑
n∈N

∑
γ∈Γ

e−δb(γ,x0)en(R− b(γ, x0))
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where for all n ∈ N and all t ∈ R,

(3.1) en(t) = e−δt1[n,n+1[.

Thus, the quantity NΓ(o;R) decomposes as

(3.2) NΓ(o;R) = eδR
∑
n∈N

∑
k∈N

∑
γ∈Γ(k)

e−δb(γ,x0)en(R− b(γ, x0))

where Γ(k) is the set of elements of Γ with symbolic length k.
For all φ ∈ L∞(Λ̃), all u : R → R with compact support, all s > 0 and

all (x, t) ∈ ∂X × R, let us set

L̃s(φ⊗ u)(x, t) =
∑

γ∈Γ(1)

1x/∈Λ̃lγ
e−sb(γ,x)φ(γ · x)u(t− b(γ, x)).

This is a finite sum as soon as u has compact support.
By the cocycle property of b, the iterates L̃

k

s of the operators L̃s may be
written as follows

L̃
k

s(φ⊗ u)(x, t) =
∑

γ∈Γ(k)

1x/∈Λ̃lγ
e−sb(γ,x)φ(γ · x)u(t− b(γ, x))

(more detailed explanations are given in the next section for the iterates of
the classical Ruelle operators).
Thus, equation (3.2) may be rewritten as

(3.3) NΓ(o;R) = eδR
∑
n∈N

∑
k∈N
L̃
k

δ (1Λ̃ ⊗ en) (x0, R).

These operators L̃s can be seen as an R-extension of the well known
class of Ruelle operators Ls associated with the Schottky group Γ, defined
formally by: for any function φ ∈ L∞(Λ̃) and any x ∈ Λ̃,

(3.4) Lsφ(x) =
∑

γ∈Γ(1)

1x/∈Λ̃lγ
e−sb(γ,x)φ(γ · x)

These operators Ls are classical tools in hyperbolic dynamic, in partic-
ular to study the geodesic flow on T 1XΓ, cf. for instance [1], [7] or [18].
In the present paper, we do not develop further considerations about the
geodesic flow since we will not use it to estimate the orbital function.

3.2. Poincaré series versus Ruelle operators

From now on, we assume that all the Poincaré series of the Γj , j =
1, . . . , `, do converge at δ = δΓ. For instance, this condition holds when
hypotheses (H1), (H2) and (H3) are satisfied.
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Definition (3.4) may be rewritten as

Lsφ(x) =
∑̀
j=1

∑
γ∈Γ∗

j

1x/∈Λ̃je
−sb(γ,x)φ(γ · x)

For any 1 6 j 6 `, the sequence (γ ·o)γ∈Γj accumulates on the fixed point(s)
of Γj ; hence, the sequence (b(γ, x)− d(o, γ.o))γ∈Γj is bounded, uniformly
in x /∈ Λ̃j . Therefore, since the Poincaré series of the Γj does converge at
δ = δΓ, the quantity Lsφ(x) is well defined as soon as φ is bounded and
s > δ := max{δΓj | 1 6 j 6 `}.

For any s > 0 and γ in Γ∗, let ws(γ, · ) be the weight function defined on
Λ̃ by: for any s > δ and γ ∈ Γ,

ws(γ, x) :=


1 if γ = Id,
e−sb(γ,x) if x ∈ Λ̃j , j 6= lγ ,

0 otherwise.

Observe that these functions are continuous on Λ̃ and

Lsφ(x) =
∑

γ∈Γ(1)

ws(γ, x)φ(γ · x).

By a straightforward computation, one may thus check that Ls is a bounded
linear operator on (C(Λ̃), | · |∞) when s > δ; we denote by ρs(∞) its spectral
radius on this space.
Let us now compute the iterates Lks , k > 1, of the operators Ls. The

functions ws(γ, · ) also satisfy the following cocycle relation: if γ1, γ2 ∈ A
do not belong to the same group Γj , then

ws(γ1γ2, x) = ws(γ1, γ2 · x)ws(γ2, x).

Due to this cocycle property, we may write, for any k > 1, any bounded
function φ : Λ̃→ R and any x ∈ Λ̃,

Lksφ(x) =
∑

γ∈Γ(k)

ws(γ, x)φ(γ · x)

=
∑

γ∈Γ(k)

1x/∈Λ̃lγ
e−sb(γ,x)φ(γ · x).

By the “ping-pong dynamic” between the subgroups Γj , 1 6 j 6 `, and
Proposition 2.6, the difference b(γ, x)− d(o, γ · o) is bounded uniformly in
k > 0, γ ∈ Γ(k) and x /∈ Λ̃lγ . Consequently, there exists a constant C > 0
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such that, for any x ∈ Λ̃, any k > 1 and any s > δ,

Lks1(x) c�
∑

γ∈Γ(k)

e−sd(o,γ·o)

where c is a positive constant and A c� B means A
c 6 B 6 cA. Hence,

(3.5) PΓ(s) :=
∑
γ∈Γ

e−sd(o,γ·o) = +∞ ⇐⇒
∑
k>0
Lks1(x) = +∞.

In particular

(3.6) δΓ = sup{s > δ | ρs(∞) > 1} = inf{s > δ | ρs(∞) 6 1}.

We prove in the next paragraph that Γ is convergent if and only if
ρδ(∞) < 1.

