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INTRODUCTION

Speciation by hybridization [START_REF] Gross | The ecological genetics of homoploid hybrid speciation[END_REF][START_REF] Mallet | Hybridization, introgression, and linkage evolution[END_REF] is a widespread phenomenon in plants [START_REF] Rieseberg | Hybridization, introgression, and linkage evolution[END_REF][START_REF] Soltis | The role of hybridization in plant speciation[END_REF], but also occurs in some other types of organisms [START_REF] Schwenk | Introduction. extent, processes and evolutionary impact of interspecific hybridization in animals[END_REF][START_REF] Giraud | Speciation in fungi[END_REF]. When two individuals from distinct species hybridize and merge their sets of chromosomes, the hybrid organism is often sterile and does not produce any progeny. Differences among homologous chromosomes prevent correct meiotic pairing and viable gamete production. However, the eventual doubling of the chromosome number could restore a correct pairing (each chromosome pair with its double), and the fertile genotype could give rise to a new allopolyploid species. In this case, homologous chromosomes do not mix and the number of the genes is doubled. In other words, the genes from both parental species coexist in the polyploid genome and evolve independently.

In the case that the parental species are genetically similar enough, the pairing between homologous chromosomes is not completely prevented and balanced meiosis could take place. In this case, the hybrid genotype could produce viable hybrid gametes (containing portions of both parental chromosomes) and progeny.

If the progeny remains reproductively isolated from the parental genotypes, it could give rise to a new species (homoploid hybrid speciation).

This implies that, in a hybrid species, different genes may have different evolutionary histories, in which case they will give rise to incongruent gene trees. Thus, using a single rooted phylogenetic tree to represent the evolutionary history of a set of taxa may be inaccurate in the presence of interspecific hybridization. A more precise description may be possible using a rooted phylogenetic network, in which internal tree nodes (nodes of indegree 1) represent putative speciation events, whereas reticulate nodes (nodes of indegree ≥ 2) represent possible hybridization events.

Suppose we are given a collection of species for which we suspect that hybridization events have played an important role in their evolution. One way to determine a set of possible hybridization events is to compute a hybridization network for a given set of gene trees that aims at explaining the incongruences between the different trees using a minimum number of putative hybridization events. A hybridization network for a set of trees T is simply a rooted phylogenetic network containing the trees in T . In computational terms, the problem can be formulated as follows: Given a set T of two or more rooted phylogenetic trees, determine all hybridization networks for T that are minimum in the sense that they have a minimum reticulate number (see below). This problem is known to be a computationally hard problem even for the case of determining only one hybridization network for two bifurcating trees on the same set of taxa [START_REF] Bordewich | Computing the minimum number of hybridisation events for a consistent evolutionary history[END_REF].

In this paper we present an algorithm that takes as input two bifurcating, rooted phylogenetic trees T1 and T2 on the same taxon set X and produces as output a representative set of minimum hybridization networks N on X that contain both trees. Such a representative set is defined to contain exactly one network derived from each of the possible maximum acyclic agreement forests (MAAF), as defined below. The number of reticulation nodes in any such minimum network is called the hybridization number, denoted by h(T1, T2), for T1 and T2.

Our algorithm is based on previous work described in [START_REF] Bordewich | On the computational complexity of the rooted subtree prune and regraft distance[END_REF][START_REF] Baroni | Hybrids in real time[END_REF]Bordewich and Semple, 2007a), which aims at computing the hybridization number, and on the work reported in [START_REF] Whidden | A unifying view on approximation and FPT of agreement forests[END_REF][START_REF] Whidden | Fast FPT algorithms for computing rooted agreement forests: Theory and experiments[END_REF] on the rooted SPR distance computation. We extend the published approach and provide a parallel implementation to compute a representative set of minimum hybridization networks containing one network per MAAF. In this context, a number of theoretical issues arise and we will show how to address them in a forthcoming paper [START_REF] Scornavacca | A first step toward computing all hybridization networks for two rooted binary phylogenetic trees[END_REF].

