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Introduction

In phylogenetics, one central challenge is to construct a plausible evolutionary history for a set of contemporary species X given incomplete data. This usually concerns biological evolution, but the paradigm is equally applicable to more abstract forms of evolution, e.g. natural languages [START_REF] Nakhleh | Perfect phylogenetic networks: a new methodology for reconstructing the evolutionary history of natural languages[END_REF]. Classically an evolutionary history is modelled by a rooted phylogenetic tree, essentially a rooted tree in which the leaves are bijectively labelled by X [START_REF] Semple | Phylogenetics[END_REF]. In recent years, however, there has been growing interest in generalizing this model to directed acyclic graphs, that is, to rooted phylogenetic networks [START_REF] Bapteste | Networks: expanding evolutionary thinking[END_REF][START_REF] Huson | Phylogenetic networks: concepts, algorithms and applications[END_REF][START_REF] Morrison | Introduction to phylogenetic networks[END_REF]. In the latter model, reticulations, which are vertices of indegree 2 or higher, are of central importance; these are used to represent non-treelike evolutionary phenomena such as hybridization and lateral gene transfer. The reticulation number of a phylogenetic network can be defined as the number of edges that need to be removed in order to obtain a tree. It is easy to see that in networks with maximum indegree 2 (to which we will be able to restrict without loss of generality) the reticulation number is simply equal to the number of reticulations. This setting has naturally given rise to the Hybridization Number problem: given a set of rooted phylogenetic trees T on the same set of taxa X, construct a rooted phylogenetic network on X with the smallest possible reticulation number, such that an image of every tree in T is embedded in the network [START_REF] Baroni | Bounding the number of hybridisation events for a consistent evolutionary history[END_REF].

Hybridization Number has attracted considerable interest in a short space of time. Even in the case when T consists of two binary (that is, bifurcating) trees the problem is NP-hard, APX-hard [START_REF] Bordewich | Computing the minimum number of hybridization events for a consistent evolutionary history[END_REF] and in terms of approximability is a surprisingly close relative of the problem Directed Feedback Vertex Set [START_REF] Kelk | Cycle killer... qu'est-ce que c'est? On the comparative approximability of hybridization number and directed feedback vertex set[END_REF][START_REF] Van Iersel | Approximation algorithms for nonbinary agreement forests[END_REF]. On the positive side, this variant of the problem is fixed-parameter tractable (FPT) in parameter k, the reticulation number of an optimal network. Initially this was established via kernelization [START_REF] Bordewich | Computing the hybridization number of two phylogenetic trees is fixed-parameter tractable[END_REF], but more recently efficient bounded-search algorithms have emerged with O(3.18 k • poly(n)) being the current state of the art [START_REF] Whidden | Fixed-parameter algorithms for maximum agreement forests[END_REF], with n = |X|.

In this article we focus on the general case when t = |T | ≥ 2 and the trees in T are not necessarily binary. This causes complications for two reasons. First, when t > 2, the popular "maximum acyclic agreement forest" abstraction breaks down, a central pillar of algorithms for the t = 2 case. Second, in the nonbinary case the images of the trees in the network are allowed to be more "resolved" than the original trees. (More formally, an input tree T is seen as being embedded in a network N if T can be obtained from a subgraph of N by contracting edges.) The reason for this is that vertices with outdegree greater than two are used by biologists to model uncertainty in the order that species diverged. Both factors complicate matters considerably. Consequently, progress has been more gradual.

For the case of multiple binary trees, there exists a kernel with at most 20k 2 leaves [START_REF] Van Iersel | A quadratic kernel for computing the hybridization number of multiple trees[END_REF], various heuristics [START_REF] Chen | Algorithms for reticulate networks of multiple phylogenetic trees[END_REF][START_REF] Chen | An ultrafast tool for minimum reticulate networks[END_REF][START_REF] Wu | Close lower and upper bounds for the minimum reticulate network of multiple phylogenetic trees[END_REF] and an exact approach without running-time bound [START_REF] Wu | An algorithm for constructing parsimonious hybridization networks with multiple phylogenetic trees[END_REF].

For the case of two nonbinary trees, there is also a polynomial kernel [START_REF] Linz | Hybridization in non-binary trees[END_REF], based on a highly technical kernelization argument, and a simpler FPT algorithm based on bounded search [START_REF] Piovesan | A simple fixed parameter tractable algorithm for computing the hybridization number of two (not necessarily binary) trees[END_REF].

This leaves the general case of multiple nonbinary trees as the main variant for which it is unclear whether the problem is FPT. The most obvious parameter choice is, as before, the reticulation number k. However, other natural parameters in this case are the number of input trees t and the maximum outdegree ∆ + over all input trees. By the NP-hardness result mentioned above, it is clear that Hybridization Number is not FPT if the parameter is t or ∆ + , unless P = NP. Therefore, the most interesting questions are whether the problem is FPT if either (a) the only parameter is k, or (b) there are two parameters: k and t, or (c) there are two parameters: k and ∆ + .

In this paper, we answer the latter two questions affirmatively, using a kernelization approach. First, we prove that Hybridization Number admits a kernel with at most 4k(5k) t leaves. Second, we show a slightly different kernel with at most 20k 2 (∆ + -1) leaves. The running time of both kernelization algorithms is polyomial in n and t. Whether Hybridization Number remains FPT if k is the only parameter remains open. However, we do present an algorithm for Hybridization Number that runs in n f (k) t time, with f some computable function of k, hence showing that the problem is in the class XP.

Similar results can alternatively be obtained using bounded-search algorithms instead of kernelization, see the e-print [START_REF] Kelk | Towards the fixed parameter tractability of constructing minimal phylogenetic networks from arbitrary sets of nonbinary trees[END_REF]. We do not include those algorithms here because the proofs (although based on several important insights) are highly technical and the running times astronomical. In contrast, the kernelization algorithms are simple, fast and their proofs relatively elegant. Therefore, we only include the last result of our e-print [START_REF] Kelk | Towards the fixed parameter tractability of constructing minimal phylogenetic networks from arbitrary sets of nonbinary trees[END_REF], which is the O(n f (k) t) time algorithm, in this paper. Its running time is also astronomical but, combined with the kernelization algorithms, it gives explicit FPT algorithms, which are (theoretically) the best known algorithms that can solve general instances of Hybridization Number. Some of the lemmas that we prove in order to derive the correctness of the kernelization algorithms are of independent interest because they improve our understanding of how nonbinary trees can be embedded inside networks. This helps us to avoid a technical case analysis (as in [START_REF] Linz | Hybridization in non-binary trees[END_REF]) and exhaustive guessing (as in [START_REF] Kelk | Towards the fixed parameter tractability of constructing minimal phylogenetic networks from arbitrary sets of nonbinary trees[END_REF]), leading to a simple and unified kernelization approach that is applicable to a more general problem (compared to e.g. [START_REF] Linz | Hybridization in non-binary trees[END_REF][START_REF] Van Iersel | A quadratic kernel for computing the hybridization number of multiple trees[END_REF]).

Moreover, the 4k(5k) t kernel introduces an interesting way to deal with multiple parameters simultaneously. It is based on searching, for decreasing q, for certain substructures called "q-star chains", which are chains that are common to all t input trees and form stars in q of the input trees. When we encounter such substructures we truncate them to a size that is a function of q and k. Since we loop through all possible values of q (0 ≤ q ≤ t), we eventually truncate all common substructures. The correctness of each step heavily relies on the fact that substructures for larger values of q have already been truncated. However, when q decreases, the size to which substructures can be reduced increases (as will become clear later). This has the effect that the size of kernelized instances is a function of k and t and not of k only. For the 20k 2 (∆ + -1) kernel, we use a similar but simpler technique.

