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A Resolution of the Static Formulation Question
for the Problem of Computing the History Bound

Julia Matsieva, Steven Kelk, Celine Scornavacca, Chris Whidden, and Dan Gusfield

Abstract—Evolutionary data has been traditionally modeled via phylogenetic trees; however, branching alone cannot model conflicting
phylogenetic signals, so networks are used instead. Ancestral recombination graphs (ARGs) are used to model the evolution of
incompatible sets of SNP data, allowing each site to mutate only once. The model often aims to minimize the number of recombinations.
Similarly, incompatible cluster data can be represented by a reticulation network that minimizes reticulation events. The ARG literature
has traditionally been disjoint from the reticulation network literature. By building on results from the reticulation network literature, we
resolve an open question of interest to the ARG community. We explicitly prove that the History Bound, a lower bound on the number
of recombinations in an ARG for a binary matrix, which was previously only defined procedurally, is e qual to the minimum number
of reticulation nodes in a network for the corresponding cluster data. To facilitate the proof, we give an algorithm that constructs this
network using intermediate values from the procedural History Bound definition. We then develop a top-down algorithm for computing
the History Bound, which has the same worst-case runtime as the known dynamic program, and show that it is likely to run faster in

typical cases.

Index Terms—rooted phylogenetic networks, clusters, reticulate evolution, parsimony, computational complexity, algorithms. 4

1 INTRODUCTION

ANY types of biological data can be intuitively rep-
Mresented by labeled, directed trees, which model
the diversity observed in a set of specimens, or taxa,
with a sequence of branching events. However, many
real-world data sets cannot be perfectly represented by
a tree, because the biological signals conflict. To han-
dle these cases, the field has allowed “joining events”
as an additional mechanism for increasing diversity,
which leads to interest in the study of phylogenetic
networks [1]. In a phylogenetic network, two lineages
are allowed to combine to form a lineage that could
not be obtained by branching events alone. With no
further restrictions, the problem of finding a network to
represent a set of data can be computed in polynomial
time; however, our current understanding of biology
suggests that these joining, or reticulation, events occur
relatively infrequently in nature. Thus, we often seek
to construct plausible networks that minimize certain
properties of the nodes with in-degree > 1, at which
point the problems become computationally hard [1].

An ancestral recombination graph, or ARG, is a type of
phylogenetic network designed to model the evolution
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of ordered sequence data from a single starting se-
quence [2], [3]. The input to the problem is a set of binary
sequences of the same length, and the objective is the
construction of a DAG with one source node designated
as the root and labeled with the ancestral sequence, and
edge transitions modeling mutations along the edges,
subject to the restriction that each site is only allowed
to mutate once. However, sequences are also allowed
to recombine, taking a prefix from one sequence and a
suffix from another, to generate a new sequence of the
same length. Usually, we aim to construct minARGs, or
ARGs with the minimum possible number of recombina-
tions. However, the problem of constructing minARGs is
known to be NP-hard [4], [5], [6], so research has focused
on computing lower bounds on R,,;,, the number of
recombination nodes in a minARG.

A variety of methods have been developed for com-
puting lower bounds on R,,;,,. These methods all operate
on the input matrix of binary sequences, but they gen-
erally also have a combinatorial interpretation. One par-
ticularly effective but computationally intensive lower
bound, the History Bound, was originally defined as the
output of an algorithm [7], and did not have a static
interpretation. As given, the algorithm to compute the
History Bound runs in time that is super-exponential in
the size of the input, but a dynamic programming ver-
sion speeds up the computation to exponential time [8].
However, we also know from [8] that the problem of
computing the History Bound is NP-hard. Nevertheless,
tools like integer linear programming are often shown to
be efficient in practice for instances of NP-hard problems
of meaningful sizes, so a static formulation of the History
Bound as an optimization problem is desirable.

In contrast to ARGs, reticulation networks (or hybridiza-



tion networks) model a set of clusters (also called clades),
which are subsets of the taxa (although trees or triplets
are also used in other problem settings, as summarized
in [9] and [1]). The objective is to construct a network
such that the taxa in each cluster are the leaf descendants
of some tree topologically embedded in the network, and
that the network has the fewest number of reticulation
events, formally defined in Section 2.

In the past, the literature on ARGs has traditionally
been disjoint from the work on reticulation networks,
and the two communities have engaged in limited com-
munication. In a previous paper aimed at the reticulation
network community, the authors of [10] develop a theory
to describe and analyze structures in cluster input data.
The theory given there sheds light on the underlying
meaning of the number computed by the History Bound
algorithm. In fact, it is claimed that the construction
given in [10] is equivalent to the History Bound. The
first result in this paper is an explicit proof of this claim.

The main result in this paper is a further understand-
ing of the relationship between the procedural defini-
tion of History Bound given in [7] and the structural
properties of reticulation networks. Building on concepts
developed in [10], we prove that the History Bound is
equal to the minimum number of reticulation nodes in a
reticulation network that represents the clusters encoded
by an input matrix [10], solving the open problem posed
in [11]. This result is not stated there and the paper
was unlikely to have been noticed by members of the
ARG community. Here, we give stylistically different
definitions and algorithms to explicitly prove this result.
However, the arguments given in Section 4 map closely
onto the constructions in [10]; therefore, we will point
out the correspondence between the arguments when it
occurs.

We then use the structural insights from Section 4
to develop a top-down algorithm for computing the
History Bound. We demonstrate that this algorithm runs
faster in the typical case than the dynamic programming
approach from [8].

2 PRELIMINARIES

In this section, we will discuss standard definitions
and relevant theorems from the phylogenetic networks
literature. We will then recall definitions from [10], which
are used later.

2.1

A genealogical network is a network constructed to model
the derivation of a set of sequences originating from a
single source sequence via the genetic processes of muta-
tion and recombination. Thus, the underlying graph is a
rooted DAG where the root is labeled with the ancestral
sequence, and the observed or input sequences appear
at the leaves. Formally, a genealogical network is created
from a collection of n input sequences of length m over a

Ancestral Recombination Graphs

binary alphabet representing single nucleotide polymor-
phisms (SNPs), usually given in a n x m binary matrix
M, with each row representing the binary sequence for
a taxon. A network N that represents M has exactly n
leaves, each labeled with a sequence from M according
to the rules discussed below.

The edges of N can be either labeled or unlabeled,
with a distinction made between tree edges, edges into a
node with in-degree one, or recombination edges which are
edges into a recombination node, which has in-degree two.
A tree edge may be given an integer label in the range
{1,...,m} to indicate the site in M at which a mutation
occurs, or be unlabeled to indicate no change. Thus, the
sequence labeling a tree node can be read from its path
from the root by interpreting each edge as a binary state
change. Under the single-crossover model, the sequence
labeling a recombination node takes a prefix from one
parent sequence and a suffix from the other, resulting
in a sequence of length m. An integer in {1,...,m}
specifying the length of the prefix is usually indicated
on the recombination node.

A genealogical network N is an ancestral recombination
network (or ARG) if each site is allowed to mutate at
most once. That is, an ARG N has at most one tree
edge with label ¢ for all ¢ € {1,...,m}. ARGs are
heavily studied in population genetics [12]; a detailed
motivation for their use appears in [13]. It is especially
desirable to construct a minARG, i.e. an ARG with
the fewest number of recombination nodes, for a given
set of data. This problem is known to be NP-hard, so
research has focused on computing and evaluating lower
bounds on R,,;», the number of recombination nodes in
a minARG [13].

2.2 The History Bound

The algorithm that defines the History Bound on Ry
was given by Myers and Griffiths in [7]. It operates
on a binary input matrix M and computes a lower
bound on the minimum number of recombination nodes
that must appear in an ARG that represents M. We
give the version of the algorithm as explained in [13],
where it is split into two procedures, procedure CHB for
generating a candidate for the History Bound, which is
shown as Algorithm 2.1, and procedure CHB_BRANCH,
which selects the minimum value over all the candidates.
This version assumes that the ancestral sequence for the
data is the all-zero sequence. Procedure CHB reduces the
input matrix by running the CLEAN procedure, which
iterates the following operations:

Dr: which collapses identical rows together

Dc: which removes columns from M with at most

one 1
These operations are performed by CLEAN until neither
is possible. At this point the CHB procedure performs
operation Dt, choosing an arbitrary row to delete from
the matrix. The CHB procedure iterates these operations
until the matrix is empty. The number of row deletions



Algorithm 2.1 CHB algorithm that computes a candidate
for the History Bound as given in [13].