In our experience, the number of resulting networks can be quite large and so we provide methods for showing how the two input trees are embedded in the networks and for determining the number of different networks that contain a specific reticulation. We also provide variants of the algorithm that can be used to compute the rooted SPR distance (defined below) or the hybridization number of two bifurcating, rooted phylogenetic trees.

We report on a simulation study that we have undertaken to compare our implementation with other competing methods. This study indicates that our approach is much faster than existing methods. Moreover, to illustrate how one may apply our method to a practical problem, we use it to investigate the evolutionof the Aegilops/Triticum genera.

The algorithm presented in this paper is implemented in our program Dendroscope 3 (Huson and Scornavacca, 2011), which is freely available from www.dendroscope.org and runs on all three major operation systems.

2METHODS

Throughout this paper, we follow the terminology and notation defined in (Huson et al.,2011) and assume that the reader is familiar with graphs and related terminology. Let T be a phylogenetic tree on X and let X ′ ⊂ X be a subset of taxa. We use T (X ′ ) to denote the minimum connected subgraph of T that contains all leaves that are labeled by elements of X ′ .Therestriction of T to X ′ is defined as the phylogenetic tree T | X ′ that is obtained from T (X ′ ) be suppressing all nodes that have both in-and outdegree 1.

We define a rooted phylogenetic network on X as a directed acyclic graph with a single node with indegree zero (the root), no nodes with both indegree and outdegree equal to 1, and nodes with outdegree zero (the leaves)bijectivelylabeled bytheset X .

Given a rooted bifurcating phylogenetic tree T ,arooted Subtree Prune and Regraft move (rSPR-move for short) on T is performed by first detaching a subtree of T rooted at the target of e1 =(v1,w1) by deleting the edge e1 and re-grafting the subtree on a different branch e2 of T ,by firstcreating anew node z2 in e2 and then a new edge (z2,w1).Finally,anynodewithbothin-andoutdegree1 is suppressed. Note that, in the case of regrafting above the root ρ,a new root node ρ ′ has to be created, as well as two new edges (ρ ′ , ρ) and (ρ ′ ,w1).

Let T1 and T2 be two rooted bifurcating phylogenetic trees on ataxon set X.TherSPR distance between T1 and T2 is defined as the minimum number of rSPR-moves required to transform T1 into T2.TheproblemofcomputingtherSPRdistancebetweentwo rooted bifurcating phylogenetic trees on the same taxon set is known to be NP-hard, but fixed-parameter tractable (FPT) [START_REF] Bordewich | On the computational complexity of the rooted subtree prune and regraft distance[END_REF].

Let T1 and T2 be two rooted bifurcating phylogenetic trees on X . For technical purposes, we assume that the root ρ of both trees is a pendant node that has been adjoined to the original root and no re-grafting is permitted above ρ. An agreement forest for T1 and T2 on X ∪ {ρ} is a set of phylogenetic trees, called also a forest, F = {Fρ, F1, . . . , F h-1 } on X ∪ {ρ} that has the following properties:

1. Each tree Fi in F is the restriction of T1, and also of T2, to the set of taxa Xi that appear in Fi.

2. The root ρ is contained in Fρ.

3. The trees in {T1(Xi) | i ∈ {ρ, 1 . . . , h -1}} and {T2(Xi) | i ∈ {ρ, 1, . . . , h -1}} are node disjoint subtrees of T1 and T2, respectively.

An agreement forest with minimum cardinality is called a maximum agreement forest (MAF for short). The concepts of rSPR distance and MAFs are closely related. Indeed, a pair of rooted bifurcating phylogenetic trees {T1, T2} has an rSPR distance equals to d if and only if there exists a MAF F(T1, T2) with size d + 1 [START_REF] Bordewich | On the computational complexity of the rooted subtree prune and regraft distance[END_REF][START_REF] Hein | On the complexity of comparing evolutionary trees[END_REF]. Hence, to determine the rSPRdistance between T1 and T2, it suffices to compute a MAF for these two trees.

Recall that a hybridization network for two rooted bifurcating phylogenetic trees T1 and T2 on X , is a rooted phylogenetic network that contains both trees. Given a rooted phylogenetic network N = (V, E), the reticulate number of N is defined as

r(N ) = v∈V :δ -(v)>0 (δ -(v) -1) = |E| -|V | + 1 ,
where δ -(v) denotes the indegree of v. In the special case that N is bicombining, that is, all nodes have indegree at most two, then this is simply the number of reticulation nodes.