3.3. On the spectrum of the operators Ls, s > δ

Following the classical approach to study the spectrum of the transfer op-
erators Ls (see [1], [7] and comments therein), we consider their restriction
to the space Lip(Λ̃) of Lipschitz functions from Λ̃ to C defined by

Lip(Λ̃ = {φ ∈ C(Λ̃) | ‖φ‖ = |φ|∞ + [φ] < +∞}

where[φ] = sup
06i6l

sup
x,y∈Λ̃j
x 6=y

|φ(x)− φ(y)|
D(x, y)

is the Lipschitz coefficient of φ on (∂X,D).
The space (Lip(Λ̃), ‖ · ‖) is a Banach space and by Arzela–Ascoli Theo-

rem, the identity map from (Lip(Λ̃), ‖ · ‖) into (C(Λ̃), | · |∞) is compact. It
is proved in [1] that the operators Ls, s > δ, act both on (C(ΛΓ), | · |∞) and
(Lip(ΛΓ), ‖ · ‖). P. Vidotto has extended in [18] this property to the Banach
spaces (C(Λ̃), | · |∞) and (Lip(Λ̃), ‖ · ‖). We denote by ρs the spectral radius
of Ls on Lip(Λ̃). The following proposition gathers the spectral properties
of the Ls which we need in the present paper.

Proposition 3.1. — Assume that ` = p+ q > 3 . For any s > δ,
(1) ρs = ρs(∞);
(2) ρs is a simple eigenvalue of Ls acting on Lip(Λ̃) and the associated

eigenfunction hs is positive on Λ̃;
(3) there exists 0 6 r < 1 such that the rest of the spectrum of Ls on

Lip(Λ̃) is included in a disc of radius 6 rρs.
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Sketch of the proof. — We refer to [1] and [18] for more details. In [1],
it is proved that the restriction of the functions ws(γ, · ), γ ∈ Γ, to the set
ΛΓ belong to Lip(ΛΓ) and that for any s > δ there exists C = C(s) > 0
such that, for any γ in Γ∗

‖ws(γ, · )‖ 6 Ce−sd(o,γ.o).

In [18, Proposition 8.3.1], P. Vidotto has proved that the same inequality
holds for the functions ws(γ, · ) on Λ̃. Thus, the operator Ls is bounded on
Lip(Λ̃) when s > δ.

In order to describe its spectrum on Lip(Λ̃), we first write a “contraction
property” for the iterated operators Lks : for all x, y ∈ Λ̃, all k ∈ N and all
s > δ, it holds

|Lksφ(x)− Lksφ(y)|

6
∑

γ∈Γ(k)

|ws(γ, x)| |φ(γ · x)− φ(γ · y)|+
∑

γ∈Γ(k)

[ws(γ, · )] |φ|∞D(x, y).

By Proposition 2.7 and the mean value relation (2.1), there exist C > 0
and 0 6 r < 1 such that D(γ · x, γ · y) 6 CrkD(x, y) whenever x, y ∈ Λ̃j ,
j 6= lγ and γ ∈ Γ(k). Hence, we get

(3.7) [Lksφ] 6 rk[φ] +Rk|φ|∞
where rk =

(
Crk

)
|Lks1|∞ and Rk =

∑
γ∈Γ(k)[ws(γ, · )]. Observe that

lim sup
k

r
1/k
k = r lim sup

k
|Lks1|1/k∞ = rρs(∞)

where ρs(∞) is the spectral radius of the positive operator Ls on C(Λ̃). By
Hennion’s work [10], Inequality (3.7) implies that Ls is quasi-compact and
its essential spectral radius on Lip(Λ̃) is less than rρs(∞). In other words,
any spectral value of Ls with modulus strictly larger than rρs(∞) is an
eigenvalue with finite multiplicity and is isolated in the spectrum of Ls.
This implies in particular ρs = ρs(∞). Indeed, the inequality ρs > ρs(∞)

is obvious since the function 1 belongs to Lip(Λ̃). Conversely, the strict
inequality would imply the existence of a function φ ∈ Lip(Λ̃) such that
Lsφ = λφ for some λ ∈ C of modulus > ρs(∞); this yields |λ||φ| 6 Ls|φ|
so that |λ| 6 ρs(∞): a contradiction.
It remains to control the nature of the value ρs in the spectrum of Ls.

By the previous argument, we know that ρs is an eigenvalue of Ls with
(at least) one associated eigenfunction hs > 0. This function is positive on
Λ̃: otherwise, there exist 1 6 j 6 p + q and a point y0 ∈ Λ̃j such that
hs(y0) = 0. The equality Lshs(y0) = ρshs(y0) implies hs(γ ·y0) = 0 for any
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γ ∈ Γ with last letter 6= j. The minimality of the action of Γ on ΛΓ and
the fact that Γ · x0 accumulates on Λ implies hs = 0 on Λ̃: a contradiction.
In order to prove that ρs is a simple eigenvalue on Lip(Λ̃), let us introduce

the so-called “Doob transform” of Ls. For any s > δ, we denote by Ps the
operator defined formally by: for any bounded Borel function φ : Λ̃ → C
and x ∈ Λ̃,

Psφ(x) = 1
ρshs(x)L(hsφ)(x) = 1

ρhs(x)
∑

γ∈Γ(1)

1x/∈Λ̃lγ
e−sb(γ,x)h(γ ·x)φ(γ ·x).

The iterates of Ps are given by: P 0
s = Id and for k > 1

(3.8) P ks φ(x) = 1
ρkshs(x)

∑
γ∈Γ(k)

1x/∈Λ̃lγ
e−sb(γ,x)h(γ · x)φ(γ · x).