: procedure CLEAN(M)

—_

2: while possible do
3: Dr: collapse together duplicate rows of M
4: Dc: remove columns of M with at most one 1
5: return M
6: end procedure
7:
8: procedure CHB(M)
9: set M =M, H=0
10: while M is not empty do
11: M = CLEAN(M) _
12: Dt: remove an arbitrary row r from M
13: set H=H+1
14: return H
15: end procedure
16:
17: procedure CHB_BRANCH(M)
18: return min CHB(M)
all possible executions
19: end procedure

by rule Dt, shown on line 14 of Algorithm 2.1, is a can-
didate for the History Bound; the smallest candidate is
then computed by procedure CHB_BRANCH, executions
of CHB. This smallest value is defined to be the History
Bound.

2.3 Reticulation Networks and Clusters

Critical background for this paper focuses on the devel-
opment of reticulation networks in the cluster setting. A
reticulation network on a finite set X of taxa is a rooted,
connected DAG with no nodes having both in-degree
and out-degree 1, whose leaves are the elements of X.
A node of in-degree of 2 or greater is called a reticulation
node and incoming edges into such a node are called
reticulation edges. The literature on reticulation networks
is often concerned with counting reticulation “events”,
which are given by the reticulation number of a network
N = (V, E), defined as follows:

>

vEVidin (v)>1

r(N) = din(v) =1 = [E| = [V]+1

where d;,,(v) denotes the in-degree of node v [10]. Then,
the reticulation number (%) of a set of clusters ¥ is
the minimum of the reticulation numbers over all the
reticulation networks that represent, or model, . How-
ever, in this paper, we will be concerned with counting
the number of reticulation nodes in a network N, denoted
nr(N).

A cluster is a subset of X. We say that two clusters
Cy and Cy are compatible if either C; C Cy, Co C C or
C1 N Cy = 0, and incompatible otherwise. A collection
¢ of clusters is compatible if all the clusters in %
are pairwise compatible. A collection € of clusters can
be converted to a matrix M by choosing an arbitrary
ordering on X and ¥, filling the matrix by placing 1
into the row corresponding to taxon z and the column

Gi|1 2 3 1 11100
Co|1 2 4 5
o1 3 1100 00
¢ = 23 M=|1 01 0 1 0
Ci|1 4 5
Cs | 5
(b)

(a)
Fig. 1. (a) An example set of clusters ¢ over X =
{1,2,3,4,5}. Cs is a singleton cluster. Such clusters, and
their corresponding columns, are considered uninforma-
tive. (b) The matrix equivalent of cluster set ¥. The i
row of M represents taxon i of X. An entry with value 1
in row 4 of column j corresponds to membership of taxon
i in cluster Cj.

corresponding to cluster C, if x € C, and placing 0 there
otherwise (see Figure 1). We can also convert a matrix
M into a set of clusters € by considering the element
encoded by a row of M to be a member of cluster
C € € if there is a 1 in the column corresponding to
C in M. Thus, in the matrix setting, when the ancestral
sequence is the all-zero sequence, two columns Cj, Cy
are incompatible if the set of pairs constructed by pairing
column entries in corresponding rows contains all of the
pairs (1, 0), (0, 1) and (1, 1). The presence of all three pairs
is referred to in [13] as the Three Gametes condition.

The concept of compatibility relates directly to the
perfect phylogeny problem, which is the problem of
finding a tree that represents the data encoded in a
binary matrix M. In order to represent M, a tree T' must
have the properties that all of its leaves correspond to
the rows of M, each column of M labels exactly one edge
of T, every interior edge of T is labeled by at least one
column of M, and for each leaf z in T, the edge labels
on the path from the root to z must correspond to those
columns that have state 1 for x in M. See [13] for a more
complete discussion. This definition assumes that 7" is
constructed with an all-zero ancestral sequence, which
we will assume throughout this paper. The conditions
for when a solution to the problem exists are well-
understood: the Perfect Phylogeny theorem states that
the problem does not have a perfect phylogeny that
represents the data, when there is at least one pair
of incompatible columns in M. Equivalently, a set of
clusters can be represented by a perfect phylogeny, if
and only if the clusters are compatible [13].

In contrast to the ARG setting, the input to the reticula-
tion network problem is a set X of taxa and an unordered
collection & of clusters, where each C' € ¢ is a proper
subset of X. A network IV represents a cluster C in the
hardwired sense if there exists a tree edge (u,v) in N such
that the set of leaf descendants of v is exactly equal to C.
N represents a cluster C in the softwired sense if there is
a rooted spanning subtree 7" of N such that 7" represents
C in the hardwired sense. That is, if N contains an edge
e such that C is equal to the set of all leaf descendants
of e after all but one incoming edge at each reticulation



node of N is removed [1]. The operation of turning
on one reticulation edge at each reticulation node and
turning all others off is referred to as the construction
of a switching of N in [10]. A network N represents a
collection of clusters ¢ if it represents each C' € € in the
softwired sense.

The problem in this setting then consists of construct-
ing reticulation networks to represent ¢ subject to some
optimality criterion, such as minimizing the reticulation
number, r(%). In this paper, we will usually discuss
networks with the minimum number of reticulation nodes,
so we define a network IV to be ret-minimum for a set
of clusters ¢ if N has the fewest number of reticulation
nodes over all networks that represent ¢ in the softwired
sense. We use nr (%) to denote that number. Therefore, a
reticulation network N that represents ¢ is ret-minimum
if and only if nr(N) = nr(%).

Figures 6 and 7 in the Appendix, which can be
found on the Computer Society Digital Library, show
an example of a reticulation network and an ARG for
the data in Figure 1. According to the definitions in
this section, an ARG is also a reticulation network that
represents the clusters encoded by M in the softwired
sense. However, the internal structure of ARGs tends to
have more complexity due to the requirements of the
model, which is designed to describe the derivation of
ordered sequence data.

2.4 ST-Set Sequences

In this paper, we build on the ST-set concept from [10].
An ST-set is a subset of the taxa with special, “treelike”
properties. Informally, an ST-set of € can be thought of
as a union of compatible clusters or compatible subsets
of clusters. Given a subset S C X of taxa, let €\ S
denote the result of removing S from every C € ¢, and
let € | S denote the restriction of € to S (i.e. €\ (X —5)).
Formally, S C X is an ST-set with respect to a collection
¢ of clusters if

1) S is compatible with %"

2) all pairs of clusters Cy,Cy € € | S are compatible.
An ST-set S is maximal if there is no other ST-set S” such
that S c S’. It is shown in [10] that all of the maximal
ST-sets of a collection of clusters can be computed in
time polynomial in the size of the input.

A sequence . = {51, Sa,...,Sp} is an ST-set sequence
ifeach S; € . is an ST-set of ¥ = €\ (S1US2U...US;_1);
& is a maximal ST-set sequence if each S; is a maximal
ST-set of €. .7 is a maximal ST-set tree sequence, if all
the clusters contained in %" | I where

I=X—(SU...US,)

are pairwise compatible. By the Perfect Phylogeny The-
orem, this means that all the taxa in ¥ | I can be
represented by a perfect phylogeny.

The length p of the shortest maximal ST-set tree se-
quence that can be computed for ¥ is defined in [10]
to be the MST lower bound on the reticulation number

r(%) and it is shown to be a true lower bound. But,
in this paper, we are more concerned with the mini-
mum number of reticulation nodes in a network that
represents €. In Section 3, we show that the length of
the shortest maximal ST-set tree sequence is equal to
nr(%), the minimum number of reticulation nodes in a
reticulation network that represents ¢ in the softwired
sense.

3 BOUND EQUIVALENCE

Throughout this section, we will use the conversion be-
tween clusters and matrices described in Section 2.3 and
demonstrated in Figure 1. Using the concepts developed
in [10], we formally prove the following claim:

Claim 3.1: Given a binary matrix A, the minimum H
computed by execution of the CHB algorithm is equal to
the length of the shortest maximal ST-set tree sequence
for the set of clusters ¢ encoded by M.

This claim was suggested but not explicitly stated in
[10]. We prove it here by demonstrating that every run
of the Candidate History Bound algorithm generates,
through its intermediate values, a valid maximal ST-set
tree sequence, and conversely that every maximal ST-set
tree sequence corresponds to an execution of algorithm
CHB. .

Lemma 3.1: Let M; denote the state of the matrix after
iteration 7 of CHB and let {ry,...,r,} be the sequence of
rows that are deleted by operation Dt during an execu-
tion of CHB. For each r;, let R; denote the set of rows
that were collapsed together with r; by rule Dr before
r; was deleted by a Dt operation. Let S; = R; U {r;}.
Then, {S1,...,5,} is a maximal ST-set tree sequence of
the cluster set encoded by M.

Proof: In order to prove Lemma 3.1, we must nyirst
establish that every set S; is a maximal ST-set of %; =
€\ (S1U...US;_1), which means we must prove that:

1) S; ichompatible with %2;, the set of clusters encoded

by Ml "

2) any pair of clusters C,Cy C S; that are in €; are

pairwise compatible. N

3) there does not exist another element e in %; such

that S; U {e} is also an ST-set.

