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Abstract. We introduce a framework for the statistical characterization
of heart remodeling from both shape and dynamics of the left ventricle.
Shape was characterized by thickness and radius maps, unfolded in a
two-dimensional dense Bull’s eye. Motion was represented as a mixture
of affine transformations in an anatomical space of coordinates. Using
this representation, a population can be projected (after defining spa-
tiotemporal correspondences) to an atlas space built for a given refer-
ence population - here, healthy subjects using a classic PCA approach -
yielding a joint model of healthy shape and motion statistics. The recon-
struction error on shape and motion can then be exploited to quantify
remodeling abnormalities. We demonstrate these concepts on 48 healthy
subjects and 62 patients with infarct (29 with one year follow-up) imaged
with 3D echocardiography, analyzing a total of 139 sequences.
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1 Introduction

Cardiac remodeling can be defined as the capacity of the cardiac muscle to adapt
its structure, shape and dynamics to adversarial stresses. Statistical atlases can
describe the variability of normal and pathological cardiac shape and motion.
Therefore, they appear as a potential way of quantifying cardiac remodeling in a
population. If statistical cardiac shape models are commonly used for segmenting
images in clinical practice [2], motion atlases have been mostly used as a research
tool for comparing or stratifying populations [1,4,5]. The following two issues
actually condition their translation to clinical use.

How to compute a distance to normality? Computing a statistical distance
between one subject and a control group made of healthy individuals, previously
aligned to the same reference, can highlight suspicious regions. Such a concept
was often applied in neurologic images for revealing subtle volume changes. For
cardiac imaging, it was applied to represent abnormalities of myocardial veloci-
ties [1] and shapes [10] as p-values.

How to compute a distance between subjects based on several features? De-
pending on the pathology and its severity, shape and motion will be affected
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differently. A complete analysis therefore requires combining these features in
a relevant manner. A straightforward way is to concatenate features in a single
vector per subject. For example, in a recent shape modelling challenge [9] aiming
at classifying infarcted subjects, some authors combined end-systolic and end-
diastolic shapes, thicknesses or radial displacements using PCA. An alternative
when corroborating similar information for various modalities is to look for a
common lower dimensional space where both information sources are projected.
This unified lower-dimensional space can be used to reconstruct either inputs
(for example in case of missing information) [6]. Finally, an alternative way of
integrating heterogeneous features is to weigh their relative importance, as re-
cently demonstrated with MKL, a non-linear dimensionality reduction technique
that has been exploited to reveal relevant groups of subjects [7].

In this paper, we propose to exploit the reconstruction of cardiac shape and
motion from low-dimensional coordinates to express both shape and motion
abnormalities against a reference population of healthy subjects. We explicitly
generate abnormality maps that quantify cardiac remodeling in a practical and
intuitive way.

2 Methods

Patient population and data acquisition This paper combines data from two
research protocols, approved by the ethical committee of the hospital (DIRECT
and Reve II). Both protocols were conducted at the same institution and involved
the same imaging team. Enrolled patients all gave informed consent. In total, 48
control subjects and 62 patients with infarcts were included. Table 1 summarizes
characteristics and inclusion criteria of all populations.

Table 1. Patient characteristics for control and infarct populations.

Controls Infarcts
REVE II DIRECT

n 48 42 20

Type of
infarct

Anterior Anterior / Inferior

Time
points

t = 0 t = 0 t = 0, 12 months

Inclusion
criteria

No known
cardiovascu-
lar disease

Previous heart attack as-
sessed by either scintig-
raphy or cardiac MRI.

Acute infarct assessed by
STEMI on ECG. Echo at
most 5 days after infarct.
EF < 50%. > 3 aki-
netic ant. AHA segments
on echo.

Shape representation Left Ventricular (LV) meshes were obtained from the Philips
Qlab (3DQA) software. All meshes were resampled as described in [11]. The en-
docardium and the epicardium were represented by two distance maps storing
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the distance to the long axis. Different samplings were used at different mesh
locations: spherical for the top and bottom and cylindrical for the middle parts.
Averaging the distance maps of the endocardial and epicardial surfaces gave a
representation of the mid-LV surface. We defined this map as the LV radius map.
The difference of the two distance maps was defined as the thickness map. Both
maps can be visualized as Bull’s eye plots (see Fig. 1).

Original
surface meshes

Radius
Bull’s eye

Thickness
Bull’s eye

Healthy
vol.

Pat. 10
Baseline

colormap (mm)

19.7 23.5 27.3 31.0 34.8 38.6

colormap (mm)

3.7 7.7 11.7 15.8 19.8 23.8

Fig. 1. Bull’s eye representation of radius (center) and thickness maps (right) for one
healthy volunteer and one infarcted patient (baseline).

Motion model We chose to represent cardiac motion by a poly-affine transfor-
mation model [4]. For this, we projected a dense non-rigid displacement field as
obtained by a fast implementation of the Sparse Demons algorithm [8] on the
regularization model from [11]. This regularization consists of three steps. First,
a volumetric hexahedral mesh is built by connecting the endocardial, epicardial
and mid-layers. Second, an anatomical system of coordinates is computed by
orthogonalizing mesh edges at each vertex to define the Radial, Circumferential
and Longitudinal (R, C, L) directions. Third, by geodesic integration of these
vectors on the mesh, we obtain three scalar fields (r, c, and l) giving the lo-
cal anatomical coordinates. A smooth partition of the mesh is then obtained
through the definition of window functions.