From our results it follows that Hybridization Number admits a polynomialsize kernel in the case that either the number of input trees or their maximum outdegrees are bounded by a constant. Moreover, the kernelization algorithms run in polynomial time for general instances, with an unbounded number of trees with unbounded outdegrees. The main remaining open problem is to determine whether Hybridization Number remains fixed-parameter tractable if the input consists of an unbounded number of trees with unbounded outdegrees and the only parameter is the reticulation number k.

Finally, to demonstrate the practical relevance of the kernelization algorithms presented in this article, we have implemented them in Java and studied their performance under a variety of experimental parameters. Our experiments show that for large trees (500-1000 taxa) the kernelizations run quickly and in many cases a reduction in instance size of 90% or more is achieved. The experiments also yield insight into the conditions under which the different kernelization algorithms do and do not effectively reduce the size of instances. The code, which combines all the kernelization algorithms into a single package, is freely available at http://leovaniersel.wordpress.com/software/treeduce/.

Preliminaries

Let X be a finite set. A rooted phylogenetic X-tree is a rooted tree with no vertices with indegree 1 and outdegree 1, a root with indegree 0 and outdegree at least 2, and leaves bijectively labelled by the elements of X. We identify each leaf with its label. We henceforth call a rooted phylogenetic X-tree a tree (on X) for short. A tree T is a refinement of a tree T if T can be obtained from T by contracting edges.

Throughout the paper, we refer to directed edges simply as edges. If e = (u, v) is an edge, then we say that v is a child of u, that u is a parent of v, that v is the head of e and that u is the tail of e.

A rooted phylogenetic network (on X) is a directed acyclic graph with no vertices with indegree 1 and outdegree 1, a single indegree-0 vertex (the root), and leaves (vertices with outdegree 0) bijectively labelled by the elements of X. Rooted phylogenetic networks will henceforth be called networks for short in this paper. A tree T is displayed by a network N if T can be obtained from a subgraph of N by contracting edges. See Figure 1 for an example. Note that, without loss of generality, we may assume that edges incident to leaves are not contracted. Using

d -(v) to denote the indegree of a vertex v, a reticulation is a vertex v with d -(v) ≥ 2.
The reticulation number of a network N with vertex set V and edge set E is defined as r(N ) = |E| -|V | + 1 or, equivalently, as

r(N ) = v∈V :d -(v)≥2 (d -(v) -1).
Given a set of trees T on X, we use r(T ) to denote the minimum value of r(N ) over all networks N on X that display T . We are now ready to formally define the problem we consider.

Problem: Hybridization Number

Instance: A finite set X, a collection T of trees on X and k ∈ N + . Question: Is r(T ) ≤ k, that is, does there exist a network N on X that displays T and has r(N ) ≤ k.

A network is called binary if each vertex has indegree and outdegree at most 2 and if each vertex with indegree 2 has outdegree 1. By the following observation we may restrict to binary networks.

Observation 1 ( [START_REF] Kelk | Towards the fixed parameter tractability of constructing minimal phylogenetic networks from arbitrary sets of nonbinary trees[END_REF]). If there exists a network N on X that displays T then there exists a binary network N on X that displays T such that r(N ) = r(N ).

The observation follows directly from noting that, for each network N , there exists a binary network N with r(N ) = r(N ) such that N can be obtained from N by contracting edges. Hence, any tree displayed by N is also displayed by N .

A subgraph T of a network N (which may be a tree) is said to be a pendant subtree if T does not contain reticulations and if there is no non-root vertex of T that has a child or parent in N that is not in T . Note that a pendant subtree of a network on X is a tree on Y with Y ⊆ X and Y = ∅. If |Y | = 1 then the subtree is called trivial.

We use p N (v) to denote the set of parents of a vertex v in a network N (which may be a tree). If x and y are leaves of N , then we say that x is above y in N if N contains a directed path from a node in p N (x) to y. If, in addition, p N (x) = p N (y), we say that x is strictly above y. Observe that two leaves x and y have a common parent in N if and only if x is above y and y is above x.

Suppressing a vertex v with indegree 1 and outdegree 1 means adding an edge from the parent of v to the child of v and subsequently deleting v.

The notion of "generators" is used to describe the underlying structure of a network without nontrivial pendant subtrees [START_REF] Kelk | Constructing minimal phylogenetic networks from softwired clusters is fixed parameter tractable[END_REF]. Let k ∈ N + . A binary k-reticulation generator is defined as an acyclic directed multigraph with a single root with indegree 0 and outdegree 1, exactly k vertices with indegree 2 and outdegree at most 1, and all other vertices have indegree 1 and outdegree 2. See Figure 2 for an example. Let N be a binary network with no nontrivial pendant subtrees and with r(N ) = k. Then, a binary k-reticulation generator is said to be the generator underlying N if it can be obtained from N by adding a new root with an edge to the old root, deleting all leaves and suppressing all resulting indegree-1 outdegree-1 vertices. In the other direction, N can be reconstructed from its underlying generator by subdividing edges, adjoining a leaf to each vertex that subdivides an edge, or has indegree 2 and outdegree 0, via a new edge, and deleting the outdegree-1 root. The sides of a generator are its edges (the edge sides) and its vertices with indegree 2 and outdegree 0 (the vertex sides). Thus, each leaf of N is on a certain side of its underlying generator.

To formalize this, consider a leaf x of a binary network N without nontrivial pendant subtrees and with underlying generator G. If the parent p of x has indegree 2, then p is a vertex side of G and we say that x is on side p. If, on the other hand, the parent p of x has indegree 1 and outdegree 2, then p is used to subdivide an edge side e of G and we say that x is on side e. We say that two leaves x and y are on the same side of N if the underlying generator of N has an edge side e such that x and y are both on side e. The following lemma will be useful.

Lemma 1 ( [START_REF] Van Iersel | A quadratic kernel for computing the hybridization number of multiple trees[END_REF]). If N is a binary network with no nontrivial pendant subtrees and with r(N ) = k > 0 and if G is its underlying generator, then G has at most 4k -1 edge sides, at most k vertex sides and at most 5k -1 sides in total.

A kernelization of a parameterized problem is a polynomial-time algorithm that maps an instance I with parameter k to an instance I with parameter k such that (1) (I , k ) is a yes-instance if and only if (I, k) is a yes-instance, (2) the size of I is bounded by a function f of k, and (3) the size of k is bounded by a function of k [START_REF] Downey | Parameterized complexity[END_REF]. A kernelization is usually referred to as a kernel and the function f as the size of the kernel. Thus, a parameterized problem admits a polynomial kernel if there exists a kernelization with f being a polynomial. A parameterized problem is fixed-parameter tractable (FPT) if there exists an algorithm that solves the problem in time O(g(k)|I| O(1) ), with g being some computable function of k and |I| the size of I. It is well known that a parameterized problem is fixed-parameter tractable if and only if it admits a kernelization and is decidable. However, there exist fixedparameter tractable problems that do not admit a kernel of polynomial size unless the polynomial hierarchy collapses [START_REF] Bodlaender | On problems without polynomial kernels[END_REF]. Kernels are of practical interest because they can be used as polynomial-time preprocessing which can be combined with any algorithm solving the problem (e.g. an exponential-time exact algorithm or a heuristic). The class XP contains all parameterized problems that can be solved in n h(k) time, with h a computable function of the parameter k.

A polynomial kernel for a bounded number of trees

We first introduce the following key definitions. Let T be a set of trees. A tree S is said to be a common pendant subtree of T if it is a refinement of a pendant subtree of each T ∈ T and S is said to be nontrivial if it has at least two leaves.