Suppose toward a contradiction, that S; is not com-
patible with ;. This implies that there must exist some
cluster C € %; and at least three distinct elements x,y, z
such that z,z € S; but ¢ C, and y, z are in cluster
C but y ¢ S,. Since, z and z are in S;, they must
be identical when ignoring uninformative columns at
iteration ¢. However, z is also a member of C, which
cannot correspond to an uninformative column, because
it also contains another distinct element y. But then x and
z are not identical on informative columns. Therefore,
in order for the algorithm to place  and z into S;, «
must agree with z on column C, and so it must also be
a member of C, which contradicts the assumption that
z ¢ C, and therefore (1) holds.



Similarly, suppose that there are two incompatible
clusters C1,Cy € €; | S;, the restriction of €; to S;. We
know that all the elements in S; must have been found
by CLEAN to be identical; however, the assumed incom-
patibility of C1, Cs implies that there exist three elements
x,y,z such that z,z € C; and z ¢ Cy; and y,z € Cy and
y ¢ C. Both columns C and Cs are informative because
they contain two rows with 1 entries. This means that z
and y are not identical after iteration 4, so they would
not have been placed in 5;, a contradiction. Therefore C4
and C3 must be compatible, and (2) holds. This shows
that S; is an ST-set of ;.

Furthermore, S; is a maximal ST-set. Suppose that S;
is not maximal, so there exists a row e such that S} =
S; U{e} is also an ST-set of C;. If e were identical to r;
with respect to informative columns, then it would have
been collapsed together with r; and so would be in S;.
So if e is not identical to r; when r; is removed, then

(a) either there exists an informative cluster C € %,
such that e € C and r; ¢ C, B

(b) or there exists an informative cluster C' € %; such
thate ¢ C' and r; € C.

In case (a), in order for S} to still be compatible with %2;,
cluster C' must be a singleton cluster that only contains
e. Otherwise, if C' contains some other element d € S,
its existence will give rise to a violation of the Three
Gametes condition in C' and S]. This is because r; € S,
butnotin C, d € C, but not in S}, and e is in both. So if C
is not a singleton cluster, then C' and S; are incompatible.
But if C' is a singleton cluster, then its column will be
uninformative in M; before r; is removed, and so case
(a) leads to a contradiction.

In case (b), since 5] is assumed to be compatible with
C, and r; € C, this means that C C S;, because, if C'
contained an element d ¢ S;, then the taxa r;, ¢ and d
would create a violation of the Three Gametes condition
in sets C' and S]. To see this, note that e is in S; but not
in C, and d is in C, but not in S}, and r; is in both, so
S} and C would be incompatible. But if C is a subset of
Si, then it corresponds to an uninformative column in
M;, because it has 1 entries in rows that are contained
in S; and since S; = R; U {r;}, all of the rows in R;
have already been removed. Thus, the column encoding
C has only one 1 entry, at row 7, and is therefore an
uninformative column at the end of iteration i. So we
conclude that there is no e ¢ R; that can be added to
S; and maintain its ST-set properties. Therefore, S; is
maximal, so property (3) holds as well.

In order to show that {Si,...,S,}, as defined in
the statement of Lemma 3.1, is a maximal ST-set tree
sequence, it remains to show that all of the clusters
contained in / = X — (S U...US,) are compatible.
We know that after r, is deleted by rule Dt, the Dr and
Dc operations remove all remaining rows and columns
in M. Otherwise, it would be necessary to apply Dt
again and 7, would not have been the last row in the
sequence. All the clusters contained in I must be com-

patible, because otherwise there would be two clusters
C1,C5 C I with a non-trivial intersection. Then, neither
rules Dc nor Dr could have applied again, since neither
cluster can be a singleton and there are elements in these
clusters whose memberships are not identical. Therefore,
{51,...,8,} is a maximal ST-set tree sequence of the
clusters encoded by M. O

Lemma 3.1 implies that the History Bound, the mini-
mum possible value produced by CHB, is greater than
or equal to the length of the shortest maximal ST-set
sequence. But there may exist ST-set sequences that do
not have corresponding executions of CHB. In order
to prove Claim 3.1, we must also prove the following
Lemma.

Lemma 3.2: For every maximal ST-set tree sequence
& ={51,...,5,}, there exists an execution of CHB that
removes row sequence {r1,...,r,} by rule Dt, such that
r; € 5;, forie {1,...,]3}.

Proof: We prove this by induction on the iterations
of CHB. We assume that when rule Dr combines two
rows together, it leaves the row with the smaller index
in M and removes the row with the larger index.

Since rule Dt chooses rows arbitrarily, there exists an
execution of CHB that chooses a row r € M, at iteration
i, provided that r is not deleted at that point. Therefore,
in order to show that there exists an execution of CHB
that chooses rows {r1,...,r,} with each r; € S;, we need
to show that the row of S; with the lowest index in M
is still present in M; when rule Dt executes in CHB.

Suppose the row sequence R = {ry,...,rj_1} is cho-
sen for deletion by rule Dt in the first j — 1 iterations
of an execution of CHB, such that each row r; € R for
all 1 <i¢ < j—1is the row of S; with the lowest index
in M. We want to show that before rule Dt executes on
the j* iteration of CHB, the row r in S; with the lowest
index in M is available in M;_, to be chosen for deletion.
Row r could not have been deleted by rule Dr in AM;_;,
since if it were, it would be identical to a row r’ that has
a lower index in M. However, then all of the elements
of S; would also be found to be identical to r’ before
iteration j. This contradicts the assumption that r has
the lowest index in S}, so r cannot have been removed
by rule Dr in M;.

Next, suppose that, at iteration ¢ < j of CHB, row
r was deleted by rule Dt. However, we inductively
assumed that the algorithm removes each maximal ST-
set S; € .7 at iteration 7 < j and, since S; is maximal,
S; U {r} cannot also be an ST-set of %;. Furthermore, it
is shown in [10] that the maximal ST-sets of ¢ partition
X, so r cannot belong to both S; and S;.

Therefore, the row r in S; with the lowest index cannot
be missing in M; during iteration j of CHB. Hence, r; =
r and the induction argument is complete. This proves
Lemma 3.2.

U

Since we have proved Lemmas 3.1 and 3.2, every run
of CHB corresponds to a maximal st-set tree sequence
and every maximal-st-set corresponds to an execution of



Algorithm 4.1 Algorithm that constructs a reticulation
network NV with < p nodes when given a valid maximal
ST-set tree sequence . of length p.

1: procedure NETWORK.BUILD(%, .¥)
2: N = graph ()

3: N .add_nodes (root)

4 setX:Ucech; setI:X—USEyS;

5:

6: set Subsets = {C' € ¥ | C C S; for some S; € ./};
7: set nonSubsets = ¥ — Subsets

8: for ¢ € € do

9: ¢ =%U{C.restrict_to(l)}

10: set N = TREE.BUILD(N, root, nonSubsets)
11: set .¥ =.¥ .reverse ()
12: for S; € ¥ do

13: for C € € do
14: C.restrict_to(C’.£estriction U S;)
15: N = NETWORK.ADD(N, %, S;)

16: return N
17: end procedure

CHB, it follows that an execution of CHB that produces
the minimum value corresponds to a shortest maximal
ST-set tree sequence, Claim 3.1 is proved.

4 DEFINING THE HISTORY BOUND
In this section, we explicitly state the main result of the
paper:

Claim 4.1: Let M be a binary matrix and let € be
the set of clusters encoded by M. Then, the History
Bound for M is equal to nr(%), the minimum number of
reticulation nodes that must be present in any network
that represents ¢ in the softwired sense.

Although this claim is not stated explicitly in [10], many
of the algorithms presented in this section are extensions
of the constructions presented there, and are used here
to obtain bounds on nr(%) rather than r(%). We will
explicitly point out such extensions in the results that
follow.

To prove Claim 4.1, we first give an algorithm that
takes as input the set of clusters ¥ and a maximal ST-
set tree sequence . = {S1,...,S,} for ¥ and constructs
a reticulation network N that represents ¢ with at most
p reticulation nodes. We show that this algorithm would
produce a network with exactly p reticulation nodes
when executed on a sequence . of minimum length. We
then show that there cannot exist a network with fewer
reticulation nodes than the length of shortest maximal
ST-set tree sequence. Combined with Claim 3.1, this
proves Claim 4.1.

4.1 Network.Build

In this section, we describe in detail the NET-
WORK.BUILD algorithm, which will iteratively construct
a network to represent a set of input clusters, guided
by an input maximal ST-set tree sequence .# of length
p. The explicit pseudocode for the NETWORK.ADD pro-
cedure of the NETWORK.BUILD algorithm is given in

Algorithm 4.2 Algorithm for adding a tree to network
N that represents a set of compatible clusters %.

