Julia Matsieva
email: jmatsieva@ucdavis.edu

Steven Kelk
email: steven.kelk@maastrichtuniversity.nl

Celine Scornavacca
email: celine.scornavacca@univ-montp2.fr

Chris Whidden
email: cwhidden@fhcrc.org

Dan Gusfield
email: dmgusfield@ucdavis.edu

A Resolution of the Static Formulation Question for the Problem of Computing the History Bound

Keywords: rooted phylogenetic networks, clusters, reticulate evolution, parsimony, computational complexity, algorithms.!

Evolutionary data has been traditionally modeled via phylogenetic trees; however, branching alone cannot model conflicting phylogenetic signals, so networks are used instead. Ancestral recombination graphs (ARGs) are used to model the evolution of incompatible sets of SNP data, allowing each site to mutate only once. The model often aims to minimize the number of recombinations. Similarly, incompatible cluster data can be represented by a reticulation network that minimizes reticulation events. The ARG literature has traditionally been disjoint from the reticulation network literature. By building on results from the reticulation network literature, we resolve an open question of interest to the ARG community. We explicitly prove that the History Bound, a lower bound on the number of recombinations in an ARG for a binary matrix, which was previously only defined p rocedurally, i s e qual t o t he m inimum number of reticulation nodes in a network for the corresponding cluster data. To facilitate the proof, we give an algorithm that constructs this network using intermediate values from the procedural History Bound definition. We then develop a top-down algorithm for computing the History Bound, which has the same worst-case runtime as the known dynamic program, and show that it is likely to run faster in typical cases.

INTRODUCTION

M ANY types of biological data can be intuitively rep- resented by labeled, directed trees, which model the diversity observed in a set of specimens, or taxa, with a sequence of branching events. However, many real-world data sets cannot be perfectly represented by a tree, because the biological signals conflict. To handle these cases, the field has allowed "joining events" as an additional mechanism for increasing diversity, which leads to interest in the study of phylogenetic networks [START_REF] Huson | Phylogenetic networks: concepts, algorithms and applications[END_REF]. In a phylogenetic network, two lineages are allowed to combine to form a lineage that could not be obtained by branching events alone. With no further restrictions, the problem of finding a network to represent a set of data can be computed in polynomial time; however, our current understanding of biology suggests that these joining, or reticulation, events occur relatively infrequently in nature. Thus, we often seek to construct plausible networks that minimize certain properties of the nodes with in-degree > 1, at which point the problems become computationally hard [START_REF] Huson | Phylogenetic networks: concepts, algorithms and applications[END_REF].

An ancestral recombination graph, or ARG, is a type of phylogenetic network designed to model the evolution of ordered sequence data from a single starting sequence [START_REF] Griffiths | Ancestral inference from samples of DNA sequences with recombination[END_REF], [START_REF]An ancestral recombination graph[END_REF]. The input to the problem is a set of binary sequences of the same length, and the objective is the construction of a DAG with one source node designated as the root and labeled with the ancestral sequence, and edge transitions modeling mutations along the edges, subject to the restriction that each site is only allowed to mutate once. However, sequences are also allowed to recombine, taking a prefix from one sequence and a suffix from another, to generate a new sequence of the same length. Usually, we aim to construct minARGs, or ARGs with the minimum possible number of recombinations. However, the problem of constructing minARGs is known to be NP-hard [START_REF] Bordewich | Computing the minimum number of hybridization events for a consistent evolutionary history[END_REF], [START_REF]On the computational complexity of the rooted subtree prune and regraft distance[END_REF], [START_REF] Wang | Perfect phylogenetic networks with recombination[END_REF], so research has focused on computing lower bounds on R min , the number of recombination nodes in a minARG.

A variety of methods have been developed for computing lower bounds on R min . These methods all operate on the input matrix of binary sequences, but they generally also have a combinatorial interpretation. One particularly effective but computationally intensive lower bound, the History Bound, was originally defined as the output of an algorithm [START_REF] Myers | Bounds on the minimum number of recombination events in a sample history[END_REF], and did not have a static interpretation. As given, the algorithm to compute the History Bound runs in time that is super-exponential in the size of the input, but a dynamic programming version speeds up the computation to exponential time [START_REF] Bafna | Inference about recombination from haplotype data: lower bounds and recombination hotspots[END_REF]. However, we also know from [START_REF] Bafna | Inference about recombination from haplotype data: lower bounds and recombination hotspots[END_REF] that the problem of computing the History Bound is NP-hard. Nevertheless, tools like integer linear programming are often shown to be efficient in practice for instances of NP-hard problems of meaningful sizes, so a static formulation of the History Bound as an optimization problem is desirable.

In contrast to ARGs, reticulation networks (or hybridiza-tion networks) model a set of clusters (also called clades), which are subsets of the taxa (although trees or triplets are also used in other problem settings, as summarized in [START_REF] Van Iersel | When two trees go to war[END_REF] and [START_REF] Huson | Phylogenetic networks: concepts, algorithms and applications[END_REF]). The objective is to construct a network such that the taxa in each cluster are the leaf descendants of some tree topologically embedded in the network, and that the network has the fewest number of reticulation events, formally defined in Section 2.

In the past, the literature on ARGs has traditionally been disjoint from the work on reticulation networks, and the two communities have engaged in limited communication. In a previous paper aimed at the reticulation network community, the authors of [START_REF] Kelk | On the elusiveness of clusters[END_REF] develop a theory to describe and analyze structures in cluster input data. The theory given there sheds light on the underlying meaning of the number computed by the History Bound algorithm. In fact, it is claimed that the construction given in [START_REF] Kelk | On the elusiveness of clusters[END_REF] is equivalent to the History Bound. The first result in this paper is an explicit proof of this claim.

The main result in this paper is a further understanding of the relationship between the procedural definition of History Bound given in [START_REF] Myers | Bounds on the minimum number of recombination events in a sample history[END_REF] and the structural properties of reticulation networks. Building on concepts developed in [START_REF] Kelk | On the elusiveness of clusters[END_REF], we prove that the History Bound is equal to the minimum number of reticulation nodes in a reticulation network that represents the clusters encoded by an input matrix [START_REF] Kelk | On the elusiveness of clusters[END_REF], solving the open problem posed in [START_REF] Wu | A new recombination lower bound and the minimum perfect phylogenetic forest problem[END_REF]. This result is not stated there and the paper was unlikely to have been noticed by members of the ARG community. Here, we give stylistically different definitions and algorithms to explicitly prove this result. However, the arguments given in Section 4 map closely onto the constructions in [START_REF] Kelk | On the elusiveness of clusters[END_REF]; therefore, we will point out the correspondence between the arguments when it occurs.

We then use the structural insights from Section 4 to develop a top-down algorithm for computing the History Bound. We demonstrate that this algorithm runs faster in the typical case than the dynamic programming approach from [START_REF] Bafna | Inference about recombination from haplotype data: lower bounds and recombination hotspots[END_REF].

PRELIMINARIES

In this section, we will discuss standard definitions and relevant theorems from the phylogenetic networks literature. We will then recall definitions from [START_REF] Kelk | On the elusiveness of clusters[END_REF], which are used later.

Ancestral Recombination Graphs

A genealogical network is a network constructed to model the derivation of a set of sequences originating from a single source sequence via the genetic processes of mutation and recombination. Thus, the underlying graph is a rooted DAG where the root is labeled with the ancestral sequence, and the observed or input sequences appear at the leaves. Formally, a genealogical network is created from a collection of n input sequences of length m over a binary alphabet representing single nucleotide polymorphisms (SNPs), usually given in a n × m binary matrix M , with each row representing the binary sequence for a taxon. A network N that represents M has exactly n leaves, each labeled with a sequence from M according to the rules discussed below.

The edges of N can be either labeled or unlabeled, with a distinction made between tree edges, edges into a node with in-degree one, or recombination edges which are edges into a recombination node, which has in-degree two. A tree edge may be given an integer label in the range {1, . . . , m} to indicate the site in M at which a mutation occurs, or be unlabeled to indicate no change. Thus, the sequence labeling a tree node can be read from its path from the root by interpreting each edge as a binary state change. Under the single-crossover model, the sequence labeling a recombination node takes a prefix from one parent sequence and a suffix from the other, resulting in a sequence of length m. An integer in {1, . . . , m} specifying the length of the prefix is usually indicated on the recombination node.