ϕw(x) =
gw(x)∑
n g

n(x)
. (1)
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where gw(x) = 1
2πσw

exp
(
− ξ(x,xw)2

2σw
2

)
and ξ represents the geodesic distance

on the mesh to the center of the wth window. We used Nw = 17 windows
corresponding to the AHA segments. In each window, we estimated deformation
and translation parameters to approximate the frame to frame displacement field
v [8] by a linear model expressed in anatomical coordinates

`w(x) = Aw(r(x) c(x) l(x))T + bw forw ∈ [0, Nw − 1]. (2)

Minimizing the following error for each window

Ew =
∑
x∈Ω

ϕw(x) ‖`w(x)− v(x)‖2 , (3)

is equivalent to solving a linear system in each direction d ∈ {r, c, l}:
∑

x ϕ
w(x)r2(x)

∑
x ϕ

w(x)r(x)l(x)
∑

x ϕ
w(x)r(x)c(x)

∑
x ϕ

w(x)r(x)∑
x ϕ

w(x)r(x)l(x)
∑

x ϕ
w(x)l2(x)

∑
x ϕ

w(x)l(x)c(x)
∑

x ϕ
w(x)l(x)∑

x ϕ
w(x)r(x)c(x)

∑
x ϕ

w(x)l(x)c(x)
∑

x ϕ
w(x)c2(x)

∑
x ϕ

w(x)c(x)∑
x ϕ

w(x)r(x)
∑

x ϕ
w(x)l(x)

∑
x ϕ

w(x)c(x)
∑

x ϕ
w(x)



Adr

Adl

Adc

bd



=


∑

x ϕ
w(x)(v(x) · êd(x))r(x)∑

x ϕ
w(x)(v(x) · êd(x))l(x)∑

x ϕ
w(x)(v(x) · êd(x))c(x)∑

x ϕ
w(x)(v(x) · êd(x))

 .

(4)

Linear transformations per window (Eqn. 2) can then be converted to Cartesian
coordinates by using the RLC basis vectors and then merged through the window
functions ϕw(x) to deform the whole ventricle.

Multi-scale approach To obtain a multi-scale representation, we first averaged
all per-window systems and solved for a global linear transformation (global
level). We then averaged the systems of basal, mid and apical windows and fitted
the residual from the global reconstructed field (level 2). We finally proceeded
similarly for the finest level (level 3, 17 AHA segments).

Healthy shape model PCA was applied to the thickness and radius maps on
the healthy population. Both thickness and radius maps were vectorized be-
fore PCA. Also, two normalization strategies were considered. The first was to
normalize all input maps by their average value. The second normalized them
by the cavity volume. Plotting the explained variance ratio revealed that the
volume normalization led to a more compact representation than the average
one. Volume normalization was therefore chosen in our experiments. The same
explained variance curve were also used to set the number of PCA components
used for reconstruction. A 90% threshold led to 5 components for radius and 7
for thickness.
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Healthy motion model All frame to frame linear regression results Aw and bw

were interpolated (and scaled) along time to a normalized heart cycle of 30
frames. We used mitral valve opening and the beginning/end of the cycle as
temporal landmarks. For computing healthy motion modes of variations, we com-
bined different concatenation strategies. First, the global transformations were
vectorized as described in [4] and concatenated across all time points. Comput-
ing a PCA across all subjects encoded the temporal variability of global healthy
motion. Then, for the next resolutions (levels 2 and 3), matrices were vectorized
and concatenated across the different spatial regions (3 at level 2, 17 at level 3)
for each frame separately. This set of PCAs thus encoded the spatial variability
at each frame seen over healthy subjects. The number of components to be used
for each PCA in the healthy motion model was selected with a 90% threshold at
each level on the explained variance curves. For levels 2 and 3, we took the max-
imum number of components over all time points after applying the threshold.
This gave 18 components for the global level, and 8/12 components (per frame)
for the subsequent levels.

Reconstruction For a given new subject, both shape and motion can be projected
onto the healthy PCA output space and reconstructed. Computing the differ-
ence in the input spaces between the original and the reconstructed scalar/vector
fields will indicate pathological deviations from the healthy model. For shape,
as we treat two static scalar fields (radius and thickness), we defined the dif-
ference between original and healthy-based reconstructed maps as absolute ra-
dius/thickness abnormality. For motion, we computed the relative error between
the displacement encoded by the original and reconstructed mesh points. This
was done for the normalized cardiac cycle at the myocardial mid-layer. We de-
fined a relative motion abnormality as

µd(x) = (u(x, t)− û(x, t))
min(1, α‖û(x, t)‖
‖û(x, t)‖

, (5)

where u(x, t) is the displacement obtained by chaining the poly-affine estimate
of Eqn. 2 over time and û(x, t) is its reconstructed counterpart (from the healthy
model). In Eqn. 5, the numerator of the second factor neutralizes the denomi-
nator for small displacement values.