1: procedu~re TREE.BUILD(XV, inpugioot, %)

2 set ¢ = a list of clusters in ¢ sorted by size
3 for C € ¢ do

4: N .add_nodes (newNode)

5: set ¥ = the smgllest cluster that is a superset of C
6 if ¥ exists in € then

7 (u,v) = L.tree_edge

8: set treeEdge = (v, newNode)

9: for x € C do
10: N .delete_edge (v, x)
11: else
12: set treeEdge = (inputRoot, newNode);
13: for x € C do
14: N .add_nodes (x)
15: for x € C do
16: N .add_edge (newNode, x)
17: N .add_edge (treeEdge)
18: C.tree_edge= treeEdge

19: end procedure

Algorithm 4.3. NETWORK.ADD inserts a ST-set S into
a network N that represents ¢ \ S such that the result-
ing network represents ¥. NETWORK.ADD performs the
same operations as the procedure outlined in the proof of
Lemma 10 of [10]. The explicit procedures are included
here in the interest of making the paper self-contained,
as well as for greater procedural clarity and accessible
implementation. The details of the NETWORK.ADD pro-
cedure are also used in the proof of Lemma 4.2.

As mentioned in Section 2, network N represents a
cluster C in the softwired sense if some switching of
N contains a tree edge whose set of leaf descendants is
exactly the set of taxa in C. Thus, it helps to introduce
a cluster data structure that, in addition to storing the
subset of taxa of a cluster C € ¢, will also keep track
of its tree_edge in N and a set of off_edges. When
the set C.off_edges is removed from the network, the
subtree of C.tree_edge will form a tree and the leaf
descendants of C.tree_edge will be exactly the set of
taxa in C. The graph N — C.off_edges might not be a
tree because N might have reticulation edges that are not
on the path from C.tree_edge to a leaf. However, any
reticulation nodes in the subtree of C.tree_edge will
have no incoming edges from outside the subtree. In the
algorithms shown, we will use C.restrict_to (S5) to
indicate that the cluster C' has been restricted to just the
elements present in the set S. Therefore, all subsequent
set-theoretic operations will be executed on the taxa
present in C | S. We will use the C.restriction
statement to refer to the most recent set S that C' has
been restricted to.

We will also assume that a data structure representing
an empty graph is initialized using graph, as shown on
line 2 of Algorithm 4.1. A graph G is populated using
procedures G.add_nodes which takes either a list or a
single node as input, and G.add_edge which requires



Algorithm 4.3 Procedure that inserts ST-set S; into N,
maintaining the property that N represents ;.

1: procedure NETWORK.ADD(NV, ?”1, Si)

2: N .add_nodes (internalNode)

3 set Disjoint = {C € % | Ss N C =0}

4 set Subsets = {C' € ¢; | S; D C}

5: set Supersets = {C € ¢; | S; C C}

6: set MaxDownstream = {}; set IsUpstreamFrom = {};
7 for (C, K) € Supersets x Supersets do

8 if K is downstream from C' then

9: MaxDownstream . remove (C')
10: MaxDownstream . add (K)
11: IsUpstreamFrom [K ] . add (C)
12: else if C' is downstream from K then
13: MaxDownstream . remove (K)
14: MaxDownstream . add (C')
15: IsUpstreamFrom [C'] . add (K)

16: N = TREE.BUILD(J, internalNode, Subsets)
172 forze (Si— U do

C €Subsets
18: N .add_nodes (x)
19: N .add_edge (internalNode, x)
20: for C' € MaxDownstream do
21: set (u,v) = C.tree_edge
22: N .add_edge (v, internalNode)
23: for K # C € MaxDownstream do
24: K.off_edges.add (v, internalNode)
25: for @ € IsUpstreamFrom [K] do
26: Q.off_edges.add (v, internalNode)
27 for (D, C) € Disjoint x MaxDownstream do
28: if C is downstream from D then
29: set (u,v) = C.tree_edge
30: D.off_edges.add (v, internalNode)
31: if D is upstream from all of Supersets then
32: N .add_edge (root, internalNode)
33: for @ € IsUpstreamFrom [C'] do
34: Q.of f_edges.add (root, internalNode)

35: return N
36: end procedure

two node arguments. An edge can be removed from a
graph G using G.delete_edge.

The outer abstraction layer of NETWORK.BUILD is
shown as Algorithm 4.1. Since the input . is a maximal
ST-set tree sequence, we know that after we perform the
restriction to I on lines 7-9, all the clusters in ¢ will
be pairwise compatible. So € can be represented by a
tree, built by the algorithm shown in the pseudocode as
TREE.BUILD in Algorithm 4.2. It is equivalent to the solu-
tion to the Perfect Phylogeny problem in Section 2.1.2 of
[13]. We will also use Algorithm 4.2 to extend a network
N by adding a tree to N at a specified node. We give
a specific implementation in Algorithm 4.2; it takes as
input a network NV, a node inputRoot of N, and a set
of compatible input clusters ¢; it outputs the updated
network N with a new subtree rooted at inputRoot
that represents ¢. More importantly, it also sets the
tree_edge values for all the input clusters, even those
whose restriction is empty. Thus, after line 11 of Algo-
rithm 4.2 executes, all the clusters in nonSubsets will
have tree_edge values set, which means that for each

C in nonSubsets, the subtree of C.tree_edge in N
will be the set of taxa C' | I. After building the initial tree
for € =% | I, NETWORK.BUILD reverses the maximal
ST-set tree sequence . and iteratively adds ST-sets into
N by calling the procedure NETWORK.ADD, shown in
Algorithm 4.3.

After a set of clusters has been processed by
TREE.BUILD, each of the processed clusters C' will have
anon-null C.t ree_edge value. Thus, we can describe a
cluster C to be downstream from cluster Cy in a network
N if there is a directed path from Cs.tree_edge to
Cj.tree_edge in the graph N — Cy.0ff_edges. Nat-
urally, C5 is upstream from C; in N if C; is downstream
from Cs.

At each iteration, NETWORK.BUILD will insert an ST-
set S; of . into the network N, maintaining the invari-
ant that, after each iteration, N represents

G=€|(ITUS,US, 1U...US5).
When processing a maximal ST-set S;, the program NET-
WORK.ADD works by first partitioning the input clus-
ters into three subsets — the set of clusters Supersets
that contain the current ST-set S;, the set of clusters
Disjoint that are disjoint from S;, and the clusters
Subsets that are proper subsets of S;. This creates a
partition of ¥, because S; is an SNT—set and must be
compatible with all the clusters in %;; that is, no cluster
has a non-trivial intersection with S;. The procedure
then adds a node called internalNode to the network
and attaches the taxa contained in S; to internalNode
in the following steps: Let P C C be the set of clus-
ters that are properly contained in S;. All clusters in
P are guaranteed to be pairwise compatible, by the
definition of ST-set. So it is safe to call the TREE.BUILD
procedure on P, with inputRoot set to be the newly
created internalNode. The program then processes
any remaining taxa in L = S; \ Ugcp C by creating
an individual node z for each taxon in L and inserting
it into N by adding an edge from internalNode to
each z € L, directed by lines 17-19 of NETWORK.ADD.
Therefore, at this point, N represents all clusters C' C ;.

After the set P of taxa is processed, NETWORK.ADD
uses depth-first search to efficiently compute the set JZ
of clusters where each is a superset of S;, whose tree
edges are maximally downstream of all the superset
clusters. ¢ is computed on lines 7-15 of Algorithm 4.3
and the clusters are stored in the MaxDownstream data
structure. During this computation, NETWORK.BUILD
also computes the set of clusters i sUpstreamFrom[K]
for each K € %, the set of clusters that are up-
stream from K in N. Since the clusters in J¢ contain
S;, the procedure adds an edge from the endpoint of
K.tree_edge of each K € % to internalNode, so
the subtree that represents S; is on a directed path
from K.tree_edge to all S;. After this step is per-
formed, any cluster C O S; that is upstream of a
cluster in K € % will contain the taxa in S; as leaf



descendants. This is because C' has a directed path to
K and the endpoint of K.tree_edge has an edge to
internalNode whose subtree has leaf descendants S;.
Finally, NETWORK.BUILD iterates through all clusters C
in isUpstreamFrom[K ] for each K € J#, and adds all
the incoming edges of internalNode to C.off_edges
except the edge incident to K.tree_edge. This step is
shown in lines 21-28 of Algorithm 4.3. Therefore, after
line 28 executes, all clusters C' O S; will have a directed
path to internalNode, and will have all the taxa in S;
as leaf descendants.

