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Abstract

We propose a new abstract formalism for probabilistic timed systems, Para-
metric Interval Probabilistic Timed Automata, based on an extension of
Parametric Timed Automata and Interval Markov Chains. In this context,
we consider the consistency problem that amounts to deciding whether a
given specification admits at least one implementation. In the context of In-
terval Probabilistic Timed Automata (with no timing parameters), we show
that this problem is decidable and propose a constructive algorithm for its
resolution. We show that the existence of timing parameter valuations en-
suring consistency is undecidable in the general context, but still exhibit a
syntactic condition on parameters to ensure decidability. We also propose
procedures that resolve both the consistency and the consistent reachability
problems when the parametric probabilistic zone graph is finite.
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1. Introduction

Motivation. Nowadays, automata-based modeling and verification methods
are mainly used in two different ways: for designing digital systems based on
(mostly informal) specifications expressed by the end-users of these systems
or from the knowledge designers have of their environment; and in order to
abstract existing (not necessarily software) systems that are too complex to
comprehend in their entirety. In both cases the complexity of the systems
being designed calls for increasingly expressive abstraction artifacts such as
time and probabilities. Timed automata, introduced in Alur and Dill (1994),
are a widely recognized modeling formalism for reasoning about real-time sys-
tems. This modeling formalism, based on finite control automata equipped
with clocks, which are real-valued variables which increase uniformly at the
same rate, has been extended to the probabilistic framework in Gregersen and
Jensen (1995); Kwiatkowska et al. (2002). In this context, discrete actions
are replaced with probabilistic discrete distributions over discrete actions, al-
lowing to model uncertainties in the system’s behavior. This formalism has
been applied to a number of case studies, e. g., in Kwiatkowska et al. (2006).

Unfortunately, building a system model based either on imprecise specifi-
cations or on imprecise observations often requires to fix arbitrarily a number
of constants in the model, which are then calibrated by a fastidious compar-
ison of the model behavior and the expected behavior. This is the case for
instance for timing constants or transition probability values. In order to
incorporate these uncertainties in the model and to develop automatic cal-
ibration, more abstract formalisms have been introduced separately in the
timed setting and in the probabilistic setting.

In the timed setting, parametric timed automata (PTAs) introduced by Alur
et al. (1993) allow using parameter variables in the guards of timed transi-
tions in order to account for the uncertainty on their values. The reachabil-
ity emptiness problem, i. e., the emptiness of the set of valuations for which
a given discrete state is reachable, is undecidable for parametric timed au-
tomata as shown in Alur et al. (1993), even for bounded parameters as shown
by Miller (2000), for a single integer-valued parameter as shown by Beneš
et al. (2015), or only when strict inequalities are used as shown by Doyen
(2007). Decidable subclasses were exhibited (e. g., Hune et al. (2002); Bozzelli
and La Torre (2009); Jovanović et al. (2015); André et al. (2016)).
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Parametric probabilistic timed automata were proposed in André et al.
(2013) to answer the following question: given a timing parameter valua-
tion, what are other valuations preserving the same minimum and maximum
probabilities for reachability properties as the reference valuation? Para-
metric probabilistic timed automata were then given a symbolic semantics
in Jovanović and Kwiatkowska (2014); a method has been proposed in that
same work to synthesize optimal parameter valuations to maximize or mini-
mize the probability of reaching a discrete location.

In the purely probabilistic setting, Interval Markov Chains (IMCs for
short) have been introduced by Jonsson and Larsen (1991) to take into
account imprecision in the transition probabilities. IMCs extend Markov
Chains by allowing to specify intervals of possible probabilities on transi-
tions instead of exact values. Methods have then been developed to decide
whether there exist Markov Chains with concrete probability values that
match the intervals specified in a given IMC (see Delahaye et al. (2012)).

Contribution. In this paper, we propose to combine both abstraction ap-
proaches into a single specification theory: Parametric Interval Probabilistic
Timed Automata (PIPTAs for short). In this setting, parameters can be used
in order to abstract timed constants on transition guards while intervals can
be used to abstract imprecise transition probabilities. Allowing this higher
level of freedom allow for incremental design, where one can first give large
sets of values for which the system may be defined, and then further refine
them. This refinement will take the form of an instance of a probabilistic
interval, or the concrete instance of a timing parameter.

As for IMCs, it is important to be able to decide whether the probability
intervals that are specified in a model allow defining consistent probability
distributions (i. e., can be matched in a real-life implementation). This is
called the consistency problem.

First, in the context of Interval Probabilistic Timed Automata with no
timing parameters (IPTAs for short), we propose an algorithm that solves
this problem.

Second, in the parametric setting, since the behavior of the system is
conditioned by the calibration of parameter values, it is necessary to decide
whether there exist parameter values that ensure consistency of the resulting
model (and synthesize these values when this is possible). We show that the
existence of such parameter valuations is undecidable in the general context
of PIPTAs. Still, we exhibit a sufficient syntactic condition on the use of
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the parameters to ensure decidability, when parameters are partitioned into
lower-bound parameters and upper-bound parameters (in their comparisons
with clocks). In addition, we propose a construction that characterizes, when-
ever the parametric probabilistic zone graph is finite, the set of parameter
values that ensure consistency of the resulting IPTA. We finally address the
problem of parametric consistent reachability, i. e., of synthesizing valuations
for which a given state is reachable and the model is consistent.

Example 1. The Root Contention Protocol, used for the election of a leader
in the physical layer of the IEEE 1394 standard, consists in first drawing a
random number (0 or 1), then waiting for some time according to the result
drawn, followed by the sending of a message to the contending neighbor.
This is repeated by both nodes until one of them receives a message be-
fore sending one, at which point the root is appointed. This protocol was
modeled in Collomb-Annichini and Sighireanu (2001) using parametric timed
automata, in Kwiatkowska et al. (2003) with probabilistic timed automata,
and in André et al. (2013) using parametric probabilistic timed automata,
i. e., parametric timed automata extended with (non-parametric) probabilis-
tic distributions.

Figure 1 shows a PIPTA model of the node i. The wire can be found
in Kwiatkowska et al. (2003); André et al. (2013). Figure 1 features one
clock xi and four parameters f min, f max , s min and s max . In short,
the goal of the protocol is that each node reaches either the child status,
or the root status. In addition, observe that we use probabilistic interval
distributions; they can be seen as an additional design freedom, allowing for
incremental design. The one going out from ROOT IDLE clearly admits no
implementation, as no instance of the two intervals [0.3, 0.4] can be such that
their sum is equal to 1. This probabilistic interval distribution could be either
disabled by setting other probabilities to 0 so that location ROOT IDLE
becomes unreachable; or by tuning the values of the four parameters (or the
parameters in the other PIPTAs in parallel) so that the guard going out
from ROOT IDLE becomes unsatisfiable. The rest of the this manuscript is
dedicated to this problem.

Outline. We start Section 2 with preliminary definitions and then introduce
the concepts of IPTAs and PIPTAs. In Section 3, we study the consistency
problem for IPTAs and propose a constructive algorithm based on the zone-
graph construction that decides whether an IPTA is consistent and produces
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Figure 1: PIPTA modeling node i in the Root Contention Protocol

an implementation if one exists. In Section 4, we move to the general problem
of consistency of PIPTAs. We first show that this problem is undecidable in
general and then exhibit a decidable subclass. We then propose a construc-
tion that characterizes, whenever the parametric probabilistic zone graph is
finite, the set of parameter values ensuring consistency of the resulting IPTA.
We also consider the problem of parametric consistent reachability. Finally,
Section 5 concludes the paper.

2. Preliminaries

2.1. Clocks, parameters and constraints

Let N, Z, Q+ and R+ denote the sets of non-negative integers, integers,
non-negative rational numbers and non-negative real numbers respectively.
Given an arbitrary set S, we write Dist(S) for the set of probabilistic distri-
butions over S.

Throughout this paper, let X = {x1, . . . , xH} be a set of clocks, i. e., real-
valued variables that evolve at the same rate, and Γ = {γ1, . . . , γM} be a set
of parameters, i. e., unknown constants used in guards.

A clock valuation is a function w : X → R+. We identify a clock valua-
tion w with the point (w(x1), . . . , w(xH)). We write ~0 for the valuation that
assigns 0 to each clock. Given d ∈ R+, w+d denotes the valuation such that
(w + d)(x) = w(x) + d, for all x ∈ X. Given ρ ⊆ X, we define [w]ρ as the
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clock valuation obtained by resetting the clocks in ρ and keeping the other
clocks unchanged.

A parameter valuation v is a function v : Γ→ Q+. We identify a param-
eter valuation v with the point (v(γ1), . . . , v(γM)).

In the following, we assume ./ ∈ {<,≤,≥, >}. Let aft range over affine
terms over X ∪ Γ, of the form

∑
1≤i≤H αixi +

∑
1≤j≤M βjγj + d, with xi ∈

X, γj ∈ Γ, and αi, βj, d ∈ Z. Similarly, let paft range over parametric
affine terms over Γ, that is affine terms without clocks (αi = 0 for all i). A
constraint C over X ∪ Γ is a conjunction of inequalities of the form aft ./ 0
(i. e., a convex polyhedron). Given a parameter valuation v, v(C) denotes the
constraint over X obtained by replacing each parameter γ in C with v(γ).
Likewise, given a clock valuation w, w(v(C)) denotes the expression obtained
by replacing each clock x in v(C) with w(x). We say that v satisfies C,
denoted by v |= C, if the set of clock valuations satisfying v(C) is nonempty.
Given a parameter valuation v and a clock valuation w, we denote by w|v
the valuation over X ∪Γ such that for all clocks x, w|v(x) = w(x) and for all
parameters γ, w|v(γ) = v(γ). We use the notation w|v |= C to indicate that
w(v(C)) evaluates to true. We say that C is satisfiable if ∃w, v s. t.w|v |= C.
We define the time elapsing of C, denoted by C↗, as the constraint over
X and Γ obtained from C by delaying all clocks by an arbitrary amount of
time. Given ρ ⊆ X, we define the reset of C, written [C]ρ, as the constraint
obtained from C by resetting the clocks in ρ, and keeping the other clocks
unchanged. We denote by C↓Γ the projection of C onto Γ, i. e., obtained by
eliminating the clock variables (e. g., using the Fourier-Motzkin algorithm).

