
HAL Id: hal-02154929
https://hal.science/hal-02154929

Submitted on 18 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Computing the Maximum Parsimony Score of a
Phylogenetic Network

Mareike Fischer, Leo van Iersel, Steven Kelk, Celine Scornavacca

To cite this version:
Mareike Fischer, Leo van Iersel, Steven Kelk, Celine Scornavacca. On Computing the Maximum
Parsimony Score of a Phylogenetic Network. SIAM Journal on Discrete Mathematics, 2015, 29 (1),
pp.559-585. �10.1137/140959948�. �hal-02154929�

https://hal.science/hal-02154929
https://hal.archives-ouvertes.fr

SIAM J. DISCRETE MATH. c© 2015 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 559–585

ON COMPUTING THE MAXIMUM PARSIMONY SCORE OF A
PHYLOGENETIC NETWORK∗

MAREIKE FISCHER† , LEO VAN IERSEL‡ , STEVEN KELK§ , AND

CELINE SCORNAVACCA¶

Abstract. Phylogenetic networks are used to display the relationship among different species
whose evolution is not treelike, which is the case, for instance, in the presence of hybridization
events or horizontal gene transfers. Tree inference methods such as maximum parsimony need to be
modified in order to be applicable to networks. In this paper, we discuss two different definitions
of maximum parsimony on networks, “hardwired” and “softwired,” and examine the complexity of
computing them given a network topology and a character. By exploiting a link with the problem
Multiterminal Cut, we show that computing the hardwired parsimony score for 2-state characters
is polynomial-time solvable, while for characters with more states this problem becomes NP-hard
but is still approximable and fixed parameter tractable in the parsimony score. On the other hand
we show that, for the softwired definition, obtaining even weak approximation guarantees is already
difficult for binary characters and restricted network topologies, and fixed-parameter tractable algo-
rithms in the parsimony score are unlikely. On the positive side we show that computing the softwired
parsimony score is fixed-parameter tractable in the level of the network, a natural parameter describ-
ing how tangled reticulate activity is in the network. Finally, we show that both the hardwired and
the softwired parsimony scores can be computed efficiently using integer linear programming. The
software has been made freely available.

Key words. phylogenetic trees, phylogenetic networks, parsimony, complexity, approximability,
fixed-parameter tractability, software

AMS subject classifications. 68W25, 05C20, 90C27, 92B10

DOI. 10.1137/140959948

1. Introduction. In phylogenetics, graphs are used to describe the relationships
among different species. Traditionally, these graphs are trees, and biologists aim
at reconstructing the so-called tree of life, i.e., the tree of all living species [24].
However, trees cannot display reticulation events such as hybridizations or horizontal
gene transfers, which are known to play an important role in the evolution of certain
species [2, 4, 23, 25]. In such cases considering phylogenetic networks rather than
trees is potentially more adequate, where in its broadest sense a phylogenetic network
can simply be thought of as a graph (directed or undirected) with its leaves labelled
by species [11, 26, 27]. Phylogenetic networks can also be useful in the absence of
reticulate events, since such networks can represent uncertainty in the true (tree-
shaped) phylogeny. Hence, tree reconstruction methods, i.e., the methods used to

∗Received by the editors March 7, 2014; accepted for publication (in revised form) January 14,
2015; published electronically March 24, 2015. This work appeared as contribution 2015-033 of the
Institut des Sciences de l’Evolution de Montpellier.

http://www.siam.org/journals/sidma/29-1/95994.html
†Department of Mathematics and Computer Science, Ernst-Moritz-Arndt University Greifswald,

17487 Greifswald, Germany (email@mareikefischer.de).
‡Delft University of Technology, 2600 AA Delft, The Netherlands (l.j.j.v.iersel@gmail.com). This

author’s research was funded by a Veni grant of the Netherlands Organisation for Scientific Research
(NWO).

§Department of Knowledge Engineering (DKE), Maastricht University, 6200 MD Maastricht, The
Netherlands (steven.kelk@maastrichtuniversity.nl).

¶Institut des Sciences de l’Evolution (ISEM, UMR 5554 CNRS), Université Montpellier II, 34095
Montpellier Cedex 5, France (celine.scornavacca@univ-montp2.fr). This author’s work was partially
supported by ANCESTROME project ANR-10-IABI-0-01.

559

http://www.siam.org/journals/sidma/29-1/95994.html
mailto:email@mareikefischer.de
mailto:l.j.j.v.iersel@gmail.com
mailto:steven.kelk@maastrichtuniversity.nl
mailto:celine.scornavacca@univ-montp2.fr

560 M. FISCHER, L. VAN IERSEL, S. KELK, AND C. SCORNAVACCA

infer the best tree from, e.g., DNA or protein data, need to be adapted to networks.
One of the most famous tree reconstruction methods is maximum parsimony [6].

While this method has been shown to have drawbacks such as statistical inconsistency
in the so-called Felsenstein zone [7], it is still widely used mainly due to its simplicity:
maximum parsimony does not depend on a phylogenetic model and works in a purely
combinatorial way. Moreover, for a given tree the optimal parsimony score can be
found in polynomial time using the well-known Fitch algorithm [8] or the Sankoff
algorithm [30]. This problem of finding the optimal parsimony score for a given tree
is often referred to as the “small parsimony” problem. The “big parsimony” problem,
on the other hand, aims at finding a most parsimonious tree amongst all possible
trees—and this problem has proven to be NP-hard. Note that the latter problem is a
close relative of the classical Steiner Tree problem [1, 10].

Recent studies have introduced extensions of the tree-based parsimony concept to
phylogenetic networks [17, 19, 28], and a biological case study was presented in [16].
Basically, maximum parsimony on networks can be viewed in two ways: If one thinks
of evolution as a tree-like process (but maybe with different trees for different parts
of the genome, all of which are represented by a single network), one can define the
parsimony score of a character on a network as the score of the best tree inside the
network. The other way of looking at maximum parsimony on networks is just the
same as the Fitch algorithm’s view on trees: One can try to find the assignment
of states to internal nodes of the network such that the total number of edges that
connect nodes in different states is minimized. While the first concept may be regarded
as more biologically motivated, the second one is in a mathematical sense the natural
extension of the parsimony concept to networks. Both concepts of parsimony on
networks are considered in this paper, and we formally introduce them in section 2
as softwired and hardwired parsimony, respectively.

Given an alignment (e.g., DNA) and a criterion like maximum parsimony, several
questions come to mind: How hard is it to calculate the parsimony score (in both the
hardwired and softwired senses) for a given network (“small parsimony” problem)?
How hard is it to find a best network (“big parsimony” problem)? In this paper we
consider only the “small parsimony” problem. Moreover, we focus on computing the
parsimony score of a single character, since the parsimony score of an alignment can
be computed by summing up the parsimony scores of the individual characters.

Kannan and Wheeler [19] introduced the hardwired parsimony score for networks
and conjectured that it would be NP-hard to compute. We show in section 3 that
this problem is indeed NP-hard and APX-hard (Corollary 3.3) whenever characters
employing more than two states are used, but we also show that it is polynomial-
time solvable for binary characters (Corollary 3.2). We also analyze the behavior of
the algorithm in [19], which we call the ExtendedFitch algorithm, showing that
it does not compute the hardwired parsimony score optimally and that it does not
approximate the softwired parsimony score well.

In section 4, we consider the complexity of computing the softwired parsimony
score. Previously, this problem was shown to be NP-hard and APX-hard but only
for nonbinary networks with outdegree at most 20 [17]. We show in Theorem 4.2
that the softwired parsimony problem is NP-hard even for binary networks (and bi-
nary characters), and we additionally show that NP-hardness cannot be overcome by
considering only so-called binary tree-child time-consistent networks (Theorem 4.3).
Moreover, we show a much stronger inapproximability than the APX-hardness shown
in [17]. We show that, for any constant ε > 0, an approximation factor of |X |1−ε is not

MAXIMUM PARSIMONY ON NETWORKS 561

possible in polynomial time, unless P = NP, where |X | denotes the number of species
under investigation. Moreover, this holds even for tree-child time-consistent networks
(Theorem 4.7). Our inapproximability result shows that a trivial approximation fac-
tor of |X | is in a certain sense the best that is possible in polynomial time. For binary

networks we show a slightly weaker inapproximability threshold: |X | 13−ε (Theorem
4.8). We note that the hardness results in [28] are not directly comparable to our
results, since they adopt the recombination network model of phylogenetic networks
(see, e.g., [11, 14] and also the discussion in [17]).

While we show that the hardwired parsimony score is fixed-parameter tractable
with the parsimony score as a parameter (Corollary 3.4), we show that the softwired
parsimony score is not, unless P = NP. Indeed, we show (in Corollary 4.4) that it
is even NP-hard to determine whether the softwired parsimony score is equal to one
(see [9, 29] for an introduction to fixed-parameter tractability). On the positive side,
we show in section 5 (in Theorem 5.7) that the softwired parsimony score is fixed-
parameter tractable in the level of the network, a parameter describing the maximum
amount of reticulate activity in a biconnected component of the network (see, e.g., [21,
22] for an overview). Moreover, in section 6 we present an integer linear program to
calculate both the softwired and the hardwired parsimony scores of a given character
(or, more generally, multiple sequence alignment) on a phylogenetic network and give
a preliminary analysis of its performance. This is the first practical exact method for
computation of parsimony on medium to large networks, supplementing the heuristics
given by [17, 19]. An implementation of this program is freely available [13].

Finally, in section 7, we summarize our results and state some open problems for
future research.

2. Preliminaries. LetX be a finite set. An unrooted phylogenetic network onX
is a connected, undirected graph that has no degree-2 nodes and that has its degree-1
nodes (the leaves) bijectively labelled by the elements of X . A rooted phylogenetic
network on X is a directed acyclic graph that has a single indegree-0 node (the
root), has no indegree-1 outdegree-1 nodes, and has its outdegree-0 nodes (the leaves)
bijectively labelled by the elements of X . We identify each leaf with its label. The
indegree of a node v of a rooted phylogenetic network is denoted by δ−(v), and v is
said to be a reticulation node (or a reticulation) if δ−(v) ≥ 2. An edge (u, v) is called
a reticulation edge if v is a reticulation node, and it is called a tree edge otherwise. A
proper subset C ⊂ X is referred to as a cluster of X . A cherry is a triple of nodes of
which two are leaves and the third is the common parent of these leaves.

When we refer to a phylogenetic network, it can be either rooted or unrooted. We
use V (N) and E(N) to denote, respectively, the node and edge set of a phylogenetic
network N . To simplify notation, we use the notation (u, v) for a directed as well as
for an undirected edge between u and v. A phylogenetic network is binary if each
node has total degree at most 3 and (in the case of a rooted network) the root has
outdegree 2 and all reticulations have outdegree 1.