The hybridization number for T1 and T2 is the minimum reticulation number obtained over all hybridization networks N for T1 and T2. The problem of computing the hybridization number for two rooted bifurcating phylogenetic trees on the same taxon set is known to be NP-hard, but FPT (Bordewich and Semple, 2007a;[START_REF] Linz | A cluster reduction for computing the subtree distance between phylogenies[END_REF]. The hybridization number can be calculated by computing a maximum acyclic agreement forest. An agreement forest Fa(T1, T2) for T1 and T2 is called acyclic if its ancestordescendant graph AG (T1, T2, Fa(T1, T2)) does not contain any directed cycle. This graph is defined as the directed graph whose vertex set is Fa(T1, T2) and for which an edge (Fi, Fj) exists precisely whenever i ̸ = j, and either 1. the root of T1(Xi) is an ancestor of the root of T1(Xj) in T1, or 2. the root of T2(Xi) is an ancestor of the root of T2(Xj) in T2.

where Xi, Xj ⊆ X are the sets of taxa that appear in Fi and Fj, respectively. An acyclic agreement forest with a minimum number of components is called a maximum acyclic agreement forest (MAAF for short). If a MAAF with h components exists, then a hybridization network with reticulation number h -1 containing both T1 and T2 exists [START_REF] Baroni | Bounding the number of hybridization events for a consistent evolutionary history[END_REF]. For example, if a MAAF with only one component exists, then we have that T1 and T2 are congruent and 0 reticulations are needed.

The algorithm

In this section, we give a high level description of an algorithm that takes as input two rooted bifurcating phylogenetic trees T1 and T2 on the same taxon set X , and produces as output a representative set of minimum hybridization networks N on X that contain both trees, providing exactly one network per MAAF. The problem of computing the rSPR-distance or the hybridization number between two trees is algorithmically a much simpler problem than computing the hybridization networks and the algorithm that we have implemented deals with these two problems, too. The algorithm consists of three phases, namely, a reduction phase, an exhaustive search phase and a final phase. In the latter, either the rSPR-distance or hybridization number is reported, or the final hybridization networks are constructed. Whereas the first and the third phases can be executed in polynomial time, the exhaustive search phase is known to be NP-hard [START_REF] Bordewich | Computing the minimum number of hybridisation events for a consistent evolutionary history[END_REF]. The main aim of the initial reduction phase is to decrease the practical running time by reducing the size of the two trees that are passed to the exhaustive search phase.

Reduction Phase

In the first phase of the algorithm, certain patterns present in both T1 and T2 are identified and used to reduce the instance of the problem. There are three types of reductions (see Huson et al., 2011, for a review). A subtree reduction reduces pendant subtrees that are common to both trees [START_REF] Bordewich | On the computational complexity of the rooted subtree prune and regraft distance[END_REF]. This simplification preserves both the rSPR distance and the hybridization number. A chain reduction reduces maximal chains of at least three leaves. Chain reductions for the MAF and the MAAF problem are described in [START_REF] Bordewich | On the computational complexity of the rooted subtree prune and regraft distance[END_REF] and (Bordewich and Semple, 2007a), respectively. Finally, a cluster reduction divides the problem into a number of smaller subproblems using the set of minimal clusters common to both trees. A cluster reduction for the computation of MAAFs can be found in [START_REF] Baroni | Hybrids in real time[END_REF]. Recently, a cluster reduction for the computation of MAFs has been proposed [START_REF] Linz | A cluster reduction for computing the subtree distance between phylogenies[END_REF].