A guard g is a constraint over X ∪ Γ defined by inequalities of the form
x ./ z, where x ∈ X and z is either a parameter or a constant in Z.

A zone is a polyhedron over a set of clocks in which all constraints on
variables are of the form x ./ k (rectangular constraints) or xi − xj ./ k
(diagonal constraints), where xi ∈ X, xj ∈ X and k is an integer. Operations
on zones are well-documented (see e. g., Bengtsson and Yi (2003)).

A parametric zone is a convex polyhedron over X ∪ Γ in which all con-
straints on variables are of the form x ./ paft (parametric rectangular con-
straints) or xi − xj ./ paft (parametric diagonal constraints), where xi ∈ X,
xj ∈ X and paft is a parametric affine term over Γ. We denote the set of all
parametric zones by Z.
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2.2. Probabilistic timed automata

We start by reviewing the definition of timed probabilistic systems, as
defined in Kwiatkowska et al. (2002). A timed probabilistic system (TPS) is
a tuple T = (S, s0,Σ,⇒) where S is a set of states, s0 ∈ S is the initial state,
Σ is a finite set of actions, and ⇒ ⊆ S × R+ × Σ× Dist(S) is a probabilistic
transition relation that associates a probabilistic distribution over S to triples
made of a source state in S, a time in R+ and an action in Σ.

Probabilistic timed automata (defined by Gregersen and Jensen (1995);
Kwiatkowska et al. (2002)) are an extension of classical timed automata
(defined in Alur and Dill (1994)) with discrete probability distributions.

2.2.1. Syntax

Definition 1. A Probabilistic Timed Automaton (PTA) P is a tuple (Σ, L, l0,
X, prob), where: i) Σ is a finite set of actions, ii) L is a finite set of locations,
iii) l0 ∈ L is the initial location, iv) X is a finite set of clocks, v) prob is a
probabilistic edge relation consisting of elements of the form (l, g, a, υ), where
l ∈ L, g is a zone over the clocks X, a ∈ Σ, and υ ∈ Dist(2X × L).

Note that we use no invariant; this is an important condition for the
correctness of our techniques. However, invariants can be eliminated (moved
to the guards prior to the transition), following classical techniques defined
for (probabilistic) timed automata.

We use the following conventions for the graphical representation of prob-
abilistic timed automata: locations are represented by nodes, within which
name of the location is written; probabilistic edges are represented by arcs
from locations, labeled by the associated guard and action, and which split
into multiple arcs, each of which leads to a location and which is labeled by
a set of clocks to be reset to 0 and a probability (probabilistic edges which
correspond to probability 1 are illustrated by a single arc from location to
location).

Example 2. Figure 2a presents an example of a PTA with two clocks x
and y. For example, l0 can be exited whenever y < 2; then, with probability
0.4 the target location becomes l2, resetting x; or with probability 0.6 the
target location is l1, resetting y. The transition from l2 can be explained
similarly.
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2.2.2. Semantics of PTAs

A PTA can be interpreted as an infinite TPS. Due to the continuous
nature of clocks, the underlying TPS has uncountably many states, and is
uncountably branching.

Definition 2 (Concrete semantics of a PTA). Given a PTA P = (Σ, L, l0, X,
prob), where H = |X|, the concrete semantics of P is given by the timed
probabilistic system TP = (S, s0,Σ,⇒), with

• S = {(l, w) ∈ L× RH
+} , s0 = (l0,~0)

• ((l, w), d, a, η) ∈ ⇒ if both of the following conditions hold:

1. time elapse: ∀d′ ∈ [0, d], (l, w + d′) ∈ S, and

2. edge traversal: there exists a probabilistic edge e = (l, g, a, υ) ∈
prob such that w + d |= g and, for each l′ ∈ L and ρ ⊆ X,
η(l′, [w + d]ρ) = υ(ρ, l′).

Note that, due to the fact that we have no invariants, the first condition
(time elapse) is always trivially true.

2.3. Parametric interval probabilistic timed automata

In this section, we introduce basic definitions for (parametric) interval
probabilistic timed automata, that extend (parametric) probabilistic timed
automata by providing intervals for transition probabilities instead of exact
probability values. In the spirit of (parametric) Interval Markov Chains de-
fined in Delahaye (2015); Delahaye et al. (2016), (parametric) interval prob-
abilistic timed automata are used for specifying potentially infinite families
(sets) of probabilistic timed automata—those whose exact probability values
match the specified intervals—with a finite structure of similar form.

2.3.1. Syntax

Given an arbitrary measurable set S, we call an interval distribution over
S a function Υ that assigns to each element of S an interval of probabilities
[a, b] ⊆ [0, 1]. Intuitively, an interval distribution Υ over S represents the
set of all distributions µ ∈ Dist(S) that assign to each element s ∈ S a
probability µ(s) such that µ(s) ∈ Υ(s). Formally, let IntDist(S) denote the
set of all interval distributions over S; we define the implementation of an
interval distribution as follows.
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Definition 3 (Implementation of an interval distribution). Let S be an ar-
bitrary set. Given an interval distribution Υ ∈ IntDist(S), υ ∈ Dist(S) is an
implementation of Υ, written υ ∈ Υ iff, for all s ∈ S, we have υ(s) ∈ Υ(s).

We now move to the definition of (parametric) interval probabilistic timed
automata.

Definition 4. A Parametric Interval Probabilistic Timed Automaton
(PIPTA) PIP is a tuple (Σ, L, l0, X,Γ, I), where: i) Σ is a finite set of
actions, ii) L is a finite set of locations, iii) l0 ∈ L is the initial location,
iv) X is a finite set of clocks, v) Γ is a finite set of parameters, vi) I is an
interval-valued probabilistic edge relation consisting of elements of the form
(l, g, a,Υ), where l ∈ L, g is a guard, a ∈ Σ, and Υ ∈ IntDist(2X × L) is an
interval distribution.

Given a PIPTA PIP = (Σ, L, l0, X,Γ, I) and a parameter valuation v,
the valuation of PIP with v, written v(PIP), is an Interval Probabilistic
Timed Automaton (IPTA) IP = (Σ, L, l0, X, I′), where I′ is obtained by
replacing within I any occurrence of a parameter γ with v(γ) and removing
all transitions (l, g, a,Υ) such that v(g) ≡ ⊥ (technically, this latter part is
not strictly speaking necessary, but it syntactically reduces the model a bit).

Remark that IPTAs are very similar to PTAs: the only difference is that
probabilistic edges are labeled with intervals instead of exact probability
values.

In our graphical representations, when the interval associated with a dis-
tribution is reduced to a point (e. g., [0.5, 0.5], we simply represent it using
its punctual value (i. e., 0.5). Also, when a distribution is made of a single
target location with probability 1, we simply omit the distribution.

Once a parameter valuation is fixed, the resulting IPTA represents a
potentially infinite set of PTAs. In order to relate a given IPTA with the PTAs
it represents, we use the notion of implementation defined hereafter. This
notion is similar to the one defined in the context of (parametric) Interval
Markov Chains in Delahaye (2015); Delahaye et al. (2016). Remark that a
PTA implementing an IPTA needs to conserve the exact same clocks, guards
and resets.

Definition 5 (Implementation of an IPTA). Let P = (Σ, L, l0, X, prob) be
a PTA and IP = (Σ, L′, l′0, X, I) be an IPTA.
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l0

l1

l2 l5

l3

l4
y < 2
a [0, 1]

y := 0

[0, 0.5]
x := 0

2 ≤ x ≤ γ
b [0, 0.2]

y := 0

[0, 0.3]
x, y := 0

x = 1 ∧ y ≤ 2
c

[0, 0.2]
x := 0

[0.8, 1]

x = 5
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(b) A PIPTA

Figure 2: Examples
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We say that P is an implementation of IP , written P |= IP , iff there
exists a relation RP ⊆ L×L′, called an implementation relation s. t. (l0, l

′
0) ∈

RP and, whenever (l, l′) ∈ RP , we have

• ∀(l, g, a, υ) ∈ prob, ∃(l′, g, a,Υ) ∈ I s. t. υ �RP
Υ, and

• ∀(l′, g′, a,Υ) ∈ I,∃(l, g′, a, υ) ∈ prob s. t. υ �RP
Υ,

where υ �RP
Υ iff ∃δ ∈ Dist(L× L′) s. t.

• ∀(ρ, l) ∈ 2X × L, υ(ρ, l) > 0⇒
∑

l′∈L′(δ(l, l
′)) = 1,

• ∀(ρ′, l′) ∈ 2X × L′,
∑

l∈L(υ(ρ′, l) · δ(l, l′)) ∈ Υ(ρ′, l′), and

• δ(l, l′) > 0⇒ (l, l′) ∈ RP .

In the above definition, the relationRP encodes the pairs of states (l, l′) ∈
L×L′ where l is an implementation of l′. On the other hand, the relation �RP

is a lifting of the relation RP to distributions over locations (also called a
coupling), and therefore represents compatible distributions w.r.t. RP . This
notion of satisfaction has been adapted from the notion of “weak weak”
satisfaction in the context of Abstract Probabilistic Automata, for which
several notions of satisfaction exist. We have chosen this particular notion
because it is the most permissive among those presented in Delahaye et al.
(2013). For a detailed discussion on this topic, we refer the interested reader
to Delahaye et al. (2013).

Given an IPTA, deciding whether the family it represents is nonempty is
a nontrivial problem. Indeed, the interval distributions used throughout its
structure could represent contradictory constraints on the transition proba-
bilities, therefore preventing any PTA from implementing it.