The reticulation number of a phylogenetic network N can be defined as |E(N)|−
|V (N)| + 1. Hence, the reticulation number of a rooted binary network is simply
the number of reticulation nodes. A rooted phylogenetic tree is a rooted phylogenetic
network with no reticulation nodes, i.e., with reticulation number 0. A biconnected
component of a phylogenetic network is a maximal biconnected subgraph (i.e., a bi-
connected subgraph that is not contained in a larger biconnected subgraph). A phy-
logenetic network is said to be a level -k network if each biconnected component has
reticulation number at most k and at least one biconnected component has reticula-

562 M. FISCHER, L. VAN IERSEL, S. KELK, AND C. SCORNAVACCA

tion number exactly k.
A rooted phylogenetic network N is said to be tree-child if each nonleaf node has

a child that is not a reticulation, and N is said to be time-consistent if there exists
a “time-stamp” function t : V (N) → N such that for each edge (u, v) it holds that
t(u) = t(v) if v is a reticulation and t(u) < t(v) otherwise [3].

If F is a finite set and p ∈ N, then a p-state character on F is a function from F
to {1, . . . , p}. A p-state character is binary if p = 2. Let α be a p-state character
on X and N be a phylogenetic network on X . Then, a p-state character τ on V (N) is
an extension of α to V (N) if τ(x) = α(x) for all x ∈ X . Given a p-state character τ
on V (N) and an edge e = (u, v) of N , the change cτ (e) on edge e w.r.t. τ is defined
as

cτ (e) =

{
0 if τ(u) = τ(v),
1 if τ(u) �= τ(v).

The hardwired parsimony score of a phylogenetic network N and a p-state char-
acter α on X can be defined as

PShw(N,α) = min
τ

∑
e∈E(N)

cτ (e),

where the minimum is taken over all extensions τ of α to V (N).
Now, consider a phylogenetic network N on X and a phylogenetic tree T on X ,

where either both N and T are rooted or both are not. We say that T is displayed
by N if T can be obtained from a subgraph of N by suppressing nonroot nodes with
total degree 2. For a rooted phylogenetic network N , a switching of N is obtained
by, for each reticulation node, deleting all but one of its incoming edges [21]. We
denote the set of switchings of N by N . It can easily be seen that T is displayed
by N if and only if T can be obtained from a switching of N by deleting indegree-0
outdegree-1 nodes, deleting unlabelled outdegree-0 nodes, and suppressing indegree-1
outdegree-1 nodes. Let T (N) denote the set of all phylogenetic trees on X that are
displayed by N . The softwired parsimony score of a phylogenetic network N and a
p-state character α on X can be defined as

PSsw(N,α) = min
T∈T (N)

min
τ

∑
e∈E(T)

cτ (e),

where the second minimum is taken over all extensions τ of α to V (T).
Note that both the hardwired and the softwired parsimony scores can be used

for rooted as well as for unrooted networks, although the softwired parsimony score
might seem more relevant for rooted networks and the hardwired parsimony score for
unrooted ones.

It can easily be seen that if N is a tree, PShw(N,α) = PSsw(N,α). However, we
now show that if N is a network, the difference between the two can be arbitrarily

MAXIMUM PARSIMONY ON NETWORKS 563

11

1

1

1
0

0

0

0
0

0
0

Fig. 1. Example of a rooted phylogenetic network N and binary character α for which the
difference between PShw(N,α) and PSsw(N,α) is arbitrarily large (r− 1 if the network is extended
to have r reticulations and n = 3r + 2 leaves) and for which ExtendedFitch does not compute an
o(n)-approximation of PSsw(N,α).

large.
Figure 1 presents an example of a rooted binary phylogenetic network N and a

binary character α, where PSsw(N,α) = 2 regardless of the number of reticulation
nodes in N . This is due to the fact that all right-hand-side parental edges of the
reticulation nodes could be switched off, such that only one change from 0 to 1 would
be required in the resulting tree on the edge just above all taxa labelled “1” and
another change from 1 to 0 in the (0,1)-cherry. However, PShw(N,α) can be made
arbitrarily large by extending the construction in the expected fashion, as in this
network we have PShw(N,α) = r + 1, where r denotes the number of reticulation
nodes in N . So the difference PShw(N,α)−PSsw(N,α) equals r− 1, where r can be
made arbitrarily large, which shows that PShw(N,α) is not an o(n)-approximation
of PSsw(N,α), where n is the number of taxa. Note that the construction shown in
Figure 1 is binary, tree-child, and time-consistent.

2.1. Extended Fitch algorithm. The hardwired parsimony score for rooted
networks was introduced in [19], where a heuristic was proposed by extending the
well-known Fitch algorithm for trees. We will call this algorithm ExtendedFitch.
Its description can be found in Algorithms 3 and 4 of [19]. We show in this section that
ExtendedFitch does not provide a good approximation for the softwired parsimony
score and does not compute the hardwired parsimony score optimally.

The example from Figure 1 can be used again, in order to show that Extend-

edFitch does not compute an o(n)-approximation of the softwired parsimony score.
Indeed, ExtendedFitch gives all internal nodes character state 0, leading to a to-
tal score of r + 1 = (n + 1)/3 (which is in this case indeed equal to the hardwired
parsimony score), while we already showed that PSsw(N,α) = 2. Hence, the approx-
imation ratio of ExtendedFitch is at least (r+ 1)/2 as a function of r and at least
(n+ 1)/6 as a function of n.

Note that Theorem 4.7 is, furthermore, complexity-theoretic evidence that
ExtendedFitch, a polynomial-time algorithm, cannot approximate the softwired
parsimony score of a network well (unless P = NP).

564 M. FISCHER, L. VAN IERSEL, S. KELK, AND C. SCORNAVACCA

001 1

0

0

0

0

001 1

1

0

1

1

Fig. 2. Example of a rooted phylogenetic network N and binary character α for which
ExtendedFitch does not provide the optimal parsimony score PShw(N,α). The small numbers
refer to the two possible internal labellings as suggested by ExtendedFitch. Both require two
changes on the marked edges. However, the optimal parsimony score is 1: If all internal nodes are
labelled 1, then only one change is needed on the edge from the reticulation node to the leaf labelled 0.

Next we show that ExtendedFitch does not compute PShw(N,α) optimally,
even if α is a binary character. Consider Figure 2. This figure displays a rooted
phylogenetic network N with three leaves, one of which is directly connected to the
only reticulation node. The network is again binary, tree-child, and time-consistent.
ExtendedFitch fixes the reticulation node to be in state 0, whereas all other internal
nodes can be either 0 or 1. The two optimal solutions found by ExtendedFitch are
illustrated by Figure 2; they uniformly set all internal nodes other than the reticulation
node either to state 0 or to state 1. Thus, the resulting score is 2, as either both
pending edges leading to the leaves labelled 1 need a change or both edges leading
to the reticulation node. The most parsimonious solution, however, would be to set
all internal nodes—including the reticulation node—to state 1. This way, only one
change on the edge from the reticulation node to its pending leaf would be required.
Therefore, ExtendedFitch cannot be used to calculate the hardwired parsimony
score of a character on a network exactly.

2.2. A comment on model differences. Our core definition of phylogenetic
network is slightly less restricted than the definitions given by [17, 19]. However,
the strong hardness and inapproximability results we give in this paper still hold un-
der heavy topological and biological restrictions (degree restrictions, tree-child, time-
consistent) that are often subsumed into the core definitions given in other papers.
Moreover, an obvious advantage of our definition is that all the positive results in the
paper apply to the largest possible class of phylogenetic networks.

3. Computing the hardwired parsimony score of a phylogenetic net-
work. Given an undirected graph G and a set Γ of nodes of G called terminals, a
multiterminal cut of (G,Γ) is a subset E′ of the edges of G such that each terminal
is in a different connected component of the graph obtained from G by removing the
edges of E′. A minimum multiterminal cut is a multiterminal cut of minimum size.
The following theorem shows that computing the hardwired parsimony score of a phy-
logenetic network is at most as hard as Multiterminal Cut, the problem of finding
a minimum multiterminal cut. Note that this was previously observed, without proof,
in [31].

Merging a subset X ′ of the leaves of an unrooted phylogenetic network N pro-
duces a graphG that has a node for each node of N that is not in X ′ plus an additional
node vU . For each edge of N that is not incident to a leaf in X ′, G has the corre-
sponding edge. In addition, for each edge {u,w} of N with u ∈ U , w /∈ U , G has an
edge {vU , w}.

MAXIMUM PARSIMONY ON NETWORKS 565

Theorem 3.1. Let N be an unrooted phylogenetic network on X and α be a
p-state character on X. Let G be the graph obtained from N by merging all leaves x
with α(x) = i into a single node γi for i = 1, . . . , p. Then, the size of a minimum
multiterminal cut of (G, {γ1, . . . , γp}) is equal to PShw(N,α).

Proof. First consider an extension τ of α to V (N) for which PShw(N,α) =∑
e∈E(N) cτ (e) (i.e., an optimal extension). Let E′ be the set of edges e with cτ (e) = 1.

Since τ(γi) = i for i = 1, . . . , p, any path from γi to γj with i �= j contains at
least one edge of E′. Hence, E′ is a multiterminal cut. Moreover, PShw(N,α) =∑

e∈E(N) cτ (e) = |E′|. Hence, PShw(N,α) is greater than or equal to the size of a
minimum multiterminal cut.

Now consider a minimum multiterminal cut E′ of G and let G′ be the result of
removing the edges in E′ from G. We define an extension τ of α to V (N) as follows.
First, we set τ(x) = α(x) for all x ∈ X . Then, for each node v that is in the same
connected component of G′ as γi, set τ(v) = i. Finally, for each remaining node,
set τ(v) = p. Then, each edge e /∈ E′ has cτ (e) = 0. Consequently, each edge e
with cτ (e) = 1 is in E′. Hence, PShw(N,α) ≤

∑
e∈E(N) cτ (e) ≤ |E′|. It follows that

PShw(N,α) is less than or equal to the size of a minimum multiterminal cut, which
concludes the proof.

Although Theorem 3.1 is restricted to unrooted networks, it can easily be ex-
tended to rooted networks, since the hardwired parsimony score is independent of the
directions of the edges.

Corollary 3.2. Computing the hardwired parsimony score of a phylogenetic
network and a binary character is polynomial-time solvable.

Proof. This follows directly from Theorem 3.1, because, in the case of two termi-
nals, Multiterminal Cut becomes the classical minimum s− t-cut problem, which
is polynomial-time solvable.