Exhaustive Search Phase

The first phase of the algorithm will usually subdivide the original problem into several smaller subproblems. For each such subproblem (T ′ 1 , T ′ 2 ), we must compute a MAF, a MAAF or the set of all MAAFs, depending on whether we want to compute the rSPR-distance, the hybridization number or a set of hybridization networks, respectively. To compute a single MAF we use the FPT-algorithm described in [START_REF] Whidden | A unifying view on approximation and FPT of agreement forests[END_REF]. A lower bound for the rSPR-distance can be found using the 3-approximation algorithm of [START_REF] Whidden | Fast FPT algorithms for computing rooted agreement forests: Theory and experiments[END_REF]. In [START_REF] Whidden | A unifying view on approximation and FPT of agreement forests[END_REF], the authors also describe an FPTalgorithm for computing acyclic agreement forests. Unfortunately, that work is based on the incorrect assumption that it suffices to avoid all cycles of length two so as to obtain an acyclic agreement forest. In a forthcoming paper [START_REF] Scornavacca | A first step toward computing all hybridization networks for two rooted binary phylogenetic trees[END_REF], available at http://arxiv.org/abs/1109.3268) we will show how to correct and extend their algorithm so as to obtain all MAAFs for a given pair of trees. Broadly speaking, the algorithm works as follows: Suppose that we are interested in computing a MAAF for two trees T1 and T2. Our algorithm takes as input a tree R and a forest F and it proceeds in a bounded-search type fashion by recursively deleting an edge in F or reducing a common cherry of R and F until the resulting forest F is a forest for T1 and T2. (The algorithm is called the first time with R = T1 and F = T2). More precisely, each recursion starts by picking an arbitrary cherry {a, c} in R, i.e., a pair of leaves a and c adjacent to a common vertex. Depending on whether {a, c} is a common cherry of R and F or not, and whether a and c are vertices of the same component in F or not, the algorithm branches into at most three computational paths by recursively calling itself. Regardless of whether {a, c} is a common cherry of R and F or not, the algorithm branches into two new computational paths that correspond to deleting one of the edges entering a and c in F, denoted ea and ec, respectively. Additionally, if {a, c} is not a cherry in F and a and c are in the same connected component in F, then the algorithm branches into a third computational path that corresponds to deleting an edge whose starting node lies on the shortest path connecting a and c in F, ea and ec excluded. Similarly, if {a, c} is a common cherry of R and F, then the algorithm branches into a third path that corresponds to reducing the cherry {a, c} to a new leaf labeled {a ∪ c} both in R and F. If only one MAAF is required, then the algorithm is terminated as soon as the first MAAF is found.

Output phase

In the case that our aim is only to compute the rSPR-distance or the hybridization number, we simply report the number of components in the MAF or MAAF, respectively, minus one. Otherwise, if our aim is to generate a representative set of hybridization networks, then we construct a phylogenetic network on X for each different MAAF computed in the exhaustive search phase as described in [START_REF] Baroni | Hybrids in real time[END_REF]. To do this, we first need to undo all the reductions performed in the reduction phase.

Parallelization and additional analysis

For the computation of the hybridization number or networks, each application of a cluster reduction in the reduction phase of the algorithm gives rise to two subproblems. Since the hybrid number for the unreduced problem is equal to the sum of the hybrid number for the two subproblems [START_REF] Baroni | Hybrids in real time[END_REF], the exhaustive search can be run independently on the two subproblems. In our parallel implementation of the algorithm, each subproblem produced in this way is placed in a queue and the subproblems in the queue are dispatched to individual cores subject to availability.

For the parallelization of the computation of the rSPR distance, it is not that simple and a cluster hierarchy H has to be computed [START_REF] Linz | A cluster reduction for computing the subtree distance between phylogenies[END_REF]. A parallel analysis of the subproblems is then possible, but respecting the cluster hierarchy: a subproblem in the hierarchy is analyzed only once all its "descendent subproblems" are. Note that the sum of MAF sizes of each subproblem only provides an upper bound of the rSPR distance. For computing the exact rSPR distance some additional steps are required, see [START_REF] Linz | A cluster reduction for computing the subtree distance between phylogenies[END_REF].

When constructing a hybridization network in the output phase of the algorithm we assign the number 1 or 2 to each reticulate edge, depending on whether the edge corresponds to tree T1 or T2, respectively. With this information we can highlight the edges of T1 or T2 in each of the computed networks.