In the following, we say that a PTA P has the same structure as an IPTA
IP if and only if the underlying directed graph of P is a subgraph (up to
renaming and removal of unreachable states) of the underlying directed graph
of IP . This notion trivially extends to PIPTA and other models we use in
the rest of the paper.

Definition 6 (Consistency of an IPTA). An IPTA is consistent if it admits
at least one implementation.

Example 3. Consider the PIPTA PIP given in Figure 2b, and containing
a single parameter γ. Let v1 be the parameter valuation such that v1(γ) = 1.
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In the IPTA v1(PIP), the transition outgoing from l1 can never be taken, as
its guard becomes 2 ≤ x ≤ 1, which is unsatisfiable. Then, it is clear that the
PTA P given in Figure 2a is an implementation of v1(PIP). We emphasize
the fact that location l2 from v1(PIP) has been “unfolded” in P , yielding
two locations l2 and l′2. As a consequence, the underlying structure of P is
not identical to the one of v1(PIP). Nevertheless, both locations l2 and l′2 of
P obviously satisfy the original l2 from v1(PIP), which allows P to satisfy
v1(PIP) despite their distinct structures. As a consequence, v1(PIP) is a
consistent IPTA.

An important problem is therefore to decide whether a given IPTA is
consistent, which we address in the next section.

3. The consistency problem for IPTAs

In this section, we address the problem of deciding whether a given IPTA
is consistent. Unlike in the context of IMCs, where it is proven that a given
IMC is consistent iff it admits an implementation with the same structure,
a given IPTA can be consistent but still not admit any implementation that
respects its structure. Indeed, the structure of implementations depends on
the structure of the zone graph rather than on the structure of the IPTA
itself which can be different. Algorithms such as those proposed for deciding
consistency of (p)IMCs in Delahaye et al. (2016) therefore cannot be directly
adapted to the IPTAs setting as they are dependent on this property.

Fortunately, the operational semantics of IPTAs can be expressed in terms
of Interval Markov Decision Processes (IMDPs), which are similar to IMCs
and satisfy the same structural properties regarding consistency. We there-
fore propose an algorithm for deciding consistency of IPTAs based on the con-
sistency of their symbolic IMDP semantics. An alternative solution would be
to “normalize” IPTAs into special IPTAs where all edges can fire, via a region
construction. For the sake of simplicity, we only explore the first solution.
We start with preliminary definitions on IMDPs, then formally define the
symbolic semantics of IPTAs and finally propose an algorithm for deciding
whether a given IPTA is consistent.

3.1. Preliminary definitions

An IMDP is a tuple (S, s0,Σ, T ) where S is a set of states, s0 ∈ S is
the initial state, Σ is a finite set of actions and T ⊆ S × Σ× IntDist(S) is a
probabilistic (interval) transition relation.
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Figure 3: Examples
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Example 4. Figure 3b depicts an example of an IMDP. Just as for IPTAs,
when the interval associated with a distribution is reduced to a point (which
is not the case here), we simply represent it using its punctual value. When a
distribution is made of a single target location with probability 1, we simply
omit the distribution (e. g., from s3 to s4).

Definition 7 (MDP). An MDP is an IMDP such that for each (s, a, I) ∈ T ,
and for all s′ ∈ S, we have I(s′) = [m,m] is a singleton. In addition, for each
(s, a, I) ∈ T , we have ∑

s′∈S

I(s′) = 1.

Example 5. Figure 3a depicts an example of an MDP.

Definition 8 (Implementation of an IMDP). Let IM = (S, s0,Σ, T ) be an
IMDP. LetM = (S ′, s′0,Σ, T

′) be an MDP. We say thatM is an implemen-
tation of IM, written M |= IM, if ∃RM ⊆ S ′ × S s. t. (s′0, s0) ∈ RM and
(s′, s) ∈ RM if

• ∀(s′, a, ι) ∈ T ′,∃(s, a, I) ∈ T s. t. ι �RM
I, and

• ∀(s, a, I) ∈ T,∃(s′, a, ι) ∈ T ′ s. t. ι �RM
I,

where ι �RM
I iff ∃δ ∈ Dist(S ′ × S) s. t.

• ∀s′ ∈ S ′, ι(s′) > 0⇒
∑

s∈S(δ(s′, s)) = 1,

• ∀s ∈ S,
∑

s′∈S′(ι(s
′) · δ(s′, s)) ∈ I(s), and

• δ(s′, s) > 0⇒ (s′, s) ∈ RM .

As for IPTAs, we say that an IMDP is consistent iff it admits at least
one implementation.

Example 6. The IMDP given in Figure 3b admits no implementation: in-
deed, on the (single) transition labeled with e2, no valuation of the two
intervals [0, 0.3] and [0, 0.2] is such that the sum of both valuations is equal
to 1. Nevertheless, it could be that the IMDP is still consistent if one assigns
a 0-probability on the transition from s0 to s1. However, although this would
be compatible with the interval (0 ∈ [0, 1]), the second interval (to s2) does
not accept a 1-probability since its probability must be within [0, 0.5].
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As said above IMDPs satisfy the same structural property as IMCs con-
cerning implementations: they are consistent iff they admit at least one
implementation that respects their structure. This result is formalized in the
following lemma.

Lemma 1 (structure of an implementation). An IMDP IM is consistent iff
there exists an MDP M with the same structure s. t. M |= IM.

Proof. Let IM = (S, s0,Σ, T ) be an IMDP.
One direction of this result is trivial: if there exists an MDPM with the

same structure as IM s. t. M |= IM, then IM is clearly consistent.
The reverse implication is more involved. Assume that IM is consistent,

i. e., there exists an MDP M = (S ′, s′0,Σ, T
′), with no assumption on its

structure, such that M |= IM. We then have to build an MDP M∗ =
(S, s0,Σ, T

∗) such thatM∗ |= IM. Observe that S and s0 must be identical
to that of IM because they have the same structure.

Let RM be the relation witnessing that M |= IM and let f : S → S ′ ∪
{⊥} be a function that associates to all states in IM one of the states from
M that contributes to its implementation, if there is any, and ⊥ otherwise.
Formally, for all s ∈ S, if f(s) 6= ⊥ then (f(s), s) ∈ RM , and whenever there
exists s′ ∈ S ′ such that (s′, s) ∈ RM , we have f(s) 6= ⊥.

The transition relation T ∗ ofM∗ is constructed as follows: For each state
s that is implemented, i. e., such that f(s) 6= ⊥, and probabilistic interval
transition (s, a, I) ∈ T in IM, we build a corresponding transition (s, a, ιI)
in M∗ from the transitions in M that implement (s, a, I). In other words,
we pick one of the states that satisfy s (using function f) and mimic its
outgoing transitions in M∗. All the other states that satisfy s are simply
removed. States that are not implemented do not serve for consistency and
are therefore not considered.

Formally, let (s1, a, I) ∈ T be a probabilistic interval transition in IM.
From Definition 8, we know that there exists (f(s1), a, ι) ∈ T ′ s. t. ι �RM

I.
According to the definition, there exists at least one function δ that witnesses
ι �RM

I. In the following we pick one such function and name it δ(ι,I). The
distribution ιI is then constructed as follows: for all s2 ∈ S, let ιI(s2) =∑

s′∈S′ ι(s
′) · δ(ι,I)(s

′, s2).
By definition of δ(ι,I), observe that ιI(s2) ∈ I(s2) for all s2 ∈ S and that,

whenever ιI(s2) > 0, f(s2) 6= ⊥.
Clearly,M∗ is therefore an implementation of IM, with witnessing rela-

tion R∗M defined as the identity relation on the set of states s ∈ S such that
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f(s) 6= ⊥.

3.2. A symbolic semantics for IPTAs

We equip IPTAs with a symbolic semantics, defined below. Basically, it
is inline with the symbolic semantics defined for timed automata in the form
of a zone graph, with the addition of probabilistic intervals on the edges; as
a consequence, the semantics becomes not an LTS, but an IMDP.

Definition 9 (Symbolic semantics of an IPTA). Given an IPTA IP =
(Σ, L, l0, X, I), the symbolic semantics of IP is given by the IMDP (S, s0, I, T ),
with

• S = {(l, C) ∈ L × Z}, s0 = (l0, (
∧

1≤i≤H xi = 0)↗), where l is the
location and C the associated zone,

• ((l, C), e, I) ∈ T if e = (l, g, a,Υ) ∈ I and for all l′ ∈ L, for all ρ ⊆ X

such that Υ(ρ, l′) > 0, C ′ =
(
[C ∧ g]ρ

)↗
, and I((l′, C ′)) = Υ(ρ, l′).

Given a symbolic state s = (l, C), we denote by s.l and s.C its location
and its associated zone (symbolic constraint), respectively.

Observe that, whenever an IPTA has no probabilistic choice, then the
IMDP becomes a labeled transition system, and the symbolic semantics
matches that of timed automata given in the form of a zone graph (see
e. g., Bengtsson and Yi (2003)). It is well-known that the zone graph of a
timed automaton can have an infinite number of states; however, applying
the classical k-extrapolation (that basically splits zones between a part where
the clock constraints are smaller or equal to k and a part where constraints
are larger than k, where k is the largest integer-constant in the timed automa-
ton) yields finiteness (see, e. g., Behrmann et al. (2006)). In the following,
we apply the classical k-extrapolation to the symbolic constraints of the se-
mantics of an IPTA IP , and therefore the number of states in the IMDP
described in Definition 9 is finite. We refer to the symbolic semantics of IP
as the probabilistic zone graph of IP .

Remark that the probabilistic zone graph is defined for IPTAs in the form
of an IMDP; a PTA can be understood as an IPTA, and its associated zone
graph becomes an MDP.