At this point, there are still some clusters that are
disjoint from S; but might be upstream in N from a
cluster in K € . This is a problem because it means
that after lines 21-28 of Algorithm 4.3 execute, all of
these disjoint clusters have had the taxa of S; added
to them as leaf descendants through the directed path
from K.tree_edge to internalNode. Therefore, for
each cluster D € Disjoint that is upstream from a
cluster in K € J, the edge e from the endpoint of
K.tree_edge to internalNode is added to the set
D.off_edges, to make sure that there exists a switching
of N that does not contain a directed path from D.tree
edge to internalNode. However, it is possible for a
disjoint cluster D to be upstream from all the clusters
in JZ, which means that adding all of the incoming
edges incident upon internalNode to D.off_edges
will disconnect the subtree of D.tree_edge from the
network. In this case, NETWORK.BUILD creates a new
edge from the root of N to internalNode, and then
adds this edge to C.off_edges for all of the clusters
in Supersets that are downstream of D, on lines 34-
35. After this step, no cluster D that is disjoint from
S; has a directed path to internalNode in the graph
N — D.off_edges, which is now guaranteed to be
connected.

4.2 Algorithm Properties

It is clear from the pseudocode of Algorithm 4.1 that
it generates a DAG using the input data. Therefore, we
first prove:
Claim 4.2: The NETWORK.BUILD procedure produces
a valid reticulation network that represents the input
clusters.
Proof: Deferred to the Appendix, which can be found
on the Computer Society Digital Library. O

It is clear from the pseudocode and description of the
NETWORK.ADD procedure that NETWORK.BUILD adds
only one non-leaf node, called internalNode, to the
network in each iteration. It remains to demonstrate that
internalNode is a reticulation node, meaning it has in-
degree > 2. It turns out that there are some valid maxi-
mal ST-set tree sequences that produce internal nodes
with in-degree 1. An example of such a sequence is
shown in Figure 8, which can be found on the Computer
Society Digital Library.

Lemma 4.1: If NETWORK.BUILD creates a network N
with m < p reticulation nodes when executed on a
maximal ST-set tree sequence .7 of length p, then there
exists a maximal ST-set tree sequence .7’ of length m.

Proof: Deferred to the Appendix which can be found
on the Computer Society Digital Library. O

ret-minimum with respect to ¢ if it has the fewest
number of reticulation nodes over all the networks that
represent €. To complete the proof of Claim 4.1, we show
that

Lemma 4.2: The NETWORK.BUILD algorithm constructs
a ret-minimum network for ¥ when given as input a
shortest maximal ST-set tree sequence.

The proof of Lemma 4.2 uses an argument that relies
on pruning the subtrees of a network until the network
is a tree. This argument appears in [10] in the proof of
Lemma 7.

Proof: Let N be the network constructed by NET-
WORK.BUILD for a set of clusters ¥ on ., a shortest
maximal ST-set tree sequence for %, of length p. Suppose
toward a contradiction that there exists a network N’
with m < p reticulation nodes that is ret-minimum for
¢ . If N had a reticulation node r such that all paths from
r to a leaf go through another reticulation node 7/, then
we could remove r and redirect the incoming edges of r
into 7’ thus creating a network N’ with fewer reticulation
nodes. This operation would not modify the taxa, so
N’ would still represent €. Therefore, every reticulation
node in a ret-minimum network N must have at least
one path to a leaf that does not go through another
reticulation node.

Let r; be a reticulation node of IV such that no path
from 7, to a leaf goes through another reticulation node.
We know that at least one such reticulation node must
exist in N, because otherwise N would either be a tree
or would contain a directed cycle. Let ¥; be the set
of taxa that are direct descendants of r;, and let G;
be the subgraph composed of r;, its subtree and its
incoming edges. Then, inductively define r; to be a
reticulation node of N — G; — ... — G;_; such that no
path from r; to a leaf contains any other reticulation
nodes, where G} is defined to be the subtree containing
r;, its subtree and its incoming edges, as before. Let S
be the set of leaf descendants of r;. Repeat until N has no
remaining reticulation nodes. We argue that the sequence

& = {Zm,..., X1} is a maximal ST-set tree sequence;
specifically
1) The graph N — G —... — Gy, is a tree.

2) Each ¥; € .7 is an ST-set of € \ (X1 U...UX;_1),
which means 3J; is compatible with all clusters C' €
¢\ (X1U...UX;_1) and all clusters C C X, are
pairwise compatible.

3) Each X¥; € . is a maximal ST-set.

Property (1) follows from the construction of G;; no more
reticulation nodes remain after all m reticulation nodes
are removed from N, so all remaining taxa are arranged
on a tree.



Fig. 2. The intermediate states of the NETWORK.BUILD procedure when building the network in Figure 1 to represent
¢ =1{{1,2,3},{1,2,4,5}, {1,3}, {1,4,5}, {3,4,5}, {5} } with input maximal ST-set sequence . = {{1}, {2}}. (a) Tree
constructed using TREE.BUILD to represent ¢ = ¢ | I where I = {3,4,5}. The C5 node is highest in the tree because
C5 | I has the largest size of all C € . (b) Result of calling NETWORK.ADD on the last ST-set {2} of . and the tree
from Fig 4.1(a). The procedure adds node X2 as a leaf child of the new internalNode labeled ST1. The set ¢ of
most downstream clusters containing {2} is just {C;}. There is an edge from the root R to ST1, because otherwise
the switching for C5 would be disconnected from the network since C5 does not contain 2. This edge is added on lines
34-35 of NETWORK.ADD. (c) Result of calling NETWORK.ADD on the ST-set {1} of .# and the network from Fig. 4.1.
(a) NETWORK.ADD creates new internal node ST2 with leaf child X1 and adds edges to ST2 from the tree edges of
Cy and Cj5 because the clusters C, Cs, C5, Cy all contain {1}, which means they are the contents of the Supersets
structure in this iteration. ¥ = {C3,C4} because Cy,C5 are upstream from Cjy, C3, respectively so they obtain {1}
automatically from the clusters in .#". Cs is in the Disjoint structure because it does not contain {1}, so there is
another edge added on lines 34-35 of NETWORK.ADD from the root to ST2, as in Fig. 4.1(b), such that the switching

representing Cs is connected and contains no paths through ST2.

We also know that ¥, was arranged on a tree rooted
at r; before it was removed from N, which means that
all the clusters C' C 3; are pairwise compatible by
the Perfect Phylogeny Theorem. Suppose that some set
¥; € & is not compatible with €} = €\(X1U...U¥; 1),
which means there is some cluster C' € ; in NV that has
a nontrivial intersection with 3;. Since N represents C,
the tree edge corresponding to C' cannot be downstream
of r; in N, since this would indicate that C' C X;
and thus compatible with ¥;. Therefore, the tree edge
corresponding to C' would either be upstream from r;
in the network or not on any path from the tree edge of
C. In order for N to represent ¢, there would have to
be a path from the endpoint of C' in N to the subtree
containing the taxa in C'N X;, which would mean that
there is another reticulation node ' in G;, which is a
contradiction. Therefore 3J; must be compatible with all
the clusters in ¢; and so property (2) holds.

It remains to show that .7 is a maximal ST-set tree
sequence. Suppose that ¥; is not a maximal ST-set of
¢\ (X1 U...X;_1) and that there exists some taxon z ¢
¥, that such that ¥ = 3, U {z} is also an ST-set. This

means that ¥ must be compatible with all the clusters in
%\ (21 U...UX;_1), which means that all the clusters
C 2 X, must either be equal to ¥; or must also contain
x. Otherwise, a cluster C D ¥; and ¥ would have been
incompatible, since C' would contain elements not in X,
and ¥ contains x. Let .%# be the set of clusters C D X.
The tree edges of the clusters in .#" must lie on several
different paths from the root of N to r;, because N is
assumed to be ret-minimum for ¥, so it cannot have
unnecessary reticulation nodes. If the clusters in % did
lie on the same path, then r; would have in-degree one
and would not be a reticulation node.

Since the tree edges of the clusters in J#" do not lie on
a single path, but all the clusters in ¢ contain x ¢ ¥,
there must be another reticulation node 7’ such the tree
edge endpoint of each cluster in J# has a path to r,
and the subtree S of r contains z. However, this means
that all the clusters in %" contain ¥; U S, which means
that ¥; U S is compatible with J#". This means that we
can modify N’ to create a network N” with one fewer
reticulation nodes by removing the subtree of r and its
incoming edges from N and then calling TREE.BUILD



Algorithm 5.1 Dynamic programming approach by [8]
that computes that History Bound, as given in [13].
Procedure CLEAN is given in Algorithm 2.1.
1: procedure HB_DP(1M)
2: for k=2,...,n do
for each subset K of k rows of M do
set Mg = submatrix of M with rows in K
set M = CLEAN(Mk) _
set K = set of rows of M

set H[My] = min(1 + H[M_ ])
reM -
9: return H[M]
10: end procedure

on cluster set ¢ | (X; U S) with input root r;. However,
this is a contradiction since N’ is ret-minimum for €;
therefore, ¥; must be a maximal ST-set and so property
(3) also holds.