The kernelization is described in Algorithm 1. We will give the definition of (common q-star) chains after Lemmas 2 and 3, which show that the subtree reduction preserves the reticulation number and can be applied in polynomial time. Their proofs use the following definition. Cleaning up a directed graph means repeatedly deleting unlabelled outdegree-0 vertices and indegree-0 outdegree-1 vertices, suppressing indegree-1 outdegree-1 vertices and replacing multiple edges by single edges until none of these operations is applicable. Cleaning up is used to turn directed graphs into valid networks and it can easily be checked that the cleaning-up operation does not affect which trees are being displayed and its result does not depend on the order of the operations.

Lemma 2. Let (X, T , k) be an instance of Hybridization Number and let (X , T , k) be the instance obtained after applying the subtree reduction for a common pendant subtree S. Then r(T ) ≤ k if and only if r(T ) ≤ k.

Proof. If r(T ) ≤ k then clearly also r(T ) ≤ k because in any network N displaying T we can simply replace leaf x by the pendant subtree S to obtain a network N that displays T and has r(N ) = r(N ).

Algorithm 1: Kernelization algorithm for t := |T | trees Subtree Reduction: if there is a nontrivial maximal common pendant subtree S of T then Let x † / ∈ X. In each T ∈ T , if T is the pendant subtree of T that S is a refinement of, replace T by a single leaf labelled x † . Remove the labels labelling leaves of S from X and add x † to X.

go to Line 1

Chain Reduction: for q = t -1, t -2, . . . , 0 do if there exists a maximal common q-star chain (x 1 , . . . , x p ) of T with p > (5k) t-q then Delete leaves x (5k) t-q +1 , . . . , x p from X and from each tree in T and repeatedly suppress outdegree-1 vertices and delete unlabelled outdegree-0 vertices until no such vertices remain. go to Line 1 Now suppose that r(T ) ≤ k, that is, that there exists a network N that displays T and has r(N ) ≤ k. We construct a network N displaying T from N in the following way. Pick any leaf y of S. Delete all leaves of S except for y from N and relabel y to x † . Let N be the result of cleaning up the resulting digraph. It is easy to check that N displays T and that r(N ) ≤ r(N ). Hence, r(T ) ≤ k.

Lemma 3. Given a set T of trees on X, there exists an O(|X| 3 |T |) time algorithm that decides if there exists a nontrivial maximal common pendant subtree of T and constructs such a subtree if it exists.

Proof. If there exist no two leaves that have a common parent in each tree in T , then there are no nontrivial common pendant subtrees and we are done. Now assume that there exist leaves x, y that have a common parent in each tree in T . We show how the common pendant subtree on x and y can be extended to a maximal common pendant subtree of T . Let T be the result of modifying each tree in T by removing y, suppressing the former parent of y if it gets outdegree 1 and relabelling x to z (with z / ∈ X). Search, recursively, for a nontrivial maximal common pendant subtree of T . Let S be such a subtree if it exists and, otherwise, let S be the subtree consisting only of leaf z. If S does not contain z, then let S := S . If S does contain z, then let S be the result of adding two leaves x and y with edges (z, x) and (z, y) and removing the label of z. Then, S is a nontrivial maximal common pendant subtree of T .

Checking for each pair of taxa whether they have a common parent in each tree takes O(|X| 2 |T |) time. This has to be repeated at most |X| times because one leaf is deleted in each iteration. Hence, the total running time is

O(|X| 3 |T |).
We now turn to the chain reduction, and start by formally defining a chain.

Definition 1. If T is a tree on X, p ≥ 2 and x 1 , . . . , x p ∈ X, then (x 1 , . . . , x p ) is a chain of T if:

(1) there exists a directed path (v 1 , ..., v τ ) in T, for some τ ≥ 1;

(2) each x i is a child of some v j ;

(3) if x i is a child of v j and i < p, then x i+1 is either a child of v j or of v j+1 ; (4) for i ∈ {2, . . . , τ -1}, the children of v i are all in {v i+1 , x 1 , x 2 , . . . , x p }.

If, in addition, τ = 1 or the children of v τ are all in {x 1 , . . . , x p }, then (x 1 , . . . , x p ) is said to be a pendant chain of T . The length of the chain is p.

Observe that (3) can equivalently be replaced by

(3') x i is above x j in T whenever i < j.
A chain is said to be a common chain of T if it is a chain of each tree in T . The following observations follow easily from the definition of a chain.

Observation 2. If (x 1 , . . . , x p ) is a common chain of T and 1 ≤ i < j ≤ p, then (x i , . . . , x j ) is a common chain of T .

Observation 3. If (x 1 , . . . , x p ) is a chain of a tree T , 1 ≤ i < j ≤ p and x i and x j have a common parent in T , then x i , . . . , x j have a common parent in T .

It will turn out that chains are easier to deal with when they form a star in more input trees, which leads to the following definition.

Definition 2. If T is a set of trees on X and x 1 , . . . , x p ∈ X, then (x 1 , . . . , x p ) is a common q-star chain of T if:

(a) (x 1 , . . . , x p ) is a common chain of T and (b) in precisely q trees of T , all of x 1 , . . . , x p have a common parent.

We say that a common q-star chain (x 1 , . . . , x p ) of T is maximal if there is no common q-star chain (y 1 , . . . , y p ) of T with {x 1 , . . . , x p } {y 1 , . . . , y p }. Notice that a common 0-star chain is a common chain that does not form a star in any tree. An illustration of the above definitions is in Figure 3.

To prove correctness of the chain reduction, we use two central lemmas (Lemmas 4 and 5 below). The idea of these lemmas is illustrated in Figure 4. The two trees T 1 and T 2 in this figure have a common chain (a, b, c, d, e). Both trees are displayed by network N . However, the leaves of the chain are spread out over different sides of the underlying generator G of N . The idea of the correctness proof for the chain reduction is to argue that there exists a modified network N in which the leaves of the chain (a, b, c, d, e) all lie on the same side. Moreover, network N should display all input trees and its reticulation number should not be higher than the reticulation number of N .

In T 1 , all leaves of the chain have a common parent and hence the chain is pendant in T 1 . For this case, Lemma 4 argues that all leaves of the chain can be moved to any edge side that contains at least one of its leaves, and the resulting network still displays T 1 .

In T 2 , there are two leaves x i = d and x j = e that are on the same side of G (the blue side s b ) and that do not have a common parent in T 2 . For this case, Lemma 5 argues that all the leaves of the chain can be moved to side s b , and the resulting network will still display T 2 . (Note that we cannot move all the leaves of the chain to side s r , even though it contains two leaves b, c of the chain, because b and c have a common parent in T 2 .)

Hence, the network N obtained by moving all leaves of the chain to the blue side s b displays both T 1 and T 2 . Furthermore, r(N ) = r(N ) = 2.

We now formally state and prove the two aforementioned central lemmas. These lemmas use the following definition. Regrafting a chain (x 1 , . . . , x p ) above an indegree-1 vertex v of a network N means deleting x 1 , . . . , x p from N , subdividing the edge entering v by a directed path v 1 , . . . , v p and adding the leaves x 1 , . . . , x p by edges (v 1 , x 1 ), . . . , (v p , x p ).

Lemma 4. Let N be a binary network and let T be a tree displayed by N . Suppose that (x 1 , . . . , x p ) is a pendant chain of T and that v is the parent of x i in N , with i ∈ {1, . . . , p} and that v has indegree 1. Let N be the network obtained from N by regrafting (x 1 , . . . , x p ) above v and cleaning up. Then, N displays T .