A genealogical network N is an ancestral recombination network (or ARG) if each site is allowed to mutate at most once. That is, an ARG N has at most one tree edge with label c for all c ∈ {1, . . . , m}. ARGs are heavily studied in population genetics [START_REF] Wakeley | Coalescent Theory: An Introduction[END_REF]; a detailed motivation for their use appears in [START_REF] Gusfield | ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks[END_REF]. It is especially desirable to construct a minARG, i.e. an ARG with the fewest number of recombination nodes, for a given set of data. This problem is known to be NP-hard, so research has focused on computing and evaluating lower bounds on R min , the number of recombination nodes in a minARG [START_REF] Gusfield | ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks[END_REF].

The History Bound

The algorithm that defines the History Bound on R min was given by Myers and Griffiths in [START_REF] Myers | Bounds on the minimum number of recombination events in a sample history[END_REF]. It operates on a binary input matrix M and computes a lower bound on the minimum number of recombination nodes that must appear in an ARG that represents M . We give the version of the algorithm as explained in [START_REF] Gusfield | ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks[END_REF], where it is split into two procedures, procedure CHB for generating a candidate for the History Bound, which is shown as Algorithm 2.1, and procedure CHB BRANCH, which selects the minimum value over all the candidates. This version assumes that the ancestral sequence for the data is the all-zero sequence. Procedure CHB reduces the input matrix by running the CLEAN procedure, which iterates the following operations:

Dr: which collapses identical rows together Dc: which removes columns from M with at most one 1 These operations are performed by CLEAN until neither is possible. At this point the CHB procedure performs operation Dt, choosing an arbitrary row to delete from the matrix. The CHB procedure iterates these operations until the matrix is empty. The number of row deletions Algorithm 2.1 CHB algorithm that computes a candidate for the History Bound as given in [START_REF] Gusfield | ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks[END_REF].

Reticulation Networks and Clusters

Critical background for this paper focuses on the development of reticulation networks in the cluster setting. A reticulation network on a finite set X of taxa is a rooted, connected DAG with no nodes having both in-degree and out-degree 1, whose leaves are the elements of X.

A node of in-degree of 2 or greater is called a reticulation node and incoming edges into such a node are called reticulation edges. The literature on reticulation networks is often concerned with counting reticulation "events", which are given by the reticulation number of a network N = (V, E), defined as follows:

r(N) = v∈V :din(v)>1 d in (v) -1 = |E| -|V | + 1
where d in (v) denotes the in-degree of node v [START_REF] Kelk | On the elusiveness of clusters[END_REF]. Then, the reticulation number r(C) of a set of clusters C is the minimum of the reticulation numbers over all the reticulation networks that represent, or model, C . However, in this paper, we will be concerned with counting the number of reticulation nodes in a network N , denoted nr(N).

A cluster is a subset of X. We say that two clusters corresponding to cluster C, if x ∈ C, and placing 0 there otherwise (see Figure 1). We can also convert a matrix M into a set of clusters C by considering the element encoded by a row of M to be a member of cluster C ∈ C if there is a 1 in the column corresponding to C in M . Thus, in the matrix setting, when the ancestral sequence is the all-zero sequence, two columns C 1 , C 2 are incompatible if the set of pairs constructed by pairing column entries in corresponding rows contains all of the pairs (1, 0), (0, 1) and [START_REF] Huson | Phylogenetic networks: concepts, algorithms and applications[END_REF][START_REF] Huson | Phylogenetic networks: concepts, algorithms and applications[END_REF]. The presence of all three pairs is referred to in [START_REF] Gusfield | ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks[END_REF] as the Three Gametes condition.

C 1 and C 2 are compatible if either C 1 ⊆ C 2 , C 2 ⊆ C 1 or C 1 ∩ C 2 = ∅,
C = C1 1 2 3 C2 1 2 4 5 C3 1 3 C4 1 4 5 C5 3 4 5 C6 5 (a) M =     1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 1     (b)
The concept of compatibility relates directly to the perfect phylogeny problem, which is the problem of finding a tree that represents the data encoded in a binary matrix M . In order to represent M , a tree T must have the properties that all of its leaves correspond to the rows of M , each column of M labels exactly one edge of T , every interior edge of T is labeled by at least one column of M , and for each leaf x in T , the edge labels on the path from the root to x must correspond to those columns that have state 1 for x in M . See [START_REF] Gusfield | ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks[END_REF] for a more complete discussion. This definition assumes that T is constructed with an all-zero ancestral sequence, which we will assume throughout this paper. The conditions for when a solution to the problem exists are wellunderstood: the Perfect Phylogeny theorem states that the problem does not have a perfect phylogeny that represents the data, when there is at least one pair of incompatible columns in M . Equivalently, a set of clusters can be represented by a perfect phylogeny, if and only if the clusters are compatible [START_REF] Gusfield | ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks[END_REF].

In contrast to the ARG setting, the input to the reticulation network problem is a set X of taxa and an unordered collection C of clusters, where each C ∈ C is a proper subset of X. A network N represents a cluster C in the hardwired sense if there exists a tree edge (u, v) in N such that the set of leaf descendants of v is exactly equal to C. N represents a cluster C in the softwired sense if there is a rooted spanning subtree T of N such that T represents C in the hardwired sense. That is, if N contains an edge e such that C is equal to the set of all leaf descendants of e after all but one incoming edge at each reticulation node of N is removed [START_REF] Huson | Phylogenetic networks: concepts, algorithms and applications[END_REF]. The operation of turning on one reticulation edge at each reticulation node and turning all others off is referred to as the construction of a switching of N in [START_REF] Kelk | On the elusiveness of clusters[END_REF]. A network N represents a collection of clusters C if it represents each C ∈ C in the softwired sense.

The problem in this setting then consists of constructing reticulation networks to represent C subject to some optimality criterion, such as minimizing the reticulation number, r(C). In this paper, we will usually discuss networks with the minimum number of reticulation nodes, so we define a network N to be ret-minimum for a set of clusters C if N has the fewest number of reticulation nodes over all networks that represent C in the softwired sense. We use nr(C) to denote that number. Therefore, a reticulation network N that represents C is ret-minimum if and only if nr(N) = nr(C).

Figures 6 and7 in the Appendix, which can be found on the Computer Society Digital Library, show an example of a reticulation network and an ARG for the data in Figure 1. According to the definitions in this section, an ARG is also a reticulation network that represents the clusters encoded by M in the softwired sense. However, the internal structure of ARGs tends to have more complexity due to the requirements of the model, which is designed to describe the derivation of ordered sequence data.

ST-Set Sequences

In this paper, we build on the ST-set concept from [START_REF] Kelk | On the elusiveness of clusters[END_REF]. An ST-set is a subset of the taxa with special, "treelike" properties. Informally, an ST-set of C can be thought of as a union of compatible clusters or compatible subsets of clusters. Given a subset S ⊆ X of taxa, let C \ S denote the result of removing S from every C ∈ C , and let C | S denote the restriction of C to S (i.e. C \(X -S)). Formally, S ⊆ X is an ST-set with respect to a collection

C of clusters if 1) S is compatible with C .
2) all pairs of clusters C 1 , C 2 ∈ C | S are compatible. An ST-set S is maximal if there is no other ST-set S such that S ⊂ S . It is shown in [START_REF] Kelk | On the elusiveness of clusters[END_REF] that all of the maximal ST-sets of a collection of clusters can be computed in time polynomial in the size of the input.

A sequence The length p of the shortest maximal ST-set tree sequence that can be computed for C is defined in [START_REF] Kelk | On the elusiveness of clusters[END_REF] to be the MST lower bound on the reticulation number r(C) and it is shown to be a true lower bound. But, in this paper, we are more concerned with the minimum number of reticulation nodes in a network that represents C . In Section 3, we show that the length of the shortest maximal ST-set tree sequence is equal to nr(C), the minimum number of reticulation nodes in a reticulation network that represents C in the softwired sense.

S = {S 1 , S 2 , . . . , S p } is an ST-set sequence if each S i ∈ S is an ST-set of C = C \(S 1 ∪S 2 ∪. . .∪S i-1); S is a maximal ST-set sequence if each S i is a maximal ST-set of C . S

BOUND EQUIVALENCE

Throughout this section, we will use the conversion between clusters and matrices described in Section 2.3 and demonstrated in Figure 1. Using the concepts developed in [START_REF] Kelk | On the elusiveness of clusters[END_REF], we formally prove the following claim:

Claim 3.1: Given a binary matrix M , the minimum H computed by execution of the CHB algorithm is equal to the length of the shortest maximal ST-set tree sequence for the set of clusters C encoded by M . This claim was suggested but not explicitly stated in [START_REF] Kelk | On the elusiveness of clusters[END_REF]. We prove it here by demonstrating that every run of the Candidate History Bound algorithm generates, through its intermediate values, a valid maximal ST-set tree sequence, and conversely that every maximal ST-set tree sequence corresponds to an execution of algorithm CHB.