Corollary 3.3. Computing the hardwired parsimony score of a phylogenetic
network and a p-state character, for p ≥ 3, is NP-hard and APX-hard.

Proof. We reduce from Multiterminal Cut, which is NP-hard and APX-hard
for three or more terminals [5].

Let G be an undirected graph and Γ = {γ1, . . . , γk} be a set of terminals. Note
that feasible solutions to Multiterminal Cut must contain all edges between ad-
jacent terminals. For this reason we begin by removing such edges from G. Next we
repeatedly delete all degree-1 nodes that are not terminals, until no such nodes are
left, because the edges adjacent to such nodes cannot contribute to a multiterminal
cut.

We construct a finite set X and a k-state character α on X as follows. For each
pair of a terminal γi and a node vji adjacent to γi in G, put an element xj

i in X

and set α(xj
i) = i. Now we construct a new graph N from G by deleting each γi

and adding a leaf labelled xj
i with an edge (vji , x

j
i) for each xj

i ∈ X . Note that
merging, for each i, all leaves x of G with α(x) = i into a single node γi would
give graph G back. Now, N might contain degree-2 nodes, which are not permitted
in our definition of phylogenetic network, but as we explain in Appendix A, there
is a simple transformation that removes such nodes without altering the hardwired
parsimony score or the cut properties of the graph. We apply this transformation to
N if necessary. Suppose then that the resulting graph N is connected and hence an
unrooted phylogenetic network on X . Then it follows from Theorem 3.1 that the size
of a minimum multiterminal cut of (G,Γ) is equal to PShw(N,α).

Now suppose that N is not connected. Observe that the proof of Theorem 3.1

566 M. FISCHER, L. VAN IERSEL, S. KELK, AND C. SCORNAVACCA

still holds if N is not connected. Moreover, computing the hardwired parsimony score
of a connected unrooted phylogenetic network is at least as hard as computing the
hardwired parsimony score of a not-necessarily connected phylogenetic network, be-
cause we can sum the parsimony scores of the connected components. This reduction
is clearly approximation-preserving. Finally we note that computing the hardwired
parsimony score of a rooted phylogenetic network is just as hard as computing this
score of an unrooted phylogenetic network, because the hardwired parsimony score
does not depend on the orientation of the edges.

Corollary 3.4. Computing the hardwired parsimony score of a phylogenetic
network and a p-state character is fixed-parameter tractable (FPT) in the parsimony
score. Moreover, there exists a polynomial-time 1.3438-approximation for all p and a
12
11 -approximation for p = 3.

Proof. The corollary follows from the corresponding results on minimum multi-
terminal cut [20, 32] by Theorem 3.1.

4. Complexity of computing the softwired parsimony score of a rooted
phylogenetic network. In section 4.1, we consider the complexity of computing the
softwired parsimony score exactly. Subsequently, section 4.2 determines the complex-
ity of approximating this score.

4.1. Complexity of computing the softwired parsimony score exactly.
In the following, we show that computing the softwired parsimony score of a binary
character on a binary rooted phylogenetic network is NP-hard. We reduce from
Cluster Containment, which is known to be NP-hard for general networks [15,
18]. However, in order to prove our result for binary networks, we first need to
show that Cluster Containment is NP-hard for binary phylogenetic networks,
too; this intermediate result has to the best of our knowledge not appeared earlier
in the literature. We do this via Edge Cluster Containment and Binary Edge

Cluster Containment, as described in the following. Thus, we state the following
questions and analyze their complexity.

(Binary) Edge Cluster Containment

Instance: A set X of taxa, a rooted (binary) phylogenetic network N (with edge set
E and node set V) on X , a cluster C ⊂ X , and an edge e = (u, v) ∈ E.
Question: Is there a switching S of N containing the node v such that the taxa
descending from v in S are precisely the taxa in C?

If the answer is yes to the question above, we say that e represents C. We denote
by C(N) the set of clusters represented by edges in E.

(Binary) Cluster Containment

Instance: A set X of taxa, a rooted (binary) phylogenetic network N (with edge set
E and node set V) on X , and a cluster C ⊂ X .
Question: Is there a switching S of N which contains an edge e = (u, v) ∈ E such
that the taxa descending from v in S are precisely the taxa in C?

The following observation follows directly by a simple (Turing) reduction from
Cluster Containment.

Observation 1. Edge Cluster Containment is NP-hard.
Next we use the previous observation to prove the following small result.
Observation 2. Binary Edge Cluster Containment is NP-hard.
Proof. We reduce from Edge Cluster Containment. Assume there is an

algorithm A to decide Binary Edge Cluster Containment in polynomial time.
LetN be a phylogenetic network onX containing an edge e. We want to know whether
e represents a particular cluster C. Let NB be an arbitrary binary refinement of N .

MAXIMUM PARSIMONY ON NETWORKS 567

Note that NB contains all edges of N , and possibly some more (unless N is already
binary), in the sense that edges in NB could be contracted to once again obtain N .
Hence, e is contained in NB, too. An example of a binary refinement of a nonbinary
network is depicted in Figure 3. So we can use A to decide whether e represents C
in NB. Note that e represents C in NB if and only if e represents C in N , because
it is easy to see that refining a network does not change the clusters pending on a
particular edge. Therefore, this method would provide a polynomial-time algorithm
to solve Edge Cluster Containment.

v

N

e v’’’

N

v

v’’
v’

B

e

Fig. 3. Illustration of a rooted phylogenetic network N with a node v of total degree 6 and a
possible binary refinement NB of N , where three copies of v, namely v′, v′′, and v′′′, as well as
three new edges (dashed lines) are inserted. Note that each edge of N has a unique image in NB .

Now we are in a position to prove that Binary Cluster Containment is NP-
hard, which is the essential ingredient to our proof of Theorem 4.2.

Lemma 4.1. Binary Cluster Containment is NP-hard.
Proof. We reduce from Binary Edge Cluster Containment. Let NB be a

rooted binary phylogenetic network on X and C be a cluster of X . Assume there is
an algorithm A to answer Binary Cluster Containment in polynomial time. Let
e = (v, u) be an edge inNB. We add two new nodes v1, v2 toN

B as follows: Subdivide
e into three edges e1 := (v, v1), e2 := (v1, v2), and e3 := (v2, u). Now introduce two
new edges e4 := (v1, h2) and e5 := (v2, h1), where h1 and h2 are two new taxa. We call
the resulting modified network ÑB. An example of this transformation is depicted in
Figure 4.

Note that by construction, ÑB is binary. We now use algorithm A to decide in
polynomial time whether ÑB contains the cluster C ∪{h1}. Note that this is the case
if and only if e2 in ÑB represents C, which, by construction, is the case if and only
if e represents C in NB. Therefore, this method would provide a polynomial-time
algorithm to solve Binary Edge Cluster Containment.

The following theorem was shown by [17] for nonbinary networks. The advantage
of the proof given below is that it shows that the problem is even NP-hard for binary
networks, demonstrates a direct and insightful relationship between cluster contain-
ment and parsimony, and leads directly to the conclusion that the problem is not even
FPT (unless P = NP).

Theorem 4.2. Computing the softwired parsimony score of a binary character
on a binary rooted phylogenetic network is NP-hard.

Proof. We reduce from Binary Cluster Containment. Let N be a rooted
binary phylogenetic network on taxon set X and C ⊂ X be a cluster. Then, by

568 M. FISCHER, L. VAN IERSEL, S. KELK, AND C. SCORNAVACCA

N

v

B

h

h1

22u

v

v2

1
e

e

e

e

e

1

2

3

4

5

~

Fig. 4. Illustration of the modifications applied to NB as depicted by Figure 3, resulting in the
modified binary network ÑB.

definition of C(N), C is in C(N) if and only if there is a tree T on X displayed by N
with an edge e = (u, v) such that the taxa descending from v in T are precisely the
elements of C. This is the case if and only if v is the root of a subtree of T with leaf set
C. Now assume that there is an algorithmA to compute the softwired parsimony score
of a binary character on a rooted binary phylogenetic network in polynomial time.
Then, we can solve Binary Cluster Containment by the following algorithm Ã:

1. Introduce a modified version N̂ of N as follows: Add an additional taxon z
to N and a new node ρ̂ as well as the edges (ρ̂, z) and (ρ̂, ρ), where ρ is the
root of N . Thus, the taxon set X̂ of N̂ is X ∪ {z} and the root of N̂ is ρ̂.

2. Construct a binary character α on X̂ as follows:

α(x) :=

{
1 if x ∈ C,

0 if x ∈ X̂ \ C.

Note that α(z) = 0 as z �∈ X and thus z �∈ C.
3. Calculate the parsimony score PSsw(N̂ , α) using algorithm A.

Note that PSsw(N̂ , α) = 1 if and only if N displays a tree T which has a subtree
with label set C. This is due to the fact that, as α(z) = 0, the softwired parsimony
score of N̂ can only be 1 if ρ and ρ̂ receive state 0. Otherwise, there would be a
change required on one of the edges (ρ̂, z) or (ρ̂, ρ) and additionally at least one more
change in the part of N̂ corresponding to N , as X employs both states 1 and 0 for
taxa in or not in C, respectively, because C � X . Moreover, if ρ is in state 0, the

softwired parsimony score of N̂ is 1 precisely if N̂ displays a tree T which requires
only one change, and that change has to be a change from 0 to 1. This is the case
if and only if N displays a tree T with a subtree with leaf labels C. This case is
illustrated by Figure 5. Note that if A is polynomial, so is Ã. Therefore, computing
the softwired parsimony score of a binary character on a binary rooted phylogenetic
network is NP-hard.

We can extend the NP-hardness result to a more restricted class of rooted phylo-
genetic networks.

Theorem 4.3. Computing the softwired parsimony score of a binary tree-child
time-consistent rooted phylogenetic network and a binary character is NP-hard.

MAXIMUM PARSIMONY ON NETWORKS 569

Proof. We can make any network tree-child and time-consistent by doing the
following for each reconciliation edge (u, r): adding a node u′, replacing (u, r) with
two edges (u, u′) and (u′, r), and adding a new cherry with an edge from u′ to the
root of the cherry. If we give the two leaves of each cherry character states 0 and 1,
then the softwired parsimony score is increased exactly by the number of added cher-
ries.

Corollary 4.4. It is NP-hard to decide whether the softwired parsimony score
of a binary rooted time-consistent phylogenetic network and a binary character is
equal to one. In particular, there is no FPT algorithm with the parsimony score as a
parameter unless P = NP.

