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Domain adaptation via dimensionality reduction
for the comparison of cardiac simulation models

Nicolas Duchateau1, Kenny Rumindo1, and Patrick Clarysse1

Creatis, CNRS UMR5220, INSERM U1206, Université Lyon 1, INSA Lyon, France.

Abstract. We tackle the determination of a relevant data space to quan-
tify differences between two databases coming from different sources. In
the present paper, we propose to quantify differences between cardiac
simulations from two different biomechanical models, assessed through
myocardial deformation patterns. At stake is the evaluation of a given
model with respect to another one, and the potential correction of bias
necessary to merge two databases. We address this from a domain adap-
tation perspective. We first represent the data using non-linear dimen-
sionality reduction on each database. Then, we formulate the mapping
between databases using cases that are shared between the two databases:
either as a linear change of basis derived from the learnt eigenvectors,
or as a non-linear regression based on the low-dimensional coordinates
from each database. We demonstrate these concepts by examining the
principal variations in deformation patterns obtained from two cardiac
biomechanical models personalized to 20 and 15 real healthy cases, re-
spectively, from which 11 cases were simulated with both models.

1 Introduction

Simulations stand as a powerful support to understand complex physiological
phenomena, and as a potential way to enrich real databases with large amounts
of realistic data [1, 2]. However, strong differences may exist between the simu-
lations obtained from distinct models, and between simulated and real data. For
cardiac biomechanical models, personalization often focuses on matching global
parameters such as volumes or pressures [3], although some works went further
by matching finer traits such as myocardial deformation patterns [4, 5].

Nonetheless, matching the data from different but comparable sources can be
performed a-posteriori, and falls under the umbrella of domain adaptation tech-
niques [6, 7]. Simple examples in medical imaging include the global adaptation
of data distributions, illustrated on real cardiac meshes from different magnetic
resonance protocols [8] or real vs. simulated fluoroscopy images to train a trans-
ducer localization algorithm [1]. The merging of databases can be made more
sample-specific after reducing the dimensionality of the data. Recent works in-
vestigated the estimation of joint spaces that merge heterogeneous data features
[9, 10]. We are more interested in adapting the data from one database to an-
other one, as pursued globally in [8, 1]. A mathematically sound framework for
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Population Model

#1

20 healthy cases processed as in [13]:
- 11 cases from cMAC-STACOM 2011 [12],
- 9 cases from our clinical collaborators.
Left ventricular segmentations from CVI42 software1.

- hexahedral elements
- finite elements model
- ABAQUS software2

#2
15 healthy cases processed as in [2],
all from cMAC-STACOM 2011 [12].
Biventricular segmentations from a statistical atlas.

- tetrahedral elements
- finite elements model
- SOFA framework3

Table 1: Summary of populations and models used, with 11 cases shared between the
two populations and simulated with both models.
1 https://www.circlecvi.com/cardiac-mri/
2 https://www.3ds.com/products-services/simulia/products/abaqus/
3 https://www.sofa-framework.org/

this was developed in [11] with diffusion maps, a spectral embedding technique
relevant for clustered data samples.

Here, we demonstrate the interest of this strategy to quantify differences
between cardiac simulations from two different biomechanical models, assessed
through myocardial deformation patterns. Such simulations build upon different
input segmentations, modeling strategies, and personalization. We specifically
explore linear and non-linear ways to formulate correspondences between the
two populations and therefore to perform domain adaptation, and benchmark
them against simple data mapping using mesh registration.

2 Methods

2.1 Data and pre-processing

We processed healthy left ventricular deformation patterns generated using two
distinct cardiac biomechanical models personalized to two different populations,
as summarized in Tab.1. Population #2 consists of all the cases from the cMAC-
STACOM 2011 challenge [12]. Population #1 consists of 11 of these cases, as
the 4 remaining cMAC-STACOM cases could not be loaded to the segmentation
software CVI421, and 9 other cases from our clinical collaborators at CHU Saint
Etienne, France. The 11 cases simulated with both models were used to define
the mapping between the two databases as described in Sec.2.2. We therefore
focused the analysis on myocardial deformation parameters that are common to
the output of the two models (radial, circumferential and longitudinal strain).