Proof. Let D be the directed graph obtained from N by regrafting (x 1 , . . . , x p ) above v (without cleaning up). Let v i be the parent of x i in D for 1 ≤ i ≤ p.

We show that D displays T , from which it will follow directly that N displays T .

Since N displays T , there is a subgraph T s of N that is a refinement of T . Clearly, T s contains v. Let T s be the subgraph of D obtained from T s by regrafting (x 1 , . . . , x p ) above v and repeatedly removing all unlabelled vertices that have outdegree 0 in T s .

It remains to prove that the resulting subgraph T s of D is a refinement of T . First note that all leaves that are reachable from v in T s are in {x 1 , . . . , x p } because this chain is pendant and N is binary. Therefore, the chain is also pendant in T s . We can find a set of edges of T s such that contracting these edges gives T as follows.

Let v * be the lowest common ancestor of x 1 , . . . , x p in T s . Then there is a directed path from v * to v in T s (possibly, v * = v). Since T s is a refinement of T , there is a set of edges E such that T can be obtained from T s by contracting all edges of E.

Assume without loss of generality that E does not contain any edges whose head is a leaf. Let E be the set of edges of D containing all edges of E that are in T s and all edges on the directed path from v * to v 1 in T s . Then, T can be obtained from T s by contracting the edges of E and part of the edges on the directed path v 1 , . . . , v p , v (a part of these edges because the chain is not necessarily a star in T ). Hence, D displays T .

Note that, if network N in Lemma 4 has no nontrivial pendant subtrees, the assumption in the statement of the lemma that v has indegree 1 is equivalent to assuming that x i is on an edge side of the underlying generator.

Lemma 5. Let N be a binary network without nontrivial pendant subtrees and let T be a tree displayed by N . Suppose that (x 1 , . . . , x p ) is a chain of T , that 1 ≤ i, j ≤ p, that x i and x j do not have a common parent in T and that x i and x j are on the same side of N . Let v be the parent of x i in N . Let N be the network obtained from N by regrafting (x 1 , . . . , x p ) above v and cleaning up. Then, N displays T .

Proof. First note that, since x i and x j are on the same side of N , this must be an edge side. Hence, the indegree of v is 1 (as in Lemma 4).

Let D be the directed graph obtained from N by regrafting (x 1 , . . . , x p ) above v (without cleaning up). Let v i be the parent of x i in D for 1 ≤ i ≤ p. We show (as in the proof of Lemma 4) that D displays T , from which it will follow directly that N displays T .

Since N displays T , there is a subgraph T s of N that is a refinement of T . Clearly, T s contains v. Let T s be the subgraph of D obtained from T s by regrafting (x 1 , . . . , x p ) above v and repeatedly removing all unlabelled vertices that have outdegree 0 in T s .

It remains to prove that the resulting subgraph T s of D is a refinement of T . As in the proof of Lemma 4, since T s is a refinement of T , there is a set of edges E such that T can be obtained from T s by contracting all edges of E. Assume without loss of generality that E does not contain any edges whose head is a leaf. Let v * be the lowest common ancestor of x 1 , . . . , x p in T s . Let E be the set of edges of D containing all edges of E that are in T s and all edges on the directed path from v * to v 1 in D. We distinguish two cases.

First suppose that (x 1 , . . . , x p ) is a pendant chain (of T ). Then, D displays T by Lemma 4. Now suppose that (x 1 , . . . , x p ) is not a pendant chain (of T ). Let v * * be the parent of x p in T s and let P * be the directed path from v * to v * * in T s . Since x i and x j do not have a common parent in T , they must also have distinct parents in T s . Moreover, since x i and x j are on the same side of N , their parents must lie on P * . Since the chain is not pendant, v * * has at least one child that has at least one leaf-descendant in T s that is not in {x 1 , . . . , x p }. Therefore, a subdivision of the path P * is preserved in T s . Hence, as before, T can be obtained from T s by contracting the edges of E and part of the edges on the directed path v 1 , . . . , v p , v. Hence, N displays T .

The next lemma shows correctness of the chain reduction, and thereby of Algorithm 1. It is based on the idea that, if a q-star chain is long enough and q -star chains for q > q have already been reduced, then one of Lemmas 4 and 5 applies for each tree. Lemma 4 applies to each tree in which the q-star chain is a star. In the other trees, not too many leaves can have a common parent because q -star chains for q > q have already been reduced, which will make it possible to apply Lemma 5. Lemma 6. Let q ∈ {0, . . . , t -1} (with t = |T |) and let (X, T , k) be an instance of Hybridization Number without nontrivial common pendant subtrees or maximal common q -star chains of more than (5k) t-q leaves, for q < q ≤ t-1. Let (X , T , k) be the instance obtained after applying the chain reduction to a maximal common qstar chain C = (x 1 , . . . , x p ) of T with p > (5k) t-q . Then r(T ) ≤ k if and only if r(T ) ≤ k.

Proof. It is clear that if r(T ) ≤ k then r(T ) ≤ k because the chain reduction only deletes leaves (and suppresses and deletes vertices).

It remains to prove the other direction. Assume that r(T ) ≤ k, that is, there exists a network N that displays T and has r(N ) ≤ k. Define m := (5k) t-q-1 . Hence, there are no common chains of T of more than m leaves that have a common parent in more than q of the trees.

Let C = (x 1 , . . . , x 5km ). First observe that C is a common chain of T and, moreover, that C is a common q -star chain of T with q ≥ q. Moreover, we claim the following.

Claim 1. Any two leaves in {x 1 , . . . , x 5km-1 } have a common parent in a tree T ∈ T if and only if they have a common parent in the corresponding tree T ∈ T .

This claim follows directly from the observation that, in the chain reduction, the parents of the leaves x 1 , . . . , x 5km-1 cannot become outdegree-1 and are therefore not being suppressed. Correctness of the next claim can be verified in a similar way.

Claim 2. If C is not pendant in T ∈ T , then any two leaves in {x 1 , . . . , x 5km } have a common parent in T if and only if they have a common parent in the corresponding tree T ∈ T .

The above claim is not true for pendant chains when all but one of the children of the parent of x 5km are deleted by the chain reduction. However, this is not a problem because we only need the claim for non-pendant chains.

Now define

C * := (x 1 , x 1+m , x 1+2m , . . . , x 1+(5k-1)m ), that is, C * contains 5k leaves and the indices of any two subsequent leaves are m apart.

Let G be the generator underlying N . Each leaf of C * is on a certain side of G .

Since G has at most 5k -1 sides (by Lemma 1) and C * contains 5k leaves, there exist two leaves x i , x j of C * (and thus of C ) that are on the same edge side of G by the pigeonhole principle. Assume without loss of generality that j > i. Then, by the construction of C * , j ≥ i + m.

We modify network N to a network N by regrafting chain C above the parent v of x i in N and cleaning up.

For each tree T ∈ T in which all of x 1 , . . . , x 5km have a common parent, Lemma 4 shows that N displays T . There are at least q such trees. In fact, the following claim implies that there are precisely q such trees. Moreover, the claim shows that in all other trees x i and x j do not have a common parent. Therefore, it follows from Lemma 5 that these trees are also displayed by N . Claim 3. The number of trees of T in which x i and x j have a common parent is at most q.

To prove the claim, consider C * * := (x i , . . . , x j ). Since C * * is a subchain of C , it is a chain of each tree in T by Observation 2.