Proof. It has been proven in [15] that Cluster Containment is NP-hard even
for time-consistent networks by reducing from Cluster Containment on general
networks. Since the proof in [15] transforms the input network in a way that preserves
binarity, the corollary follows directly from the combination of the result by [15] and
Theorem 4.2.

N

z

0 0

0

0 0 1
1 1
1 1

C

^Ú
Ú

^

Fig. 5. Illustration of the extension of a rooted binary phylogenetic network N (solid lines) to

the rooted binary phylogenetic network N̂ as described in the proof of Theorem 4.2. The additional
taxon z is assigned state 0 along with all taxa in X \ C, whereas all taxa in C are assigned state

1. Then, the softwired parsimony score of N̂ is 1 if and only if N displays a tree T with a pending
subtree with leaf set C.

4.2. Complexity of approximating the softwired parsimony score. In
order to proceed to the question of approximability, we require a new definition and
a lemma. Recall that S(N) is the set of all switchings of a network. Given a rooted
phylogenetic network N , we define PSS(N,α) as

min
S∈S(N)

min
τ

∑
e∈E(S)

cτ (e),

where the second minimum is taken over all extensions τ of α to V (S).
The following lemma states that optimal solutions can equivalently be modelled

as selecting the lowest-score switching, ranging over all extensions τ of a character α
to the nodes of the network. This is the characterization of optimality used in sec-

570 M. FISCHER, L. VAN IERSEL, S. KELK, AND C. SCORNAVACCA

tion 6 and enables us to circumvent some of the suppression and deletion technicalities
associated with the concept “display.” Since the lemma is intuitively clear, we defer
its proof to Appendix B.

Lemma 4.5. Consider a rooted phylogenetic network N on X and a p-state
character α on X. Then

PSS(N,α) = PSsw(N,α).

The next straightforward corollary will be useful when describing approximation-
preserving reductions.

Corollary 4.6. Given a network N on X and a character α on X, a tree
T ∈ T (N), a switching S ∈ S(N) corresponding to T , and an extension τ of α to
V (T), we can construct in polynomial time an extension τ ′ of α to V (S) such that∑

e∈E(S) cτ ′(e) =
∑

e∈E(T) cτ (e).

We now show that it is very hard to approximate the softwired parsimony score
on rooted networks. We give two inapproximability results. The first, the stronger
of the two, applies to nonbinary networks and holds even when the network is both
tree-child and time-consistent. It shows that in a complexity-theoretic sense trivial
approximation algorithms are the best one can hope for in this case. The second
result, which is only slightly weaker, applies to binary networks. Both results are much
stronger than the APX-hardness result presented by [17]. At the present time we do
not have an inapproximability result for networks that are simultaneously binary and
tree-child (and time-consistent): in this sense Theorem 4.3 is currently the strongest
hardness result we have for such networks.

Before proceeding we formally define the output of an algorithm that approx-
imates PSsw(N,α) as a tree T ∈ T (N) and a certificate that T ∈ T (N), i.e., a
switching S ∈ S(N) corresponding to T . The certificate is useful, because it is NP-
hard to determine whether a tree is displayed by a network [18]. The parsimony score
(i.e., value of the objective function) associated with the output T is then

PS(T, α) = min
τ

∑
e∈E(T)

cτ (e),

where the minimum is taken over all extensions τ of α to V (T). Note that PS(N,α) =
PSsw(N,α) = PShw(N,α) holds when N is a phylogenetic tree. Note also that
PS(T, α) and a corresponding extension τ can easily be found in polynomial time
by applying Fitch’s algorithm to T . If necessary, Corollary 4.6 can then be applied
to transform this in polynomial time into an extension τ ′ of α to V (N) such that
the switching S has parsimony score at most PS(T, α). We note that Theorems 4.7
and 4.8 below even hold for approximation algorithms that output an approximate
parsimony score instead of a tree and a switching.

Consider the following simple observation.
Observation 3. The softwired parsimony score of a rooted phylogenetic network

N on X and a p-state character α on X can be (trivially) approximated in polynomial
time with approximation factor |X | for any p ≥ 2.

Proof. Let s ∈ {1, . . . , p} be a state to which at least a fraction 1/p of X is
mapped by α. Let T be an arbitrary tree in T (N). We extend α to V (T) by labelling
all internal nodes of T with s. Clearly, PSsw(N,α) = 0 if and only if α maps all
elements in X to the same character state, in which case the extension of α to V (T)
also yields a parsimony score of 0. Otherwise, PSsw(N,α) ≥ 1 and the extension

MAXIMUM PARSIMONY ON NETWORKS 571

described yields a parsimony score of at most (1 − 1/p)|X | < |X |, from which the
result follows.

The following theorem shows that, in an asymptotic sense, Observation 3 is actu-
ally the best result possible, even when the topology of the network is quite heavily
restricted.

Theorem 4.7. For every constant ε > 0 there is no polynomial-time approxi-
mation algorithm that can approximate PSsw(N,α) to a factor |X |1−ε, where N is a
tree-child, time-consistent network and α is a binary character on X, unless P = NP.

Proof. We reduce from the NP-hard decision problem 3-SAT. This is the problem
of determining whether a boolean formula in CNF form, where each clause contains
at most three literals, is satisfiable. Let B = (V,C) be an instance of 3-SAT, where V
is the set of variables and C is the set of clauses. Let |V | = n. Observe that |C| = m
is at most O(n3), because in a decision problem it makes no sense to include repeated
clauses.

For each constant ε > 0, we will show how to construct a parsimony instance
(N,α) such that the existence of a polynomial-time |X |1−ε-approximation would allow
us to determine in polynomial time whether B is a YES or a NO instance, from which
the theorem will follow. The construction can be thought of as an “inapproximability”
variant of the hardness construction used in [18].

Throughout the proof we will make heavy use of the equivalence described in
Lemma 4.5. Specifically, we will characterize optimal solutions to the softwired par-
simony problem as the score yielded by the lowest-score switching, ranging over all
extensions of α to V (N).

We begin by proving the result for networks that are time-consistent but not tree-
child. Later we will show how to extend the result to networks that are time-consistent
and tree-child.

The centerpiece of the construction is the following variable gadget. Let z be a
variable in V . We introduce two nodes, which we refer to as z and ¬z and collectively
call connector nodes. We introduce two sets of taxa, Xz,0 and Xz,1, each containing
f(n, ε) taxa, where f(n, ε) is a function that we will specify later. For each taxon
x ∈ Xz,i we set α(x) = i. By introducing 2 · f(n, ε) reticulation nodes we connect
each taxon in Xz,0 and Xz,1 to both z and ¬z (see Figure 6). Observe that if both z
and ¬z are labelled with the same character state, the parsimony score of this gadget
(and thus of the network as a whole) will be at least f(n, ε). On the other hand, if
z and ¬z are labelled with different character states, the gadget contributes (locally)
zero to the parsimony score. The idea is thus that we label (z,¬z) with (1, 0) if we
wish to set variable z to be TRUE and (0, 1) if we wish z to be FALSE, i.e., ¬z is
TRUE. By choosing f(n, ε) to be very large we will ensure that z and ¬z are never
labelled with the same character state in “good” solutions.

We construct one variable gadget for each z ∈ V . Next we add the root ρ and two
nodes s0 and s1. We connect ρ to s0 and to s1. Next we connect s0 (respectively, s1)
to every connector node (ranging over all variable gadgets). Hence, every connector
node has indegree 2. The idea is that (without loss of generality) s0 (respectively,
s1) can be assumed to be labelled 0 (respectively, 1). Therefore, if a connector node
is labelled with state 0 (respectively, 1), it will choose s0 (respectively, s1) to be its
parent, and these edges will not contribute any mutations to the parsimony score.
There are two points to note here. First, there will be exactly one mutation incurred
on the two edges (ρ, s0) and (ρ, s1), and this has an important role in the ensuing
inapproximability argument; we shall return to this later. Second, it could happen

572 M. FISCHER, L. VAN IERSEL, S. KELK, AND C. SCORNAVACCA

Ú

s0 s1

1
10

0

... ...

x :x

1
10

0

... ...

y :y

1
1

0

... ...

:zz

0

f(n,Ï)
copies
f(n,Ï)
copies

variable
gadget

... ...f(n,Ï)
copies

x _ :y
1 1 1 1

:x _ y _ z

f(n,Ï)
copies

clause
gadget

Fig. 6. An encoding of the 3-SAT instance (x ∨ ¬y) ∧ (¬x ∨ y ∨ z) as described in Theorem
4.7. Note that the network is time-consistent—a possible time-stamp allocates 1 to the root, 2 to all
reticulation nodes plus s0 and s1, and 3 to the nodes in clause gadgets for clauses consisting of only
one literal (as these are tree nodes)—but not tree-child: a slight modification is required to make it
tree-child.

that the labelling of s0 and s1 is (1, 0) rather than (0, 1), but in that case the analysis
is entirely symmetrical.

It remains only to describe the clause gadgets. These are very simple. For each
clause c ∈ C we introduce a size f(n, ε) set of taxa that we call Xc. For each taxon x ∈
Xc we set α(x) = 1. By introducing f(n, ε) nodes—these will be reticulations, unless
the clause contains only one literal—we connect each taxon in Xc to the connector
nodes in the variable gadgets corresponding to the literals in the clause. For example,
if c is the clause (¬x ∨ y ∨ z), each node in Xc has ¬x, y, and z as its parents.
Similarly to the variable gadgets, observe that if none of the literals corresponding
to c is labelled 1 (i.e., set to TRUE), the clause gadget corresponding to c will raise
the parsimony score by at least f(n, ε), but if that at least one literal is TRUE, the
(local) parsimony cost will be zero.

Observe first that PSsw(N,α) ≥ 1, because both character states appear in the
range of α. More fundamentally, PSsw(N,α) = 1 if B is satisfiable—in which case
the single mutation occurs on one of the edges (ρ, s0) and (ρ, s1)—and PSsw(N,α) ≥
f(n, ε) if B is unsatisfiable. This dichotomy holds, because, to have PSsw(N,α)
< f(n, ε), it is necessary that the connector nodes in the variable gadgets always have
a labelling of the form (0, 1) or (1, 0) and that for every clause c the nodes in Xc all
have at least one TRUE parent, i.e., B is satisfiable.