Lemma 3.1: Let M i denote the state of the matrix after iteration i of CHB and let {r 1 , . . . , r p } be the sequence of rows that are deleted by operation Dt during an execution of CHB. For each r i , let R i denote the set of rows that were collapsed together with r i by rule Dr before r i was deleted by a Dt operation. Let S i = R i ∪ {r i }. Then, {S 1 , . . . , S p } is a maximal ST-set tree sequence of the cluster set encoded by M .

Proof: In order to prove Lemma 3.1, we must first establish that every set S i is a maximal ST-set of

C i = C \ (S 1 ∪ . . . ∪ S i-1
), which means we must prove that:

1) S i is compatible with C i , the set of clusters encoded by M i . 2) any pair of clusters C 1 , C 2 ⊂ S i that are in C i are pairwise compatible.
3) there does not exist another element e in C i such that S i ∪ {e} is also an ST-set. Suppose toward a contradiction, that S i is not compatible with C i . This implies that there must exist some cluster C ∈ C i and at least three distinct elements x, y, z such that x, z ∈ S i but x / ∈ C, and y, z are in cluster C but y / ∈ S i . Since, z and x are in S i , they must be identical when ignoring uninformative columns at iteration i. However, z is also a member of C, which cannot correspond to an uninformative column, because it also contains another distinct element y. But then x and z are not identical on informative columns. Therefore, in order for the algorithm to place x and z into S i , x must agree with z on column C, and so it must also be a member of C, which contradicts the assumption that x / ∈ C, and therefore (1) holds.

Similarly, suppose that there are two incompatible clusters C 1 , C 2 ∈ C i | S i , the restriction of C i to S i . We know that all the elements in S i must have been found by CLEAN to be identical; however, the assumed incompatibility of C 1 , C 2 implies that there exist three elements x, y, z such that x, z ∈ C 1 and x / ∈ C 2 ; and y, z ∈ C 2 and y / ∈ C 1 . Both columns C 1 and C 2 are informative because they contain two rows with 1 entries. This means that x and y are not identical after iteration i, so they would not have been placed in S i , a contradiction. Therefore C 1 and C 2 must be compatible, and (2) holds. This shows that S i is an ST-set of C i .

Furthermore, S i is a maximal ST-set. Suppose that S i is not maximal, so there exists a row e such that S i = S i ∪ {e} is also an ST-set of C i . If e were identical to r i with respect to informative columns, then it would have been collapsed together with r i and so would be in S i . So if e is not identical to r i when r i is removed, then (a) either there exists an informative cluster C ∈ C i such that e ∈ C and r i / ∈ C, (b) or there exists an informative cluster C ∈ C i such that e / ∈ C and r i ∈ C.

In case (a), in order for S i to still be compatible with C i , cluster C must be a singleton cluster that only contains e. Otherwise, if C contains some other element d ∈ S i , its existence will give rise to a violation of the Three Gametes condition in C and S i . This is because r i ∈ S i , but not in C, d ∈ C, but not in S i , and e is in both. So if C is not a singleton cluster, then C and S i are incompatible. But if C is a singleton cluster, then its column will be uninformative in M i before r i is removed, and so case (a) leads to a contradiction.

In case (b), since S i is assumed to be compatible with C, and r i ∈ C, this means that C ⊆ S i , because, if C contained an element d / ∈ S i , then the taxa r i , e and d would create a violation of the Three Gametes condition in sets C and S i . To see this, note that e is in S i but not in C, and d is in C, but not in S i , and r i is in both, so S i and C would be incompatible. But if C is a subset of S i , then it corresponds to an uninformative column in M i , because it has 1 entries in rows that are contained in S i and since S i = R i ∪ {r i }, all of the rows in R i have already been removed. Thus, the column encoding C has only one 1 entry, at row r i , and is therefore an uninformative column at the end of iteration i. So we conclude that there is no e / ∈ R i that can be added to S i and maintain its ST-set properties. Therefore, S i is maximal, so property (3) holds as well.

In order to show that {S 1 , . . . , S p }, as defined in the statement of Lemma 3.1, is a maximal ST-set tree sequence, it remains to show that all of the clusters contained in I = X -(S 1 ∪ . . . ∪ S p) are compatible. We know that after r p is deleted by rule Dt, the Dr and Dc operations remove all remaining rows and columns in M . Otherwise, it would be necessary to apply Dt again and r p would not have been the last row in the sequence. All the clusters contained in I must be com-patible, because otherwise there would be two clusters C 1 , C 2 ⊆ I with a non-trivial intersection. Then, neither rules Dc nor Dr could have applied again, since neither cluster can be a singleton and there are elements in these clusters whose memberships are not identical. Therefore, {S 1 , . . . , S p } is a maximal ST-set tree sequence of the clusters encoded by M . Lemma 3.1 implies that the History Bound, the minimum possible value produced by CHB, is greater than or equal to the length of the shortest maximal ST-set sequence. But there may exist ST-set sequences that do not have corresponding executions of CHB. In order to prove Claim 3.1, we must also prove the following Lemma.

Lemma 3.2: For every maximal ST-set tree sequence S = {S 1 , . . . , S p }, there exists an execution of CHB that removes row sequence {r 1 , . . . , r p } by rule Dt, such that r i ∈ S i , for i ∈ {1, . . . , p}.

Proof: We prove this by induction on the iterations of CHB. We assume that when rule Dr combines two rows together, it leaves the row with the smaller index in M and removes the row with the larger index.

Since rule Dt chooses rows arbitrarily, there exists an execution of CHB that chooses a row r ∈ M i at iteration i, provided that r is not deleted at that point. Therefore, in order to show that there exists an execution of CHB that chooses rows {r 1 , . . . , r p } with each r i ∈ S i , we need to show that the row of S i with the lowest index in M is still present in M i when rule Dt executes in CHB.

Suppose the row sequence R = {r 1 , . . . , r j-1 } is chosen for deletion by rule Dt in the first j -1 iterations of an execution of CHB, such that each row r i ∈ R for all 1 ≤ i ≤ j -1 is the row of S i with the lowest index in M . We want to show that before rule Dt executes on the j th iteration of CHB, the row r in S j with the lowest index in M is available in M j-1 to be chosen for deletion. Row r could not have been deleted by rule Dr in M j-1 , since if it were, it would be identical to a row r that has a lower index in M . However, then all of the elements of S j would also be found to be identical to r before iteration j. This contradicts the assumption that r has the lowest index in S j , so r cannot have been removed by rule Dr in M j .

Next, suppose that, at iteration i < j of CHB, row r was deleted by rule Dt. However, we inductively assumed that the algorithm removes each maximal STset S i ∈ S at iteration i < j and, since S i is maximal, S i ∪ {r} cannot also be an ST-set of C i . Furthermore, it is shown in [START_REF] Kelk | On the elusiveness of clusters[END_REF] that the maximal ST-sets of C partition X, so r cannot belong to both S i and S j .

Therefore, the row r in S j with the lowest index cannot be missing in M j during iteration j of CHB. Hence, r j = r and the induction argument is complete. This proves Lemma 3.2.

Since we have proved Lemmas 3.1 and 3.2, every run of CHB corresponds to a maximal st-set tree sequence and every maximal-st-set corresponds to an execution of Algorithm 4.1 Algorithm that constructs a reticulation network N with ≤ p nodes when given a valid maximal ST-set tree sequence S of length p. return N 17: end procedure CHB, it follows that an execution of CHB that produces the minimum value corresponds to a shortest maximal ST-set tree sequence, Claim 3.1 is proved.

DEFINING THE HISTORY BOUND

In this section, we explicitly state the main result of the paper:

Claim 4.1: Let M be a binary matrix and let C be the set of clusters encoded by M . Then, the History Bound for M is equal to nr(C), the minimum number of reticulation nodes that must be present in any network that represents C in the softwired sense. Although this claim is not stated explicitly in [START_REF] Kelk | On the elusiveness of clusters[END_REF], many of the algorithms presented in this section are extensions of the constructions presented there, and are used here to obtain bounds on nr(C) rather than r(C). We will explicitly point out such extensions in the results that follow.