First consider the case q = t -1 and assume that x i and x j have a common parent in more than q trees in T and hence in all trees in T . Then, x i , . . . , x j all have a common parent in all trees in T , by Observation 3. Since C is a q-star chain of T , there are q = t -1 trees in T in which all leaves of C have a common parent. Let T * be the only tree in T in which the leaves of C do not all have a common parent. Then C is not pendant in T * or its leaves would form a nontrivial common pendant subtree of T . Hence, x i and x j have a common parent in T * by Claim 2. However, then x i , x j , and their common parent form a nontrivial common pendant subtree of T . This is a contradiction to the assumption that T has no nontrivial common pendant subtrees.

To finish the proof of Claim 3, consider the case q < t -1. In this case, m > 1. Recall that x j is in C * and that the highest-indexed element of C * is x 1+(5k-1)m . Hence, m > 1 implies that 5km > 1 + (5k -1)m and hence that C * * contains only leaves in {x 1 , . . . , x 5km-1 }. Because C * * contains more than m leaves, the number of trees of T in which all the leaves of C * * have a common parent is at most q (here we use the fact that there are no common q -star chains for q > q that have more than m leaves). Hence, it follows from Claim 1 that the number of trees of T in which the leaves of C * * have a common parent is at most q. Claim 3 then follows by Observation 3.

Hence, we have shown that N displays T . We now construct a network N from N by replacing the reduced chain by the unreduced chain. More precisely, let e 5km be the edge of N that leaves v 5km but is not the edge (v 5km , x 5km ). Subdivide e 5km by a directed path (v 5km+1 , . . . , v p ) and add leaves x 5km+1 , . . . , x p by edges (v 5km+1 , x 5km+1 ), . . . , (v p , x p ). This gives N . Then, by a similar argument as in the proof of Lemma 5, N displays T . Moreover, since none of the applied operations increase the reticulation number, we have r(N ) ≤ r(N ).

The next lemma shows that the chain reduction can be performed in polynomial time. It uses the following additional definitions and observation. We define an s-tchain of a tree T as a chain (x 1 , . . . , x p ) of T with x 1 = s and x p = t. A set C ⊆ X of leaves is s-t-chainable (with respect to a set T of trees on X) if there exists an ordering of the leaves in C that is a common s-t-chain for T . We first show that this ordering is unique when T has no nontrivial common pendant subtrees. Observation 4. If T has no nontrivial common pendant subtrees and C is s-tchainable with respect to T , then there exists a unique common s-t-chain of T with leaf set C.

Proof. Assume to the contrary that there are two distinct common s-t-chains of T with leaf set C. Then there exist two leaves x, y ∈ C such that x comes before y in one of these chains and after y in the other one. Then, in each T ∈ T , x is above y and y is above x, implying that x and y have a common parent. This contradicts the assumption that T has no nontrivial common pendant subtrees. Lemma 7. There exists an O(|X| 6 |T |)-time algorithm that, given a set T of trees on X and q ∈ N, decides if there exists a common q-star chain of T and constructs such a chain of maximum size if one exists.

Proof. First, we show how to decide in polynomial time if a set C ⊆ X is s-tchainable. It is easy to check whether parts (1), ( 2) and ( 4) of Definition 1 are satisfied in each tree in T and whether x 1 = s and x p = t. Hence, assume that this is the case. Part (3) is then equivalent to (3'), which requires that there exists an ordering (x 1 , . . . , x p ) of the leaves of C such that, whenever i < j, x i is above x j in each tree T ∈ T . To check if there exists such an ordering, construct a directed graph D C with vertex set C and an edge (x, y) precisely if there exists a tree T ∈ T in which x is strictly above y. An ordering (x 1 , . . . , x p ) of the leaves in C is called a topological ordering for D C if there is no edge (x j , x i ) with i < j. Hence, (x 1 , . . . , x p ) is a topological ordering of D C if and only if, whenever i < j, there is no tree T ∈ T in which x j is strictly above x i , that is, x i is above x j in all trees T ∈ T . Since it is well known that a directed graph is acyclic if and only if there exists a topological ordering of its vertices, it follows that D C is a acyclic if and only if C is s-t-chainable.

We now describe an algorithm that decides, for s, t ∈ X, if there exists a common q-star s-t-chain of T and constructs such a chain of maximum size if one exists. This proves the lemma because one can simply try each combination s, t ∈ X.

The algorithm is as follows. If, in at least one T ∈ T , s is not above t then there exists no s-t-chain of T and we stop. Otherwise, let P T be the directed path from p T (s) to p T (t) in T . If |{T ∈ T | p T (s) = p T (t)}| = q, then no s-t-chain is a q-star chain and we stop. Otherwise, define C as the set of leaves containing s, t and all leaves x ∈ X for which p T (x) is an internal vertex of P T for at least one T ∈ T .

Note that any common s-t-chain must contain all leaves in C. Moreover, if C is not s-t-chainable then either it contains a leaf that has its parent not on the path P T in some T ∈ T , or the directed graph D C is cyclic. In either case, no superset of C is s-t-chainable. Hence, if C is not s-t-chainable, then T has no common s-t-chain and we stop. Otherwise, there exists a unique common chain on C. In that case, we try to add as many leaves as possible to C such that it remains s-t-chainable (because we need a chain of maximum size). Define

X := {x ∈ X \ C | p T (x) ∈ {p T (s), p T (t)} ∀ T ∈ T and C ∪ {x} is chainable}.
The set X contains all leaves of X \ C that can be in a common s-t-chain of T . Now consider the directed graph D = (X , A) with an edge (x, y) ∈ A precisely if x is above y in all T ∈ T . Observe that D is acyclic because, if it had a directed cycle, the vertices in the cycle would correspond to leaves with a common parent in all trees T ∈ T , contradicting the assumption that T has no nontrivial common pendant subtrees. We claim that a set X ⊆ X forms a directed path in D if and only if C ∪ X is chainable. First suppose that C ∪ X is chainable. Then let (x 1 , . . . , x n ) be an ordering of the elements of X following the ordering in the chain (from top to bottom). Then there is, in each T ∈ T , a directed path from p T (x i ) to p T (x i+1 ) (i = 1, . . . , n -1) and hence (x 1 , . . . , x n ) is a directed path in D. To show the converse, assume that (x 1 , . . . , x n ) is a directed path in D. By the definition of X , for each x ∈ X it holds that C ∪{x} is chainable. Moreover, the position where x can be inserted into the chain on C is unique by Observation 4. Hence, the leaves x 1 , . . . , x n can be inserted into the chain on C one by one, where their relative position is determined by the order x 1 , . . . , x n . This gives a common chain of T and hence C∪X is chainable.

A longest directed path in D can be found in polynomial time since D is acyclic. Let X P be the set of vertices on such a longest path. Then C ∪ X P is chainable and the corresponding common s-t-chain of T is a common q-star s-t-chain of maximum size. To see that Algorithm 1 runs in polynomial time, it remains to observe that at least one leaf is removed in each iteration and hence that the number of iterations is bounded by |X|. Since the running time is dominated by the search for maximum common q-star chains, it follows from Lemma 7 that Algorithm 1 runs in O(|X| 7 |T |) time.

It remains to analyse the running time. Checking if a set is chainable takes O(|X|

It remains to bound the size of the kernel. Proof. Since r(T ) ≤ k, also r(T ) ≤ k by Lemma 6. Hence, there exists a network N on X that displays T and has r(N ) ≤ k. We can and will assume that N is binary (by Observation 1). Since subtree reductions have been applied in Algorithm 1, T does not contain any nontrivial common pendant subtrees. Hence, N does not contain any nontrivial pendant subtrees. Let G be the generator underlying N . By Lemma 1, G has at most k vertex sides and at most 4k -1 edge sides. Each vertex side contains exactly one leaf. Since chain reductions have been applied in Algorithm 1, T does not contain any common chains of more than (5k) |T | leaves. Hence, each edge side of G contains at most (5k) |T | leaves. Therefore,

|X | ≤ k + (4k -1)(5k) |T | ≤ 4k(5k) |T | .
Correctness of the following theorem now follows from Lemmas 2-3 and 6-8.