These data are originally defined on subject-specific meshes, and were matched
to a given template for each database before the population analysis (here, an
arbitrarily chosen mesh in each population). For population #1, correspondences
between meshes were obtained by mesh parameterization along the radial, cir-
cumferential, and longitudinal directions taking advantage of the hexahedral
elements. For population #2, such parameterization is more challenging due to
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Fig. 1: Left : pairwise comparison of cases in each population, using the Euclidean dis-
tance between deformation patterns —treated as column vectors, after concatenating
the radial, circumferential and longitudinal components. Colored dots point out the
11 cases shared between the two databases. Right : eigenvalues normalized by the first
eigenvalue.

the tetrahedral elements and the biventricular segmentations. Correspondences
between meshes were therefore obtained by registering left ventricular surface
meshes using the currents representation and the large deformation diffeomor-
phic metric mapping framework, with the open-source software Deformetrica
[14], and finally propagating the transformation to the left ventricular volumet-
ric meshes. For both populations, data from each individual were finally interpo-
lated at the cells and vertices of the template mesh using kernel ridge regression
and the estimated mesh correspondences as in [13].

A similar pipeline was used to match the template meshes from the two
populations, and therefore transport the data from one population to the other
without domain adaptation, for benchmarking purposes.

2.2 Dimensionality reduction and domain adaptation

Let’s denote ym,k ∈ Ym the high-dimensional input data associated to subject
k ∈ [1,Km] for the dataset m ∈ {1, 2} (in our case, the deformation patterns
defined over the left ventricular meshes for each individual —treated as column
vectors, after concatenating the radial, circumferential and longitudinal compo-
nents). For each dataset, standard dimensionality reduction is applied to the
Km samples, and provides the low-dimensional coordinates xm,k ∈ Xm. Here,
we tested our methods with the Isomap algorithm [15], a non-linear dimension-
ality reduction algorithm that builds a neighborhood graph between the high-
dimensional input samples, and looks for a low-dimensional space in which the
Euclidean distance approximates the geodesic distance in the high-dimensional
space.

The small population size may limit the generalization ability of the represen-
tation, but may be less critical compared to recently popular techniques such as
auto-encoders, which may require larger populations. Also, domain adaptation
via dimensionality reduction was thoroughly investigated for the diffusion maps
algorithm [11], but this algorithm is more relevant for clustered data samples. In
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any case, our approach is generic and can be applied to any manifold learning
algorithm.

Domain adaptation from X1 to X2 (similar formulations for X2 to X1) is
performed as a linear change of basis derived from the eigenvectors learnt for
each database, or as a non-linear regression based on the low-dimensional coor-
dinates from each database. For both options, the mapping was defined using
the 11 cases that are present in both populations, denoted as the “shared cases”
in Figs.1 and 2. Without lack of generalizability, we can assume that these cases
correspond to the first cases in each database, and denote Ω the subset of indices
associated to these cases.

The linear mapping from X1 to X2 can be formulated through the following
change of basis [11]:

∀ x1 ∈ X1, f1→2 (x1) = (Ψ1)tΨ2x1 ∈ X2, (1)

where Ψ1 and Ψ2 are the matrices of eigenvectors of X1 and X2 associated to
the shared cases of indices Ω, and .t is the transposition operator.

The non-linear mapping between these two spaces can be estimated through
non-linear regression. We chose kernel ridge regression, which is formulated as:

∀ x1 ∈ X1, g1→2 (x1) =
∑
i∈Ω

k(x1,x1,i)ci ∈ X2, (2)

and in practice computed using the matrix formulation C = (K + I/γ)
−1

X2,
where C = (ci)i∈Ω , K = (k(x1,i,x1,j))(i,j)∈Ω2 = exp(−‖x1,i − x1,j‖2/σ2) and σ
controls the scale of the regression, X2 = (x2,i)i∈Ω , I is the identity matrix, and
γ balances the contributions of the data fidelity and regularization terms.

We used a multi-scale version of this algorithm4 [16], which is suitable for non-
uniformly distributed samples, as in our case and in most real-life applications.
This multi-scale algorithm starts with a scale σ equal to the largest distance
between samples, and reduces it by a factor 2 at each iteration s to estimate the
residual of the regression, until σ/2s is smaller than a fraction α of the average
distance between each sample and its nearest neighbors (the samples density).

3 Experiments and results

3.1 Original pattern comparisons

The distances between the deformation patterns in each population are displayed
in the left part of Fig.1. They already point out differences between the two pop-
ulations, which are lower for population #2. Such changes come from differences
in the mesh segmentation process used before the simulations (3D interpolation
and remeshing from segmented 2D slices for population #1, against statistical

4 Source code and demo available at https://nicolasduchateau.wordpress.com/downloads/
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Fig. 2: Low-dimensional coordinates before and after domain adaptation. Dots corre-
spond to the samples that are mapped to the target population, whose samples are
represented by squares. Colored dots and squares stand for the 11 cases shared between
the two populations: after mapping the colored dots lay near the center of the colored
squares. The black dots and squares correspond to the remaining cases that also served
to obtain the low-dimensional embedding, but were not used in the domain adaptation
process. The red-green-blue curves represent the main directions of variation in the
original population (from -2 SD to +2 SD), before and after mapping. Top: population
#2 mapped to population #1, using the linear (middle) or non-linear right mapping.
Bottom: similar plots for population #1 mapped to population #2.

atlas for population #2), different biomechanical models and therefore different
modeling errors, and different personalization strategies —and potential errors
in the personalization.