The operator Ps acts on Lip(Λ̃) as a Markov operator, i.e. Psφ > 0 if
φ > 0 and Ps1Λ̃ = 1Λ̃. It inherits the spectral properties of Ls and is
in particular quasi-compact with essential spectral radius < 1. The spec-
tral value 1 is an eigenvalue and it remains to prove that the associated
eigenspace is C · 1. Let f ∈ Lip(Λ̃) such that Psf = f and 1 6 j 6 p + q

and y0 ∈ Λ̃j such that |f(y0)| = |f |∞. An argument of convexity applied
to the inequality Ps|f | 6 |f | readily implies |f(y0)| = |f(γ · y0)| for any
γ ∈ Γ with last letter 6= j. By minimality of the action of Γ on Λ̃, it follows
that the modulus of f is constant on Λ̃. Applying again an argument of
convexity, the minimality of the action of Γ on Λ̃ and the fact that Γ · x0
accumulates on Λ, one proves that f is in fact constant on Λ̃. Therefore,
the eigenspace of Ls associated with ρs equals C · hs.
A similar proof, using the fact that ` > 3, shows that ρs is the unique

eigenvalue with modulus ρs; the argument is detailed in [1, Proposition III.4]
and [18, Proposition 8.3.2]. �

When p+ q = 2, an analogous property holds (see [7, Lemma VII.6] for
the details):

Proposition 3.2. — Assume that ` = p+ q = 2. For any s > δ,
(1) ρs = ρs(∞);
(2) ρs is a simple eigenvalue of Ls acting on Lip(Λ̃) with an associated

eigenfunction h+
s positive on Λ̃ = Λ̃1 ∪ Λ̃2;

(3) −ρs is a simple eigenvalue of Ls acting on Lip(Λ̃), with an associated
eigenfunction h−s which is positive on Λ̃1 and negative on Λ̃2;

(4) there exists 0 6 r < 1 such that the rest of the spectrum of Ls on
Lip(Λ̃) is included in a disc of radius 6 rρs.
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In the sequel, to lighten the proof of Theorem 1.2, we only consider the
case p+ q > 3. Adapting the proof when p+ q = 2 is a little bit technical
but straightforward, using Proposition 3.2 instead of Proposition 3.1.
Expression (3.8) yields the following.

Notation 3.3. — For any s > δ, x ∈ Λ̃, k > 0 and any γ ∈ Γ(k), we set

(3.9) ps(γ, x) := 1
ρks

hs(γ · x)
hs(x) ws(γ, x).

As for the ws(γ, · ), these “weight functions” are positive and satisfy the
cocycle property: for all s > δ, x ∈ Λ̃ and γ1, γ2 ∈ Γ,

ps(γ1γ2, x) = ps(γ1, γ2 · x) · ps(γ2, x).

Let us emphasize that the operator Ps is Markovian, i.e.∑
γ∈Γ(k)

ps(γ, x) = 1.

Corollary 3.4. — The group Γ is convergent if and only if ρδ < 1.

Proof. — If ρδ = ρδ(∞) < 1 then ρs < 1 for any s > δ, since s 7→
ρs(∞) = ρs is decreasing on [δ,+∞[. Equality (3.6) implies δΓ 6 δ and so
δΓ = δ; by (3.5), it follows that Γ is convergent.

Assume now ρδ > 1. When Γ is non exotic, it is divergent by [6]. Other-
wise, δΓ = δ and, since the eigenfunction hδ is positive on Λ̃, we have, for
any k > 1 and x ∈ Λ̃

Lkδ1(x) � Lkδhδ(x) = ρkδhδ(x) � ρkδ .

Consequently
∑
k>0Lkδ1(x)=+∞ and the group Γ is divergent, by (3.5). �

4. Counting for convergent groups

This last section is devoted to the proof of Theorem 1.2. Let us fix a
N -dimensional Hadamard manifold X with pinched negative curvatures,
and a base point o ∈ X. Fix α ∈ ]1, 2[ and let Γ be a Schottky group of
isometries of X satisfying hypotheses (H1), (H2) and (H3) of Theorem 1.2.
Recall that it implies that all the elementary groups Γj , j = 1, . . . , `, as
well as the full group Γ, have a Poincaré series which converges at δ = δΓ.
This implies that

• the Ruelle operators Ls and L̃s described in the previous section
are well defined provided s > δ;

• the spectral radius of Lδ on Lip(Λ̃) is ρδ < 1, by Corollary 3.4.
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4.1. Proof of Theorem 1.2

From now on, definitions and notations of Section 3.2 are used freely.
By (3.3), for all R > 0, it holds

NΓ(o;R) = eδR
∑
n∈N

∑
k∈N
L̃
k

δ (1Λ̃ ⊗ en)(x0, R),

where en is defined by (3.1). Let us remark that, for all R > 0 and x ∈ Λ̃,
the map

Mx,R : u 7→Mx,R(u) =
∑
k∈N
L̃
k

δ (1⊗ u)(x,R)

is a positive bounded linear form on the space of continuous function with
compact support, i.e. a locally finite Radon measure on R. The orbital
counting function can hence be rewritten as

NΓ(o;R) = eδR
∑
n∈N

Mx0,R(en).

With this notation, Theorem 1.2 is an immediate consequence of the fol-
lowing statement.