To prove Claim 4.1, we first give an algorithm that takes as input the set of clusters C and a maximal STset tree sequence S = {S 1 , . . . , S p } for C and constructs a reticulation network N that represents C with at most p reticulation nodes. We show that this algorithm would produce a network with exactly p reticulation nodes when executed on a sequence S of minimum length. We then show that there cannot exist a network with fewer reticulation nodes than the length of shortest maximal ST-set tree sequence. Combined with Claim 3.1, this proves Claim 4.1.

Network.Build

In this section, we describe in detail the NET-WORK.BUILD algorithm, which will iteratively construct a network to represent a set of input clusters, guided by an input maximal ST-set tree sequence S of length p. The explicit pseudocode for the NETWORK.ADD procedure of the NETWORK.BUILD algorithm is given in C.tree_edge= treeEdge 19: end procedure Algorithm 4.3. NETWORK.ADD inserts a ST-set S into a network N that represents C \ S such that the resulting network represents C . NETWORK.ADD performs the same operations as the procedure outlined in the proof of Lemma 10 of [START_REF] Kelk | On the elusiveness of clusters[END_REF]. The explicit procedures are included here in the interest of making the paper self-contained, as well as for greater procedural clarity and accessible implementation. The details of the NETWORK.ADD procedure are also used in the proof of Lemma 4.2.

As mentioned in Section 2, network N represents a cluster C in the softwired sense if some switching of N contains a tree edge whose set of leaf descendants is exactly the set of taxa in C. Thus, it helps to introduce a cluster data structure that, in addition to storing the subset of taxa of a cluster C ∈ C , will also keep track of its tree_edge in N and a set of off_edges. When the set C.off_edges is removed from the network, the subtree of C.tree_edge will form a tree and the leaf descendants of C.tree_edge will be exactly the set of taxa in C. The graph N -C.off_edges might not be a tree because N might have reticulation edges that are not on the path from C.tree_edge to a leaf. However, any reticulation nodes in the subtree of C.tree_edge will have no incoming edges from outside the subtree. In the algorithms shown, we will use C.restrict_to(S) to indicate that the cluster C has been restricted to just the elements present in the set S. Therefore, all subsequent set-theoretic operations will be executed on the taxa present in C | S. We will use the C.restriction statement to refer to the most recent set S that C has been restricted to.

We will also assume that a data structure representing an empty graph is initialized using graph, as shown on line 2 of Algorithm 4.1. A graph G is populated using procedures G.add_nodes which takes either a list or a single node as input, and G.add_edge which requires return N 36: end procedure two node arguments. An edge can be removed from a graph G using G.delete_edge.

The outer abstraction layer of NETWORK.BUILD is shown as Algorithm 4.1. Since the input S is a maximal ST-set tree sequence, we know that after we perform the restriction to I on lines 7-9, all the clusters in C will be pairwise compatible. So C can be represented by a tree, built by the algorithm shown in the pseudocode as TREE.BUILD in Algorithm 4.2. It is equivalent to the solution to the Perfect Phylogeny problem in Section 2.1.2 of [START_REF] Gusfield | ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks[END_REF]. We will also use Algorithm 4.2 to extend a network N by adding a tree to N at a specified node. We give a specific implementation in Algorithm 4.2; it takes as input a network N , a node inputRoot of N , and a set of compatible input clusters C ; it outputs the updated network N with a new subtree rooted at inputRoot that represents C . More importantly, it also sets the tree_edge values for all the input clusters, even those whose restriction is empty. Thus, after line 11 of Algorithm 4.2 executes, all the clusters in nonSubsets will have tree_edge values set, which means that for each C in nonSubsets, the subtree of C.tree_edge in N will be the set of taxa C | I. After building the initial tree for C = C | I, NETWORK.BUILD reverses the maximal ST-set tree sequence S and iteratively adds ST-sets into N by calling the procedure NETWORK.ADD, shown in Algorithm 4.3.

After a set of clusters has been processed by TREE.BUILD, each of the processed clusters C will have a non-null C.tree_edge value. Thus, we can describe a cluster C 1 to be downstream from cluster C 2 in a network N if there is a directed path from C 2 .tree_edge to

C 1 .tree_edge in the graph N -C 2 .off_edges. Nat- urally, C 2 is upstream from C 1 in N if C 1 is downstream from C 2 .
At each iteration, NETWORK.BUILD will insert an STset S i of S into the network N , maintaining the invariant that, after each iteration, N represents

C i = C | (I ∪ S p ∪ S p-1 ∪ . . . ∪ S i).
When processing a maximal ST-set S i , the program NET-WORK.ADD works by first partitioning the input clusters into three subsets -the set of clusters Supersets that contain the current ST-set S i , the set of clusters Disjoint that are disjoint from S i , and the clusters Subsets that are proper subsets of S i . This creates a partition of C i because S i is an ST-set and must be compatible with all the clusters in C i ; that is, no cluster has a non-trivial intersection with S i . The procedure then adds a node called internalNode to the network and attaches the taxa contained in S i to internalNode in the following steps: Let P ⊆ C be the set of clusters that are properly contained in S i . All clusters in P are guaranteed to be pairwise compatible, by the definition of ST-set. So it is safe to call the TREE.BUILD procedure on P , with inputRoot set to be the newly created internalNode. The program then processes any remaining taxa in L = S i \ C∈P C by creating an individual node x for each taxon in L and inserting it into N by adding an edge from internalNode to each x ∈ L, directed by lines 17-19 of NETWORK.ADD. Therefore, at this point, N represents all clusters C ⊂ S i .

After the set P of taxa is processed, NETWORK.ADD uses depth-first search to efficiently compute the set K of clusters where each is a superset of S i , whose tree edges are maximally downstream of all the superset clusters. K is computed on lines 7-15 of Algorithm 4.3 and the clusters are stored in the MaxDownstream data structure. During this computation, NETWORK.BUILD also computes the set of clusters isUpstreamFrom[K] for each K ∈ K , the set of clusters that are upstream from K in N . Since the clusters in K contain S i , the procedure adds an edge from the endpoint of K.tree_edge of each K ∈ K to internalNode, so the subtree that represents S i is on a directed path from K.tree_edge to all S i . After this step is performed, any cluster C ⊇ S i that is upstream of a cluster in K ∈ K will contain the taxa in S i as leaf descendants. This is because C has a directed path to K and the endpoint of K.tree_edge has an edge to internalNode whose subtree has leaf descendants S i . Finally, NETWORK.BUILD iterates through all clusters C in isUpstreamFrom[K] for each K ∈ K , and adds all the incoming edges of internalNode to C.off_edges except the edge incident to K.tree_edge. This step is shown in lines 21-28 of Algorithm 4.3. Therefore, after line 28 executes, all clusters C ⊇ S i will have a directed path to internalNode, and will have all the taxa in S i as leaf descendants.

At this point, there are still some clusters that are disjoint from S i but might be upstream in N from a cluster in K ∈ K . This is a problem because it means that after lines 21-28 of Algorithm 4.3 execute, all of these disjoint clusters have had the taxa of S i added to them as leaf descendants through the directed path from K.tree_edge to internalNode. Therefore, for each cluster D ∈ Disjoint that is upstream from a cluster in K ∈ K , the edge e from the endpoint of K.tree_edge to internalNode is added to the set D.off_edges, to make sure that there exists a switching of N that does not contain a directed path from D.tree edge to internalNode. However, it is possible for a disjoint cluster D to be upstream from all the clusters in K , which means that adding all of the incoming edges incident upon internalNode to D.off_edges will disconnect the subtree of D.tree_edge from the network. In this case, NETWORK.BUILD creates a new edge from the root of N to internalNode, and then adds this edge to C.off_edges for all of the clusters in Supersets that are downstream of D, on lines 34-35. After this step, no cluster D that is disjoint from S i has a directed path to internalNode in the graph N -D.off_edges, which is now guaranteed to be connected.

Algorithm Properties

It is clear from the pseudocode of Algorithm 4.1 that it generates a DAG using the input data. Therefore, we first prove:

Claim 4.2: The NETWORK.BUILD procedure produces a valid reticulation network that represents the input clusters.

Proof: Deferred to the Appendix, which can be found on the Computer Society Digital Library.