MAXIMUM PARSIMONY ON NETWORKS 573

The high-level idea is to choose f(n, ε) to be so large that even a weak approxi-
mation factor will be sufficient to determine without error whether B is satisfiable or
unsatisfiable. The reduction is as follows. Let T ∈ T (N) be the tree produced by the
approximation algorithm for PSsw(N,α), let S ∈ S(N) be a corresponding switching,
and let PS(T, α) be the corresponding parsimony score. If PS(T, α) ≥ f(n, ε), we
declare that the SAT instance B is unsatisfiable. Otherwise, we declare that B is
satisfiable. Note that this reduction is also valid when the approximation algorithm
outputs a parsimony score instead of a tree and a switching. If PS(T, α) < f(n, ε), we
can also find a corresponding satisfying truth assignment for B. For this we do need
the tree T and switching S in order to find an extension τ ′ of α to V (N) such that the
parsimony score of S under τ ′ is also strictly less than f(n, ε). For each variable z in
the SAT instance, τ ′ has to label z and ¬z with different character states, and for each
clause c ∈ C in the SAT instance, at least one of its literals has to be labelled with
character state 1. The satisfying assignment is thus the following: for each variable
z, z is TRUE if z is labelled 1 and FALSE if ¬z is labelled 1.

We now show that the reduction is correct assuming that we choose f(n, ε) such
that |X |1−ε < f(n, ε). First assume that B is satisfiable. Recall that in this case
PSsw(N,α) = 1. Hence, an approximation algorithm with approximation ratio at
most |X |1−ε will return a solution with parsimony score at most |X |1−ε < f(n, ε).
Therefore, the reduction above correctly decides that B is satisfiable. Now assume
that B is not satisfiable. In that case, PSsw(N,α) ≥ f(n, ε). Hence an approximation
algorithm has to produce a solution with parsimony score at least f(n, ε) and the
reduction above correctly decides that B is not satisfiable.

It remains to show that we can choose f(n, ε) such that |X |1−ε < f(n, ε). Observe
that |X | = 2n ·f(n, ε)+m ·f(n, ε). Given the relationship between n and m, a (crude)
upper bound on |X | is n5 ·f(n, ε) for sufficiently large n. Hence it is sufficient to ensure
f(n, ε)1−ε · n5(1−ε) < f(n, ε). Suppose f(n, ε) = ng(ε), where g(ε) is a function that
depends only on ε. Then we need g(ε)(1 − ε) + 5(1 − ε) < g(ε), which implies that
taking g(ε) =
6ε−1(1− ε)� is sufficient.

The network we constructed above is time-consistent (see Figure 6) but not tree-
child: potentially only the root ρ has at least one child that is not a reticulation. We
can transform the network as follows. For each node v with indegree greater than 1
and outdegree 0 we simply add an outgoing edge to a new node v′, where v′ receives
time-stamp 3, and α(v′) takes over the character state α(v). Next we introduce 2n+2
new taxa. For si, i ∈ {0, 1}, we introduce a new node s′i (with time-stamp 3), add
an edge (si, s

′
i), and set α(s′i) = i. For each variable z in the SAT instance B, we

introduce two new taxa z′ and ¬z′ (both of which receive time-stamp 3), add edges
(z, z′) and (¬z,¬z′), and set α(z′) = α(¬z′) = 0. The network is now both tree-child
and time-consistent. Now, observe that the two taxa introduced underneath s0 and s1
do not change the optimum parsimony score, because without loss of generality we can
assume that s0 is labelled 0 and s1 is labelled 1. However, for each variable z, some
extra mutations might be incurred on the edges (z, z′) and (¬z,¬z′). As long as f(n, ε)
is chosen to be large enough, these (at most) 2n extra mutations do not significantly
alter the reduction: in optimal solutions each (z,¬z) pair will still be labelled with
different character states, reflecting a satisfying truth assignment for B, whenever
B is satisfiable. In fact, if B is satisfiable, then exactly n extra mutations will be
incurred on the edges (z, z′) and (¬z,¬z′) (in an optimal solution), since at least one
of z and ¬z will be labelled 0. So, if B is satisfiable, PSsw(N,α) = n+ 1, and if B is
unsatisfiable, PSsw(N,α) ≥ f(n, ε). As long as we choose |X |1−ε(n+1) < f(n, ε), any

574 M. FISCHER, L. VAN IERSEL, S. KELK, AND C. SCORNAVACCA

|X |1−ε-approximation will be forced to return a tree T such that PS(T, α) < f(n, ε)
whenever B is satisfiable, and this can be transformed in the same way as before in
polynomial time into a satisfying assignment for B.

Hence we need to choose f(n, ε) such that |X |1−ε(n + 1) < f(n, ε), where this
time |X | = 2n · f(n, ε) + m · f(n, ε) + (2n + 2). As before, |X | ≤ n5 · f(n, ε) holds
for sufficiently large n, as does n+1 < n2. So establishing f(n, ε) > n(7−5ε)f(n, ε)1−ε

would be sufficient. Letting f(n, ε) = ng(ε) and taking logarithms, it is sufficient to
choose g(ε) such that g(ε) > 7− 5ε+ g(ε)(1− ε). Taking g(ε) =
 7−5ε

ε �+1 is sufficient
for this purpose, and we are done.

For binary networks, we get a slightly weaker inapproximability result.
Theorem 4.8. For every constant ε > 0 there is no polynomial-time approxima-

tion algorithm that approximates PSsw(N,α) to a factor |X | 13−ε, where N is a rooted
binary phylogenetic network on X and α is a binary character on X, unless P = NP.

Proof. We reduce again from 3-SAT. Let, as before, B = (C, V) be an instance of
3-SAT. Let V = {v1, . . . , vn} and F := f(n, ε). We will describe a construction of a
rooted binary phylogenetic network N and binary character α. The first part of the
construction is essentially a binary version of the network constructed in the proof
of Theorem 4.7. The main difference will be the construction of the so-called zero-
gadgets. For ease of notation, we will create vertices with indegree 1 and outdegree 1,
which could be suppressed, and we create reticulations with indegree greater than 2,
which could be refined arbitrarily. Observe that neither suppressing indegree-1 and
outdegree-1 vertices nor refining reticulations with indegree greater than 2 alters the
softwired parsimony score. However, to simplify the proof we do not suppress or refine
these vertices. Furthermore, we assume without loss of generality that each literal is
contained in at least one clause.

Our construction is as follows. We create a root ρ with two directed paths
(ρ, a1, . . . , a2n) and (ρ, b1, . . . , b2n) leaving it. Then, for each variable vi, we create a
reticulation vertex which we will also call vi and has reticulation edges (a2n−2i+2, vi),
(b2i−1, vi). Moreover, we create a reticulation vertex ¬vi with reticulation edges
(a2n−2i+1,¬vi), (b2i,¬vi). The vertices vi and ¬vi are called “literal vertices.” Then,
for each clause c, create F vertices c1, . . . , cF , which we will call “clause vertices,” and
for each such clause vertex cf , create an edge (cf , c

′
f) to a new leaf c′f with character

state α(c′f) = 1 (the “clause leaves”). So, in total we have |C|F clause leaves.
We now connect the literal vertices to the clause vertices. For each variable x and

its negation ¬x, we do the following. Suppose that x is in U clauses, corresponding
to F ·U clause vertices, c1x, . . . , c

F ·U
x . Create a directed path (x, d1x, . . . , d

F ·U
x) and edges

(dkx, c
k
x) for k = 1, . . . , F · U . Similarly, if ¬x is in Υ clauses with F ·Υ corresponding

clause vertices (γ1
x, . . . , γ

F ·Υ
x), we create a directed path (¬x, δ1x, . . . , δF ·Υ

x) and edges
(δκx , γ

κ
x) for κ = 1, . . . , F ·Υ. For each pair k and κ with k ∈ {1, . . . , F · U} and

κ ∈ {1, . . . , F · Υ}, we create the following “zero-gadget.” Let u be the parent of ckx
that is reachable from x (hence, in the first iteration, u = dkx). Replace the edge (u, c

k
x)

by a directed path (u, u1, . . . , uF , c
k
x). Similarly, let μ be the parent of γκ

x that is
reachable from ¬x (initially, μ = δκx), and replace the edge (μ, γκ

x) by a directed
path μ, μ1, . . . , μF , γ

κ
x . Then, for f = 1, . . . , F , create a new reticulation zf , with

reticulation edges (uf , zf) and (μf , zf), and an edge (zf , z
′
f) to a new leaf z′f with

character state α(z′f) = 0.
See Figure 7 for an example of the construction for F = 1. For larger F , the

construction is similar but with more copies of each clause vertex and more copies of
each zero-gadget.

MAXIMUM PARSIMONY ON NETWORKS 575

x :x :y :zy z

x _ y
1 1 1 1

x _ :y _ z x _ :z :x _ :z

dx
1

dx
2

dx
3

dy
1

dz
1

Îz
1

Îz
2

Îy
1Îx

1

0

0

0

0

0

0

Fig. 7. An encoding of the 3-SAT instance (x ∨ y) ∧ (x ∨ ¬y ∨ z) ∧ (x ∨ ¬z) ∧ (¬x ∨ ¬z) as
described in Theorem 4.8, with F = 1. The zero-gadgets are indicated in grey.

The constructed network N has |C|F clause leaves (all having character state 1)
and at most |V ||C|2F 3 leaves for the zero-gadgets (all having character state 0).
Hence, the total number of leaves is at most |C|F + |V ||C|2F 3.

We will show that if (C, V) is satisfiable, PS(Nsw, α) = 1, and if (C, V) is not
satisfiable, PS(Nsw, α) ≥ F . We will use the following definitions. For two vertices u
and v, we say that v is a tree-descendant of u if v is reachable from u by a directed
path that does not contain any reticulations apart from possibly u. In particular, each
vertex is a tree-descendant of itself. Furthermore, given an extension τ of α to V (N),
we say that there is a change at vertex v if the character state of v is different from
the character states of all its parents. The number of changes of network N and
extension τ is the number of vertices at which there is a change. It follows from
Lemma 4.5 that the softwired parsimony score of a network N and character α is
equal to the minimum number of changes over all possible extensions τ of α to V (N).

First suppose that (C, V) is satisfiable. Then, given a satisfying truth assignment,
we can assign character states as follows. All vertices on the path (ρ, a1, . . . , a2n) and
all clause vertices cf receive state 1. All vertices on the path (b1, . . . , b2n) and all
reticulations zf of zero-gadgets receive state 0. For each variable x that is set to true
by the truth assignment, we give state 1 to all tree-descendants of literal vertex x and
state 0 to all tree-descendants of literal vertex ¬x. Similarly, for each variable x that
is set to false by the truth assignment, we give state 0 to all tree-descendants of literal
vertex x and state 1 to all tree-descendants of literal vertex ¬x. This concludes the
assignment of character states. Now observe the following. Consider a clause c and
a corresponding clause vertex cf , which has state 1. Since c is satisfied by the truth

576 M. FISCHER, L. VAN IERSEL, S. KELK, AND C. SCORNAVACCA

assignment, at least one parent of cf also has state 1. Hence, there are no changes
at the clause vertices. Moreover, for each reticulation zf of a zero-gadget (which has
state 0), there is at least one parent that also has state 0, because for each variable x
either all tree-descendants of x or all tree-descendants of ¬x have state 0. Using these
observations, it can easily be checked that the only change is at b1. Hence, if (C, V)
is satisfiable, PS(Nsw, α) = 1.