Theorem 1. The problem Hybridization Number on |T | = t trees admits a kernel with at most 4k(5k) t leaves.

A polynomial kernel for bounded outdegrees

We now show that an approach similar to the one in the previous section can also be used to obtain a kernelization for Hybridization Number in the case that not the number of input trees but their maximum outdegree is bounded. Algorithm 2 describes a polynomial kernel for Hybridization Number if the maximum outdegree of the input trees is at most ∆ + . Algorithm 2 has the same running time as Algorithm 1, namely O(|X| 7 |T |).

Algorithm 2: Kernelization algorithm for bounded outdegree

Apply the subtree reduction (see Algorithm 1). Chain Reduction: if there is a maximal common chain (x 1 , . . . , x p ) of T with p > 5k(∆ + -1) then Delete leaves x 5k(∆ + -1)+1 , . . . , x p from X and from each tree in T and repeatedly suppress outdegree-1 vertices and delete unlabelled outdegree-0 vertices until no such vertices remain. go to Line 1 Theorem 2. The problem Hybridization Number on trees with maximum outdegree ∆ + admits a kernel with at most 20k 2 (∆ + -1) leaves.

Proof. We claim that Algorithm 2 provides the required kernelization. The algorithm can be applied in polynomial time by Lemmas 3 and 7 (see above). Correctness of the subtree reduction has been shown in Lemma 2 and the proof of the kernel size is analogous to the proof of Lemma 8. Hence, it remains to show correctness of the chain reduction.

Let (X, T , k) be an instance of Hybridization Number, let C = (x 1 , . . . , x p ) be a maximal common chain of T and let (X , T , k) be the instance obtained by reducing this chain to C = (x 1 , . . . , x 5k(∆ + -1) ). As in the proof of Lemma 6, the only nontrivial direction of the proof is to show that if r(T ) ≤ k then r(T ) ≤ k.

Assume that r(T ) ≤ k, that is, that there exists a network N that displays T and has r(N ) ≤ k. Define

C * := {x 1 , x 1+(∆ + -1) , x 1+2(∆ + -1) , . . . , x 1+(5k-1)(∆ + -1) }.
Then, since C * contains 5k leaves and N has at most 5k -1 sides, there are two leaves x i , x j in C * that are on the same (edge) side of N . Assume j > i. By the construction of C * , |{x i , . . . , x j }| > ∆ + -1. Consider a tree T ∈ T in which x i and x j have a common parent v. Since v has outdegree at most ∆ + , its children are precisely x i , . . . , x j . This means that C is a pendant chain in T (because, by the definition of pendant chain, any parent of a leaf of a non-pendant chain has at least one child that is not a leaf or a leaf not in the chain). Hence, in each tree T ∈ T , either x i and x j do not have a common parent or C is a pendant chain.

Let m = ∆ + -1. We modify network N to a network N by regrafting C = (x 1 , . . . , x 5km ) above the parent of x i and cleaning up (see the definition of regrafting above Lemma 4). Let v i be the parent of x i in N , for 1 ≤ i ≤ 5km.

For each tree T ∈ T in which C is a pendant chain, it follows from Lemma 4 that N displays T .

For each tree T ∈ T in which x i and x j do not have a common parent, it follows from Lemma 5 that N displays T (using that x i and x j are on the same side in N ). Therefore, N displays T . We now construct a network N from N as follows. Let e 5km be the edge that leaves v 5km but is not the edge (v 5km , x 5km ). Subdivide e 5km by a directed path (v 5km+1 , . . . , v p ) and add leaves x 5km+1 , . . . , x p by edges (v 5km+1 , x 5km+1 ), . . . , (v p , x p ). Then, N displays T . Moreover, since none of the applied operations increase the reticulation number, we have r(N ) ≤ r(N ) and hence that r(T ) ≤ k.

An exponential-time algorithm

From the existence of the kernelization in Theorem 1 it follows directly that there exists an FPT algorithm for Hybridization Number parameterized by k and t = |T |. Nevertheless, we find it useful to describe an exponential-time algorithm for Hybridization Number which combined with the kernelization then gives an explicit FPT algorithm. We do this in this section. Although the running time of the algorithm is not particularly fast, the algorithm is nontrivial and it is not clear if a significantly faster algorithm exists for general instances of Hybridization Number. Moreover, this is the first proof that Hybridization Number is in the class XP.

As before, we may restrict to binary networks by Observation 1. Moreover, by Lemmas 3 and 2 we may assume that T has no nontrivial common pendant subtrees and hence we may restrict to networks with no nontrivial pendant subtrees.

We need a few additional definitions. Let G be the underlying generator of network N and let s be a side of G. We use X N (s) to denote the set of leaves that are on side s in network N . The top leaf on side s in N is the leaf x + s ∈ X N (s) for which there is no leaf in X N (s) \ {x + s } that is above x + s . Similarly, the bottom leaf on side s in N is the leaf x - s ∈ X N (s) for which all leaves in X N (s) are above x - s (note that each leaf is above itself). For two sides s, s of G, we say that s is below s if there is a directed path from (the head of) s to (the tail of) s in G.

We define a partial network with respect to X as a binary network N p on X p ⊆ X such that, for each side s of the underlying generator of N p , there are at most two leaves on side s. If N is a network on X with no nontrivial pendant subtrees, then we say that a partial network N p with respect to X is consistent with N (and that N is consistent with N p ) if (i) N and N p have the same underlying generator G;

(ii) for each side s of G with |X N (s)| ≤ 2 it holds that X Np (s) = X N (s); (iii) for each side s of G with |X N (s)| ≥ 2 it holds that X Np (s) = {x + s , x - s } with x +
s and x - s respectively the top and bottom leaf on side s in N .

We can bound the number of partial networks as follows.

Lemma 9. The number of partial networks N p with respect to X is at most

2 9k log k+O(k) (n + 1) 9k
with k = r(N p ) and n = |X|.

Proof. First, we bound the number of binary k-reticulation generators. The number of binary networks with |V | vertices is at most 2 [START_REF] Mcdiarmid | Counting phylogenetic networks[END_REF]. A binary kreticulation generator has at most 3k vertices (see e.g. [START_REF] Van Iersel | Algorithms, haplotypes and phylogenetic networks[END_REF]) and can be turned into a binary network as follows. For each reticulation r, if it has outdegree 0, we add a leaf x with an edge (r, x). Moreover, if r has two incoming parallel edges (u, r), we subdivide one of them by a vertex w and add a leaf y with an edge (w, y). Per reticulation we have added at most 3 vertices. Hence, the total number of vertices is at most 6k. Hence, the number of binary k-reticulation generators is at most 2 9k log k+O(k) .

3 2 |V | log |V |+O(|V |)
Each binary k-reticulation generator G has k vertex sides and at most 4k -1 edge sides by Lemma 1. Each vertex side contains exactly one leaf, for which there are |X| possibilities. Each edge side contains at most two leaves. Hence, there are |X| + 1 possibilities for the top leaf (including the possibility that there is no top leaf) and |X| + 1 possibilities for the bottom leaf (again, including the possibility that there is no such leaf). Therefore, for each generator G, the number of partial networks is at most |X| k (|X| + 1) 2(4k-1) , which is at most (|X| + 1) 9k .