Proposition 4.1. — For any x ∈ Λ̃, there exists C(x) > 0 such that,
for any continuous map u : R→ R with compact support,

(4.1) lim
R→+∞

Rα

L(R)Mx,R(u) = C(x)
∫
R
u(t)dt.

Firstly, let us prove that Theorem 1.2 is a direct consequence of Propo-
sition 4.1.

Proof of Theorem 1.2. — From Beppo–Levi monotone convergence The-
orem, (4.1) also holds for all positive functions. Therefore,

lim
R→+∞

e−δRRα

L(R) NΓ(o;R) = lim
R→+∞

∑
n∈N

Rα

L(R)Mx0,R(en)

=
∑
n∈N

lim
R→+∞

Rα

L(R)Mx0,R(en)

= C(x0)
∑
n∈N

∫
R
en(t)dt

= C(x0)
∫
R
e−δt = C(x0)

δ
.(4.2)

The above change of order between series and limit is valid since all terms
are positive. This is exactly Theorem 1.2, with CΓ = C(x0)

δ . The value of
C(x0) is explicited in Subsection 4.4. �
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The rest of this paragraph is devoted to the proof of Proposition 4.1.
Proof of Proposition 4.1. — Let us fix a continuous function u : R→ R+

with compact support. By definition, for all x ∈ Λ̃ and all R > 0,

Mx,R(u) =
∑
k>0

M
(k)
x,R(u)

where

M
(k)
x,R(u) = L̃kδ (1⊗ u)(x,R)

=
∑

γ∈Γ(k)

1x/∈Λ̃lγ
e−δb(γ,x)1Λ̃(γ · x)u(R− b(γ, x)).

In the same way as in Paragraph 3.3 we have associated the Markovian
operator Pδ to Lδ, we consider the Markovian operator P̃ δ on Λ̃×R, defined
by: for any φ ∈ Lip(Λ̃), any continuous function with compact support
u : R→ R and any (x, t) ∈ Λ̃× R,

P̃ δ(φ⊗ u)(x, t) = 1
ρδhδ(x) L̃δ(hδφ⊗ u)(x, t)(4.3)

=
∑

γ∈Γ(1)

pδ(γ, x)φ(γ · x)u(t− b(γ, x)).(4.4)

This operator P̃ δ commutes with the action of the translations on R and
its iterates are given by: for any k > 1,

P̃ kδ (φ⊗ u)(x, t) =
∑

γ∈Γ(k)

pδ(γ, x)φ(γ · x)u(t− b(γ, x)).

From now on, to lighten notations we write P = Pδ, P̃ = P̃ δ, h = hδ,
ρ = ρδ and p = pδ. Hence, we can rewrite the quantity M (k)

x,R(u) as

M
(k)
x,R(u) = ρkh(x)P̃ k

(
1
h
⊗ u
)

(x,R),

so that,

(4.5) Mx,R(u)) = h(x)
∑
k>0

ρkP̃ k
(

1
h
⊗ u
)

(x,R).

The end of the proof of Proposition 4.1 follows from the two following
lemmas, whose proofs are postponed to Sections 4.2 and 4.3.

We first control the behavior as R→ +∞ of the quantity M (1)
x,R(u).
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Lemma 4.2. — For any continuous function u : R → R with compact
support, there exists a constant Cu > 0 such that, for any φ ∈ Lip(Λ̃), any
x ∈ Λ̃ and R > 1,

(4.6)
∣∣∣P̃ (φ⊗ u)(x,R)

∣∣∣ 6 Cu‖φ‖∞ × L(R)
Rα

.

Furthermore,

(4.7) lim
R→+∞

Rα

L(R) P̃ (φ⊗ u)(x,R) =
p∑
j=1

Cj(x)φ(xj)
∫
R
u(t)dt,

where Cj is defined by: for 1 6 j 6 p,

(4.8) Cj(x) := cj
h(xj)
ρh(x) ×


e2δ(xj | x)o if x ∈ ΛΓ\Λ̃j ;
eδ(Bxj (o,g·o)+d(o,g·o)) if x = g · x0 /∈ Λ̃j ;
0 if x ∈ Λ̃j ,

where, for any 1 6 j 6 p, the constant cj comes from (H2) and xj is the
unique fixed point of Γj .

A similar statement holds for all the M (k)
x,R, k > 1.

Lemma 4.3. — For any continuous function u : R→ R+ with compact
support:

• there exists a constant Cu > 0 such that, for any φ ∈ Lip(Λ̃), any
x ∈ Λ̃, any k > 1 and any R > 1,

(4.9)
∣∣∣P̃ k (φ⊗ u) (x,R)

∣∣∣ 6 Cu k2 ‖φ‖∞ ×
L(R)
Rα

;

• for any φ ∈ Lip(Λ̃), any x ∈ Λ̃ and any k > 1,

(4.10) lim
R→+∞

Rα

L(R) P̃
k (φ⊗ u) (x,R)

=
p∑
j=1

(
k−1∑
l=0

P lCj(x)P k−1−lφ(xj)
)∫

R
u(t)dt

where the Lipschitz functions Cj , 1 6 j 6 p, are given by (4.8).
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Proposition 4.1 follows immediately from these statements. Indeed, Equa-
tion (4.5), Lemma 4.3 and the dominated convergence theorem yield

(4.11) lim
R→+∞

Rα

L(R)M
(k)
x,R

=

h(x)
∑
k>1

ρk
p∑
j=1

(
k−1∑
l=0

P lCj(x)P k−1−l
(

1
h

)
(xj)

)× ∫
R
u(t)dt. �

4.2. Proof of Lemma 4.2

Let us fix x ∈ Λ̃ and u a continuous function on R whose support is
included in the interval [a, b].