Next, we show that if (C, V) is not satisfiable, PS(Nsw, α) ≥ F . We do this by
assuming that PS(Nsw, α) < F and showing that this implies that (C, V) is satisfiable.
Let τ be an extension of α to V (N) with less than F changes. For a positive literal x
and clause vertex ckx for a clause containing x, let P (x, ckx) denote the directed path
from dkx to ckx (with dkx as defined in the construction of N). Similarly, for a negative
literal ¬x and clause vertex γκ

x for a clause containing ¬x, let P (¬x, γκ
x) denote the

directed path from δκx to γκ
x (with δκx as defined in the construction of N). Moreover,

for any literal 	 (of the form x or ¬x) and clause vertex cf for a clause containing 	,
let P ′(, cf) denote path P (, cf) excluding its first vertex. We compute a truth
assignment as follows. A variable x is set to true if and only if for some clause
vertex ckx for a clause containing x it holds that all vertices on the path P (x, ckx)
have state 1. We now prove that the obtained truth assignment is a satisfying truth
assignment. Assume that a certain clause c is not satisfied. Consider a clause vertex cf
corresponding to clause c. Observe that, for two different clause vertices cf1 , cf2
corresponding to clause c and for any two literals 	1, 	2 contained in clause c, the paths
P ′(1, cf1), P

′(2, cf2) are vertex-disjoint. Hence, since τ has less than F changes, there
exists at least one clause vertex cf corresponding to clause c for which there are no
changes at c′f or at any vertex on a directed path P ′(, cf) for any literal 	 contained
in clause c. Since c′f has state 1, it follows that cf has state 1, and hence that at
least one parent of cf has state 1, and hence that there exists at least one literal 	
contained in clause c such that all vertices on the path P (, cf) have state 1. If 	
is of the form x (a positive literal), then this immediately implies that 	 is set to
true, contradicting the assumption that clause c is not satisfied. Now consider the
case that 	 is of the form ¬x (a negative literal). Let κ be such that γκ

x = cf . We
have shown that all vertices on the path P (, cf) from δκx to γκ

x = cf have state 1.
For every k ∈ {1, . . . , F · U}, there is a zero-gadget for x, k, and κ. Each such
zero-gadget contains a directed path (u1, . . . , uF) on P (x, ckx) and a directed path
μ1, . . . , μF on P (¬x, γκ

x). Since all vertices on the path P (¬x, γxκ) have state 1 and
there are less than F changes, at least one vertex of the path (u1, . . . , uF) has state 0.
Hence, at least one vertex on P (x, ckx) has state 0 for all k ∈ {1, . . . , F ·U}. It follows
that x is set to false and hence that literal 	 = ¬x is set to true, contradicting the
assumption that clause c is not satisfied. Therefore, we have shown that if (C, V) is
not satisfiable, PS(Nsw, α) ≥ F .

It remains to describe how to choose F = f(n, ε) such that |X | 13−ε < f(n, ε).
Recall that |X | ≤ |C|f(n, ε) + |V ||C|2f(n, ε)3. Then, with n = |V | and recalling
that |C| = O(n3), we can bound this by |X | ≤ n8f(n, ε)3 for sufficiently large n.

Hence, it is enough to show that n8(1
3−ε)f(n, ε)3(

1
3−ε) < f(n, ε). Taking f(n, ε) = ng(ε),

we need 8(13 − ε)+3(13 − ε)g(ε) < g(ε). Hence, it is sufficient to take g(ε) =
 8
9ε�.

In particular, Theorem 4.8 shows that there can be no O(log(|X |))-approximation
for computing the softwired parsimony score of a binary rooted phylogenetic network,
unless P = NP. We remark that the network constructed in the proof of Theorem 4.8
cannot easily be made tree-child. Hence the inapproximability of binary tree-child

MAXIMUM PARSIMONY ON NETWORKS 577

networks is still open. It does seem that the constructed network can be made time-
consistent, but we omit a proof.

Although we have shown above that there is no algorithm for computing the
softwired parsimony score that is FPT in the parsimony score (unless P = NP),
there obviously exists such an algorithm that is FPT in the reticulation number of
the network: a network with reticulation number r has 2r switchings, and for each
switching Fitch’s algorithm can be used. Moreover, in the next section we show that
there even exists an algorithm that is FPT in the level of the network, a parameter
potentially much smaller than the reticulation number.

5. An FPT algorithm in the level of the network for computing the
softwired parsimony score of a network. In the first part of this section we de-
scribe a polynomial-time dynamic programming (DP) algorithm that works on rooted
trees and computes a slight generalization of the softwired parsimony score. We then
show how this can be used as a subroutine in computing the softwired parsimony
score of networks such that the running time is FPT in the level of the network.

5.1. A DP algorithm for (not necessarily phylogenetic) rooted trees
with weights . Let P = {1, . . . , p} be the set of character states. Let T be a rooted
tree and L(T) be the set of leaves of T . T is not necessarily a phylogenetic tree,
because only a subset L ⊆ L(T) needs to be labelled, and T is allowed to have nodes
with indegree and outdegree both equal to 1. (Later on, we will see that this allows
us to model switchings.) For a node v ∈ V (T), let Tv be the subtree of T rooted at v.

We are given a p-state character α : L→ P . Additionally, we are given a function
w : (V (T)× P)→ N, where N = {0, 1, . . .}.

Consider the following definition, where cτ is the change function described in
the preliminaries and the minimum ranges over all extensions τ of α to V (T):

(5.1) PSsw(T, α, w) = min
τ

((∑
e∈E(T)

cτ (e)

)
+

(∑
v∈V (T)

w(v, τ(v))

))
.

We can think of this as being the parsimony score with an optional added “weighting”
that to varying degrees “penalizes” nodes when they are allocated a certain character
state. This weighting w(v, s) will be used in the next section to model the contribution
to the optimum parsimony score of the subnetworks of N rooted at v when v is forced
to be labelled with character state s.

To compute PSsw(T, α, w) we introduce the value PSsw(T, α, w, s), with s ∈ P ,
where we add the restriction that the root of T must be labelled with character state
s. Clearly,

(5.2) PSsw(T, α, w) = min
s∈P

PSsw(T, α, w, s).

We denote by PSsw(T, α, w, ·) the vector (PSsw(T, α, w, 1), . . . , PSsw(T, α, w, p)).
This vector is computed as described in Algorithm 1, where δ(s, s′) = 0 if s = s′

and 1 otherwise, and C(v) is the set of children of a nonleaf node v. Note that the

578 M. FISCHER, L. VAN IERSEL, S. KELK, AND C. SCORNAVACCA

optimal τ can be constructed by backtracking, if necessary.

Algorithm 1: Compute PSsw(T, α, w, ·)
1 for each node v of V (T) considered in postorder do
2 if v is a leaf then
3 if v ∈ L then
4 PSsw(Tv, α, w, s) = w(v, s) if s = α(v) and ∞ otherwise;

5 else
6 PSsw(Tv, α, w, s) = w(v, s) for each s ∈ P ;

7 else

8 PSsw(Tv, α, w, s) = w(v, s) +
∑

v′∈C(v)

(
min
s′∈P

(
PSsw(Tv′ , α, w, s′) + δ(s, s′)

))

∀s ∈ P ;

9 return PSsw(T, α,w, ·); //note that T = Troot(T)

The running time of Algorithm 1 is O(p2|V (T)|).
Lemma 5.1. Algorithm 1 correctly computes PSsw(Tv, α, w, ·) for every v ∈ V (T).

In particular, it correctly computes PSsw(T, α, w, ·).
Sketch of proof. We sketch only the proof of the correctness for line 8. This follows

from the fact that if the state of a node v is fixed as s, then the only local decisions
that have to be made to optimize PSsw(Tv, α, w, s) are to choose the character state s′

for each child v′ of v. A change is incurred whenever s′ �= s. Once s′ has been chosen,
we are free to (and therefore should) use optimal subsolutions corresponding to the
case when the root of subtree Tv′ has state s′, i.e., PSsw(Tv′ , α, w, s′). We omit
details.

The following lemma shows that Algorithm 1 can be used to compute the parsi-
mony score of a phylogenetic tree.

Lemma 5.2. Consider a rooted phylogenetic tree T on X and a p-state character
α on X. Then, if w(v, s) = 0 for all v ∈ V (T) and s ∈ P, then PSsw(T, α, w) =
PSsw(T, α).

Proof. This follows by combining Lemma 5.1 with (5.2) and (5.1). In particular,
in (5.1) the right-hand side of the expression degenerates to the familiar parsimony
definition, because w is 0 everywhere.

5.2. Extending the DP algorithm to networks. Let N be a level-k network
on X . We say that a biconnected component is trivial if it consists of a single edge (a
cut-edge). Thanks to the following results, we can envisageN as comprising nontrivial
biconnected components, each with reticulation number at most k, arranged in a tree-
like backbone.

Lemma 5.3. Let N be a rooted phylogenetic network on X and B be a biconnected
component of N . Then B contains exactly one node rB without ancestors in B.

Proof. Suppose there exist two roots in B, r1 and r2. In a rooted network N
there always exists a directed path from the root of N to each node in N . Hence
there exists a node v in N such that there is a simple directed path from v to r1 and
a simple directed path from v to r2. (Note that we do not exclude the possibility that
v ∈ {r1, r2}.) By merging these two paths we see that there is an undirected simple
path P between r1 and r2 such that for at least one of r1 and r2 the edge of P incident
to it is oriented towards it. We want to argue that all nodes and edges of P are also
in B, which will contradict the assumption that r1 and r2 are both roots of B. In
fact, it holds that if any two nodes u and v in B have a simple undirected path P ′

MAXIMUM PARSIMONY ON NETWORKS 579

between them, all nodes and edges of P ′ are also in B. If this were not true, then P ′

would contain some node not in B, and this in turn would mean that, in the journey
from u to v, P ′ would have to pass through some cut node twice, contradicting its
simplicity. Hence all nodes of P ′ are in B, and by maximality all of the edges of P ′

are too.
Lemma 5.4. Let N be a rooted phylogenetic network on X. Then, if r is a

reticulation, all incoming edges of r are in the same biconnected component of N .
Proof. The lemma can be proven by applying an argument similar to that used

in the proof of Lemma 5.3. We therefore omit the proof.
We define the switchings of a biconnected component B of N analogous to the

definition of the switchings of a network, i.e., a switching of a biconnected compo-
nent B is a rooted tree SB that can be obtained from B by deleting all but one of the
incoming edges of each reticulation. We say that we apply switching SB to N when
deleting in N all edges of B not in SB. The next result is a consequence of Lemma
5.4.