The idea of our approach is to loop through all partial networks with respect to X that have reticulation number at most k. If there exists some network N displaying T with r(N ) ≤ k, then in some iteration, we will have a partial network N p that is consistent with N . We will now show how to extend N p to N in polynomial time. We use the following notation. Given two leaves x, y ∈ X, we write x → y if there exists a tree T ∈ T with a vertex v such that there is a directed path in T from v to y but not from v to x. Similarly, given three leaves x, y, z ∈ X, we write x → y, z if there exists a tree T ∈ T with a vertex v such that there are directed paths in T from v to y and from v to z but not from v to x. Note that we do not explicitly indicate the dependency of the → relationship on T to improve readability. Also note that x → y and x → z does not imply x → y, z. We prove the following.

Lemma 10. Let T be a set of trees on X with no nontrivial common pendant subtrees, let N be a binary network that displays T , let G be its underlying generator, let s be a side of G, let x + s and x - s be, respectively, the top and bottom leaf on side s in N and let x, y

∈ X \ {x + s , x - s }. Then, (a) if x is on side s then x + s → x, x - s ; (b) if x + s → x, x - s then
x is on side s or on a side below s; (c) if x and y are on side s then x → y if and only if x is above y.

Proof. Part (b) and (c) follow directly from the assumption that N displays T . For (a), assume that x is on side s and suppose that x + s → x, x - s does not hold. Then x and x + s must have a common parent in all trees in T , contradicting the assumption that T has no nontrivial common pendant subtrees.

We are now ready to describe our exponential-time algorithm for Hybridization Number, which we do in Algorithm 3. The main idea of the algorithm is to guess a partial network and to process its sides bottom-up, such that the remaining leaves on each considered side and their order is determined by the → relation. Proof. We claim that Algorithm 3 solves Hybridization Number within the claimed running time bound. Recall that we may restrict to binary networks by Observation 1. The subtree reduction takes O(n 4 t) time by Lemma 3 (since there are at most n maximal common pendant subtrees) and is safe by Lemma 2. Hence, we may restrict to networks with no nontrivial pendant subtrees. The number of partial networks N p with respect to X with r(N p ) ≤ k is at most 2 9k log k+O(k) (n + 1) 9k by Lemma 9 (there is an additional factor k because here we have r(N p ) ≤ k instead of r(N p ) = k, but this factor has been absorbed in the factor 2 O(k) ). For each partial network N p , Algorithm 3 constructs a network N on X displaying T that is consistent with N p , if such a network exists. Correctness of this construction follows from Lemma 10. There are, by Lemma 1, at most 4k -1 sides that are initially while there exists an unfinished side of G do Let s be an unfinished side of G such that there is no unfinished side of G that is below s.

Let x +

s and x - s be, respectively, the top and bottom leaf on side s in N p .

Let X s be the set of all x ∈ X that are not in N p and such that x + s → x, x - s .

Let x 1 , . . . , x |Xs| be the ordering of the leaves in X s such that x i → x j implies that i < j.

Replace the edge between the parent v + s of x + s and the parent v - s of x - s by a directed path v + s , v 1 , . . . , v |Xs| , v - s and add the leaves in X s by edges (v i , x i ) for i = 1, . . . , |X s |.

Mark side s as finished.

if the obtained network displays T then Output this network. marked as unfinished. Adding leaves to each such side takes O(n • t) time. Finally, to check if the obtained network N displays T , we loop through the set T (N ) of the at most 2 k binary trees displayed by N and check for each such tree if it is a refinement of one or more of the trees in T . We have that N displays T if and only if for each tree T ∈ T there is at least one tree T ∈ T (N ) that is a refinement of T . Checking if T is a refinement of T takes at most O(n 2 ) time. Therefore, the total running time is O(n 4 t + 2 9k log k+O(k) (n + 1) 9k ((4k -1)n

• t + 2 k n 2 t)) and hence O(2 9k log k+O(k) (n + 1) 9k n 2 t), if k ≥ 1.
By combining Theorem 3 with Theorems 1 and 2 we obtain the following corollaries. 

Experiments

Implementation and experimental setup

To demonstrate the impact of our kernelization algorithms on real instances, we implemented the algorithms presented in Sections 3 and 4 in Java. The implementation integrates all the reductions into one execution: first it runs Algorithm 2, then Algorithm 1. We did not implement the exponential-time algorithm presented in Section 5 because this is purely a classification result, which is not fast enough for practical use. We performed some tests on instances with three and four trees. Given six parameters ( t, n, r, c, s and k), the t trees of each instance are constructed and consequently reduced as follows. First, we generate a random binary tree T 1 with n taxa and skew factor s (the closer this is to 50, the more balanced the tree is, the closer to 100, the more the tree resembles a chain). Then each of the other trees is created from T 1 by performing r random rSPR moves. Informally an rSPR move is where a subtree is detached and regrafted elsewhere in the tree: such moves [START_REF] Hein | Reconstructing evolution of sequences subject to recombination using parsimony[END_REF][START_REF] Maddison | Gene trees in species trees[END_REF][START_REF] Song | Parsimonious reconstruction of sequence evolution and haplotyde blocks: finding the minimum number of recombination events[END_REF] are often used in experiments to induce increasing hybridization number [1, among others]. Finally, in all but one of the trees a subset of c % of the edges are contracted. The kernelization algorithms are run with k = k. Table 1 shows the results for three trees and Table 2 for four trees. Each row is the average of 10 runs with the given combination of parameters. We give the average kernelization factor -defined as the ratio between the number of leaves removed and the original number of leaves n -as wel as the average and median running times. Our aim is to show that our algorithms are practical, by showing that the kernelization factor is high for several combinations of parameters. Moreover, we also want to test for which combinations of parameters the subtree reduction (Algorithm 1) and chain reductions (Algorithm 1 and 2) are more effective (their kernelization factors are reported in columns 6-8, these are also defined with respect to n so can be summed to obtain the total kernelization factor).

Analysis of experiments

Given the large number of taxa involved (500 and 1000) it is encouraging to observe that the implementation runs quickly: on a 3.1GHz processor with 4Gb of RAM every parameter combination terminated within 10 minutes, and many parameter combinations were significantly faster, see the last two columns of the tables. Part of the reason for this is the subtree reduction, which is the asymptotically fastest part of the kernelization. The subtree reduction always executes first and this has the effect of significantly reducing the number of taxa before the chain reductions are executed. The kernelization factors of the chain reductions are much smaller, partly because they are calculated relative to the original number of taxa, before the subtree reduction.

Looking at the table more closely, a number of observations can be made. Clearly, in this experimental setup both chain reductions require that the starting tree T 1 is heavily chain-like, which is achieved by having a skew factor close to 100. Otherwise the starting tree T 1 is too "bushy" and under the action of rSPR moves no long chains are formed. Secondly, if there is no contraction, then all the trees are binary, and the degree-based chain reduction (Algorithm 2) has quite a large impact, while Algorithm 1 has no impact at all. If there is an extremely large amount of contraction, then the roles of the two chain reductions are reversed. An intermediate amount of contraction (not shown in the table) effectively disables both chain reductions, but not the subtree reduction. Conversely, a growing number of rSPR moves (which have the effect of increasing the topological dissimilarity of the trees) reduces the impact of the subtree reduction but not of the chain reduction. As k = k increases, the impact of both chain reductions diminishes, due to the increasing of the length at which chains are truncated. However, the impact of the reductions decreases only slightly when k is increased from 1 to 3. This is encouraging, suggesting that both chain reductions can have an impact for larger values of k. Similarly, increasing the number of trees has only a very small negative effect on the impact of the subtree and chain reductions. Finally, as the total kernelization factors in the table show, it is clear that the kernelization "works": for all parameter combinations in the tables the instances reduce in size by at least 49%.