The exhaustive search phase is also performed in a parallel fashion, launching different threads to search for agreement forests of increasing sizes. When an agreement forest of size k has been found, then all threads searching for an agreement forest of larger size are aborted. A similar strategy is used when searching for a single MAAF or for the set of all MAAFs.) Thus, parallelism is used even when the two input trees do not share any common cluster.

Let N be the set of output networks. For each network Ni in N and for each reticulate node rz in Ni, we compute the set of leaves L(rz) that can be reached by direct paths from rz without crossing any reticulate node. (Note that this leaf set represents the leaf set of a component of the underlying MAAF). Given two networks Ni, Nj ∈ N and a reticulate node rz in Ni, we say that Nj contains rz if there exists a reticulate node r l in Nj such that L(rz) = L(r l ). Then, for each reticulate node in one of the output networks N1,...,Nt,wedeterminehowmanynetworkscontain that particular node and then label the node by this number divided by the total number of computed networks t.Thus, areticulate node that occurs in all computed t minimum hybridization networks obtains a support value of 1,whereasareticulatenodethatoccurs only once has a support value of1 t . In addition, the computed Wang, 2010). Both programs have been run on a AMD Phenom X4 955 Processor with 4GB RAM. We present the results of our simulation in Figures 1 and2. Each program run that took more than 20 minutes was aborted and then counted as if it took 20 minutes. In Figure 1, aborted runs have been included in the averages and, in all plots, the percentages report the proportion of the executions that were completed within 20 minutes. In Figure 2, aborted runs have not been included in the averages because their hybridization number is unknown. In the latter figure, we report the number of the executions that were completed within 20 minutes.

Figures 1 and2 show that the average running time (as function of the number of leaves, of the number of rSPRs or of the hybridization number) of our implementation is always lower than that of HybridNET. For both programs, the running time increases with the number of taxa (see Figure 1a-b), and also with the rSPR distance (approximated by the number of rSPR-moves) (see Figure 1c-d) and the hybridization number (see Figure 2). Figure 2 also shows that, in our simulations, HybridNet was unable to compute the hybridization number for any tree-pair with hybridization number greater than 21, while our program produces results for tree-pairs having a hybridization number up to 40.

Note that the number of common clusters has a significant effect on the performance of our algorithm (see Figure 1e-f), and this explains much of the performance advantage over HybridNet. However, even in the case that no parallelization is performed, namely when the number of common clusters is equal to 1, our implementation is still faster than HybridNet (see Figure 1e-f). Note that the plot in Figure 1f is very erratic when the number of common clusters is greater than 15. This is due to the fact that few datasets share such a high number of common clusters.

Using the same datasets, we also studied the performance of our implementation for the problems of computing the rSPR-distance for two rooted bifurcating phylogenetic trees. We compared the running time of our implementation with that of the best available software for computing the exact rSPR distance between two rooted bifurcating trees on the same taxon set, i.e., rSPR [START_REF] Whidden | Fast FPT algorithms for computing rooted agreement forests: Theory and experiments[END_REF], available at http://kiwi.cs.dal.ca/Software/ RSPR. In all conditions, the program rSPR performs better than our implementation (data not shown). Since the underlying algorithms are the same in this case, we suspect the difference in performance may be due to the fact that our program is implemented in Java, whereas the rSPR program is written in C++.

For the sake of completeness, in Figure 1 of the supplementary material we report the running time of Dendroscope 3 and HybridNET when computing the exact hybridization number and a set of hybridization networks, containing a network per MAAF, on a grass (Poaceae) dataset provided by the Grass Phylogeny Working Group (Grass Phylogeny Working Group, 2001). This dataset has been often used to evaluate programs computing the hybridization number or hybridization networks for two rooted bifurcating phylogenetic trees on the same taxon set.

APPLICATION TO PHYLOGENY OF AEGILOP/TRITICUM GENERA

The Triticeae tribe (Fam. Poaceae) consists of diploid and polyploid grasses with the same basic haploid chromosome number (x = 7), networks are listed in descending order with respect to the sum of the support values of their reticulate nodes. When interpreting support values, remember that only one network per MAAF is computed, when there might be many networks per MAAF.