Therefore, if a network N with m < p is ret-minimum
for €, then we can construct maximal a ST-set tree se-
quence .’ of length m. However, this is a contradiction,
since we claimed that the sequence . of length p that
we passed as input to the NETWORK.BUILD algorithm
was already a shortest maximal ST-set tree sequence for
¢ . Therefore NETWORK.BUILD produces a ret-minimum
network when executed on a shortest maximal ST-set
tree sequence for €. O

In summary, the proof of Lemma 4.2 concludes the
proof of Claim 4.1. This resolves the open problem posed
in [11], formulating the value computed by the History
Bound algorithm as a statement about network structure.

5 SEARCHING ST-SET SEQUENCE SPACE

In addition to the original method of computing the
History Bound by branching over all possible executions
of CHB, there is a dynamic programming solution that
computes the History Bound more efficiently [8]. We
give the pseudocode for the dynamic program from [13]
in Algorithm 5.1. CLEAN refers to the procedure given in
Algorithm 2.1. The dynamic programming method com-
putes values of the History Bound for successively larger
subsets of the taxa in the input matrix A/ by minimizing
over previously-computed values for smaller subsets.
We also know from [8] that the problem of computing
the History Bound is NP-hard and APX-hard, so we do
not expect to find a polynomial-time algorithm. How-
ever, dynamic programming solutions often depend only
on the optimal substructure property, instead of exploit-
ing other structural insights. A common downside of
dynamic programming is pessimism: algorithms using
this technique solve the problem for all smaller problem
instances, including those that may not be subproblems
of the given one. To circumvent these inefficiencies,
dynamic programs are often transformed into top-down
algorithms with memoization, which cache intermediate
results for look-up when they are encountered again.
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Fig. 3. A pair of isomorphic networks created using NET-
WORK.BUILD on the input clusters from Figure 8. Note
that the only difference in the two figures are the labels on
the reticulation nodes. (a) Network created using ST-set
sequence {{4}, {6,8}, {7}}. (b) Network created using
ST-set sequence {{7}, {4}, {6,8}}. These maximal ST-
set sequences both have I = {1,2,9} and thus are
permutations of each other by Theorem 5.1.

In this section, we develop a top-down method to
compute the History Bound whose efficiency will come
from the structural insights of previous sections. We will
identify equivalent subproblems and avoid examining
them more than once. This allows us to compute the
History Bound more efficiently on data generated by
a standard coalescent approach with the infinite sites
assumption.

More specifically, we observe that the concept of ST-
set sequences iteratively removes taxa from X at each
step. Furthermore, the NETWORK.ADD procedure adds
ST-sets into the network independently of their posi-
tion in the sequence. Experimenting with this prop-
erty reveals that certain networks produced by NET-
WORK.BUILD are isomorphic. In the following section,
we give an equivalence relation for maximal ST-set
sequences that cause NETWORK.BUILD to produce iso-
morphic networks. Then, in Section 5.2, we leverage this
search space reduction to give a top-down algorithm for
computing the History Bound that performs better in the
“typical” case than Algorithm 5.1.

5.1

There are distinct maximal ST-set sequences that pro-
duce isomorphic networks when passed as input to
NETWORK.BUILD. An example of two such sequences
is shown in Figure 3. In Theorem 5.1, we give the
criteria that cause NETWORK.BUILD to create isomorphic
networks from two distinct maximal ST-sequences. First,
we prove the following technical lemma.

Equivalence of Maximal ST-set Sequences



Lemma 5.1: Let S be an ST-set of a set of clusters €.
Then S is an ST-set of 6, = € \ (S1 U ... U Sk) where
& ={51,... Sk} is a maximal ST-set sequence of ¥ and
no S; € . contains any elements of S.

Proof: Deferred to the Appendix, which can be found
on the Computer Society Digital Library. O

Note that S will not necessarily be maximal in %Z;; even
if it is maximal in ¥

Theorem 5.1: Let & = {S1,...,5} and ¥ =
{Z1,...,X,} be two maximal ST-set sequences that have
the same initial set; that is, if

I=X-— U S; =X — U Y, =1

1<i<p 1<i<gq

then p = ¢ and the sequences . and ¥ are permutations
of each other.

Proof: Let S; be a maximal ST-set in sequence . and
let ; be the first ST-set in ¥ to contain any elements of
S;. By Lemma 5.1, we know that S; is an ST-set of

€ =%\ (S1U...US; 1),

but since ¥ is a maximal ST-set sequence, ¥; is a maximal
ST-set of €;, which means that that .S; C 3;. In order to
show that ¥ is a permutation of ., we must show that
¥; cannot contain any other elements.

Suppose toward a contradiction that there is at least
one z € X; that isn’t in S;. Then x must belong to some
set of clusters of ‘5; that are entirely contained in X;
(because X; is compatible with ‘gj) but are not contained
in S;. Let Q # 0 be the union of those clusters. We can
write ¥; = S; U @, but we emphasize that that @ # ()
contains all the elements of S; that are not in .5;, meaning
that @ and S; are disjoint.

We argue that the entirety of () must appear in some
maximal ST-set of .. Suppose that this is not the case
and there are ST-sets S, 2 @1 and Sk, 2 @2 in .¥ such
that Q = @1 U Q2, where ()1 and @2 are disjoint. That
is, each of these ST-sets contains a fragment of @ but
not its entirety. Without loss of generality, if k1 < ks,
meaning Sy, occurs earlier in .7, then Sj, is not maximal
because () is a union of compatible clusters, so if Sy,
containing ()1 is an ST-set, then Sj, UQ> is a larger ST-set
and thus contradicts the assumption that Sy, is maximal.
Therefore, there must be some S € . that contains Q.

We argue that S;, must occur before S; in sequence .
(meaning k < i), because S; is maximal for

G =%\ (S1U...US;_)

and @ is disjoint from S;, which means that all clusters
C CQ are compatible~ with S;. If all of these elements
were still present in %;, then S; would not ]ge maximal
because S; U@ would be a larger ST-set of %;; therefore,
Sj occurs before S; in ..

Let X, be the first ST-set of ¥ to contain any elements
of Sj. By Lemma 5.1, Sy, is an ST-set of

G =C\(S1U...US_1).
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Suppose ¢ < j. This means that ¥, contains elements
of S, — ¢ but does not contain any element of ¢, so
they must be contained in an ST-set X; that occurs
later in the sequence . However, ¥, cannot contain the
elements of S;;, — @ without also containing all of @) by
maximality, because the elements of @) are still present
in %;. Therefore, ¢ cannot come bef~0re j-

So, suppose ¢ > j and consider ¢;. Since ¥, is the first
element of ¥ to contain any elements~of S and £ > j,
Sy, is still an ST-set of €. Therefore, ¢; has two ST-sets
¥; and Sj, that both contain @), so by Lemma 4 of [10]
¥;US} is also an ST-set. This contradicts the assumption
that ¥, = S, U Q with @ # () is not maximal, so it must
be the case that Q = 0 and S; = Y;. And since S; was
an arbitrary ST-set of ., then it holds for any ST-set;
therefore, . and ¥ are permutations. O

Note that Theorem 5.1 does not imply that the el-
ements of any given maximal ST-set sequence .¥ can
be permuted arbitrarily to create another equivalent
maximal ST-set sequence. This is because some S; may
be a maximal ST-set of ¢; but still an incompatible set
of €j<i, because certain clusters are still incompatible in
€;. The result merely states that if two maximal ST-set
sequences with the same initial set do exist, then they are
permutations.

Theorem 5.1 demonstrates that the maximality crite-
rion on the tree-like components of reticulation networks
is very strong, meaning that when the compatible set
I of two sequences . and X is the same, maximality
forces the elements not in I to be “packaged” together
into the same maximal ST-sets. These two factors make
the networks produced by NETWORK.BUILD isomorphic:
the algorithm first constructs the perfect phylogeny for
I, which is the same for both sequences, then it calls
NETWORK.ADD on each of the ST-sets in the sequence
independently. Theorem 5.1 shows that the ST-sets of .
and X are the same, so NETWORK.ADD inserts each ST-
set into the network without making any decisions based
on previous NETWORK.ADD calls, or the structure of the
network. Therefore, only the node labels differ between
the networks produced from two maximal ST-set tree
sequences that are permutations of each other.