It is clear from the pseudocode and description of the NETWORK.ADD procedure that NETWORK.BUILD adds only one non-leaf node, called internalNode, to the network in each iteration. It remains to demonstrate that internalNode is a reticulation node, meaning it has indegree ≥ 2. It turns out that there are some valid maximal ST-set tree sequences that produce internal nodes with in-degree 1. An example of such a sequence is shown in Figure 8, which can be found on the Computer Society Digital Library. Lemma 4.1: If NETWORK.BUILD creates a network N with m < p reticulation nodes when executed on a maximal ST-set tree sequence S of length p, then there exists a maximal ST-set tree sequence S of length m.

Proof: Deferred to the Appendix which can be found on the Computer Society Digital Library. ret-minimum with respect to C if it has the fewest number of reticulation nodes over all the networks that represent C . To complete the proof of Claim 4.1, we show that Lemma 4.2: The NETWORK.BUILD algorithm constructs a ret-minimum network for C when given as input a shortest maximal ST-set tree sequence.

The proof of Lemma 4.2 uses an argument that relies on pruning the subtrees of a network until the network is a tree. This argument appears in [START_REF] Kelk | On the elusiveness of clusters[END_REF] in the proof of Lemma 7.

Proof: Let N be the network constructed by NET-WORK.BUILD for a set of clusters C on S , a shortest maximal ST-set tree sequence for C , of length p. Suppose toward a contradiction that there exists a network N with m < p reticulation nodes that is ret-minimum for C . If N had a reticulation node r such that all paths from r to a leaf go through another reticulation node r , then we could remove r and redirect the incoming edges of r into r thus creating a network N with fewer reticulation nodes. This operation would not modify the taxa, so N would still represent C . Therefore, every reticulation node in a ret-minimum network N must have at least one path to a leaf that does not go through another reticulation node.

Let r 1 be a reticulation node of N such that no path from r 1 to a leaf goes through another reticulation node. We know that at least one such reticulation node must exist in N , because otherwise N would either be a tree or would contain a directed cycle. Let Σ 1 be the set of taxa that are direct descendants of r 1 , and let G 1 be the subgraph composed of r 1 , its subtree and its incoming edges. Then, inductively define r j to be a reticulation node of N -G 1 -. . . -G j-1 such that no path from r j to a leaf contains any other reticulation nodes, where G j is defined to be the subtree containing r j , its subtree and its incoming edges, as before. Let S j be the set of leaf descendants of r j . Repeat until N has no remaining reticulation nodes. We argue that the sequence S = {Σ m , . . . , Σ 1 } is a maximal ST-set tree sequence; specifically 1) The graph

N -G 1 -. . . -G m is a tree. 2) Each Σ j ∈ S is an ST-set of C \ (Σ 1 ∪ . . . ∪ Σ j-1), which means Σ j is compatible with all clusters C ∈ C \ (Σ 1 ∪ . . . ∪ Σ j-1
) and all clusters C ⊂ Σ j are pairwise compatible. 3) Each Σ j ∈ S is a maximal ST-set. Property (1) follows from the construction of G j ; no more reticulation nodes remain after all m reticulation nodes are removed from N , so all remaining taxa are arranged on a tree. We also know that Σ j was arranged on a tree rooted at r j before it was removed from N , which means that all the clusters C ⊂ Σ j are pairwise compatible by the Perfect Phylogeny Theorem. Suppose that some set

Σ j ∈ S is not compatible with C j = C \(Σ 1 ∪ . . . ∪ Σ j-1)
, which means there is some cluster C ∈ C j in N that has a nontrivial intersection with Σ j . Since N represents C, the tree edge corresponding to C cannot be downstream of r j in N , since this would indicate that C ⊂ Σ j and thus compatible with Σ j . Therefore, the tree edge corresponding to C would either be upstream from r j in the network or not on any path from the tree edge of C. In order for N to represent C , there would have to be a path from the endpoint of C in N to the subtree containing the taxa in C ∩ Σ j , which would mean that there is another reticulation node r in G j , which is a contradiction. Therefore Σ j must be compatible with all the clusters in C j and so property (2) holds.

It remains to show that S is a maximal ST-set tree sequence. Suppose that Σ j is not a maximal ST-set of C \ (Σ 1 ∪ . . . Σ j-1) and that there exists some taxon x / ∈ Σ j that such that Σ = Σ j ∪ {x} is also an ST-set. This means that Σ must be compatible with all the clusters in C \ (Σ 1 ∪ . . . ∪ Σ j-1), which means that all the clusters C ⊇ Σ j must either be equal to Σ j or must also contain x. Otherwise, a cluster C ⊃ Σ j and Σ would have been incompatible, since C would contain elements not in Σ j and Σ contains x. Let K be the set of clusters C ⊃ Σ. The tree edges of the clusters in K must lie on several different paths from the root of N to r j , because N is assumed to be ret-minimum for C , so it cannot have unnecessary reticulation nodes. If the clusters in K did lie on the same path, then r j would have in-degree one and would not be a reticulation node.

Since the tree edges of the clusters in K do not lie on a single path, but all the clusters in K contain x / ∈ Σ j , there must be another reticulation node r such the tree edge endpoint of each cluster in K has a path to r, and the subtree S of r contains x. However, this means that all the clusters in K contain Σ j ∪ S, which means that Σ j ∪ S is compatible with K . This means that we can modify N to create a network N with one fewer reticulation nodes by removing the subtree of r and its incoming edges from N and then calling TREE.BUILD Algorithm 5.1 Dynamic programming approach by [START_REF] Bafna | Inference about recombination from haplotype data: lower bounds and recombination hotspots[END_REF] that computes that History Bound, as given in [START_REF] Gusfield | ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks[END_REF]. Procedure CLEAN is given in Algorithm 2.1. return H[M] 10: end procedure on cluster set C | (Σ j ∪ S) with input root r j . However, this is a contradiction since N is ret-minimum for C ; therefore, Σ j must be a maximal ST-set and so property (3) also holds.

Therefore, if a network N with m < p is ret-minimum for C , then we can construct maximal a ST-set tree sequence S of length m. However, this is a contradiction, since we claimed that the sequence S of length p that we passed as input to the NETWORK.BUILD algorithm was already a shortest maximal ST-set tree sequence for C . Therefore NETWORK.BUILD produces a ret-minimum network when executed on a shortest maximal ST-set tree sequence for C .

In summary, the proof of Lemma 4.2 concludes the proof of Claim 4.1. This resolves the open problem posed in [START_REF] Wu | A new recombination lower bound and the minimum perfect phylogenetic forest problem[END_REF], formulating the value computed by the History Bound algorithm as a statement about network structure.

SEARCHING ST-SET SEQUENCE SPACE

In addition to the original method of computing the History Bound by branching over all possible executions of CHB, there is a dynamic programming solution that computes the History Bound more efficiently [START_REF] Bafna | Inference about recombination from haplotype data: lower bounds and recombination hotspots[END_REF]. We give the pseudocode for the dynamic program from [START_REF] Gusfield | ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks[END_REF] in Algorithm 5.1. CLEAN refers to the procedure given in Algorithm 2.1. The dynamic programming method computes values of the History Bound for successively larger subsets of the taxa in the input matrix M by minimizing over previously-computed values for smaller subsets.

We also know from [START_REF] Bafna | Inference about recombination from haplotype data: lower bounds and recombination hotspots[END_REF] that the problem of computing the History Bound is NP-hard and APX-hard, so we do not expect to find a polynomial-time algorithm. However, dynamic programming solutions often depend only on the optimal substructure property, instead of exploiting other structural insights. A common downside of dynamic programming is pessimism: algorithms using this technique solve the problem for all smaller problem instances, including those that may not be subproblems of the given one. To circumvent these inefficiencies, dynamic programs are often transformed into top-down algorithms with memoization, which cache intermediate results for look-up when they are encountered again. In this section, we develop a top-down method to compute the History Bound whose efficiency will come from the structural insights of previous sections. We will identify equivalent subproblems and avoid examining them more than once. This allows us to compute the History Bound more efficiently on data generated by a standard coalescent approach with the infinite sites assumption.

More specifically, we observe that the concept of STset sequences iteratively removes taxa from X at each step. Furthermore, the NETWORK.ADD procedure adds ST-sets into the network independently of their position in the sequence. Experimenting with this property reveals that certain networks produced by NET-WORK.BUILD are isomorphic. In the following section, we give an equivalence relation for maximal ST-set sequences that cause NETWORK.BUILD to produce isomorphic networks. Then, in Section 5.2, we leverage this search space reduction to give a top-down algorithm for computing the History Bound that performs better in the "typical" case than Algorithm 5.1.