3 Results

Shape reconstruction Fig. 2 shows the same input shapes as in Fig. 1 with the re-
constructed radius map using the PCA normality model (overlaid as wireframe).
The first case (healthy) was left out of the PCA training set. For the pathologi-
cal case, the septal bulge is smoothed out by the normality model, resulting in
negative and positive reconstruction errors along the septum, both at baseline
and follow-up.
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Fig. 2. Signed difference between the original radius map and its reconstruction (shown
in wireframe) for a healthy subject and the patient shown in Fig. 1 (here at baseline
and follow-up).

Motion reconstruction Fig. 3 (see links in the caption) plots the mid-layer meshes
tracked around end-systolic frames at baseline and follow-ups (blue color). A
difference in LV shape is visible between baseline and follow-up. The LV moved
back to a more ellipsoidal shape at follow-up, which is known as reverse remod-
eling. The reconstructed healthy motion for this patient is plotted in green in
Fig. 3. Differences between the healthy reconstruction and the patient’s motion
appear more pronounced at baseline than follow-up. This indicates that simi-
larly to shape, motion abnormalities also reduced for this patient at follow-up.
For taking a closer look at motion abnormalities, Fig. 4 plots the Bull’s eye
diagrams of µd (Eqn. 5) over time points close to the end of systole together
with scar transmurality. The latter was segmented from late enhancement MR
using the Segment (Medviso) software and resampled to the same Bull’s eye
as the motion abnormality maps. The µd maps return high abnormality values
around the septal region, being reduced at follow-up. The extent and exact lo-
cation of abnormalities differ between our index and the scar. This can first be
explained by some potential misalignment when defining AHA segments in both
modalities. Also, complex interaction mechanisms between stunned, infarcted
and normal tissue (at baseline), or between normal, re-vascularized and scar tis-
sue (at follow-up), can also explain the larger extent of the abnormality with
our index.

Abnormality spreads Fig. 5a plots the L2 norm of radius, thickness, motion
and deformation abnormalities as box plots for controls and infarcts. Controls
shape and motion abnormalities were computed by excluding that subject from
the normality model database (leave-one-out approach). For each abnormality
index, values were centered and normalized for the healthy population to have
zero mean and unit standard deviation. Also, a two-sided Mann-Whitney rank
test between controls and infarcts returned the p-values showed over the curly
brackets .
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Joint analysis Finally, we selected one feature for shape and one for dynamics
(radius and motion based on the p-values from Fig. 5a). These two indexes were
rendered as a scatter plot in Fig. 5b. Similarly to Fig. 5a), both axes show the
L2 norm of the radius and µd abnormality maps. Controls, infarcts at baseline
and infarcts at follow-up are plotted using different symbols. Most patients at
follow-up had reduced relative motion abnormality µd compared to the overall
distribution of baseline infarcts. A more detailed analysis would be required to
compare the evolution in shape and motion abnormality values to the clinical
outcome of each patient. Although the values in Fig. 5 do not seem to offer the
same classification accuracy as some of the submissions to the shape modelling
challenge [9], it should be emphasized that our results were extracted from a
database of 3D US and not cine MR images. Also, as the patient populations
differ, results can not be directly compared in terms of accuracy.
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heart cycle
0 % 40 % 47%(ES) 53 % 100 %

0 % 44 % 50%(ES) 55 % 100 %

Fig. 3. LV meshes over the normalized cardiac cycle at baseline and follow-up for
infarcted Patient #4. The reconstruction based on the healthy model is shown in
green. For an animated version, click on the following links: baseline, follow-up.

https://drive.google.com/file/d/13zsahH21F6f_yt78I-ijNEocYuQuUUYV/view?usp=sharing
https://drive.google.com/file/d/1ivHUpQr6A-t9eDfnfSD9Pm8b7v5Jk4fW/view?usp=sharing
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Fig. 4. Bull’s eye plots of the motion (µd) abnormality computed over time for the
same patient shown in Fig. 3 at baseline and follow-up. The scar transmurality (between
0 and 1) as measured from late enhancement images is plotted on the right.
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/Controls

Thickness
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a) b)

Fig. 5. a) Abnormality spreads for radius, thickness, motion and deformation among
controls and infarcts. b) Distribution of the L2 norm of µd and radius abnormality
maps across healthy and infarcted populations, distinguishing between baseline and
follow-up.
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4 Conclusions

We proposed a generic way to quantify abnormalities from different input de-
scriptors, here illustrated on shape and motion to quantify cardiac remodeling
in a population of patients with infarcts, comparing it to the normality pattern
observed from a population of healthy subjects. A simple PCA approach was
used to capture the healthy variability of both shape and motion descriptors.
This model was then used on unseen cases to compute a reconstruction error
that is used as an abnormality signature for both shape and motion. Including
more pathological groups could emphasize different remodeling patterns. Also,
the complex relationship between the presence of fibrosis (as revealed by late
enhancement MR) and deformation requires to be further analyzed for a better
comparison of scar and shape/motion abnormality maps.
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