Example 7. The probabilistic zone graph of the PTA in Figure 2a is the
MDP given in Figure 3a. The symbolic states si = (li, Ci) are expanded in
Table 1.
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State Location C
s0 l0 x = y ∧ x ≥ 0
s1 l1 0 ≤ x− y < 2 ∧ y ≥ 0
s2 l2 0 ≤ y − x < 2 ∧ x ≥ 0
s5 l5 0 ≤ y − x ≤ 1 ∧ x ≥ 1
s6 l2 1 ≤ y − x ≤ 2 ∧ x ≥ 0
s′6 l′2 1 ≤ y − x ≤ 2 ∧ x ≥ 0
s7 l5 y ≥ 2 ∧ y = x+ 1
s8 l2 y ≥ 2 ∧ y = x+ 2
s′8 l′2 y ≥ 2 ∧ y = x+ 2

Table 1: Description of the states in Figure 3a

3.3. Reconstructing an IPTA from a Probabilistic Zone Graph

It is well-known that, given a timed automata A and its zone graph, a
second timed automaton A′ can be reconstructed from the zone graph, with
the same structure as the zone graph, and such that the zone graph of A′ is
the same as that of A. We extend this technique here to IPTAs.

The construction. Let IP = (Σ, L, l0, X, I) be an IPTA; let IM = (S, s0, I, T )
be its probabilistic zone graph. Let us build a second IPTA IP ′ = (Σ, L′, l′0, X, I′)
as follows.

First, each state of IM is translated into a location of IP ′, i. e., we have
L′ = S.

Second, the initial location of IP ′ is the initial state of IM, i. e., we have
l′0 = s0.

Third, for each transition (s, e, I) ∈ T in IM, with e = (l, g, a,Υ), we
create in IP ′ a transition (s, g, a,Υ′), where Υ′ is defined as follows: for each
s′ such that I(s′) > 0, then Υ′(ρ′, s′) = I(s′), where ρ′ is the set of clocks to
be reset from s.l to s′.l via edge e in IP .

Given an IPTA IP with probabilistic zone graph IM. We denote by
Reconstruct(IM) the IPTA IP ′ reconstructed from IM following the above
technique. Obviously, this construction also applies to PTA, which are just
IPTA where intervals are reduced to single points.

An equivalence result. As should be expected, the probabilistic zone graph IM′

of the IPTA IP ′ reconstructed from the probabilistic zone graph IM of a
IPTA IP is equivalent to IM.
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0.9

Figure 4: A PTA reconstructed from the probabilistic zone graph in Figure 3a

Proposition 1. Let IP be an IPTA and IM be its probabilistic zone graph.
Let IP ′ = Reconstruct(IM). Let IM′ be the probabilistic zone graph
of IP ′.

Then IM′ is equivalent to IM up to location renaming.

Example 8. We apply the above procedure to the probabilistic zone graphs
from Figure 3a and Figure 3b. The PTA and IPTA reconstructed from these
zone graphs are given in Figure 4 and Figure 5, respectively. Remark that
their probabilistic zone graphs are again that of Figure 3a and Figure 3b.

3.4. An algorithm for the consistency of IPTAs

We start with the following observation: by construction, the purpose
of the symbolic semantics of IPTAs is to represent, at a lower level of ab-
straction, the same set of objects. Intuitively, the symbolic IMDP semantics
of a given IPTA should therefore be consistent iff the original IPTA is itself
consistent. This result is formally proven in Proposition 2.

Proposition 2. An IPTA IP is consistent iff its probabilistic zone graph is
consistent.

Proof. Let IP = (Σ, L, l0, X, I) be an IPTA. Let IM = (S, s0, I, T ) be the
probabilistic zone graph of IP .
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Figure 5: An IPTA reconstructed from the probabilistic zone graph in Figure 3b

⇒ Assume IP is consistent, and let us show that its probabilistic zone
graph is consistent. From the definition of consistency, there exists a
PTA P = (Σ, L′, l′0, X, prob) such that P |= IP , with implementation
relation RP . LetM = (S′, s′0, prob, T

′) be the probabilistic zone graph
of P . Let us show that M |= IM.

We therefore define a relation RM , and show that it is an implementa-
tion relation. We defineRM = {((l, C), (l′, C ′)) | (l, l′) ∈ RP∧C = C ′}.

– From Definition 9, the initial state ofM is s′0 = (l′0, (
∧

1≤i≤H xi =

0)↗); the initial state of IM is s0 = (l0, (
∧

1≤i≤H xi = 0)↗).
Since P |= IP then from Definition 5 we have (l′0, l0) ∈ RP , and
therefore (s′0, s0) ∈ RM .

– Let ((l, C), (l′, C)) ∈ RM .

∗ Let ((l′, C), a, ι) ∈ T ′. Since Definition 9, there exists an edge
e′ = (l′, g, a, υ) ∈ prob. Therefore, by RP ,there exists an edge
e = (l, g, a,Υ) ∈ I such that υ �RP

Υ.
As a consequence, by Definition 9 and since the guards are
the same in P and IP , there exists ((l, C), a, I) ∈ T .
Moreover, by Definition 9, we have ι �RM

I, with
δRM

((l′, C ′), (l, C)) = δRP
(l′, l) if C = C ′ and 0 otherwise.
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∗ Similarly, for all ((l, C), a, I) ∈ T , there exists ((l′, C), a, ι) ∈
T ′ such that ι �RM

I by RP and Definition 9.

Therefore M |= IM.

⇐ Assume the probabilistic zone graph IM of IP is consistent, and let
us show that IP is consistent. From Lemma 1, there exists M =
(S, s0, I, T ′) such that M |= IM with the same structure as IM, and
with implementation relationRM (note thatRM is the identity because
they have the same structure).

Let us reconstruct an IPTA IP ′ = (Σ, L′, l′0, X, I′) from the probabilis-
tic zone graph IM, using the procedure Reconstruct from Section 3.3.
Now, let P = (Σ, L′, l′0, X, prob) with the same structure as IP ′, and
where prob is obtained by replacing every occurrence of I in I′ by ι
taken from T in M. Note that there is a one-to-one correspondence
between T ′ and T since they have the same structure, which is a key
point here.

Recall that, during Reconstruct, for each transition (s, e, I) ∈ T in IM,
with e = (l, g, a,Υ), we create in IP ′ a transition (s, g, a,Υ′), where Υ′

is defined as follows: for each s′ such that I(s′) > 0, then Υ′(ρ′, s′) =
I(s′), where ρ′ is the set of clocks to be reset from s.l to s′.l via edge e
in IP . Here, we simply replace I with ι, where ι is the distribution
corresponding to I in M.

Now, let us show that P |= IP . Recall from Section 3.3 that the
locations in P are of the form (l, C). We thus define RP = {(l′, C ′), l |
l′ = l}.

– From the reconstruction Reconstruct, the initial location of P is
(l0, C0). Therefore, ((l0, C0), l0) ∈ RP .

– Let ((l, C), l′) ∈ RP .

∗ Let e = ((l, C), g, a, υ) ∈ prob. By Reconstruct, there must
exist ((l, C), e, ι) ∈ T ′ in M with υ(ρ, (l′, C ′)) = ι((l′, C ′)),
for all (l′, C ′), where ρ is the set of clocks to be reset from
l to l′ via edge e in P . Therefore, from RM , there exists
((l, C), e, I) ∈ T of IM s. t. ι �RM

I.
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As a consequence, by the zone graph construction (Defini-
tion 9), there exists a transition (l, g, a,Υ) ∈ I in IP such
that I((l′, C ′)) = Υ(ρ, l′), for all ρ, l′, C ′.
Let δRP

be such that δRP
((l′, C ′), l′′) = 1 if l′ = l′′ and 0

otherwise. Finally, by RM , we obtain υ �RP
Υ.

∗ Similarly, for all (l, g, a,Υ) ∈ I in IP , there exists
((l, C), g, a, υ) ∈ prob such that υ �RP

Υ.

Therefore P |= IP .

Given the results presented in Lemma 1 and Proposition 2, deciding
whether a given IPTA IP is consistent can be done by deciding whether its
probabilistic zone graph admits at least one implementation that preserves
its structure.

Such an algorithm was provided in Delahaye (2015) in the context of
IMCs instead of IMDPs. We show how this algorithm can be adapted to
our context. As for IMCs, we say that a state is locally inconsistent in a
given IMDP iff one of its outgoing probabilistic (interval) transitions cannot
be implemented, i. e., if there is no distribution that matches the specified
intervals. Let IM = (S, s0, I, T ) be the IMDP symbolic semantics of a given
IPTA. Our algorithm is given in Algorithm 1.

Algorithm 1: Consistency of IMDPs

1 Let Inc be the set of locally inconsistent states in IM and
Passed = ∅.

2 while s0 /∈ Passed and Inc 6= ∅ do
3 Let s ∈ Inc and Passed = Passed ∪ {s}.
4 Replace all transitions (s′, a, I) such that I(s) 6= [0, 0] with

(s′, a, I ′) where

• I ′(s′′) = I(s′′) for all s′′ 6= s, and

• I ′(s) = I(s) ∩ [0, 0]

Update Inc ⊆ (S \ Passed).
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Algorithm 1 is based on the following principle: as soon as a locally incon-
sistent state is detected, it is made unreachable by modifying the incoming
interval probabilities to I(s) ∩ [0, 0]. Remark that if 0 is not an admissi-
ble transition probability, the inconsistency is transfered to the predecessor
states because I(s) ∩ [0, 0] = ∅.

In the context of IMCs, it is proven in Delahaye (2015) that this algorithm
converges and that the original IMC is consistent iff the initial state is not
locally inconsistent in the resulting IMC. The proof from Delahaye (2015)
can be trivially adapted to the context of IMDPs.

Proposition 2 together with Algorithm 1 and the above discussion on
termination give the following theorem:

Theorem 1. The consistency problem for IPTAs is decidable.

4. Consistency-emptiness and synthesis for PIPTAs

We now move to the parametric setting and consider the following two
problems:

Consistency-emptiness problem:
Input: A PIPTA PIP
Problem: does there exist a parameter valuation v such that v(PIP)
is consistent?

Consistency-synthesis problem:
Input: A PIPTA PIP
Problem: find all parameter valuations v for which v(PIP) is consis-
tent.