Equivalence of Maximal ST-set Sequences

There are distinct maximal ST-set sequences that produce isomorphic networks when passed as input to NETWORK.BUILD. An example of two such sequences is shown in Figure 3. In Theorem 5.1, we give the criteria that cause NETWORK.BUILD to create isomorphic networks from two distinct maximal ST-sequences. First, we prove the following technical lemma. Proof: Deferred to the Appendix, which can be found on the Computer Society Digital Library. Note that S will not necessarily be maximal in C k even if it is maximal in C .

Theorem 5.1: Let S = {S 1 , . . . , S p } and Σ = {Σ 1 , . . . , Σ q } be two maximal ST-set sequences that have the same initial set; that is, if

I = X - 1≤i≤p S i = X - 1≤i≤q Σ i = I
then p = q and the sequences S and Σ are permutations of each other.

Proof: Let S i be a maximal ST-set in sequence S and let Σ j be the first ST-set in Σ to contain any elements of S i . By Lemma 5.1, we know that S i is an ST-set of

C j = C \ (Σ 1 ∪ . . . ∪ Σ j-1),
but since Σ is a maximal ST-set sequence, Σ j is a maximal ST-set of C j , which means that that S i ⊆ Σ j . In order to show that Σ is a permutation of S , we must show that Σ j cannot contain any other elements.

Suppose toward a contradiction that there is at least one x ∈ Σ j that isn't in S i . Then x must belong to some set of clusters of C j that are entirely contained in Σ j (because Σ j is compatible with C j) but are not contained in S i . Let Q = ∅ be the union of those clusters. We can write Σ j = S i ∪ Q, but we emphasize that that Q = ∅ contains all the elements of S j that are not in S i , meaning that Q and S i are disjoint.

We argue that the entirety of Q must appear in some maximal ST-set of S . Suppose that this is not the case and there are ST-sets

S k1 ⊇ Q 1 and S k2 ⊇ Q 2 in S such that Q = Q 1 ∪ Q 2 ,
where Q 1 and Q 2 are disjoint. That is, each of these ST-sets contains a fragment of Q but not its entirety. Without loss of generality, if k 1 < k 2 , meaning S k1 occurs earlier in S , then S k1 is not maximal because Q is a union of compatible clusters, so if S k1 containing Q 1 is an ST-set, then S k1 ∪Q 2 is a larger ST-set and thus contradicts the assumption that S k1 is maximal. Therefore, there must be some S k ∈ S that contains Q.

We argue that S k must occur before S i in sequence S (meaning k < i), because S i is maximal for

C i = C \ (S 1 ∪ . . . ∪ S i-1)
and Q is disjoint from S i , which means that all clusters C ⊆ Q are compatible with S i . If all of these elements were still present in C i , then S i would not be maximal because S i ∪ Q would be a larger ST-set of C i ; therefore, S k occurs before S i in S .

Let Σ be the first ST-set of Σ to contain any elements of S k . By Lemma 5.1, S k is an ST-set of

C = C \ (Σ 1 ∪ . . . ∪ Σ -1).
Suppose < j. This means that Σ contains elements of S k -q but does not contain any element of q, so they must be contained in an ST-set Σ j that occurs later in the sequence Σ. However, Σ cannot contain the elements of S k -Q without also containing all of Q by maximality, because the elements of Q are still present in C . Therefore, cannot come before j.

So, suppose > j and consider C j . Since Σ is the first element of Σ to contain any elements of S k and > j, S k is still an ST-set of C j . Therefore, C j has two ST-sets Σ j and S k that both contain Q, so by Lemma 4 of [START_REF] Kelk | On the elusiveness of clusters[END_REF] Σ j ∪S k is also an ST-set. This contradicts the assumption that Σ j = S i ∪ Q with Q = ∅ is not maximal, so it must be the case that Q = ∅ and S i = Σ j . And since S i was an arbitrary ST-set of S , then it holds for any ST-set; therefore, S and Σ are permutations.

Note that Theorem 5.1 does not imply that the elements of any given maximal ST-set sequence S can be permuted arbitrarily to create another equivalent maximal ST-set sequence. This is because some S i may be a maximal ST-set of C i but still an incompatible set of C j<i , because certain clusters are still incompatible in C j . The result merely states that if two maximal ST-set sequences with the same initial set do exist, then they are permutations.

Theorem 5.1 demonstrates that the maximality criterion on the tree-like components of reticulation networks is very strong, meaning that when the compatible set I of two sequences S and Σ is the same, maximality forces the elements not in I to be "packaged" together into the same maximal ST-sets. These two factors make the networks produced by NETWORK.BUILD isomorphic: the algorithm first constructs the perfect phylogeny for I, which is the same for both sequences, then it calls NETWORK.ADD on each of the ST-sets in the sequence independently. Theorem 5.1 shows that the ST-sets of S and Σ are the same, so NETWORK.ADD inserts each STset into the network without making any decisions based on previous NETWORK.ADD calls, or the structure of the network. Therefore, only the node labels differ between the networks produced from two maximal ST-set tree sequences that are permutations of each other. Theorem 5.1 implies that certain ST-set sequences are equivalent, because they consist of the same maximal STsets and cause NETWORK.BUILD to produce structurally identical reticulation networks. Therefore, if two maximal ST-set sequences S and Σ over X are permutations of each other, then we define them to be p-equivalent.

In the context of computing the History Bound, the pequivalence relation reduces the search space of maximal ST-set tree sequences, since, if an algorithm examines a maximal ST-set tree sequence S of length p, then all other sequences that are p-equivalent to S will be permutations of S with length p and do not need to be examined. We will use this idea in the development of a top-down History Bound algorithm.

A Top-Down History Bound Algorithm

In this section, we develop a top-down algorithm that computes the History Bound. This method also enumerates all of the shortest maximal ST-set tree sequences that are distinct up to p-equivalence for a matrix M .

To use Theorem 5.1, we first define an order on the maximal ST-sets of a set of clusters C over X as follows:

S 1 ≺ S 2 if |S 1 | < |S 2 |. |S 1 | = |S 2 | and min x∈S1 x < min y∈S2 y. (1)
This is a total order, because the maximal ST-sets of C partition X [START_REF] Kelk | On the elusiveness of clusters[END_REF], so the minimum elements of two maximal ST-sets of C will be distinct. We use this ordering to restrict the search to only examine maximal STset sequences S whose ST-sets are in increasing order: that is, those sequences S such that if S i , S j ∈ S and i < j then S i ≺ S j . In other words, the sequences whose ST-sets are increasing with respect to ≺ are taken as representatives of their p-equivalence classes.

The pseudocode for the top-down algorithm is shown in Algorithm 5.2. Given a matrix M with n rows, HB TOPDOWN first initializes a queue with the input matrix M , and initial level = 0. It also initializes the variable p with an overestimate for the length of the shortest maximal ST-set tree sequence. On line 2, it sets p = n -2, because all size-2 subsets of X are compatible, so the shortest maximal ST-set tree sequence will have length n -2 in the worst case. The procedure then uses the queue to process subproblems in a breadth-first order, growing each known maximal ST-set sequence by one maximal ST-set, and using the level variable to keep track of the length of all the currently computed ST-set sequences.

At each iteration, HB TOPDOWN extracts the triple (, M , S) from the queue, where M is the subproblem matrix, is the current level, and S is the maximal STset S whose removal produced M . The procedure then runs CLEAN on M : if the resulting matrix is empty, then M is compatible, meaning the end of a maximal ST-set tree sequence has been reached. It must be a shortest maximal ST-set tree sequence, because HB TOPDOWN examines sequences of increasing lengths starting from = 0. Further, (, M , S) is also the endpoint of the first shortest maximal ST-set sequence to be encountered by HB TOPDOWN if the variable p is still an overestimate. If this is the case, HB TOPDOWN updates p with the length of the sequence ending with S, which is the value of for this subproblem. As given in Algorithm 5.2, the HB TOPDOWN inspects the remaining items in the queue that also have level = p before terminating; Q.put((0, M , ∅))

5:

while Q is not empty do 6:

(, M , S) = Q.get()

Q.put(+ 1, M -ri, Si) 20:
return p 21: end procedure however, it can easily be modified to terminate immediately after it finds the first shortest maximal ST-set tree sequence.