Lemma 5.5. Let N be a rooted phylogenetic network on X and S be a switching
of N . Then, S can be obtained from N by, for each biconnected component B of N ,
first choosing a switching SB and then applying it to N .

Corollary 5.6. Let N be a rooted phylogenetic network on X, S be a switching
of N , and B be a biconnected component of N . Let SB be the switching of B induced
by S and S′

B be a different switching of B. Let S′ be the graph obtained from N by
applying to N all switchings of all biconnected components induced by S except SB ,
and then finally applying the switching S′

B. Then S′ is a switching of N .
We are now ready to describe our algorithm for computing the softwired par-

simony score of a phylogenetic network N and p-state character α. Note that each
cut-edge (u, v) is seen as a biconnected component with root u and only one switching.

Algorithm 2: Compute PSsw(N,α)

1 for each node v of N and state s in P do w(v, s)← 0;
2 for each node r of N that is a root of at least one biconnected component in
postorder do

3 for each biconnected component Br rooted at r do
4 for each switching Sr of Br do
5 compute PSsw(Sr, α, w, ·) using Algorithm 1;

6 for each s in P do
7 PSsw(Br, α, w, s) = min

Sr∈Br

PSsw(Sr, α, w, s);

8 w(r, s)← w(r, s) + PSsw(Br, α, w, s);

9 return min
s∈P

w(root(N), s);

Theorem 5.7. Computing the softwired parsimony score of a rooted phylogenetic
network N and a p-state character, for any p ∈ N, is FPT if the parameter is the
level of the network.

Proof. In Lemma 5.3, we proved that each biconnected component B of N con-
tains only one root rB. We denote by BT (N) the graph obtained as follows: we
create a node vr in BT (N) for each node r of N that is the root of at least one
(trivial or nontrivial) biconnected component of N , and we create an edge (vr , vr′) in
BT (N) if r and r′ are contained in the same biconnected component, r is the root of
this biconnected component, and r′ �= r. It is easy to see that BT (N) is connected.

580 M. FISCHER, L. VAN IERSEL, S. KELK, AND C. SCORNAVACCA

Moreover, it cannot contain any reticulation, because of Lemma 5.4. Thus BT (N)
is a tree. In the following we shall prove that PSsw(N,α) = mins∈P w(root(N), s)
with w the weight function computed by Algorithm 2.

Denote by PSsw(N,α, s) the minimum parsimony score for N and α, with the
restriction that the root of N must be labelled with character state s. Let Nr be the
subnetwork comprising all biconnected components whose roots can be reached by
directed paths from r. We will prove that PSsw(Nr, α, s) = w(r, s) for any node r
in V (N) associated with a node vr in BT (N). We prove this equality by induction
on the height of vr, which is defined as the length of a longest path from vr to a leaf
of BT (N).

We begin by proving that the equality is true when the height of vr is 0. Suppose
that r is the root of J different biconnected components, and let Bj be one of these.
Then we have that

PSsw(Bj , α, w, s) = min
Sj∈Bj

PSsw(Sj , α, w, s) = min
Sj∈Bj

PSsw(Sj , α, s) = PSsw(Bj , α, s),

where the second equality holds because of Lemma 5.2, since w(v, s) is equal to zero
for all nodes of Bj and s in P . Then, because of Lemma 5.4, we have that

w(r, s) =
∑

Bj∈Br

PSsw(Bj , α, w, s) =
∑

Bj∈Br

PSsw(Bj , α, s) = PSsw(Nr, α, s),

where Br is the set of biconnected components rooted at r.
Suppose now that w(r, s) = PSsw(Nr, α, s) is true for all nodes vr of BT (N)

with height at most h. We want to prove that this holds also for nodes with height
h + 1. Let vr be such a node, r be the associated node in N , and Bj be a bi-
connected component rooted at r. Let Nr(Bj) denote the subnetwork of Nr ob-
tained by deleting all vertices and edges that are not reachable from any node in
Bj other than its root r. Then, PSsw(Bj , α, w, s) = PSsw(Nr(Bj), α, s), because
for each child vr′ of vr in BT (N) with corresponding vertex r′ of N it holds, by
the induction hypothesis, that w(r′, s) = PSsw(Nr′ , α, s). The intuitive idea is
that, once a subnetwork has been processed, its influence in the biconnected com-
ponent above it is expressed using the w function. The claim now follows since
PSsw(Nr, α, s) =

∑
Bj∈Br

PSsw(Nr(Bj), α, s) =
∑

Bj∈Br
PSsw(Bj , α, w, s) = w(r, s).

We still need to prove the running time. Algorithm 1 has a running time of
O(p2|V (T)|). Moreover, for each biconnected component we call Algorithm 1 for at
most 2k trees with at most |V (N)| nodes. Moreover, by Lemma 5.4, we have that the
number of biconnected components of N is at most |E(N)|. Then we have an overall
complexity of O(2kp2|V (N)| · |E(N)|). This concludes the proof.

6. Maximum parsimony in practice: Integer linear programming. We
propose the following integer linear programming (ILP) formulation for computing
the hardwired parsimony score of a phylogenetic network, with node set V and edge
set E, as well as a p-state character α. All variables are binary. Variable xv,s indicates
whether or not node v has character state s, and variable ce indicates whether there
is a change on edge e or not. For a leaf v, parameter α(v) is the given character state
at v. Let P = {1, . . . , p}.

min
∑
e∈E

ce

subject to
∑
s∈P

xv,s = 1 for all v ∈ V,

MAXIMUM PARSIMONY ON NETWORKS 581

ce ≥ xu,s − xv,s for all e = (u, v) ∈ E, s ∈ P ,
ce ≥ xv,s − xu,s for all e = (u, v) ∈ E, s ∈ P ,
xv,α(v) = 1 for each leaf v,

ce ∈ {0, 1} for all e ∈ E,

xv,s ∈ {0, 1} for all v ∈ V, s ∈ P .
To see the correctness of the formulation, first observe that the first constraint ensures
that each node is assigned exactly one character state. Now consider an edge e = (u, v)
and suppose that u and v are assigned different states s and s′. Then, xu,s �= xv,s

(and xu,s′ �= xv,s′), and hence the second and third constraints ensure that ce = 1.
For the softwired parsimony score, we extend the ILP formulation as follows. In

addition to the variables above, there is a binary variable ye indicating whether edge e
is switched “on” or “off.” A change on edge e is counted only if it is switched on. For
each reticulation, exactly one incoming edge is switched on.

min
∑
e∈E

ce

subject to
∑
s∈P

xv,s = 1 for all v ∈ V,

ce ≥ xu,s − xv,s − (1− ye) for all e = (u, v) ∈ E, s ∈ P ,
ce ≥ xv,s − xu,s − (1− ye) for all e = (u, v) ∈ E, s ∈ P ,∑
v:(v,r)∈E

y(v,r) = 1 for each reticulation r,

ye = 1 for each tree edge e,

xv,α(v) = 1 for each leaf v,

ce, ye ∈ {0, 1} for all e ∈ E,

xv,s ∈ {0, 1} for all v ∈ V, s ∈ P .
It follows from Lemma 4.5 that the optimum value of this ILP is equal to the softwired
parsimony score of the given network and character.

Note that the parsimony score of an alignment can be computed by solving the
above ILP formulation for each column (character) separately or combining them in
a single ILP. Gaps in the alignment can be accommodated in the formulation by
demanding that xv,α(v) = 1 only for leaves v for which α(v) is not a gap.

We have implemented both ILP formulations and made the resulting user-friendly
software publicly available [13]. Experimental results with CPLEX 12.5 on a 2GHz
laptop are in Table 1. Networks were simulated using Dendroscope [12], and character-
states were assigned uniformly at random.

For practical applications, parsimony scores have to be computed quickly, since
this computation needs to be repeated many times, for example when searching for a
network with the smallest parsimony score. Apparent from Table 1 is that parsimony
scores can be computed very quickly using ILP for networks with up to 100–150
taxa and up to 50 reticulations. Moreover, parsimony scores can even be computed
quickly for much larger networks in the case of binary and ternary characters. This
is of interest, because, in practice, many columns of an alignment might contain only
two or three different symbols. Despite the theoretical differences in tractability of
hardwired and softwired parsimony scores, their computation times using ILP do not
differ much in these experiments.

582 M. FISCHER, L. VAN IERSEL, S. KELK, AND C. SCORNAVACCA

Table 1

Time needed to compute hardwired and softwired parsimony scores in six test runs. For each
run, an average is taken over 10 simulated networks with randomly assigned character states. The
results are given for a single character.

Avg. Average computation time (s)
|X | number of Hardwired PS Softwired PS

retic. 2-state 3-state 4-state 2-state 3-state 4-state
Run 1 50 17.0 0.0 0.0 0.1 0.1 0.1 0.3
Run 2 100 37.0 0.0 0.0 0.2 0.0 0.1 0.6
Run 3 150 54.1 0.0 0.1 0.6 0.1 0.2 0.8
Run 4 200 72.8 0.0 0.1 1.1 0.1 0.4 1.4
Run 5 250 91.3 0.0 0.1 3.5 0.1 0.4 2.2
Run 6 300 112.6 0.0 0.2 5.2 0.1 0.6 3.7

Table 2

Summary of the complexity of computing hardwired and softwired parsimony scores of phyloge-
netic networks.

Hardwired Softwired

Complexity
In P for p = 2

NP-hard for p ≥ 2
NP-hard for p ≥ 3

Approximation
12
11

-approx. for p = 3 no |X|1−ε-approx.

1.3438-approx. for p ≥ 4 for any ε > 0 unless P = NP

Parameterized by PS FPT NP-hard to decide if PS=1

Parameterized by level N/A FPT

7. Conclusions and open problems. We have clarified the distinction be-
tween two possible definitions of the parsimony score of a phylogenetic network, which
we call the “softwired” and the “hardwired” parsimony scores. We have shown that
computing the hardwired parsimony score is, in various ways, more tractable than
computing the softwired score; see Table 2. We have also shown that the intractabil-
ity results still hold under several topological restrictions. A stimulating open question
is to determine the (in)approximability and fixed-parameter tractability of computing
the softwired parsimony score of a character on a rooted network that is simultane-
ously binary and tree-child: this might be considerably more tractable than other
versions of the problem. From a practical point of view, we have shown that both
the hardwired and the softwired parsimony scores can be computed efficiently using
ILP. It will be interesting to explore—in the spirit of studies such as those conducted
in [16, 17]—the extension of this work to the notoriously intractable “big parsimony”
problem.