Proof of the upperbound (4.6). — For any R > b, it holds

P̃ (φ⊗u)(x,R) = 1
ρh(x)

p+q∑
j=1

∑
γ∈Γj

e−δb(γx)1x/∈Λ̃jh(γ ·x)φ(γ ·x)u(R−b(γ, x)).

By hypotheses (H2) and (H3) and Lemma 2.1, for any j = 1, . . . , p+q there
exists a constant Kj > 0 such that, for any R > 1,∑

γ∈Γj
R−b6b(γ,x)6R−a

e−δb(γ,x) 6 Kj(b− a)L(R− b)
(R− b)α .

Together with the fact that L is slowly varying, this implies (4.6). �

Proof of the asymptotic (4.7). — In order to establish (4.7), it is suffi-
cient to prove that for any j = 1, . . . , p+ q,

(4.12) lim
R→+∞

Rα

L(R)
∑
γ∈Γj

p(γ, x)φ(γ ·x)u(R−b(γ, x)) = Cj(x)φ(xj)
∫
R
u(t)dt,

where Cj(x) is given by (4.8) for 1 6 j 6 p and Cj(x) = 0 for j =
p+1, . . . , q. By a classical approximation argument, it is sufficient to check
that (4.12) holds when u is the characteristic function of some interval [a, b],
in which case∑

γ∈Γj

p(γ, x)φ(γ · x)u(R− b(γ, x))

= 1
h(x)

∑
γ∈Γj

R−b6b(γ,x)6R−a

e−δb(γx)1x/∈Λ̃jh(γ · x)φ(γ · x).
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First, assume that x = g · x0 belongs to Γ · x0. For any j = 1, . . . , p and γ
in Γj , γ 6= Id, the sequence (γn · o)n>1 tends to xj as n→ ±∞; it yields

b(γn, x)− d(o, γn · o) = d(γ−n · o, g · o)− d(γ−n · o,o)− d(o, g · o)
n→±∞−→ −Bxj (o, g · o)− d(o, g · o).

When x ∈ Λ, Lemma 2.1 yields

lim
n→±∞

b(γn, x)− d(o, γn · o) = −2(xj |x)o.

Eventually, by hypotheses (H2) and (H3), for any 1 6 j 6 p+ q,

lim
R→+∞

Rα

L(R)
∑
γ∈Γj

R−b6d(o,γ·o)6R−a

p(γ, x) = Cj(x)|b− a|.

Hence,

lim
R→+∞

Rα

L(R)
∑
γ∈Γj

p(γ, x)φ(γ · x)u(R− b(γ, x)) = Cj(x)φ(xj)|b− a|

which is exactly (4.12) when u equals the characteristic function of the
interval [a, b]. �

4.3. Proof of Lemma 4.3

For the convenience of the reader, we assume that all subgroups Γj , 1 6
j 6 p+ q, are parabolic. Hence, they have a unique fixed point at infinity
xj and for any x ∈ Λ̃,

lim
γ∈Γj
γ→+∞

γ · x = xj .

When some Γj , p + 1 6 j 6 p + q, is generated by an hyperbolic isometry
hj , we have to distinguish between positive and negative power of hj ; this
overcharges the notations and present no more interest.
The proof of inequality (4.9) is based on upper estimates given in [18],

whose proofs follow the approach developed in [9]. Let us present them
briefly.

Firstly, we introduce the notion of “Schottky cocycle” which is of interest
in the sequel.

Definition 4.4. — A Schottky cocycle is a map B : Γ × Λ̃ → R such
that for all γ1, γ2 ∈ Γ such that the last letter of γ1 and the first letter of
γ2 do not belong to the same elementary factor, we have

B(γ1γ2, x) = B(γ1, γ2 · x) +B(γ2, x).
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By (2.2), the map b introduced at the end of Section 2 is a cocycle,
hence a Schottky cocycle. However, the map B : Γ× Λ̃→ R defined for all
γ ∈ Γ(k) with symbolic length k by

B(γ, x) = b(γ, x) + σk

where σ > 0 is fixed, is not a cocycle but a Schottky cocycle.
For all such Schottky cocycles B and all δ > 0, we consider the Ruelle op-

erators Lδ,B and their R-extensions L̃δ,B defined by: for all φ ∈ L∞(Λ̃), u ∈
Cc(R) and all x ∈ Λ̃ and R ∈ R,

Lδ,B(φ)(x) =
∑

γ∈Γ(1)

1x/∈Λ̃lγ
e−δB(γ,x)φ(γ · x)

and

L̃δ,B(φ⊗ u)(x,R) =
∑

γ∈Γ(1)

1x/∈Λ̃lγ
e−δB(γ,x)φ(γ · x)u(R−B(γ, x)).

Since B is a Schottky cocycle, for all k ∈ N, it holds

Lkδ,B(φ)(x) =
∑

γ∈Γ(k)

1x/∈Λ̃lγ
e−δB(γ,x)φ(γ · x)

and an analogous equality for L̃δ,B . The reader may check that in Sections 3
and 4 we have only used the Schottky cocycle property of b, and not its
full cocycle property. We gather the results from [18] which we need in the
following proposition.