In the following, we first address the consistency-emptiness problem and
show that, while this problem is undecidable in the general context of PIPTAs,
it becomes decidable for a syntactic subclass (Section 4.1). We then intro-
duce an adaptation of the parametric zone-graph construction for parametric
timed automata (Section 4.2), and propose in Section 4.3 a construction for
the consistency-synthesis problem. This construction can only be applied
when the parametric probabilistic zone-graph construction of the original
PIPTA is finite. When this is the case, the set of parameter values that are
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synthesized is exactly those that ensure consistency of the resulting IPTA.
We finally address the more general problem of consistent reachability in
Section 4.4.

4.1. The emptiness problem

4.1.1. Undecidability in the general case

The undecidability of the consistency-emptiness for PIPTAs follows from
the undecidability of the reachability emptiness for parametric timed au-
tomata.

Theorem 2. The consistency-emptiness for PIPTAs is undecidable.

Proof. The reachability emptiness for parametric timed automata (i. e., the
existence of at least one parameter valuation for which a given location is
reachable) is undecidable (see e. g., Alur et al. (1993); Jovanović et al. (2015);
André and Markey (2015); Beneš et al. (2015), and André (2018) for a com-
plete survey). In particular, it is undecidable even without invariant as shown
in Alur et al. (1993); Beneš et al. (2015), which is inline with our setting.

We prove our result by reducing from the reachability emptiness for para-
metric timed automata. Assume a PTA (without probability), with a special
goal location. From that goal location, let us add an unguarded transition
to a new location for which no implementation exists (for example a single
transition labeled with [0.5, 0.5]). Hence there exists a parameter valuation
for which the underlying IPTA admits no implementation iff there exists a
parameter valuation for which the goal location is reachable—which is unde-
cidable.

The undecidability of the consistency-emptiness problem rules out the
possibility to, in general, compute a solution to the consistency-synthesis
problem. In the following, we will still address this computation problem
by proposing a synthesis procedure that can be used when the parametric
probabilistic zone graph is finite.

4.1.2. A decidability result

Despite the negative result of Theorem 2, we can exhibit a decidability
result for a syntactic subclass of PIPTAs. In Hune et al. (2002), a syntac-
tic subclass, namely lower-bound/upper-bound parametric timed automata
(L/U-PTAs) is introduced that restricts the use of parameters in parametric
timed automata. Basically, in an L/U-PTA, any parameter must be either
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always used as an upper-bound (a constraint x ≤ γ or x < γ) or always
as a lower-bound (x ≥ γ or x > γ) in the guards and invariants of the
parametric timed automaton. L/U-PTAs benefit from several main decid-
ability results: the EF-emptiness, or reachability-emptiness, problem (“is the
set of parameter valuations for which a given location is reachable empty?”)
is shown to be decidable in Hune et al. (2002). Then, the infinite accep-
tance emptiness (“is the set of parameter valuations for which a given set
of locations is visited infinitely often along some run empty?”) and univer-
sality (“is a given set of locations visited infinitely often along some run for
all parameter valuations?”) have been proved to be decidable for L/U-PTAs
with integer-valued parameters in Bozzelli and La Torre (2009). Unavoid-
ability was studied in Jovanović et al. (2015) while liveness and deadlocks
were studied in André and Lime (2017) with a thin frontier between decid-
ability and undecidability. Finally, the EF-universality problem was shown
to be decidable for L/U-PTAs over rational parameters by André (2018).

In the following, we reuse the concept of lower-bound and upper-bound
parameters in the setting of PIPTAs.

Definition 10 (L/U-PIPTA). An L/U-PIPTA is a PIPTA whose set of pa-
rameters is partitioned into lower-bound parameters and upper-bound pa-
rameters, where an upper-bound (resp. lower-bound) parameter γi is such
that, for every guard constraint x ./ z, we have: z = γi implies ./ ∈ {≤, <}
(resp. ./ ∈ {≥, >}).

Example 9. Consider the PIPTA in Figure 7a. Then it is an L/U-PIPTA
with one upper-bound parameter γ1 and one lower-bound parameter γ2.

L/U-PTAs enjoy a well-known monotonicity property recalled in the fol-
lowing lemma (that corresponds to a reformulation of (Hune et al., 2002,
Prop 4.2)), stating that increasing upper-bound parameters or decreasing
lower-bound parameters can only add behaviors.

Lemma 2 (Hune et al. (2002)). Let A be an L/U-PTA and v be a parameter
valuation. Let v′ be a valuation such that for each upper-bound parameter γ+,
v′(γ+) ≥ v(γ+) and for each lower-bound parameter γ−, v′(γ−) ≤ v(γ−).
Then any run of v(A) is a run of v′(A).

Remark 1. Unfortunately, we cannot directly use the monotonicity prop-
erty of L/U-PTAs to prove the decidability of the consistency-emptiness for
L/U-PIPTAs. It could have been handful to consider the IPTA, say IP∞,0,
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Figure 6: An L/U-PIPTA inconsistent for all parameter valuations

obtained by replacing every lower-bound parameter (resp. upper-bound pa-
rameter) in the guards of a PIPTA PIP with ∞ (resp. 0).1 IP∞,0 is the
most restrictive IPTA obtained from PIP (as any other valuation will have
more behaviors thanks to Lemma 2). If IP∞,0 is inconsistent, then any other
parameter valuation is clearly inconsistent as well thanks to the monotonicity
of L/U-PTAs; however, if IP∞,0 is consistent, it is not possible to conclude
that a (non-infinite) parameter valuation is consistent. In fact, it is easy
to exhibit a counter-example for which IP∞,0 is consistent, but for which
v(PIP) is inconsistent for any (non-infinite) valuation v. This is the case
of the PIPTA depicted in Figure 6: when γ is replaced with ∞, the system
is stuck forever in l0, and is therefore consistent. For any (non-infinite) pa-
rameter valuation, the system can take the transition labeled with a, which
is inconsistent due to the sum of the probabilities.

Still, we show in Theorem 3 below that the consistency-emptiness problem
is decidable in the context of L/U-PIPTAs.

To prove decidability, we use the following reasoning. An L/U-PIPTA
is consistent if we can “block” the inconsistent edges, i. e., those who can-
not admit any implementation because the sum of their probabilities cannot
be 1. There are two ways of achieving this goal: either set to 0 some of the
probabilities on all paths leading to a given inconsistent edge, or tune the
timing parameters so as to forbid this edge because the guard can never be
satisfied. The first way can be achieved by enumerating all possible combi-

1Valuating a parameter with ∞ is achieved as follows: for each upper-bound param-
eter γ for which v(γ) = ∞, we delete any comparison of a clock with γ (i. e., the clock
constraint becomes the most permissive); for each lower-bound parameter γ for which
v(γ) = ∞, we replace any constraint in which γ appears by false (i. e., the transition
labeled by the guard is deleted). Therefore the result of this valuation is an IPTA as
expected.
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nations to set to 0 some probabilities. The second way can be achieved by
parametric model checking: for a given combination of probabilities set to 0,
if we can find at least one valuation for which none of the inconsistent edges
is reachable, then we can answer false to the consistency-emptiness problem
for L/U-PIPTAs. Finding at least one such valuation is equivalent to answer-
ing no to the EF-universality problem—which is decidable for L/U-PTAs as
shown in André (2018). In the following, we explain this reasoning step by
step.

We first need a notation, used in the proof of Theorem 3, and later in
Section 4.3.

Definition 11 (feasible supports). Given an interval distribution I in an
IMDP, let FS (I) denote the feasible supports of I i. e., set of sets of target
states for which a consistent distribution can be assigned. Formally, FS (I) =
{S ′ ⊆ S | ∃µ ∈ Dist(S) s.t. ∀s ∈ S : µ(s) ∈ I(s) and ∀s ∈ S : µ(s) >
0 iff s ∈ S ′}.

That is, each set of states S ′ is such that there exists a distribution I ′

for which the probability of reaching each state in S ′ is not zero, such that
this distribution is a punctual distribution, is an implementation of I and is
consistent.

Definition 12. An interval distribution I is inconsistent if FS (I) = ∅.

By extension, we say that an edge is inconsistent if its interval distribution
is inconsistent.

We also use the same notions for interval distributions in PIPTAs.

Example 10. In Figure 2b, let Υ1 be the (unique) interval distribution
outgoing from l1. We have FS (Υ1) = {}, as no implementation can make
this distribution consistent. That is, Υ1 is an inconsistent edge. Let Υ2

be the (unique) interval distribution outgoing from l2. We have FS (Υ2) =
{{l5}, {l2, l5}}.

We now define the set of PIPTAs obtained by taking all possible combi-
nations of feasible supports.

Definition 13. Given a PIPTA PIP , let CombFS (PIP) denote the set
of all possible PIPTAs obtained from PIP by selecting for each interval
distribution Υ exactly one element from FS (Υ) when FS (Υ) 6= ∅, or by
keeping the original distribution if FS (Υ) = ∅.
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Intuitively, CombFS (PIP) contains all possible ways to remove transi-
tions by setting some probabilities to 0 while keeping the sum of the other
probabilities possibly equal to 1.

Example 11. Consider the PIPTA PIP in Figure 2b. CombFS (PIP) con-
tains 4 PIPTAs. All are such that l1 has the same outgoing distribution to
l4 and l3 as in Figure 2b (as FS is empty for this distribution). Two of these
4 PIPTAs (say 1 and 2) are such that the distribution outgoing from l0 goes
to both l1 and l2 (with the same probabilities as in Figure 2b), while two
others (say 3 and 4) are such that this distribution is only going to l1. In
addition, two of these 4 PIPTAs (say 1 and 3) are such that the distribution
outgoing from l2 goes to both l2 and l5, while two others (say 2 and 4) are
such that this distribution is only going to l5.

Example 12. Consider now the PIPTA PIP in Figure 7a. Then CombFS (PIP)
contains the 2 PIPTAs in Figure 7a (i. e., itself) and in Figure 7b.