Appendix A. Transforming degree-2 nodes (from Corollary 3.3). Al-
though the hardwired parsimony score naturally extends to them, degree-2 nodes are
not formally part of our phylogenetic network model. Fortunately, degree-2 nodes can
simply be suppressed without altering the hardwired parsimony score. Unfortunately
this may in turn create multi-edges which are likewise excluded from our definition.
To deal with this, a multi-edge with multiplicity t ≥ 2 between two nodes u and v
can be encoded within the degree restrictions of a phylogenetic network by using a
specific gadget. Namely, group the edges into t′ = �t/2� pairs, and for each pair Pi

(1 ≤ i ≤ t′) (i) delete the two edges concerned, (ii) add two new nodes xi, yi, and (iii)
add the edges (u, xi), (u, yi), (xi, yi), (xi, v), (yi, v). (If t is odd, the remaining edge
can simply remain intact.) Again, this does not alter the hardwired parsimony score.

MAXIMUM PARSIMONY ON NETWORKS 583

In fact, both transformations also leave the cut properties of the graph unchanged,
which is important for the proof of Corollary 3.3.

Appendix B. Proof of Lemma 4.5.
Lemma 4.5. Consider a rooted phylogenetic network N on X and a p-state

character α on X. Then,

PSS(N,α) = PSsw(N,α).

Proof. Let S be a switching of N and τ be an extension of α to V (S)—or equiv-
alently to V (N)—such that

∑
e∈E(S) cτ (e) = PSS(N,α). Let T be the tree obtained

from S by deleting indegree-0 outdegree-1 nodes, deleting unlabelled outdegree-0
nodes, and suppressing indegree-1 outdegree-1 nodes, and let τ ′ be the restriction
of τ to the nodes of S still present in T . By construction we have that since S
is a switching of N on X , and T has been obtained from S as described above,
T ∈ T (N). Moreover, since τ is an extension of α to V (S), we have that τ ′ is an
extension of α to V (T). Finally, it is easy to see that PSS(N,α) =

∑
e∈E(S) cτ (e) ≥∑

e∈E(T) cτ ′(e) ≥ PSsw(N,α), since suppressing nodes (and consequently edges) can-
not increase the sum of changes on the remaining edges.

Now, let T be a tree of T (N) and τ be an extension of α to V (T) such that∑
e∈E(T) cτ (e) = PSsw(N,α). Moreover, let S be a switching corresponding to

T , i.e., such that T can be obtained from S by deleting indegree-0 outdegree-1
nodes, deleting unlabelled outdegree-0 nodes, and suppressing indegree-1 outdegree-
1 nodes. (We know that such a switching exists, because T ∈ T (N).) Now, let
τ ′ : V (S) → {1, . . . , p, ?} such that τ ′(u) = τ(u) if u ∈ V (T) (i.e., u is the image
in N of a node of T) and τ ′(u) = {?} otherwise. A value in {1, . . . , p} is associated
with all nodes u of S having τ ′(u) = {?} in the following way: We start by setting
τ ′(root(S)) to τ(root(T)), and then we traverse S in preorder, setting τ ′(u) to τ ′(up)
for all nodes u having τ ′(u) = {?}, where up is the parent node of u.

First note that the root of T corresponds to the node ρ of S that is closest to the
root with the following property: ρ has outdegree 2 or higher, and nodes not labelled
? can be reached from at least two children of ρ.

Then we have that all edges of S not reachable from ρ cost 0, since for all these
edges (u, v) we have τ ′(u) = τ ′(v) = τ ′(root(T)). Now, let e = (u, v) be an edge of T .
In S this edge will often correspond to a set of edges, denoted by ES(e); see Figure 8.
Now, note that the value of τ ′(·) is equal to τ(u) for all descendants of u in S that
cannot be reached via v. Then it is easy to see that the cost of all edges in ES(e)
equals cτ ′(w, v) = cτ (u, v) = cτ (e), where w is the parent node of v in S.

v

w

u

Fig. 8. An example of an edge (u, v) of T that has been mapped to several edges in the switching
underlying T , used in the proof of Lemma 4.5.

Since this holds for all edges of T , and τ ′ is clearly an extension of α to V (S),

584 M. FISCHER, L. VAN IERSEL, S. KELK, AND C. SCORNAVACCA

we have that PSsw(N,α) =
∑

e∈E(T) cτ (e) =
∑

e∈E(S) cτ ′(e) ≥ PSS(N,α). This
concludes the proof.

Acknowledgment. We thank Mike Steel for useful discussions on the topic of
this paper.

REFERENCES

[1] N. Alon, B. Chor, F. Pardi, and A. Rapoport, Approximate maximum parsimony and
ancestral maximum likelihood, IEEE/ACM Trans. Comput. Biol. Bioinformatics, 7 (2010),
pp. 183–187.

[2] M.L. Arnold, Natural Hybridization and Evolution, Oxford University Press, New York, 1996.
[3] M. Baroni, C. Semple, and M. Steel, Hybrids in real time, Syst. Biol., 55 (2006), pp. 46–56.
[4] J.P. Bogart, Genetics and Systematics of Hybrid Species, Science Publishers, Enfield, NH,

2003, pp. 109–134.
[5] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, and M. Yannakakis, The

complexity of multiterminal cuts, SIAM J. Comput., 23 (1994), pp. 864–894.
[6] A.W.F. Edwards and L.L. Cavalli-Sforza, Reconstruction of evolutionary trees, in System-

atics Association Publication, no. 6, London, 1964, pp. 64–76.
[7] J. Felsenstein, Cases in which parsimony or compatibility will be positively misleading., Syst.

Zool., 27 (1978), pp. 401–410.
[8] W. Fitch, Toward defining the course of evolution: Minimum change for a specific tree topol-

ogy., Syst. Zool., 20 (1971), pp. 406–416.
[9] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer, Berlin, 2006.

[10] L.R. Foulds and R.L. Graham, The Steiner problem in phylogeny is NP-complete., Adv. in
Appl. Math., 3 (1982), pp. 43–49.

[11] D.H. Huson, R. Rupp, and C. Scornavacca, Phylogenetic Networks: Concepts, Algorithms
and Applications, Cambridge University Press, Cambridge, UK, 2011.

[12] D.H. Huson and C. Scornavacca, Dendroscope 3: A program for computing and drawing
rooted phylogenetic trees and networks, Syst. Biol., 61 (2012), pp. 1061–1067.

[13] L.J.J. van Iersel, M. Fischer, S.M. Kelk, and C. Scornavacca, MPNet: Maximum Par-
simony on Networks, http://homepages.cwi.nl/∼iersel/MPNet/ (2013).

[14] L.J.J. van Iersel and S.M. Kelk, When two trees go to war, J. Theoret. Biol., 269 (2011),
pp. 245–255.

[15] L.J.J. van Iersel, C. Semple, and M. Steel, Locating a tree in a phylogenetic network,
Inform. Process. Lett., 110 (2010), pp. 1037–1043.

[16] G. Jin, L. Nakhleh, S. Snir, and T. Tuller, Inferring phylogenetic networks by the maximum
parsimony criterion: A case study, Mol. Biol. Evol., 24 (2007), pp. 324–337.

[17] G. Jin, L. Nakhleh, S. Snir, and T. Tuller, Parsimony score of phylogenetic networks:
Hardness results and a linear-time heuristic, IEEE/ACM Trans. Comput. Biol. Bioinfor-
matics, 6 (2009), pp. 495–505.

[18] I.A. Kanj, L. Nakleh, C. Than, and G. Xia, Seeing the trees and their branches in the
network is hard, Theoret. Comput. Sci., 401 (2008), pp. 153–164.

[19] L. Kannan and W.C. Wheeler, Maximum parsimony on phylogenetic networks, Algorithms
Mol. Biol., 7 (2012), 9.

[20] D.R. Karger, P. Klein, C. Stein, M. Thorup, and N.E. Young, Rounding algorithms for a
geometric embedding of minimum multiway cut, in Proceedings of the Thirty-First Annual
ACM Symposium on Theory of Computing (STOC ’99), 1999, pp. 668–678.

[21] S. Kelk and C. Scornavacca, Constructing minimal phylogenetic networks from softwired
clusters is fixed parameter tractable, Algorithmica, 68 (2014), pp. 886–915.

[22] S.M. Kelk, C. Scornavacca, and L.J.J. van Iersel, On the elusiveness of clusters,
IEEE/ACM Trans. Comput. Biol. Bioinformatics, 9 (2012), pp. 517–534.

[23] E.V. Koonin, K.S. Makarova, and L. Aravind, Horizontal gene transfer in prokaryotes:
Quantification and classification, Annu. Rev. Microbiol., 55 (2001), pp. 709–742.

[24] D.R. Maddison and K.S. Schulz, eds., The Tree of Life Web Project, http://www.tolweb.
org (2007).

[25] L. McDaniel, E. Young, J. Delaney, F. Ruhnau, K. Ritchie, and J. Paul, High frequency
of horizontal gene transfer in the oceans, Science, 330 (2010), p. 50.

[26] D.A. Morrison, Introduction to Phylogenetic Networks, RJR Productions, Uppsala, Sweden,
2011.

[27] L. Nakhleh, Evolutionary phylogenetic networks: Models and issues, in The Problem Solving

http://homepages.cwi.nl/~iersel/MPNet/
http://www.tolweb.org
http://www.tolweb.org

MAXIMUM PARSIMONY ON NETWORKS 585

Handbook for Computational Biology and Bioinformatics, Springer, Berlin, 2009, pp. 125–
158.

[28] C.T. Nguyen, N.B. Nguyen, W.K. Sung, and L. Zhang, Reconstructing recombination net-
work from sequence data: The small parsimony problem, IEEE/ACM Trans. Comput. Biol.
Bioinformatics, 4 (2007), pp. 394–402.

[29] R. Niedermeier, Invitation to Fixed Parameter Algorithms, Oxford Lecture Ser. Math. Appl.
31, Oxford University Press, Oxford, UK, 2006.

[30] D. Sankoff and P. Rousseau, Locating the vertices of a Steiner tree in an arbitrary metric
space, Math. Programming, 9 (1975), pp. 240–246.

[31] C. Semple and M. Steel, Phylogenetics, Oxford University Press, Oxford, UK, 2003.
[32] M. Xiao, Simple and improved parameterized algorithms for multiterminal cuts, Theory Com-

put. Syst., 46 (2010), pp. 723–736.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