Corollary 5.1: If . and ¥ are two maximal ST-set
sequences over X then the following are equivalent:

(@) . and ¥ are permutations of each other.
(0) X —User S =X ~Usexn o
Proof: Since .# and X are collections of the same
sets, just ordered differently, their unions are equal, so
(a) implies (b). Theorem 5.1 gives that (b) implies (a). [J
Theorem 5.1 implies that certain ST-set sequences are
equivalent, because they consist of the same maximal ST-
sets and cause NETWORK.BUILD to produce structurally
identical reticulation networks. Therefore, if two maxi-
mal ST-set sequences . and ¥ over X are permutations
of each other, then we define them to be p-equivalent.
In the context of computing the History Bound, the p-
equivalence relation reduces the search space of maximal



ST-set tree sequences, since, if an algorithm examines
a maximal ST-set tree sequence .7 of length p, then
all other sequences that are p-equivalent to . will be
permutations of . with length p and do not need to be
examined. We will use this idea in the development of
a top-down History Bound algorithm.

5.2 A Top-Down History Bound Algorithm

In this section, we develop a top-down algorithm that
computes the History Bound. This method also enumer-
ates all of the shortest maximal ST-set tree sequences that
are distinct up to p-equivalence for a matrix M.
To use Theorem 5.1, we first define an order on the
maximal ST-sets of a set of clusters ¢ over X as follows:
|51] < |5

|S1] = |S2| and min z < min y. (1)
TE€ST yES2

S1 < Sy if

This is a total order, because the maximal ST-sets of
¢ partition X [10], so the minimum elements of two
maximal ST-sets of ¢ will be distinct. We use this order-
ing to restrict the search to only examine maximal ST-
set sequences . whose ST-sets are in increasing order:
that is, those sequences .# such that if 5;,5; € . and
i < j then S; < 9. In other words, the sequences whose
ST-sets are increasing with respect to < are taken as
representatives of their p-equivalence classes.

The pseudocode for the top-down algorithm is shown
in Algorithm 5.2. Given a matrix M with n rows,
HB_TOPDOWN first initializes a queue with the input
matrix M, and initial level £ = 0. It also initializes the
variable p with an overestimate for the length of the
shortest maximal ST-set tree sequence. On line 2, it sets
p = n—2, because all size-2 subsets of X are compatible,
so the shortest maximal ST-set tree sequence will have
length n — 2 in the worst case. The procedure then
uses the queue to process subproblems in a breadth-first
order, growing each known maximal ST-set sequence by
one maximal ST-set, and using the level variable ¢ to
keep track of the length of all the currently computed
ST-set sequences.

At each iteration, HB_TOPDOWN extracts the triple
(¢,M,S) from the queue, where M is the subproblem
matrix, £ is the current level, and S is the maximal ST-
set S whose removal produced M. The procedure then
runs CLEAN on M: if the resulting matrix is empty, then
M is compatible, meaning the end of a maximal ST-set
tree sequence has been reached. It must be a shortest
maximal ST-set tree sequence, because HB_TOPDOWN
examines sequences of increasing lengths starting from
¢ = 0. Further, (¢, M, S) is also the endpoint of the first
shortest maximal ST-set sequence to be encountered by
HB_ToPDOWN if the variable p is still an overestimate.
If this is the case, HB_TOPDOWN updates p with the
length of the sequence ending with .S, which is the value
of ¢ for this subproblem. As given in Algorithm 5.2,
the HB_TOPDOWN inspects the remaining items in the
queue that also have level ¢ = p before terminating;
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Algorithm 5.2 Top-down algorithm that computes the
History Bound for binary matrix M. It can be modified
to terminate after finding the first shortest sequence.
Procedure CLEAN is given in Algorithm 2.1.

1: procedure HB_TOPDOWN(M)

2: p=|M|—-2

3: Q@ = Queue ()

4 Q.put((0, M, 0))

5: while @ is not empty do

6: ¢, M, S)y=Q.get ()

7: if £ > p then

8: break

9: if M is compatible then

10: if p == |M| then

11: setp=14¢

12: if £ == p then

13: M is the endpoint of an optimal sequence
14: if p > £ then ~

15: M = CLEAN(M)

16: forie {1,...,|M|} do _
17: S; = the ST-set encoded by row r; of M
18: if S < S; then N

19: Q.put(£+1,M7Ti, Si)
20: return p

21: end procedure

however, it can easily be modified to terminate immedi-
ately after it finds the first shortest maximal ST-set tree
sequence. -

Meanwhile, if HB_TOPDOWN extracts triple (¢, M, S)
from the queue and M is not compatible, then, for every
ST-set S; encodeglv by row r; € M such that S < 5,
the triple (¢ + 1, M — r;,S;) is inserted into the queue.
Checking ST-sets against the < ordering ensures that
only the representative maximal ST-set sequence in each
p-equivalence class is considered during the computa-
tion. Note that < is designed so that ST-sets with larger
cardinality follow smaller ones. As taxa are removed
from M by HB_TOPDOWN, existing ST-sets combine
to create new ones that have not been considered in
previous execution steps. So, they come later in the <
order than those with lower cardinality so that they will
be chosen for removal in subsequent subproblems.

5.3 Comparing Algorithm Performance

We can see from the pseudocode in Algorithm 5.1 that
the dynamic programming procedure to compute the
History Bound runs in time

Z <Z> (k+ Tt1ean(k, m)) € O(nm2™) (2
k=2

where |X| =n, || =m and T¢1can(n, m) is the runtime
of CLEAN on an n X m matrix. Expression (2) gives
the runtime of the dynamic program regardless of the
specific problem instance. We can read expression (2)
from the pseudocode without knowing anything about
the internal structure of the maximal ST-sets of the
clusters encoded by M. This is because HB_DP looks
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[0, 1, 11 {5} [0, 1, 1] {5} [0, 1, 1] {4} 0, 1, 11 {5} [0, 1, 1] {4}
[1,0, 11 {3} [1,0, 17 {4} [1,0, 17 {3} [1,0, 17 {4} [1,0, 11 {3}
[L 1, 01{1} [1 1,01 {1} [, 1,01 {1} 11, 1,012} [L. 1,01{2}

5} {4} {51 4} (5} {4} (3} 5} (5}

[0,0, 1,0, 1, 1] {4} [0,0, 1,0, 1, 17 {5} 0,0, 1,0, 1, 11{5) 0,0, 1,0, 1, 11{5) [0,0, 1,0, 1, 1] {5}
[0, 1,0, 1,0, 1] {3} [0, 1,0, 1,0, 1] {4} [0, 1,0, 1,0, 1] {4) [0, 1,0, 1,0, 1] {4) [0. 1,0, 1,0, 1] {3}
[1,0,0, 1,1,0] {2} [1,0,0, 1, 1,0] {3} [1,0,0,1,1,0] {3} [1,0,0,1,1,0] {2} [1,0,0, 1,1,0] {2}
[1.1,1,0,0,0] {1} [L1.1,0,0.0] {1} [1, 1, 1,0,0,0] {2}

3} 4)

[1,1,1,0,0,01 {1} [1.1,1,0,0,0] {1}

[0, 1, 1] {5}
[L,0,1] {4}
[1.1,0] {3}

[0, 1, 1] {5}
[1,0,11{3)
[1, 1. 01{2}

[0, 1, 1] {4}
[1,0, 11 {2}
[1, 1,01 {1}

[0. 1, 1] {5}
[1,0,1] {2}
[1,1,0] {1}

[0, 1, 1] {3}
[1,0,17 {2}
[ 1.0] {1}

(5}

Fig. 4. Execution of HB_TOPDOWN llustrated as a search tree. The input set ¢ are all size-2 subsets of X =
{1,...,5}. The nodes are labeled with the matrix M that gets processed at that step and the edges are labeled with
the maximal ST-set that is removed to obtain the child node. The edge labels along each path from the root to a leaf
are increasing according to the < ordering. Note that, for this problem instance, the number of nodes at each level ¢

of the tree is equal to (7).

at all (}}) subsets of the rows of the input matrix M for
all subset sizes k < n — 2, even though not all subsets of
taxa may be removed to construct a valid maximal ST-
set sequence, not to mention a shortest one, for many
inputs M.

This raises the following question: for which problem
instances is it necessary for either algorithm to examine
all size > 2 subsets of X to compute all of the shortest
maximal ST-set tree sequences for AM? We give one
such instance in Figure 4, which shows the execution of
HB_ToPDOWN illustrated as a search tree. The cluster
set for this example is all size-2 subsets of X. For this
data, the number of matrices processed at each level ¢
is equal to (7). This occurs because, at every step of
the execution of HB_TOPDOWN, a maximal ST-set with
cardinality 1 is removed, but the removal never causes
rule Dr to trigger in procedure CLEAN, so all subsequent
maximal ST-sets have cardinality 1 as well. Thus, each
level ¢ of the search tree has (;}) nodes, and execution
continues until £ reaches n—2, when X only has two taxa
left and every set of size 2 is compatible. This means
that all maximal ST-set tree sequences of length n — 2
are optimal for this problem instance. Therefore, those
subproblems that HB_DP examines must all be looked
at by HB_TOPDOWN in the extreme case where it is
impossible to trigger rule Dr by removing fewer than
n—2 taxa. Thus, Fig. 4 shows that the worst-case runtime
of HB_TOPDOWN is also given by expression (2).