3SIMULATIONSTUDY

To study the performance of our approach and implementation, we undertook a simulation study. We generated 2000 synthetic datasets, each consisting of a pair of rooted bifurcating phylogenetic trees. The datasets are based on three parameters, namely the number of taxa n,thenumberofrSPR-movesk used to obtain the second tree from the first 1 ,andthetangling degree d (as defined below). For each of the following choices of the parameters, n in {20, 50, 100, 200}, k in {5, 10,...,50} and d in {3, 5, 10, 15, 20}, we constructed ten pairs of trees, thus obtaining 2000 different datasets in total.

The tangling degree is an ad-hoc concept that we introduce to control how tangled the resulting network will be and it influences the way we obtain the second tree from the first using rSPR-moves. More precisely, let R be an rSPR-move performed on a tree T by choosing two edges e1 and e2,pruningthesubtreeofT rooted at the source of e1 =(v1,w1) and re-grafting it on e2 =(v2,w2). We say that R respects a tangling degree of d,ifthepathfrom the lowest common ancestor of the nodes v1 and v2 to the node v1 contains at most d edges. The tangling degree is a useful concept because the smaller it is, the more likely it is that one or morecluster reductions can be performed on the resulting dataset. As we will see, the number of common clusters in the two input trees has a major effect on the performance of our algorithm. Indeed, the more cluster reductions we can perform, the smaller the problem instancesare and the more effective our parallelization is.

In more detail, each pair (T1,T2) of rooted bifurcating phylogenetic trees for a given set of parameters n, k,andd is created as follows: The first tree T1 on X = {x1,. ..,xn} is generated by first creating a set of n leaf nodes bijectively labeled by the set X . Then, two nodes u and v,both withindegree 0, arerandomly picked and a new node w,along withtwonewedges (w, u) and (w, v),is created. This is done until only one node with no ancestor, theroot, is present. The second tree T2 is obtained from T1 by applying k rSPR-moves, in each move respecting the given tangling degree d.

We compared our implementation with the best available software for computing the exact hybridization number between two rooted bifurcating trees on the same taxon set, which is HybridNET [START_REF] Chen | HybridNET: a tool for constructing hybridization networks[END_REF], available from http://www.cs.cityu. edu.hk/ ˜lwang/software/Hn/. (The underlying algorithm is described in [START_REF] Chen | Algorithms for reticulate networks of multiple phylogenetic trees[END_REF]).Wedonotconsiderthe program HybridInterleave [START_REF] Collins | Quantifying hybridization in realistic time[END_REF] could be a consequence of a hybridization between A. speltoides and an ancestor of BLS species that introgressed into portions of Ae. speltoides genome. This hypothesis is supported by the observation of similar inconsistencies involving Ae. speltoides and Ae. longissima in a larger sample of nuclear genes [START_REF] Escobar | Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae)[END_REF]. Note that this hypothesis is present in all three hybridization networks obtained by Dendroscope 3 from the two consensus trees (see Figure 4). The other inconsistency involves the relative position Ae. tauschii and the ancestors of two groups of species, i.e., Ae. uniaristata + Ae. comosa and the BLS species. Three alternative hybridizations could be inferred (see Figure 4). However, this inconsistency is more recent and could also be explained by an incomplete allele sorting (that is, allelic variants coexisting in the common ancestor of all these species were randomly fixed in the derived species).

DISCUSSION AND ACKNOWLEDGEMENTS

It has become standard practice to base evolutionary studies on multiple genes. When incongruences between different gene trees are small, then they are usually deemed insignificant and are dealt with by performing a consensus analysis. However, when the differences between the gene trees are more significant, and when mechanisms such as hybridization may have played an important role in the evolutionary history of a set of species, then an alternative approach may be to try to reconcile the different gene trees by combining them into a rooted phylogenetic network in which reticulation nodes represent possible hybridization events. While some papers in the literature have focused on reconciling incongruent gene phylogenies in terms of a network [START_REF] Koblmuller | Reticulate phylogeny of gastropod-shell-breeding cichlids from Lake Tanganyika -the result of repeated introgressive hybridization[END_REF], a major problem has been the lack of software implementing an algorithm for computing and investigating such networks. In this paper, we address the need for such software by providing an algorithm runs fast on most practical problems and produces a representative set of minimum hybridization networks, containing one network for each MAAF. Our algorithm is implemented in the program Dendroscope 3, which allows the user to visualize and compare the resulting networks, both among each other, and also with the original input trees.