Given an L/U-PTA A and a subset G of its locations, let us denote
by EFuniv(A, G) the result of EF-universality for locations G in A, i. e., the
answer to the following question: “is the set of valuations v such that at least
one location of G is reachable in v(A) universal?” Or put differently, do all
valuations reach at least one location of G? Recall that EF-universality is
decidable for L/U-PTAs as shown in André (2018).

We need two additional notations before introducing our decision proce-
dure. First, given a PIPTA PIP , let makeNonDet(PIP) denote the PTA
obtained from PIP by performing the following three operations:

1. for each location l, for each inconsistent edge Υ from l, add a new non-
probabilistic transition from l to a fresh location, with the same guard
as on Υ;

2. remove all inconsistent edges;

3. replace all probabilistic distributions with non-determinism (see e. g.,
André et al. (2013)).

Observe that, if PIP is an L/U-PIPTA, then makeNonDet(PIP) is an L/U-
PTA. Second, makeAcc(PIP) returns the set of locations added at step 1.

Beyond transforming the L/U-PIPTA into a non-probabilistic L/U-PTA,
the rationale behind makeNonDet is that we need to test for reachability
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(d) makeNonDet of Figure 7b

Figure 7: Exemplifying CombFS , makeNonDet and makeAcc

of an edge, which is not possible natively in L/U-PTAs; therefore, we add
new locations target of these edges. In addition, we cannot test for the
reachability of an arbitrary existing location target of these edges, as they
may be reached via other paths too. In Figure 7a, l3 is reachable via the
inconsistent edge outgoing from l1, but also directly from l0: only reaching l3
via l1 should be avoided, which justifies the creation of l′1 in Figure 7c.

Example 13. Consider again the PIPTA PIP in Figure 7a. Then the L/U-
PTA result of makeNonDet(PIP) is given in Figure 7c, while makeAcc(PIP)
is {l′1, l′2}.

We can now give below the main equation to solve consistency-emptiness
for L/U-PIPTAs.
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∧
PIP ′∈CombFS(PIP)

EFuniv
(
makeNonDet(PIP ′),makeAcc(PIP ′)

)
(1)

The idea is that consistency-emptiness holds for an L/U-PIPTA if, for
each combination of probabilities set to 0 (CombFS ), for all parameter val-
uations (EFuniv), some of the locations target of an inconsistent distribution
(makeAcc) are always reachable. In other words, there is no way to set some
probabilities to 0 and to exhibit some parameter valuations that would avoid
an inconsistent distribution.

Note that this procedure can be easily implemented by enumerating all
PIPTAs in CombFS (PIP), replacing probabilities with non-determinism as
in makeNonDet, and testing EFuniv on each resulting L/U-PTA using the
procedures given in Bozzelli and La Torre (2009); André (2018).

Example 14. Consider again the PIPTA PIP in Figure 7a. Recall that
CombFS (PIP) is given in Figures 7a and 7b, and makeAcc(PIP) = {l′1, l′2}.
Therefore, checking consistency-emptiness for PIP amounts to checking EF-
universality of locations {l′1, l′2} in the L/U-PTAs in Figures 7c and 7d. For
the L/U-PTA in Figure 7c, EFuniv gives true, as l′2 can be reached for any
valuation of γ2 and regardless of γ1 (it suffices to wait enough time in l2
so that the guard x ≥ γ2 becomes enabled). However, for the L/U-PTA
in Figure 7d, EFuniv gives false: indeed, while l′2 is clearly unreachable, l′1
can only be reached if γ1 > 2. Therefore, there exist valuations (typically
γ1 ∈ [0, 2]) for which locations {l′1, l′2} are unreachable.

In fact, it can be shown that, for the PIPTA PIP in Figure 7a, the set of
valuations for which the IPTA is consistent is γ1 ∈ [0, 2]∧γ2 ≥ 0. The idea is
to disable the transition to l2 using probabilities (i. e., assigning 1 to l1 and
0 to l2), and to disable the transitions to l3 and l4 by tuning γ1.

Theorem 3. The consistency-emptiness for L/U-PIPTAs is decidable.

Proof. Given an L/U-PIPTA PIP , we show that Equation 1 holds iff the
consistency-emptiness holds for PIP , i. e., no parameter valuation v is such
that v(PIP) is consistent.

⇒ Assume Equation 1 holds. Then EF-universality is true for all possible
combinations of probabilities set to 0 (given by CombFS (PIP)). That
is, for each of these potentially consistent models, for any valuation v,
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it is always possible to reach at least one of the new locations added by
makeNonDet, and therefore one of the inconsistent edges in the original
model. Therefore, from Definition 6, v(PIP) is inconsistent for all v.
Therefore the consistency-emptiness holds for PIP .

⇐ Assume consistency-emptiness holds for PIP , i. e., no parameter val-
uation v is such that v(PIP) is consistent. Then there is no way to
tune the probabilities and to tune the timing parameters to avoid the
inconsistent edges, and therefore to avoid the new locations added by
makeNonDet. Then for any PIP ′ ∈ CombFS (PIP), we have that

EFuniv(makeNonDet(PIP ′),makeAcc(PIP ′))

holds. Then Equation 1 holds.

The result then follows from the decidability of the EF-universality problem
for L/U-PTAs proved in André (2018).

The decidability of the emptiness in Theorem 3 does not necessarily mean
that the exact synthesis can be achieved. In fact, we show in the following
result that the consistency-synthesis for L/U-PIPTAs is intractable in prac-
tice, as the set of valuations cannot be represented using, e. g., a finite union
of polyhedra.

Proposition 3. The result of the consistency-synthesis for L/U-PIPTAs can-
not be represented using any formalism for which the emptiness of the inter-
section is decidable.

Proof. We adapt a reasoning from Jovanović et al. (2015) originally showing
that the synthesis for L/U-PTAs is intractable. Let us assume an arbitrary
PIPTA (not necessarily L/U). For each parameter γi, let us create a pa-
rameter γli and a parameter γui (and delete γi). Then, let us replace each
constraint x ≤ γi with x ≤ γui , each constraint x < γi with x < γui , each
constraint x ≥ γi with x ≥ γli, each constraint x > γi with x > γli, and each
constraint x = γi with x ≥ γli ∧ x ≤ γui . We obtain an L/U-PIPTA. Clearly,
if γli = γui for all i, then the behavior of the L/U-PIPTA is identical to that
of the original PIPTA.

Now, assume that the result of the consistency-synthesis for L/U-PIPTAs
can be represented using a formalism for which the emptiness of the inter-
section is decidable. We can therefore synthesize all valuations for which the
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L/U-PIPTAs is consistent using such a formalism. Then, let us intersect this
result with

∧
1≤i≤M γli = γui . Finally, let us check whether this intersection

is empty. We are thus able to test the consistency-emptiness of the original
PIPTA—which contradicts Theorem 2.

In the rest of the section, despite the negative results of Theorem 2
and Proposition 3, we will still attempt to address synthesis for the full
class of PIPTAs.

4.2. A symbolic semantics for PIPTAs

We equip PIPTAs with a symbolic semantics, defined below. Basically, it
is inline with the symbolic semantics defined for parametric timed automata
(see e. g., André et al. (2009); Jovanović et al. (2015)), with the addition of
probabilistic intervals on the edges; as a consequence, the semantics becomes
not an LTS, but an IMDP. Remark that this is a conservative extension of
the symbolic semantics of IPTA presented in Definition 9.

Definition 14 (Symbolic semantics of a PIPTA). Given a PIPTA PIP =
(Σ, L, l0, X,Γ, I), the symbolic semantics of PIP is given by the IMDP
(S, s0, I, T ), with

• S = {(l, C) ∈ L×Z}, s0 = (l0, (
∧

1≤i≤H xi = 0)↗),

• ((l, C), e,Υ′) ∈ T if there exists e = (l, g, a,Υ) ∈ I such that for all

l′ ∈ L, for all ρ ⊆ X such that Υ(ρ, l′) > 0, C ′ =
(
[C ∧ g]ρ

)↗
, and

Υ′((l′, C ′)) = Υ(ρ, l′).

Observe that, whenever a PIPTA has no probabilistic choice (i. e., is a
PTA), then the IMDP becomes a labeled transition system, and the sym-
bolic semantics matches that of parametric timed automata. We refer to
the symbolic semantics of PIP as the parametric probabilistic zone graph
of PIP .

Just as in parametric timed automata, the number of symbolic states in
a PIPTA can be infinite in general.

In parametric timed automata, the reachability condition is the projection
onto the parameters of a parametric zone (see Jovanović et al. (2015)). It
is well-known that, given a symbolic run of a parametric timed automaton
leading to a symbolic state (l, C), there exists an equivalent concrete run iff
γ |= C↓Γ (see e. g., Hune et al. (2002)). Since our definition of zones matches
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State Location C C↓Γ
s0 l0 x = y ∧ x ≥ 0 ∧ γ ≥ 0 γ ≥ 0
s1 l1 0 ≤ x− y < 2 ∧ y ≥ 0 ∧ γ ≥ 0 γ ≥ 0
s2 l2 0 ≤ y − x < 2 ∧ x ≥ 0 ∧ γ ≥ 0 γ ≥ 0
s3 l3 2 ≤ x− y ≤ γ ∧ y ≥ 0 γ ≥ 2
s4 l4 x = y ∧ x ≥ 0 ∧ γ ≥ 2 γ ≥ 2
s5 l5 0 ≤ y − x ≤ 1 ∧ x ≥ 1 ∧ γ ≥ 0 γ ≥ 0
s6 l2 1 ≤ y − x ≤ 2 ∧ x ≥ 0 ∧ γ ≥ 0 γ ≥ 0
s7 l5 y ≥ 2 ∧ y = x+ 1 ∧ γ ≥ 0 γ ≥ 0
s8 l2 y ≥ 2 ∧ y = x+ 2 ∧ γ ≥ 0 γ ≥ 0

Table 2: Description of the states in Figure 3b

that of Hune et al. (2002), this results extends to PIPTAs in a straightforward
manner.