However, in more typical situations, HB_TOPDOWN
out-performs HB_DP, as it is able to examine fewer
subproblems before reaching the answer. In the
HB_TOPDOWN search tree, the number of nodes at each
level ¢ is equal to the number of ways to remove ¢
maximal ST-sets from the data. In less extreme problem
instances, removing taxa from X does trigger rule Dr,

which identifies maximal ST-sets containing more than
one taxon. These larger maximal ST-sets cause the paths
leading to compatible subproblems to be shorter than
n — 2, because there are fewer ST-sets to remove. One
such problem instance with n = 6 is shown in Figure 5
of the Appendix, which can be found on the Computer
Society Digital Library. On this example, HB_TOPDOWN
only examines 23 subproblems, compared to the 57 that
are inspected HB_DP, demonstrating an advantage in
efficiency.

We also tested both History Bound algorithms on
biological data.

1) We used the 43 polymorphic columns of Kreit-
man’s 1983 data of the alcohol dehydrogenase lo-
cus from 11 chromosomes of Drosophila melanogaster
that were transformed into binary sequences and
studied in [14]. The value of the History Bound
for this data is 3, with two shortest maximal ST-
set tree sequences, distinct up to p-equivalence.
HB_TOPDOWN examined 127 nodes while HB_DP
looked at 502!

On the data from double-stranded RNA in fungi
studied in [15] with seven taxa and 229 sites, the
History Bound is 3, with three shortest maximal
ST-set tree sequences. HB_TOPDOWN examined
63 nodes, which is about half of the 120 nodes
examined by HB_DP. This result is particularly op-
timistic, because the construction in Fig. 4 achieves
the worst-case condition with (%) = 21 sites, and
yet all 229 sites from this biological sample do not
conflict that strongly.

2)

1. Running CLEAN on the input matrix collapses three rows into
one, which is why the number of nodes examined by HB_DP is close
to 2° and not 211



Therefore, unlike the example data in Figure 5, which
was contrived for illustrative purposes, these results
give us reason to expect HB_TOPDOWN to outperform
HB_DP on on biological data typically used to compute
the History Bound.

6 CONCLUSIONS

We explicitly proved that the History Bound from a
matrix M is equal to the length of the shortest maximal
ST-set sequence for the clusters encoded by M. Then,
we proved that the History Bound counts the minimum
number of reticulation nodes in a network that repre-
sents the clusters encoded by M in the softwired sense,
resolving the open question from [11]. We then devel-
oped a top-down algorithm for computing the History
Bound, and demonstrated that it has the same worst-
case runtime as HB_DP [8], but outperforms HB_DP
on some biological data.
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Fig. 6. A reticulation network that represents the cluster
set % in the softwired sense from the example in Figure 1.
It has 2 reticulation nodes and reticulation number 4.

APPENDIX

Claim A.1 (4.2): The NETWORK.BUILD procedure pro-
duces a valid reticulation network that represents the
input clusters.

Proof of Claim 4.2: We prove the claim by induction
on iterations of NETWORK.BUILD. The set of clusters
% | I is correctly represented by N by the correctness of
the known TREE.BUILD algorithm. Suppose that, when
NETWORK.ADD is called on inputs N and S5;, the net-
work correctly represents the set of clusters ¢ | (/US, U
Sp—1 U...USit1). We must show that, after iteration ¢,
N correctly represents every cluster in

G =%|(IUS,US,_1U...US,).

We prove the claim by showing the following two
conditions.

First, we need to show that after NETWORK.ADD
finishes processing ST-set .S;, cluster C' € %; contains all
of its taxa. A cluster C' C S; will be correctly represented
by N after NETWORK.ADD runs, by the correctness of
TREE.BUILD, and if a taxon € C is not in S;, then
it is already a leaf descendant of C.tree_edge by the
induction hypothesis. Similarly, if + € S; and C € #
then the algorithm will add an edge from the endpoint of
C.tree_edge to the internalNode, so x will be a leaf
descendant of C.tree_edge. If the algorithm instead
attaches internalNode to the tree edges of a set of
clusters #" such that C' € 7, then by lines 9-17 there
is some other cluster C € J# downstream of C. By
the definition of downstream, this means that N has a
directed path from C.tree_edge to C.tree_edge, so
x will be a leaf descendant of C.tree_edge.

Next, we show that if C' does not contain any taxa
in S;, then the algorithm does not force any = € S;
to be a leaf descendant of C.tree_edge. On line 32,
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Fig. 7. A minARG for the data in Figure 1 has 4 recombi-
nation nodes.

the algorithm adds the edges into the internalNode
to Ds set of off_edges. This is a book-keeping step
to illustrate that NV still displays the tree that represents
¢;. Finally, it is possible that all of the edges into the
internalNode are downstream of C. This would mean
that the switching of N that represents %; will be discon-
nected. Therefore, on line 34, NETWORK.ADD adds an
edge from the root to the internalNode, which keeps
the switching graph intact. Thus, even if C' does not
contain any taxa in S;, the NETWORK.ADD procedure
maintains the property that N is a connected network
that represents %;. O
Lemma A.1 (4.1): If NETWORK.BUILD creates a network
N with m < p reticulation nodes when executed on a
maximal ST-set tree sequence .7 of length p, then there
exists a maximal ST-set tree sequence . of length m.
Proof of Lemma 4.1: Suppose that, after the NET-
WORK.ADD procedure processes an ST-set S;, the
internalNode added during its execution has in-
degree one. This happens if there is only one cluster
in 7, the set of maximally downstream clusters that
contain .S;, meaning that the tree edges of all clusters
C 2 S; lie on a single path in N. Since the tree edges
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Fig. 5. Execution of HB_TOPDOWN on inputs X = {1,..

.,6} and ¥ = {{1,2}, {1,3}, {2,3}, {4,5}, {4,6}, {5,6},

{1,2,4,5}}. This figure may be too small to read closely; it is intended to illustrate search tree structure. € has only
one shortest maximal ST-set tree sequence of length 2 with the endpoint shown in red. It shows rule Dr generating
maximal ST-sets of size > 2, which allows HB_TorDOWN to find the shortest sequence faster than if it were starting
the search from the bottom of the search tree of size ~ 25. This method examines 23 nodes, while HB_DP looks at

57 nodes when executed on .

of all clusters C' O I were placed by the TREE.BUILD
procedure and the taxa in S; were added to the tree con-
structed by TREE.BUILD via an edge from C.tree_edge
to the internalNode, which we assumed to have
in-degree one, the set of clusters C | (I U S;) can
be arranged in a tree. Therefore, all the clusters in
C | (IUS§S;) are pairwise compatible by the Perfect
Phylogeny Theorem. This means that it is unnecessary
to include S; in the ST-set tree sequence, because the
sequence {S1,...,S5i-1,Si+1,...,Sp} is a maximal ST-set
tree sequence of length p — 1. Thus, if a sequence .
of length p is the shortest maximal ST-set tree sequence
for a set of clusters %, then each internalNode will
have in-degree at least two. Hence, NETWORK.BUILD

Fig. 8. Two almost-isomorphic networks produced by
NETWORK.BUILD on the input cluster set {1,9,2,4},
{1,9,2}, {1,9,2,6,8}, {1,9,4,7}. (a) Network produced
using the ST-set sequence {{4}, {1,9}, {6,8}, {7}}.
The node labeled ST3 has only one incoming edge.
(b) Network produced using the ST-set sequence

{{4},{6,8},{7}}.

will produce a reticulation network N with exactly p
reticulation nodes. ]
Lemma A.2 (5.1): Let S be an ST-set of a set of clusters
%. Then S is an ST-set of €, = €\ (S1U...US})) where
& ={51,... 5k} is a maximal ST-set sequence of ¥ and
no S; € % contains any elements of S.
Proof of Lemma 5.1: In order to show that S is an
ST-set of %), we must show that

(1) S is compatible with all C' € %

(2) all clusters C,Cy C S are pairwise compatible.
We know that S is compatible with ¢, which means that
for all C € €, either C C S, S C Cor SNC = 0.
But since no elements of S are missing from %}, then
all the clusters C' C S are still in 6}, so they are still
compatible with S. Similarly, the clusters corresponding
to those that were disjoint from S in %" contain the same
or fewer elements in ¢}, so they are still disjoint from
S. Finally, we know that none of the S; € . contain
any elements of S, which means that any C' € ¢ such
that S C C will not have any elements of S missing in
% Therefore, for those clusters, it will still be true that
S C C, so all of the compatibility conditions for S and
%), are met, so condition (1) is true. Condition (2) is true
as well because no elements of S are removed in . so
all the clusters that are contained in S are still pair-wise
compatible in . Thus, S is an ST-set of €. O