Our simulation study shows that our implementation is faster than existing implementations and the study of grasses, reported in Section 4, shows how one may use the software to obtain different possible hybridization scenarios.

The authors would like to thank Simone Linz for helpful discussions. and they are distributed worldwide. Phylogenic analysis performed with different sequence datasets show significant inconsistencies [START_REF] Kellogg | When genes tell different stories: the diploid genera of Triticeae (Gramineae)[END_REF][START_REF] Mason-Gamer | Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae)[END_REF][START_REF] Sasanuma | Characterization of genetic variation in and phylogenetic relationships among diploid aegilops species by AFLP: incongruity of chloroplast and nuclear data[END_REF]. In particular, inconsistencies between chloroplast and genomic data are often detected [START_REF] Sasanuma | Characterization of genetic variation in and phylogenetic relationships among diploid aegilops species by AFLP: incongruity of chloroplast and nuclear data[END_REF]. We used two datasets of sequences from number of diploid species belonging to the close genera Triticum and Aegilops: matK and PinA, located on the chloroplast and the Triticeae chromosome 5, respectively. Sequence data were obtained from GenBank. The accession numbers can be found in Table 1.

The best-fit model of nucleotide substitution for each dataset was chosen using JModeltest [START_REF] Posada | jModelTest: Phylogenetic model averaging[END_REF] and PhyML 3.0 [START_REF] Guindon | New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0[END_REF] wasused toobtainmaximum likelihood phylogenetic trees (heuristic search with BIONJ starting tree, SPR and NNI swapping and 100 bootstrap replicates). Majority-rule extended consensus trees were computed from 100 bootstrap replicatesby the CONSENSE program of the PHYLIP package [START_REF] Felsenstein | Phylip (phylogeny inference package) version 3.6. Distributed by the author[END_REF], using the default parameters in the rooting setting. The two consensus trees are shown in Figure 3.

Two kinds of inconsistencies were found. One involves Ae. speltoides and the ancestor of A. bicornis, Ae. longissima and Ae. sharonensis (hereafter referred to as the BLS species). Ae. speltoides has a basal position in both trees, but in the matK tree it is isolated, whereas in the PinA gene it is very close to the BLS. In the matK tree, the BLS species are close to species that radiated more recently. This deep phylogenetic inconsistency 
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 1 Fig. 1. Comparison of the running time of Dendroscope 3 (on the left) and HybridNet (on the right). (a)-(b) Average running time as function of the number of leaves. (c)-(d) Average running time as function of the rSPR-moves. (e)-(f) Average running time as function of the number of common clusters. In all plots, the percentages report the proportion of the executions that were completed within 20 minutes.
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 2 Fig. 2. Average running time as function of the hybridization number for Dendroscope 3 (a) and HybridNet (b).In both plots, we report the number of the executions that were completed within 20 minutes.
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 3 Fig. 3. The two consensus trees computed from 100 bootstrap replicates for the matK (a) and PinA (b) datasets.

Fig. 4 .

 4 Fig. 4. The three hybridization networks obtained by the described algorithm for the matK and PinA consensus trees of Figure 3.
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 1 ). In both plots, we report the number of the executions that were completed within 20 minutes. Accession numbers in GenBank of the sequences used for obtaining the trees in Figure3.

		PinA	matK
	T. urartu TU55	EU307589 FJ897889
	T. monococcum DP57	EU307591 FJ897868
	Ae. tauschii DP16	FJ898213	FJ897861
	Ae. comosa DP13	FJ898210	FJ897858
	Ae. uniaristata DP56	FJ898218	FJ897867
	Ae. bicornis DP18	FJ898215	FJ897863
	Ae. longissima DP17	FJ898214	FJ897862
	Ae. sharonensis DP53	FJ898216	FJ897864
	Ae. speltoides SP6	FJ898222	FJ897884
	Hordeum vulgare (Morex) AY643843 EF115541

Note that this number is an upper bound on the true rSPR distance.