Proposition 4.5 ([18]). — With the previous notations, let B : Γ ×
Λ̃ → R be a Schottky cocycle such that there exists β ∈ (0, 1) and a
smooth slowly varying function L : R → (0,+∞) satisfying the following
hypotheses:

• for all j ∈ {1, . . . , p}, there exists Cj > 0 such that, as T → +∞,∑
α∈Γj ,d(o,α·o)>T

e−δB(α,x0) ∼ Cj
L(T )
T β

;

• for all j ∈ {p+ 1, . . . , p+ q}, as T → +∞,∑
α∈Γj ,d(o,α·o)>T

e−δB(α,x0) = o

(
L(T )
T β

)
;

• for all ∆ > 0, there exists C∆ > 0 such that∑
α∈Γj ,T−∆6d(o,α·o)6T+∆

e−δB(α,x0) 6 C∆
L(T )
T 1+β ;

ANNALES DE L’INSTITUT FOURIER



ORBITAL COUNTING FOR SOME CONVERGENT GROUPS 1333

• for all γ ∈ Γ, the map x 7→ B(γ, x) is Lipschitz continuous on Λ̃;
• Lδ,B is a bounded and positive operator on Lip(Λ̃) with spectral

radius 1, this spectral value 1 is a simple eigenvalue, whose corre-
sponding eigenfunction h is positive, and the rest of the spectrum
is contained in a disc of radius r < 1.

Let P̃B be the operator defined by: for all φ ∈ Lip(Λ̃) and all u ∈ Cc(R),

P̃B(φ⊗ u) = 1
h
L̃δ,B(hφ⊗ u).

At last, let (ak)k∈N be the sequence defined implicitely by: for all k ∈ N,

aβk
L(ak) = k.

Then, there exists C > 0 such that, for all R > 0 and all k ∈ N :

(4.13)
∣∣∣P̃ kB(φ⊗ u)(x,R)

∣∣∣ 6 C ‖φ‖∞‖u‖L1

ak
if R 6 2ak;

and

(4.14)
∣∣∣P̃ kB(φ⊗ u)(x,R)

∣∣∣ 6 Ck L(R)
R1+β ‖φ⊗ u‖∞ if R > 2ak.

Sketch of proof. — Let us first suppose that Γ is a divergent group with
infinite Bowen–Margulis measure and B = b, i.e. for all γ ∈ Γ, B(γ, x0) =
d(o, γ · o). If B satisfies the three first hypotheses of Proposition 4.5, we
are exactly in the setting of [18]. As already mentioned in Section 3, it is
proved in [18, Chapter 4] that Lδ,B has spectral radius 1 on Lip(Λ̃), that
1 is a simple eigenvalue associated to a positive eigenfunction h, and the
rest of the spectrum is contained in disc of radius r < 1.
Thus, the upperbound (4.13) is a byproduct of Proposition A.1 and the

upperbound (4.14) by [18, Proposition A.2]. The proof detailed in [18] for
the cocycle b works verbatim for any other Schottky cocycle B satisfying
the hypotheses of Proposition 4.5 above. It is long and technical and we do
not write it out here. �

Proof of the upperbound (4.9). — Recall that the group Γ satisfies the
hypotheses of Theorem 1.2. Let us write β = α − 1 ∈ (0, 1), and for all
k ∈ N, all γ ∈ Γ and all x ∈ Λ̃, let us set

B(γ, x) := b̃(γ, x) + k ln ρ
δ

,

where ρ ∈ (0, 1) is the spectral radius of Lδ introduced in Section 3. Note
that by definition, P̃B = P̃ δ = P̃ , where P̃ δ is defined in (4.3).
By (H2) and (H3) and Subsection 3.3, the function B is a Schottky

cocycle satisfying hypotheses of Proposition 4.5. It yields:
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• If 1 6 R 6 2ak, then, by (4.13), there exists C1 = C1(u) > 0 such
that, for any x ∈ Λ̃, k > 1 and R > 1,∣∣∣P̃ k (φ⊗ u) (x,−R)

∣∣∣ 6 C1‖φ‖∞ ×
1
ak
.

The definition of the ak yields, for 1 6 R 6 2ak,
1
ak

= k
L(ak)
a1+β
k

6 k21+β × L(R)
R1+β ×

L(ak)
L(R) .

Therefore, by Potter’s Lemma (see [18, Lemma 3.4.1]), there exists
C2 > 0 such that 1

ak
6 C2k

2× L(R)
R1+β for R > 1 great enough. Hence,

for all R > 1,∣∣∣P̃ k (φ⊗ u) (x,−R)
∣∣∣ 6 C1C2‖φ‖∞k2 × L(R)

R1+β .

• If R > 2ak, then, by (4.14), there exists C3 = C3(u) > 0 such that∣∣∣P̃ k (φ⊗ u) (x,R)
∣∣∣ 6 C3k‖φ‖∞ ×

L(R)
R1+β .

Thus, inequality (4.9) holds with C = max(C1C2, C3). �

Proof of the asymptotic (4.10). — We work by induction. By Lemma 4.2,
Convergence (4.10) holds for k = 1. Now, we assume that it holds for some
k > 1. Let R > 0 and r ∈ [0, R/2] be fixed. Recall that

P̃ k+1 (φ⊗ u) (x,R)

=
∑

γ∈Γ(k+1)

p(γ, x)φ(γ · x)u(R− b(γ, x))

=
∑

γ∈Γ(k)

∑
β∈Γ(1)

p(γ, β · x)p(β, x)φ(γβ · x)u
(
R− b(γ, β · x) + b(β, x)

)
.