3.2 Parameters setting

We used 5 neighbors to construct the neighborhood graph of the Isomap dimen-
sionality reduction algorithm. This value was chosen to minimize the relative im-
portance of the second eigenvalue and the sum of eigenvalues (the compactness
of the representation, illustrated in the right part of Fig.1), within a reasonable
amount of possible neighbors (up to half the database).

The maximum amount of dimensions for the low-dimensional space was set
to 14 (one unit less than than the size of the smallest studied population —
population #2). Although the intrinsic dimensionality of the data may be lower
(right part of Fig.1), some artifacts were observed in our implementation of the
linear mapping when computing the scalar product (Ψ1)tΨ2 with cut dimen-
sions, which deserves further investigation.

Leave-one-out cross correlation was used to determine the regression param-
eters (the weight γ and the bandwidth at which to stop the multi-scale scheme,
determined as a fraction α of the samples density). The retained values were
γ = 10 and α = 0.5, respectively.
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Fig. 4: Differences between the original deformation patterns and the deformation
patterns reconstructed from the low-dimensional coordinates after domain adaptation,
across all the modes of variation (Euclidean distance on the radial-circumferential-
longitudinal deformation patterns treated as column vectors —as in Fig.1).

3.3 Transported coordinates

As observed in Fig.2, the cases that are shared between the two populations and
that are used to compute the mapping were exactly matched (linear mapping)
or almost exactly matched (non-linear mapping) in the target population space.
The main modes of variation substantially changed after the mapping (a given
mode in the original population is expressed as a combination of several modes
of the target population after mapping).

We also observed the limits of the linear mapping, through substantial shrink-
age of the variations around zero, due to the non-guaranteed correlation between
the coordinates of the shared cases in the two populations, and therefore the po-
tentially opposing contribution of some cases to the mapping. This shrinkage
effect is still present for the non-linear mapping, but much less pronounced.
Besides, the curvature of the modes of variation after the non-linear mapping
supports the relevance of this mapping strategy against the linear one.

3.4 Domain-adapted patterns

Figure 3 illustrates the deformation patterns encoded in the first mode of varia-
tions, before and after the domain adaptation. Patterns were reconstructed from
low-dimensional coordinates evolving from -2SD to +2SD along the first dimen-
sion. Reconstruction was achieved through the multi-scale regression presented
above, with γ = 1 and α = 0.5.

As visible in Fig.3, the deformation patterns from populations #1 and #2
before domain adaptation substantially differ in terms of amplitude of the defor-
mation, and spatial distribution of the patterns. This is even more visible when
the patterns in the original population are transported to the target population
by registration (as described in Sec.2.1). After domain adaptation, the mapped
patterns are much closer from the target population both regarding amplitude
and spatial distribution of the patterns. Subtle differences remain, which should
correspond to the intrinsic differences between these two populations.



8 N. Duchateau et al.

Figure 4 complements this information by quantifying differences between
the original deformation patterns and the deformation patterns after domain
adaptation, across all the modes of variation. With the linear mapping, patterns
near the average are unchanged, due to the definition of this mapping (linear
change of basis, centered around the average). Differences are not guaranteed
to be concentrated on the first dimensions, as visible for dimensions 10 and 13.
With the non-linear mapping, patterns near the average are also transported
and therefore exhibit differences. Also, the modes of variation become curved
(Fig.2) after domain adaptation, and differences between patterns are therefore
not guaranteed to be symmetric on each side of the average.

4 Conclusion

We have demonstrated the potential of domain adaptation to compare databases
from distinct sources, upon the constraint that some cases are shared between the
databases to define the mappings. In our tested populations, non-linear mapping
stands as a relevant solution, given that the distribution of the shared cases is
not guaranteed to be the same across the two populations.

In terms of application, the approach is promising to better understand dif-
ferences between populations from different sources (here, from different biome-
chanical models), and may pave the ground for enriching a real database with
simulated data or the comparison of different clinical cohorts. These perspec-
tives will require further exploring up to which limit two different databases are
actually compatible, and scaling the proposed methods to larger populations
—including a substantial amount of cases shared between the two populations.
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