Meanwhile, if HB TOPDOWN extracts triple (, M , S) from the queue and M is not compatible, then, for every ST-set S i encoded by row r i ∈ M such that S ≺ S i , the triple (+ 1, M -r i , S i) is inserted into the queue. Checking ST-sets against the ≺ ordering ensures that only the representative maximal ST-set sequence in each p-equivalence class is considered during the computation. Note that ≺ is designed so that ST-sets with larger cardinality follow smaller ones. As taxa are removed from M by HB TOPDOWN, existing ST-sets combine to create new ones that have not been considered in previous execution steps. So, they come later in the ≺ order than those with lower cardinality so that they will be chosen for removal in subsequent subproblems.

Comparing Algorithm Performance

We can see from the pseudocode in Algorithm 5.1 that the dynamic programming procedure to compute the History Bound runs in time

n k=2 n k (k + T Clean (k, m)) ∈ O(nm2 n) (2)
where The nodes are labeled with the matrix M that gets processed at that step and the edges are labeled with the maximal ST-set that is removed to obtain the child node. The edge labels along each path from the root to a leaf are increasing according to the ≺ ordering. Note that, for this problem instance, the number of nodes at each level of the tree is equal to n . at all n k subsets of the rows of the input matrix M for all subset sizes k ≤ n -2, even though not all subsets of taxa may be removed to construct a valid maximal STset sequence, not to mention a shortest one, for many inputs M .

This raises the following question: for which problem instances is it necessary for either algorithm to examine all size > 2 subsets of X to compute all of the shortest maximal ST-set tree sequences for M ? We give one such instance in Figure 4, which shows the execution of HB TOPDOWN illustrated as a search tree. The cluster set for this example is all size-2 subsets of X. For this data, the number of matrices processed at each level is equal to n . This occurs because, at every step of the execution of HB TOPDOWN, a maximal ST-set with cardinality 1 is removed, but the removal never causes rule Dr to trigger in procedure CLEAN, so all subsequent maximal ST-sets have cardinality 1 as well. Thus, each level of the search tree has n nodes, and execution continues until reaches n-2, when X only has two taxa left and every set of size 2 is compatible. This means that all maximal ST-set tree sequences of length n -2 are optimal for this problem instance. Therefore, those subproblems that HB DP examines must all be looked at by HB TOPDOWN in the extreme case where it is impossible to trigger rule Dr by removing fewer than n-2 taxa. Thus, Fig. 4 shows that the worst-case runtime of HB TOPDOWN is also given by expression [START_REF] Griffiths | Ancestral inference from samples of DNA sequences with recombination[END_REF].

However, in more typical situations, HB TOPDOWN out-performs HB DP, as it is able to examine fewer subproblems before reaching the answer. In the HB TOPDOWN search tree, the number of nodes at each level is equal to the number of ways to remove maximal ST-sets from the data. In less extreme problem instances, removing taxa from X does trigger rule Dr, which identifies maximal ST-sets containing more than one taxon. These larger maximal ST-sets cause the paths leading to compatible subproblems to be shorter than n -2, because there are fewer ST-sets to remove. One such problem instance with n = 6 is shown in Figure 5 of the Appendix, which can be found on the Computer Society Digital Library. On this example, HB TOPDOWN only examines 23 subproblems, compared to the 57 that are inspected HB DP, demonstrating an advantage in efficiency.

We also tested both History Bound algorithms on biological data. 1) We used the 43 polymorphic columns of Kreitman's 1983 data of the alcohol dehydrogenase locus from 11 chromosomes of Drosophila melanogaster that were transformed into binary sequences and studied in [START_REF] Song | Parsimonious reconstruction of sequence evolution and haplotype blocks[END_REF]. The value of the History Bound for this data is 3, with two shortest maximal STset tree sequences, distinct up to p-equivalence. HB TOPDOWN examined 127 nodes while HB DP looked at 502 1 . 2) On the data from double-stranded RNA in fungi studied in [START_REF] Charlton | Phylogenetic relatedness of the m2 double-stranded rna in rhizoctonia fungi[END_REF] with seven taxa and 229 sites, the History Bound is 3, with three shortest maximal ST-set tree sequences. HB TOPDOWN examined 63 nodes, which is about half of the 120 nodes examined by HB DP. This result is particularly optimistic, because the construction in Fig. 4 achieves the worst-case condition with n 2 = 21 sites, and yet all 229 sites from this biological sample do not conflict that strongly.

1. Running CLEAN on the input matrix collapses three rows into one, which is why the number of nodes examined by HB DP is close to 2 9 and not 2 11 . Therefore, unlike the example data in Figure 5, which was contrived for illustrative purposes, these results give us reason to expect HB TOPDOWN to outperform HB DP on on biological data typically used to compute the History Bound.

CONCLUSIONS

We explicitly proved that the History Bound from a matrix M is equal to the length of the shortest maximal ST-set sequence for the clusters encoded by M . Then, we proved that the History Bound counts the minimum number of reticulation nodes in a network that represents the clusters encoded by M in the softwired sense, resolving the open question from [START_REF] Wu | A new recombination lower bound and the minimum perfect phylogenetic forest problem[END_REF]. We then developed a top-down algorithm for computing the History Bound, and demonstrated that it has the same worstcase runtime as HB DP [START_REF] Bafna | Inference about recombination from haplotype data: lower bounds and recombination hotspots[END_REF], but outperforms HB DP on some biological data. We prove the claim by showing the following two conditions.

First, we need to show that after NETWORK.ADD finishes processing ST-set S i , cluster C ∈ C i contains all of its taxa. A cluster C ⊂ S i will be correctly represented by N after NETWORK.ADD runs, by the correctness of TREE.BUILD, and if a taxon x ∈ C is not in S i , then it is already a leaf descendant of C.tree_edge by the induction hypothesis. Similarly, if x ∈ S i and C ∈ K then the algorithm will add an edge from the endpoint of C.tree_edge to the internalNode, so x will be a leaf descendant of C.tree_edge. If the algorithm instead attaches internalNode to the tree edges of a set of clusters K such that C ∈ K , then by lines 9-17 there is some other cluster C ∈ K downstream of C. By the definition of downstream, this means that N has a directed path from C.tree_edge to C.tree_edge, so x will be a leaf descendant of C.tree_edge.

Next, we show that if C does not contain any taxa in S i , then the algorithm does not force any x ∈ S i to be a leaf descendant of C.tree_edge. On line 32, the algorithm adds the edges into the internalNode to Ds set of off_edges. This is a book-keeping step to illustrate that N still displays the tree that represents C i . Finally, it is possible that all of the edges into the internalNode are downstream of C. This would mean that the switching of N that represents C i will be disconnected. Therefore, on line 34, NETWORK.ADD adds an edge from the root to the internalNode, which keeps the switching graph intact. Thus, even if C does not contain any taxa in S i , the NETWORK.ADD procedure maintains the property that N is a connected network that represents C i .

Lemma A.1 (4.1): If NETWORK.BUILD creates a network N with m < p reticulation nodes when executed on a maximal ST-set tree sequence S of length p, then there exists a maximal ST-set tree sequence S of length m.

Proof of Lemma 4.1: Suppose that, after the NET-WORK.ADD procedure processes an ST-set S i , the internalNode added during its execution has indegree one. This happens if there is only one cluster in K , the set of maximally downstream clusters that contain S i , meaning that the tree edges of all clusters C ⊇ S i lie on a single path in N . Since the tree edges Similarly, the clusters corresponding to those that were disjoint from S in C contain the same or fewer elements in C k , so they are still disjoint from S. Finally, we know that none of the S i ∈ S contain any elements of S, which means that any C ∈ C such that S ⊆ C will not have any elements of S missing in C k . Therefore, for those clusters, it will still be true that S ⊆ C, so all of the compatibility conditions for S and C k are met, so condition (1) is true. Condition (2) is true as well because no elements of S are removed in S so all the clusters that are contained in S are still pair-wise compatible in C k . Thus, S is an ST-set of C k .

3 : 4 :

 34 Dr: collapse together duplicate rows of M Dc: remove columns of M with at most one remove an arbitrary row r from M 13: set H = H + 1

 and incompatible otherwise. A collection C of clusters is compatible if all the clusters in C are pairwise compatible. A collection C of clusters can be converted to a matrix M by choosing an arbitrary ordering on X and C , filling the matrix by placing 1 into the row corresponding to taxon x and the column

Fig. 1 .

 1 Fig. 1. (a) An example set of clusters C over X = {1, 2, 3, 4, 5}. C 6 is a singleton cluster. Such clusters, and their corresponding columns, are considered uninformative. (b) The matrix equivalent of cluster set C . The i th row of M represents taxon i of X. An entry with value 1 in row i of column j corresponds to membership of taxon i in cluster C j .

 is a maximal ST-set tree sequence, if all the clusters contained in C | I where I = X -(S 1 ∪ . . . ∪ S p) are pairwise compatible. By the Perfect Phylogeny Theorem, this means that all the taxa in C | I can be represented by a perfect phylogeny.