Lemma 3. Let PIP be a PIPTA. Consider a run in the parametric prob-
abilistic zone graph of PIP reaching state (l, C). Let v be a parameter
valuation. Then, there exists an equivalent run in v(PIP) iff v |= C↓Γ.

By equivalent run, we mean (just as for parametric timed automata) an
identical discrete structure (locations and edges).

Example 15. The parametric probabilistic zone graph of the PIPTA in
Figure 2b is the IMDP given in Figure 3b. The symbolic states si = (li, Ci)
are expanded in Table 2. In addition, we also give the reachability condition
of each state, i. e., the projection onto the parameters of the zone (C↓Γ).

4.3. A construction for consistency-synthesis for PIPTAs

Unlike for IPTAs / IMDPs where inconsistent states can only be avoided
by enforcing their incoming probabilities to 0, there are two ways of avoiding
inconsistent states in PIPTAs. Indeed, while imposing a 0 probability to all
transitions going to inconsistent states is a safe choice, it is also possible to
avoid inconsistent states by cleverly choosing parameter values such that the
guards of transitions potentially going to these states are never satisfied.

The construction we propose for synthesizing parameter valuations en-
suring consistency of a given PIPTA is based on the following observation:
Since parameters only occur in transition guards, the choice of parameter val-
ues cannot interfere with the choice of probability distributions matching (or
not) the specified intervals. That comes from the fact that, given a state s,
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all successors of this state via a given transition have the same parameter
constraint (this would not hold with invariants). As a consequence, states
that can be made unreachable through probabilistic choice can be made so
regardless of the choice of parameter values.

Notations. We first introduce a few notations to make our construction more
compact. Given an IMDP IM = (S, s0, I, T ) (representing the semantics of
a PIPTA PIP), let Tout(s) denote the set of transitions of source s, i. e.,
Tout(s) = {(s, e, I) ∈ T}.

Given a transition (s, e, I) ∈ T , we may want to forbid this transition;
recall that the guard (in the original PIPTA) is the same for all targets, as
there is a single guard per interval distribution. As we have no invariants, all
target states of a given transition have the same reachability condition (i. e.,
C ′↓Γ, for a target s′ = (l′, C ′)). Therefore, in order to forbid a transition,
it suffices to negate the reachability condition of any of the target states of
this transition. Let ForbidD(I) denote this result, i. e., ForbidD(I) = ¬C ′↓Γ,
where (l′, C ′) is an (arbitrary) target state of I.

Finally, recall that a disjunction over an empty set of clauses is by def-
inition false. Therefore, we use

∨
iKi to denote the union over a set that

returns the usual union of Ki for all i in the set if the set is non-empty, or ⊥
if the set is empty. Similarly,

∧
iKi denotes the intersection over a set that

returns the usual intersection of Ki for all i in the set if the set is non-empty,
or > if the set is empty.

Example 16. Consider the IMDP in Figure 3b, which is the zone graph
of the PIPTA from Figure 2b. Recall that the description of the symbolic
states of the IMDP from Figure 3b is given in Table 2. We illustrate the
constructions for Tout and ForbidD given above.

Clearly, there is only one outgoing transition from state s1, which is
labeled with e2. As a consequence, we have Tout(s1) = (s1, e2, I) with
I(s3) = [0, 0.2], I(s4) = [0, 0.3], and I(si) = [0, 0] for i /∈ {3, 4}.

Remark that, as explained above, all the states that are reachable through
I have the same reachability condition (given in Table 2). As a consequence,
we have ForbidD(I) = ¬(γ ≥ 2) ≡ γ < 2.

We now propose a characterization of the set of parameter valuations
that ensure consistency of a given PIPTA under the assumption that its
parametric probabilistic zone graph is finite.
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Let PIP be a PIPTA, and let IM be its parametric probabilistic zone
graph. Assume IM is finite with state space S = {s0, . . . , sn}. Consider the
formula cons(cs0 , ..., csn) defined as:

(cs0 = >) ∧
∧
s∈S

∧
(s,e,I)∈Tout(s)

¬cs ∨ ForbidD(I) ∨
∨

S′∈FS(I)

∧
s′∈S′\{s}

cs′

 .

Intuitively in this formula the variable cs represents whether state s can
be reachable in an implementation. Recall that this can only be true if s
is consistent. As a consequence, the formula can only be true when the
valuation of the parameters is coherent with the consistent states. Indeed,
this formula ensures that the initial state is reachable and that, for any state s
and any outgoing transition of this state, either:

• the source state s is not reachable (¬cs), or

• the transition is disabled due to the valuation of the parameters (ForbidD(I)),
or

• the transition is enabled and thus there must exist a feasible support
for which all reachable states are also consistent.

The set of all solutions for the consistency synthesis problem is thus given
as the set of solutions (in terms of parameter valuations) of the equation:∨

(cs0 ,...,csn )∈{>,⊥}n+1

cons(cs0 , . . . , csn) (2)

In the following, this procedure (i. e., solving equation (2)) is called ConstSynth.
The intuition behind procedure ConstSynth is that we “guess” the states that
will be present in the implementation through the first disjunction (states
for which cs = >), and then verify using cons(cs0 , . . . , csn) that the resulting
implementation is well-defined.

Obviously, the empty set of parameter valuations is always a solution to
equation (2). Indeed, in this case, one can set cs0 = > and cs = ⊥ for all
s 6= s0 and then ForbidD(I) is true for all outgoing transitions of s0. If this
is the only solution, then the PIPTA PIP is inconsistent. Otherwise, PIP
is consistent.
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We first illustrate our construction on an example and then show that it
is sound and complete when the parametric probabilistic zone graph of PIP
is finite.

Example 17. We now apply our construction to the IMDP from Figure 3b.
Recall that parameters are non-negative, therefore γ < 0 ≡ ⊥. First observe
that either s1 has to be non-reachable (cs1 = ⊥) or its outgoing transition
needs to be forbidden, because there is no set S ′ ∈ FS (I). As a consequence,
we obtain the following constraint: ¬cs1 ∨ (γ < 2). There are no constraints
for states s5, s7 and s8 as they have no outgoing transitions. For state s6, we
have the following constraint:

¬cs6 ∨ (γ < 0) ∨ cs7 ∨ (cs7 ∧ cs8) ≡ ¬cs6 ∨ (γ < 0) ∨ cs7 ≡ ¬cs6 ∨ cs7

Similarly, for state s2, we obtain:

¬cs2 ∨ (γ < 0) ∨ cs5 ≡ ¬cs2 ∨ cs5
Finally, state s0 yields the following:

¬cs0 ∨ (γ < 0) ∨ cs1 ≡ ¬cs0 ∨ cs1
Clearly, when put together in equation (2), we obtain the following (after

simplifications):

∨
(cs0 ,...,csn )∈{>,⊥}n+1

(cs0) ∧ (cs1) ∧ (γ < 2) ∧ (¬cs2 ∨ cs5) ∧ (¬cs6 ∨ cs7)

The solutions are therefore all parameter valuations such that γ < 2, and
can be obtained for all assignments of cs such that cs0 = cs1 = >, cs2 ⇒ cs5
and cs6 ⇒ cs7 .

We now prove that our construction is indeed correct whenever the para-
metric probabilistic zone graph of the given PIPTA PIP is finite.

Proposition 4 (Correctness). Let PIP be a PIPTA, and let IM be its
parametric probabilistic zone graph. Assume IM is finite. Assume that the
set of parameter valuations satisfying equation (2) is not empty and let v be
such a parameter valuation.

Then v(PIP) is consistent.
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Proof. Let v be a solution of equation (2). As a consequence, there must exist
an assignment κs0 , ..., κsn of the variables cs such that v(cons(κs0 , . . . , κn)).
Moreover, for each state s such that κs = >, the following equation is satis-
fied:

∧
(s,e,I)∈Tout(s)

v(ForbidD(I)) ∨
∨

S′∈FS(I)

∧
s′∈S′\{s}

κs′


Therefore, for each (s, e, I) ∈ Tout(s), either v(ForbidD(I)) is true (in this

case the transition cannot be taken due to timing parameters and is therefore
absent from v(IM)), or there exists a distribution ι matching I such that
all states s′ such that ι(s′) > 0 are such that κs′ = >.

We can therefore construct an MDP whose states are exactly the states s
such that κs = >, and whose transitions are given the distributions ι defined
above, that clearly satisfies the IMDP v(IM).

By Proposition 2, we can therefore conclude that PIP is consistent.

We now show that our construction is complete whenever the parametric
probabilistic zone graph of the given PIPTA PIP is finite.

Proposition 5 (Completeness). Let PIP be a PIPTA, and let IM be its
parametric probabilistic zone graph. Assume IM is finite. Let v be such
that v(PIP) is consistent. Then v is a solution of equation (2).

Proof. Since v(PIP) is consistent, there must exist, by Proposition 2 and Lemma 1,
an MDP M with the same structure as v(IM) that satisfies v(IM).

We now propose a valuation of the variables cs and show that, for this
valuation, equation (2) is true.

For all state s in IM, let cs = > if s is reachable (and present) inM, and
⊥ otherwise. We now show that the equation v(cons(cs0 , . . . , csn)) is true.
Clearly, we have cs0 = >, so we just have to show that for all state s in IM,

∧
(s,e,I)∈Tout(s)

¬cs ∨ v(ForbidD(I)) ∨
∨

S′∈FS(I)

∧
s′∈S′\{s}

cs′

 = true

If s is such that cs = ⊥, then this is trivial. Otherwise, let (s, e, I) ∈
Tout(s). Clearly, since the transition is present in v(IM), we have v(ForbidD(I)) =
false. Moreover, since s is present (and reachable) inM, there is a transition
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(s, e, ι) inM such that ι �RM
I for the witnessing relation RM . As a conse-

quence, the set S ′ = {s′ | ι(s′) > 0} is such that S ′ ∈ FS (I). Moreover, all
states in S ′ are reachable by construction, thus s′ ∈ S ′ ⇒ cs′ = >. Therefore,
v(cons(cs0 , . . . , csn)) is true.