We decompose

P̃ k+1 (φ⊗ u) (x,−R) as Ak(x, r,R) +Bk(x, r,R) + Ck(x, r,R)

where

Ak(x, r,R)

:=
∑

γ∈Γ(k)

∑
β∈Γ(1)

d(o,β·o)6r

p(γ, β · x)p(β, x)φ(γβ · x)u
(
R− b(γ, β · x)− b(β, x)

)
,

Bk(x, r,R)

:=
∑
γ∈Γ(k)

d(o,γ·o)6r

∑
β∈Γ(1)

d(o,β·o)>r

p(γ, β · x)p(β, x)φ(γβ · x)u
(
R− b(γ, β · x)− b(β, x)

)
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and

Ck(x, r,R)

:=
∑
γ∈Γ(k)

d(o,γ·o)>r

∑
β∈Γ(1)

d(o,β·o)>r

p(γ, β · x)p(β, x)φ(γβ · x)u
(
R− b(γ, β · x)− b(β, x)

)
.

Step 1. — Let us first prove that

(4.15) lim
R→+∞

Rα

L(R)Ak(x, r,R)

=
∑
β∈Γ(1)

d(o,β·o)6r

p(β, x)× lim
R→+∞

Rα

L(R) P̃
k (φ⊗ u) (β · x,R).

Indeed, the set of β ∈ Γ(1) such that d(o, β ·o) 6 r is finite and b(β, x) 6 r
for such an isometry β; furthermore, if p(β, x) 6= 0 then R

2 6 R− b(β, x) 6
R+C where C > 0 is the constant which appears in Proposition 2.6. Using
the induction hypothesis, it yields, for any β ∈ Γ(1) such that d(o, β ·o) 6 r,

lim
R→+∞

Rα

L(R)p(β, x)
∑

γ∈Γ(k)

p(γ, β · x)φ(γβ · x)u
(
R− b(β, x)− b(γ, β · x)

)
= p(β, x)× lim

R→+∞

Rα

L(R) P̃
k (φ⊗ u) (β · x,R− b(β, x)).

Convergence (4.15) follows, summing over β. It yields, by Convergen-
ce (4.7) in Lemma 4.2,

(4.16) lim
r→+∞

lim
R→+∞

Rα

L(R)Ak(x, r,R)

=
p∑
j=1

(
k∑
l=1

P lCj(x)P k−lφ(xj)
)
×
∫
R
u(t)dt.

Step 2. — Now, let us prove that there exists ε(r) > 0, with
limr→+∞ ε(r) = 0, such that, for any k > 1,

lim inf
R→+∞

Rα

L(R)Bk(x, r,R)
ε(r)
' lim sup

R→+∞

Rα

L(R)Bk(x, r,R)

ε(r)
'

p∑
j=1

∑
γ∈Γ(k)

d(o,γ·o)6r

p(γ, xj)φ(γ · xj)Cj(x)
∫
R
u(t)dt,(4.17)

where we write a ε' b if 1− ε 6 a
b 6 1 + ε.
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Since each Γj has a unique fixed point xj , there exists a map ε : (0,+∞)→
(0,+∞) which tends to 0 as r → +∞, such that

p(γ, β · x)
p(γ, xj)

ε(r)
' 1

for any j = 1, . . . , p+ q, any β ∈ Γj with d(o, β ·o) > r, any x ∈ Λ̃ and any
γ ∈ Γ with lγ 6= j.

The set of γ ∈ Γ(k) such that d(o, γ · o) 6 r is finite; furthermore, for
such γ and any β ∈ Γ(1), it holds R

2 6 R − b(γ, β · x) 6 R + C, as above.
Therefore,∑

γ∈Γ(k)
d(o,γ·o)6r

∑
β∈Γ(1)

d(o,β·o)>r

p(γ, β · x)p(β, x)φ(γβ · x)u
(
R− b(γ, β · x)− b(β, x)

)
ε(r)
'

p+q∑
j=1

∑
γ∈Γ(k)

d(o,γ·o)6r

p(γ, xj)φ(γ · xj)
∑
β∈Γj

d(o,β·o)>r

p(β, x)u
(
R− b(γ, β · x)− b(β, x)

)
Convergence (4.17) follows, using (4.12). In particular, letting r → +∞
and using again statement Convergence (4.7) in Lemma 4.2, it holds

lim
r→+∞

lim inf
R→+∞

Rα

L(R)Bk(x, r,R) = lim
r→+∞

lim sup
R→+∞

Rα

L(R)Bk(x, r,R)

=
p∑
j=1

P kφ(xj)Cj(x)
∫
R
u(t)dt.(4.18)

Step 3. — Eventually, we prove that there exists a constant C > 0 such
that, for any R > 2r > 1,

(4.19) Ck(x, r,R) 6 Ck2‖φ‖∞
L(R)
Rα

+∞∑
n=[r]

L(n)
nα

.

By Proposition 2.6, the condition u(R− b(γβ · x)− b(β, x)) 6= 0 implies

d(o, γ · o) + d(o, β · o) = R± c and b(γβ · x) + b(β, x) = R± c (4)

for some constant c > 0 which depends on the support of u. We decompose
Ck(x, r,R) into Ck(x, r,R) = Ck,1(x, r,R) + Ck,2(x, r,R) with

Ck,1(x, r,R)

:=
∑
γ∈Γ(k)

r<d(o,γ·o)6R/2

∑
β∈Γ(1)

d(o,β·o)>r

p(γ, β ·x)p(β, x)φ(γβ ·x)u
(
R−b(γ, β ·x)−b(β, x)

)
.