1 :

 1 procedure NETWORK.BUILD(C , S) 2: N = graph() 3: N .add_nodes(root) 4: set X = C∈C C; set I = X -S∈S S; 5: 6: set Subsets = {C ∈ C | C ⊂ Si for some Si ∈ S }; 7: set nonSubsets = C -Subsets 8: for C ∈ C do 9: C = C ∪ {C.restrict_to(I)} 10: set N = TREE.BUILD(N , root, nonSubsets) 11: set S = S .reverse() 12: for Si ∈ S do 13: for C ∈ C do 14: C.restrict_to(C.restriction ∪ Si) 15: N = NETWORK.ADD(N, C , Si) 16:

Algorithm 4 . 2

 42 Algorithm for adding a tree to network N that represents a set of compatible clusters C . 1: procedure TREE.BUILD(N , inputRoot, C) 2: set C = a list of clusters in C sorted by size 3: for C ∈ C do 4: N .add_nodes(newNode) 5: set Σ = the smallest cluster that is a superset of C 6: if Σ exists in C then 7: (u, v) = Σ.tree_edge 8: set treeEdge = (v, newNode) 9: for x ∈ C do 10: N .delete_edge(v, x) for x ∈ C do 16: N .add_edge(newNode, x) 17: N .add_edge(treeEdge) 18:

Algorithm 4 . 3 N

 43 Procedure that inserts ST-set S i into N , maintaining the property that N represents C i . 1: procedure NETWORK.ADD(N, Ci, Si) = {C ∈ Ci | Si ∩ C = ∅} 4: set Subsets = {C ∈ Ci | Si ⊃ C} 5: set Supersets = {C ∈ Ci | Si ⊆ C} 6: set MaxDownstream = {}; set IsUpstreamFrom = {}; 7: for (C, K) ∈ Supersets × Supersets do 8: if K is downstream from C then .add_edge(internalNode, x) 20: for C ∈ MaxDownstream do 21: set (u, v) = C.tree_edge 22: N .add_edge(v, internalNode) 23: for K = C ∈ MaxDownstream do 24: K.off_edges.add(v, internalNode) 25: for Q ∈ IsUpstreamFrom[K] do 26: Q.off_edges.add(v, internalNode) 27: for (D, C) ∈ Disjoint × MaxDownstream do 28: if C is downstream from D then 29: set (u, v) = C.tree_edge 30: D.off_edges.add(v, internalNode) 31: if D is upstream from all of Supersets then 32: N .add_edge(root, internalNode) 33: for Q ∈ IsUpstreamFrom[C] do 34: Q.off_edges.add(root, internalNode) 35:

Fig. 2 .

 2 Fig. 2. The intermediate states of the NETWORK.BUILD procedure when building the network in Figure 1 to represent C = {{1, 2, 3}, {1, 2, 4, 5}, {1, 3}, {1, 4, 5}, {3, 4, 5}, {5}} with input maximal ST-set sequence S = {{1}, {2}}. (a) Tree constructed using TREE.BUILD to represent C = C | I where I = {3, 4, 5}. The C 5 node is highest in the tree because C 5 | I has the largest size of all C ∈ C . (b) Result of calling NETWORK.ADD on the last ST-set {2} of S and the tree from Fig 4.1(a). The procedure adds node X2 as a leaf child of the new internalNode labeled ST1. The set K of most downstream clusters containing {2} is just {C 1 }. There is an edge from the root R to ST1, because otherwise the switching for C 5 would be disconnected from the network since C 5 does not contain 2. This edge is added on lines 34-35 of NETWORK.ADD. (c) Result of calling NETWORK.ADD on the ST-set {1} of S and the network from Fig. 4.1. (a) NETWORK.ADD creates new internal node ST2 with leaf child X1 and adds edges to ST2 from the tree edges of C 2 and C 3 because the clusters C 1 , C 2 , C 3 , C 4 all contain {1}, which means they are the contents of the Supersets structure in this iteration. K = {C 3 , C 4 } because C 1 , C 2 are upstream from C 4 , C 3 , respectively so they obtain {1} automatically from the clusters in K . C 5 is in the Disjoint structure because it does not contain {1}, so there is another edge added on lines 34-35 of NETWORK.ADD from the root to ST2, as in Fig. 4.1(b), such that the switching representing C 5 is connected and contains no paths through ST2.

1 :

 1 procedure HB DP(M) 2: for k = 2, . . . , n do 3: for each subset K of k rows of M do 4: set MK = submatrix of M with rows in K

Fig. 3 .

 3 Fig. 3. A pair of isomorphic networks created using NET-WORK.BUILD on the input clusters from Figure 8. Note that the only difference in the two figures are the labels on the reticulation nodes. (a) Network created using ST-set sequence {{4}, {6, 8}, {7}}. (b) Network created using ST-set sequence {{7}, {4}, {6, 8}}. These maximal STset sequences both have I = {1, 2, 9} and thus are permutations of each other by Theorem 5.1.

Lemma 5 . 1 :

 51 Let S be an ST-set of a set of clusters C . Then S is an ST-set of C k = C \ (S 1 ∪ . . . ∪ S k) where S = {S 1 , . . . S k } is a maximal ST-set sequence of C and no S i ∈ S contains any elements of S.

Corollary 5 . 1 :

 51 If S and Σ are two maximal ST-set sequences over X then the following are equivalent: (a) S and Σ are permutations of each other. (b) X -S∈S S = X -σ∈Σ σ. Proof: Since S and Σ are collections of the same sets, just ordered differently, their unions are equal, so (a) implies (b). Theorem 5.1 gives that (b) implies (a).

Algorithm 5 . 2

 52 Top-down algorithm that computes the History Bound for binary matrix M . It can be modified to terminate after finding the first shortest sequence. Procedure CLEAN is given in Algorithm 2

 |X| = n, |C | = m and T Clean (n, m) is the runtime of CLEAN on an n × m matrix. Expression (2) gives the runtime of the dynamic program regardless of the specific problem instance. We can read expression (2) from the pseudocode without knowing anything about the internal structure of the maximal ST-sets of the clusters encoded by M . This is because HB DP looks

Fig. 4 .

 4 Fig.4. Execution of HB TOPDOWN illustrated as a search tree. The input set C are all size-2 subsets of X = {1, . . . , 5}. The nodes are labeled with the matrix M that gets processed at that step and the edges are labeled with the maximal ST-set that is removed to obtain the child node. The edge labels along each path from the root to a leaf are increasing according to the ≺ ordering. Note that, for this problem instance, the number of nodes at each level of the tree is equal to n .

Fig. 6 .

 6 Fig. 6. A reticulation network that represents the cluster set C in the softwired sense from the example in Figure 1. It has 2 reticulation nodes and reticulation number 4.

Fig. 7 .

 7 Fig. 7. A minARG for the data in Figure 1 has 4 recombination nodes.

Fig. 5 .Fig. 8 .

 58 Fig. 5. Execution of HB TOPDOWN on inputs X = {1, . . . , 6} and C = {{1, 2}, {1, 3}, {2, 3}, {4, 5}, {4, 6}, {5, 6}, {1, 2, 4, 5}}. This figure may be too small to read closely; it is intended to illustrate search tree structure. C has only one shortest maximal ST-set tree sequence of length 2 with the endpoint shown in red. It shows rule Dr generating maximal ST-sets of size > 2, which allows HB TOPDOWN to find the shortest sequence faster than if it were starting the search from the bottom of the search tree of size ≈ 2 6 . This method examines 23 nodes, while HB DP looks at 57 nodes when executed on C .

7 ACKNOWLEDGEMENTS J. Matsieva and D. Gusfield are supported by the Foundation NSF grant CCF-1017580. C. Whidden is a Simons Foundation Fellow of the Life Sciences Research Foundation and supported by the NSF grant DMS-1223057. This publication is contribution No 2015-243 of the Institut des Sciences de l'Evolution de Montpellier (UMR 5554 UM CNRS IRD).

Julia Matsieva Julia Matsieva obtained a joint degree in mathematics and computer science from Harvey Mudd College in Claremont, California in 2011 and earned her M.S. from UC Davis in 2014. She is currently a Ph.D. student at UC Davis, working on problems related to phylogenetic networks and computational biology.

Steven Kelk