Discussion and open problems

The main open question remains whether the Hybridization Number problem is fixed-parameter tractable, and if it has a polynomial kernel, when parameterized only by k (that is, when the number of input trees and their outdegrees are unbounded).

Note that when the input trees are not required to have the same label set X, Hybridization Number is not fixed-parameter tractable unless P = NP. The reason for this is that it is NP-hard to decide if r(T ) = 1 for sets T consisting of trees with three leaves each [START_REF] Jansson | Algorithms for combining rooted triplets into a galled phylogenetic network[END_REF]Theorem 7].

Another question is whether the kernel size can be reduced for certain fixed |T |. For |T | = 2, our results give a cubic kernel, while Linz and Semple [START_REF] Linz | Hybridization in non-binary trees[END_REF] showed a linear kernel of a modified, weighted problem, by analyzing carefully how common chains can look in two trees. Can something like this be done for more than two trees? In particular, does there exist a quadratic kernel for three trees? In addition, can the running times of the kernelization algorithms be reduced? Finally, there is the problem of solving the kernelized instances. For this, a fast exponential-time exact algorithm is needed, or a good heuristic. Although we have presented an O(n f (k) t) time algorithm for Hybridization Number, with n = |X| and t = |T |, it is not known if there exists an O(c n )-algorithm for some constant c. While O(c k n O(1) ) algorithms have been developed for instances consisting of two binary trees [START_REF] Whidden | Fixed-parameter algorithms for maximum agreement forests[END_REF] and very recently for three binary trees [START_REF] Van Iersel | Hybridization number on three trees[END_REF], it is not clear if they exist for four or more binary trees, or for two or more nonbinary trees. Note that, for practical applications, the kernelization can also be combined with an efficient heuristic.
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 1 Figure 1: A (rooted phylogenetic) network N and a (rooted phylogenetic) tree T . Network N is binary, has two reticulations (unfilled) and reticulation number 2. Tree T is displayed by N because it can be obtained from N by deleting the dotted edges and contracting the dashed edges.
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 43 Figure 3: Example instance of Hybridization Number consisting of four trees that have a common pendant subtree on {f, g, h} and a common 1-star chain (d, c, b, a). Chain (d, c, b, a) is pendant in T 1 and T 2 (because τ = 1 in T 2 ) but not in T 3 and T 4 . It is a 1-star chain because all its leaves have a common parent in only T 2 .

Figure 4 :

 4 Figure 4: Two trees T 1 and T 2 with a common chain (a, b, c, d, e) highlighted in blue, a network N that displays these trees, the network N as constructed in Lemmas 4 and 5, and the underlying generator G of both networks. Dashed and dotted edges are used to indicate that T 2 can be obtained from either of N and N by deleting the dotted edges and contracting the dashed edges.

3

 3 |T |) time. Hence, constructing the set X takes O(|X| 4 |T |) time. Constructing the graph D takes O(|X| 3 |T |) time and searching for a longest path in D takes O(|X| 2 ) time. Hence, the running time is dominated by the construction of the set X . Since this is done for each s, t ∈ X, the total running time is O(|X| 6 |T |).

Lemma 8 .

 8 Let (X, T , k) be an instance of Hybridization Number with k ≥ 1 and r(T ) ≤ k. If (X , T , k) is the instance obtained after applying Algorithm 1, then |X | ≤ 4k(5k) |T | .

Theorem 3 .

 3 There exists an n f (k) t time algorithm for Hybridization Number, with n = |X|, t = |T | and f some computable function of k.

Algorithm 3 :

 3 Exponential-time algorithm for Hybridization Number. Apply the subtree reduction (see Algorithm 1). for each partial network N p with respect to X with r(N p ) ≤ k do Let G be the underlying generator of N p . Mark each side s of G with |X Np (s)| ≤ 2 as finished and each other side as unfinished.

Corollary 1 .Corollary 2 .

 12 There exists an f (k, t) + O(n 7 t) time algorithm for Hybridization Number, with f some computable function of k and t = |T | and with n = |X|. There exists an f (k, ∆ + ) + O(n 7 t) time algorithm for Hybridization Number, with f some computable function of k and the maximum outdegree ∆ + of the input trees and with t = |T | and n = |X|.

  Figure 2: A network N and the 4-reticulation generator G underlying N . Generator G has two vertex sides s 8 and s 15 and 13 edge sides. For example, leaves d, e and f are on edge side s 6 and leaf g is on vertex side s 8 .

				a					s 2 s 1	s 9	
								s 3			s 11
	b c	g	d e f	N h i j	p	k l	m n o	s 4 s 5 s 7	s 8 s 6	G s 10	s 15 s 12 s 14 s 13

Table 2 :

 2 Kernelization factors and running times for several combinations of parameters r, c, s, k and n, for t = 4 trees.

	n	r	c	s	k	subtree kern. factor	chain kern. (Alg. 1) factor	chain kern. (Alg. 2) factor	total kern. factor	median RT (s)	average RT (s)
	500	1	0 50 1	.94	0	.01	.96	3	2.7
	500	1	0 50 3	.94	0	0	.94	3	2.7
	500	1	0 98 1	.72	0	.23	.96	100	149.4
	500	1	0 98 3	.72	0	.19	.92	79.5	96.8
	500	1 98 50 1	.96	0	0	.97	5	5.5
	500	1 98 50 3	.97	0	0	.97	5	5.1
	500	1 98 98 1	.71	.21	0	.93	18	24.2
	500	1 98 98 3	.71	.12	0	.83	25.5	25.3
	500 10 0 50 1	.72	0	0	.73	5	4.7
	500 10 0 50 3	.72	0	0	.72	4	3.9
	500 10 0 98 1	.48	0	.22	.71	25.5	25.6
	500 10 0 98 3	.49	0	.06	.56	23	27.2
	500 10 98 50 1	.89	0	0	.90	6.5	6.5
	500 10 98 50 3	.89	0	0	.89	6.5	6
	500 10 98 98 1	.58	.24	0	.83	25	24.8
	500 10 98 98 3	.63	.10	0	.73	23	31.4
	1000 1	0 50 1	.97	0	.01	.98	5	5.1
	1000 1	0 50 3	.96	0	0	.96	5	5.4
	1000 1	0 98 1	.86	0	.11	.98	59.5	165.9
	1000 1	0 98 3	.88	0	.07	.96	69	119.8
	1000 1 98 50 1	.98	0	0	.98	37.5	37.3
	1000 1 98 50 3	.98	0	0	.98	35	33.4
	1000 1 98 98 1	.81	.13	0	.95	60.5	66.6
	1000 1 98 98 3	.84	.07	0	.92	56.5	63.5
	1000 10 0 50 1	.83	0	.01	.84	13.5	13.1
	1000 10 0 50 3	.83	0	0	.83	12.5	13.1
	1000 10 0 98 1	.65	0	.18	.83	114	117
	1000 10 0 98 3	.65	0	.10	.75	178.5	179.4
	1000 10 98 50 1	.94	0	0	.95	58	56.1
	1000 10 98 50 3	.94	0	0	.94	44	40.6
	1000 10 98 98 1	.73	.16	0	.89	87	103.9
	1000 10 98 98 3	.71	.08	0	.79	103	105.5
	Table 1: Kernelization factors and running times for several combinations of parameters r, c, s,	k
	and n, for t = 3 trees.							
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