Remark 2. Our construction is based on the parametric probabilistic zone
graph. It is sound and complete when this zone graph is finite. However, the
resulting equation contains infinite conjunctions and disjunctions when the
parametric probabilistic zone graph is infinite, rendering it useless in practice
in this case.

However, in practice, one could truncate the parametric probabilistic zone
graph up to a certain depth, which would allow computing an approximation
of the set of parameter valuations ensuring consistency.

4.4. Parametric Consistent Reachability

A model that is inconsistent is a model that can be considered as ill-
formed; therefore, synthesizing valuations for a model to be consistent is an
important problem. However, it may not be seen as the final problem a
system designer aims at solving. More common problems are reachability,
safety, unavoidability, or more complex properties expressed, e. g., using logic
formulas.

In this section, we illustrate how consistency synthesis can be combined
with existing synthesis algorithms. As a proof of concept, we consider the
following parametric consistent reachability synthesis problem:

parametric consistent reachability synthesis problem:
Input: A PIPTA PIP , a set of goal locations G
Problem: find all parameter valuations v for which v(PIP) is consis-
tent and at least one location in G is reachable in v(PIP).

The corresponding emptiness problem, i. e., the emptiness of the valuation
set for which a PIPTA is consistent and at least one goal location is reachable,
is clearly undecidable: it suffices to consider a PIPTA with no probabilities.
This gives a PTA, for which reachability emptiness is undecidable: so, clearly,
a PTA is always consistent and therefore consistent reachability emptiness
reduces to reachability emptiness, which is undecidable, as shown in Alur
et al. (1993).
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Figure 8: A PIPTA for which no valuation allows for consistent reachability of l1

Still, we will propose a method to perform parametric consistent reach-
ability synthesis for PIPTA; again, this method only works when the para-
metric probabilistic zone graph is finite.

First, let us rule out the following naive method. We could have con-
sidered the PTA obtained from a PIPTA by removing all probabilities, then
we could have synthesized valuations for which reachability of location G
is ensured, which can be obtained using the algorithm described in, e. g.,
Jovanović et al. (2015), and that we will call EFsynth. This gives a con-
straint Kreach. Then, we could synthesize the constraint Kcons obtained from
ConstSynth. Finally, we could have considered the intersection Kreach∧Kcons.
However this is not satisfactory (and wrong), as shown in the example below.

Example 18. Consider the PIPTA in Figure 8. Assume G = {l1}. Clearly,
l1 is inconsistent, as its successor has an interval distribution that admits no
implementation. l1 can easily be discarded by assigning it a 0-probability
from l0 while keeping the interval consistent.

On this PIPTA without probabilities, EFsynth will output > as any pa-
rameter valuation may reach l1. ConstSynth will also output >. The inter-
section gives >, while the set of valuations for which l1 is reachable and the
system is consistent is empty.

We propose the following construction, which we adapt from our con-
struction ConstSynth. Recall that in this construction, we use for each state
s a variable cs that encodes the potential presence of state s in an implemen-
tation (and therefore imposes that this state is consistent). Unfortunately,
the presence of such a state in an implementation is not sufficient to ensure
that this state is reachable from the initial state. In order to guarantee reach-
ability, we therefore have to add variables and constraints to ConstSynth.

We therefore add new variables rs for all states s in the parametric prob-
abilistic zone graph. These variables will be assigned values in [0, N ]∪ {∞},
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where N is the total number of states of the parametric probabilistic zone
graph.

Then, in order to ensure reachability of the goal locations, we add the
following constraints:

• r(l,C) = 0 ⇐⇒ l ∈ G

• for all states s = (l, C) in the parametric probabilistic zone graph such
that l /∈ G, we impose that either (rs =∞) or

∨
(s,e,I)∈Tout(s)

¬ForbidD(I) ∧
∨

S′∈FS(I)

 ∧
s′∈S′\{s}

cs′ ∧
∨
s′∈S′

(rs = rs′ + 1)


Now, solving the conjunction of equation (2) from ConstSynth and the

constraints presented above, while imposing that rs0 < ∞ will yield exactly
the set of parameter valuations ensuring the consistent reachability of goal
locations from G. We call this new procedure ConstEFSynth.

Proposition 6. Let v be a parameter valuation satisfying the result of
ConstEFSynth. Then, v(PIP) is consistent and at least one location in G is
reachable in v(PIP).

Proof. First observe that any parameter valuation v obtained through ConstEFSynth
needs to satisfy ConstSynth. As a consequence, v(PIP) is consistent. More-
over, the additional constraints provided in ConstEFSynth ensure that when-
ever rs < ∞, there is an execution of length at most rs from s to a state
(l, C) such that l ∈ G in the parametric probabilistic zone graph of v(PIP).
Since we impose that rs0 <∞, G is indeed reachable in v(PIP).

Example 19. Let us come back to Figure 8. ConstSynth yields the entire set
of parameter valuations. By construction, the parametric probabilistic zone
graph of this PIPTA is almost identical to the PIPTA itself (the states will
be si = (li, γ ≥ 0) for all i). However, in ConstEFSynth, it will be impossible
to set rs1 to a finite value as the feasible support of its outgoing transition is
empty. As a consequence, ConstEFSynth will yield the empty set of parameter
valuations, as expected.
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Example 20. Assume now that we would like to synthesize the parame-
ter values ensuring the consistent reachability of l5 in the PIPTA given in
Figure 2b. Recall that the probabilistic zone graph is given in Figure 3b
and the solutions of ConstSynth are given in Example 17. In the process of
solving ConstEFSynth on this example, we are required to set rsi = ∞ for
i ∈ {1, 3, 4, 8}. We also have to set rs5 = rs7 = 0. Finally, in addition to the
above constraints and those obtained in ConstSynth, ConstEFSynth yields the
following:

• For state s6: either (rs6 =∞), or

(γ ≥ 0)∧((cs7∧(rs6 = rs7+1))∨(cs7∧cs8∧((rs6 = rs7+1)∨(rs6 = rs8+1))))

• For state s2: either (rs2 =∞), or

(γ ≥ 0)∧((cs5∧(rs2 = rs5+1))∨(cs5∧cs6∧((rs2 = rs5+1)∨(rs2 = rs6+1))))

• For state s0: either (rs0 =∞), or

(γ ≥ 0)∧((cs1∧(rs0 = rs1+1))∨(cs1∧cs2∧((rs0 = rs1+1)∨(rs0 = rs2+1))))

In the end, we can set (rs6 = 1), (rs2 = 1), and (rs0 = 2) for instance.
In this case, we still obtain the same set of parameter valuations as in
ConstSynth: all those satisfying (γ < 2).

Remark 3. Observe that, for acyclic PIPTAs (i. e., the underlying graph of
which contains no cycle), the answer to the parametric consistent reachabil-
ity synthesis problem can be effectively computed. Indeed, the procedure
presented above consists in a procedure to be solved on a set of states. If
that set is finite, the procedure can be effectively solved with an exact result.

This result can also extended to PIPTAs the symbolic semantics of which
is acyclic (i. e., the underlying IMDP contains no cycle). However, it may
not be possible to decide whether an arbitrary PIPTAs has a finite symbolic
semantics.

5. Conclusion

In this work, we provided abstractions to reason on systems involving
real-time constraints and probabilities: first, by allowing probabilities to
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range in some intervals, and, second, by allowing timing constants to be
abstracted in the form of parameters. Without parameters, we proposed an
approach to decide whether an interval probabilistic timed automaton is con-
sistent, i. e., admits an implementation based on a simulation relation. When
adding parameters, the mere existence of a parameter valuation yielding con-
sistency is undecidable. However, when the set of parameters is partitioned
between lower-bound parameters and upper-bound parameters, decidability
is ensured. We also proposed a procedure to synthesize valuations ensuring
consistency for PIPTAs whose parametric probabilistic zone graph is finite,
as well as to ensure consistent reachability.

Discussion. We believe our definition of consistency allows for incremental
design: one can first define range for probabilities and range for timing pa-
rameters. Then, depending on refined design choices, one will assign interval
probabilities with punctual values, and valuate timing parameters. Clearly,
inconsistent probabilistic distributions can be seen as ill-formed models—just
as deadlocks, for examples. One could argue that, contrarily to deadlocks,
one could statically detect such situations, or even forbid them statically.
However, we see two reasons not to do so. First, we believe that allowing
these situations could be used as an additional freedom, that can be then de-
tected and corrected using the methods described in this manuscript. That is,
inconsistent intervals do not need to be removed statically if there is another
way to remove them (using other probabilities or timing parameters). Sec-
ond, our work builds on top on works where parametric probabilistic bounds
can be used (e. g., Delahaye (2015); Delahaye et al. (2016)). In this latter
case, the static detection does not work. As our ultimate goal is to reintro-
duce parametric intervals in the future (see below), we believe our definition
of consistency is worth exploring.

Future works. We envision several future works. First, exhibiting subclasses
of PIPTAs for which exact synthesis can be achieved is on our agenda. As
the use of timing parameters seems critical in our undecidability results,
relying on recent works exhibiting decidable subclasses of parametric timed
automata, such as bounded integer parameters (see Jovanović et al. (2015))
or reset-parametric timed automata (see André et al. (2016, 2018)), can serve
as a first basis for a probabilistic extension.

Finally, we are interested in considering higher-level abstractions of prob-
abilities; notably, using parameters instead of intervals with constant bounds
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(as in Delahaye et al. (2016) for parametric interval Markov chains) is of high
interest, and makes the notion of consistency even more delicate, as tuning
the parametric bounds in an interval may impact the consistency of other
probabilistic distributions.
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André, É., Lime, D., 2017. Liveness in L/U-parametric timed automata. In:
Legay, A., Schneider, K. (Eds.), ACSD. IEEE, pp. 9–18.
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