(4) the notation A = B ± c means |A−B| 6 c.
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and

Ck,2(x, r,R)

:=
∑
γ∈Γ(k)

d(o,γ·o)>R/2

∑
β∈Γ(k)

d(o,β·o)>r

p(γ, β ·x)p(β, x)φ(γβ ·x)u
(
R−b(γ, β ·x)−b(β, x)

)
.

Firstly, we control the term Ck,1(x, r,R). Assuming c > 1, one may write

Ck,1(x, r,R)

6 ‖φ‖∞‖u‖∞
[R/2]∑
n=[r]

∑
γ∈Γ(k)

d(o,γ·o)=n±c

∑
β∈Γ(k)

d(o,β·o)=R−n±c

p(γ, β · x)p(β, x)

6 ‖φ‖∞‖u‖∞
[R/2]∑
n=[r]

∑
β∈Γ(1)

d(o,β·o)=R−n±c

p(β, x)

 ∑
γ∈Γ(k)

d(o,γ·o)=n±c

p(γ, β · x)

 .

By (4.9), this yields, for some constant c′ > 0,

Ck,1(x, r,R) 6 c′k2‖φ‖∞‖u‖∞
[R/2]∑
n=[r]

L(R− n)
(R− n)α

L(n)
nα

6 c′k2‖φ‖∞‖u‖∞
L(R)
Rα

+∞∑
n=[r]

L(n)
nα

,

where the last inequality is based on the facts that R − n > R/2 − 1 and
L is slowly varying. The same inequality holds for Ck,2(x, r,R), reversing
the roles of γ and β in the argument. Hence,

(4.20) lim
r→+∞

lim sup
R→+∞

Rα

L(R)Ck(x, r,R) = 0.

The asymptotic formula (4.10) follows, combining (4.16), (4.18) and
(4.20). �

4.4. Specification of the constant CΓ(o,o)

In this paragraph, we prove the following statement.
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Proposition 4.6. — The constant CΓ(o,o) appearing in the statement
of Theorem 1.2 is given by

CΓ(o,o) = 1
δ

p∑
j=1

cj

∑
γ∈Γ
lγ 6=j

e−δBxj (γ−1·o,o)


2

.

Proof. — By Formula (4.2) in Subsection 4.1, it holds CΓ(o,o) = C(x0)
δΓ

,

where C(x0) is given by (4.11):

C(x0) = h(x0)
∑
k>1

ρk
p∑
j=1

(
k−1∑
l=0

P lCj(x0)P k−1−l
(

1
h

)
(xj)

)

= h(x0)ρ
p∑
j=1

∑
k>0

ρkP k
(

1
h

)
(xj)

∑
l>0

ρlP lCj(x0)


(the last equality holds since P has spectral radius 1).
On the one hand, for any k > 0,

ρkP k
(
1

h

)
(xj) = 1

h(xj)
∑

γ∈Γ(k)

1xj /∈Λ̃lγ
e−δb(γ,xj) = 1

h(xj)
Lkδ (1)(xj).

On the other hand, for any l > 0, by the definition of Cj( · ) in (4.8),

ρlP lCj(x0) = cjh(xj)
ρh(x0)

∑
γ∈Γ(l)

1γ.x0 /∈Λ̃je
−δb(γ,x0)eδ(Bxj (o,γ·o)+d(o,γ·o))

= cjh(xj)
ρh(x0)

∑
γ∈Γ(l)

1γ.x0 /∈Λ̃je
−δb(γ−1,xj)

= cjh(xj)
ρh(x0)

∑
g∈Γ(l)

1xj /∈Λ̃lg
e−δb(g,xj) setting g = γ−1

= cjh(xj)
ρh(x0) L

l
δ(1)(xj).

The result follows, summing over k and l and using the definition of Lδ
and the expression of its powers. �

4.5. General orbital couting estimate

Let x,y ∈ X be any two points and let us mention briefly how the proof
of Theorem 1.2 can be adapted to get the general statement of Theorem 1.2.
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We fix x0 ∈ ∂X\ΛΓ, set Λ̃ = Γ · x0 ∪ΛΓ and, instead of b, we consider a
new function b̄, defined as follows: for all γ ∈ Γ and all ξ ∈ Λ̃,

b(γ, ξ) =


b(γ, ξ) = Bξ(γ−1 · x,x) if ξ ∈ ΛΓ;
d(γ−1 · x, g · y)− d(x, g · y) if ξ = g · x0 with g ∈ Γ∗;
d(γ−1 · x,y) if ξ = x0.

An immediate computation shows that b is a cocycle. As was done in [18,
Chapter 8] for the cocycle b, one can show that for all γ ∈ Γ, the map
b(γ, · ) is Lipschitz continuous on Λ̃. This new cocycle is suitable for the
estimation of NΓ(x,y;R) since for all γ ∈ Γ,

b(γ, x0) = d(x, γ · y).

One can then reproduce the study done in Section 3 for the Ruelle operator
Lδ,b associated with b̄. Under the hypotheses of Theorem 1.2, this operator
is quasi-compact on Lip(Λ̃) and hs a simple dominant eigenvalue ρ ∈ (0, 1).
The rest of the proof can be carried verbatim, replacing b by b; the constant
CΓ(x,y) is given by

(4.21) CΓ(x,y) = 1
δ

p∑
j=1

cj

∑
γ∈Γ
lγ 6=j

e−δBxj (γ−1·x,y)


2

.
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