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Abstract
Objective  To investigate whether milk polar 
lipids (PL) impact human intestinal lipid absorption, 
metabolism, microbiota and associated markers of 
cardiometabolic health.
Design  A double-blind, randomised controlled 
4-week study involving 58 postmenopausal women 
was used to assess the chronic effects of milk PL 
consumption (0, 3 or 5 g-PL/day) on lipid metabolism 
and gut microbiota. The acute effects of milk PL on 
intestinal absorption and metabolism of cholesterol 
were assessed in a randomised controlled crossover 
study using tracers in ileostomy patients.
Results  Over 4 weeks, milk PL significantly reduced 
fasting and postprandial plasma concentrations 
of cholesterol and surrogate lipid markers of 
cardiovascular disease risk, including total/high-density 
lipoprotein-cholesterol and apolipoprotein (Apo)
B/ApoA1 ratios. The highest PL dose preferentially 
induced a decreased number of intestine-derived 
chylomicron particles. Also, milk PL increased faecal 
loss of coprostanol, a gut-derived metabolite of 
cholesterol, but major bacterial populations and faecal 
short-chain fatty acids were not affected by milk PL, 
regardless of the dose. Acute ingestion of milk PL 
by ileostomy patients shows that milk PL decreased 
cholesterol absorption and increased cholesterol-ileal 
efflux, which can be explained by the observed co-
excretion with milk sphingomyelin in the gut.
Conclusion  The present data demonstrate for the 
first time in humans that milk PL can improve the 
cardiometabolic health by decreasing several lipid 
cardiovascular markers, notably through a reduced 
intestinal cholesterol absorption involving specific 
interactions in the gut, without disturbing the major 
bacterial phyla of gut microbiota.
Trial registration number  NCT02099032 and 
NCT02146339; Results.

Introduction
Dietary synthetic emulsifiers were reported to 
alter drastically gut microbiota, thereby promoting 
both systemic and gut inflammation and metabolic 
syndrome in rodents.1 2 Dietary polar lipids (PL) 
are widely used as natural emulsifiers and texture-
promoters in food formulation and represent 
1%–10% of daily lipid intake (about 2–8 g/day),3 
mainly provided by soybean lecithin (90% of world 
PL market). However, dietary lecithin recently 
raised concerns of sustainable development. On the 
other hand, milk and dairy products are consumed 
by >6 billion people worldwide4 and represent 
another natural source of emulsifiers. Indeed, milk 

Significance of this study

What is already known on this subject?
►► Dietary synthetic emulsifiers alter drastically 
gut microbiota and promote inflammation and 
metabolic syndrome in rodent models.

►► Polar lipids are natural emulsifiers widely 
used in food formulation, mainly from vegetal 
sources.

►► Milk fat globules naturally contain polar lipids 
rich in sphingomyelin, which was shown 
in preclinical studies to reduce intestinal 
cholesterol absorption and improve lipid 
metabolism because of the natural affinity 
of sphingomyelin to form complexes with 
cholesterol.

►► Available clinical studies on dietary 
supplementation with milk polar lipids were 
rather inconclusive regarding their beneficial 
impact on human lipid metabolism, whereas 
egg polar lipids or fat devoid of polar lipids 
were reported to increase lipid markers of 
cardiovascular risk in these studies.
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Significance of this study

What are the new findings?
►► Four-week supplementation with milk polar lipids decreases 
significantly several fasting and postprandial lipid markers of 
cardiometabolic risk in overweight postmenopausal women 
at risk of cardiovascular disease (CVD).

►► Mechanisms of action of milk polar lipids in humans are 
related to their metabolic fate and impact in the gut, 
by reducing intestine-derived chylomicrons, intestinal 
cholesterol absorption via co-excretion with the unabsorbed 
sphingomyelin fraction, and by increasing cholesterol-to-
coprostanol conversion by the gut microbiota.

►► Milk polar lipid consumption alters neither the major 
bacterial phyla of gut microbiota nor the profile of short-
chain fatty acids.

How might it impact on clinical practice in the foreseeable 
future?

►► Considering their lowering effect on lipid cardiovascular 
markers in overweight adults at risk for developing metabolic 
syndrome, milk polar lipids should be part of new dietary 
strategies for primary and secondary prevention of CVDs.

►► The complementary mechanistic study in ileostomy patients 
suggests the enhancement by milk polar lipids of the 
transintestinal cholesterol excretion, known as the new 
target of clinical strategies to improve the cardiometabolic 
profile.

►► Present findings demonstrate the need to further 
investigate the impact of milk polar lipids on inflammatory 
cardiovascular risk markers and also their potential effect 
on coprostanoligenic bacteria and their potential role in 
restoring gut microbiota eubiosis in disease.

fat globules comprise a core of triacylglycerols (TAG) surrounded 
by a specific biological membrane called the milk fat globule 
membrane (MFGM) that is rich in PL and cholesterol.5 MFGM 
extracts have gained much interest as a potential nutraceutical, 
notably for their natural PL composition6 with a large propor-
tion of sphingomyelin (SM) (>25% of milk PL)7 compared with 
other animal sourced PL with <5% of SM or to vegetal PL devoid 
of SM.3 With longer and more saturated fatty acids than egg or 
soy PL, milk PL have also been shown to be more efficacious in 
reducing intestinal absorption of cholesterol in both preclinical 
and in vitro models.8 9 Up to date, several rodent studies have 
shown that milk PL impact postprandial lipid metabolism, lower 
intestinal absorption and hepatic accumulation of cholesterol and 
increase faecal excretion of cholesterol,10–12 leading to speculate 
that dietary supplementation with milk PL might be of thera-
peutic value in humans. However, strong evidence in humans is 
still lacking since most of the available clinical studies have been 
performed in healthy subjects with increased energy intake due 
to PL supplementation and were rather inconclusive regarding 
the beneficial impact on lipid metabolism.13–16 Considering the 
intestinal microbial conversion of cholesterol to coprostanol and 
increasing evidence that the gut microbiota is influenced by dietary 
factors and may impact host lipid metabolism,17–19 a putative effect 
of milk PL on human gut microbiome may exist but was so far 
not investigated. A clinical study shows recently that the efficiency 
of cholesterol conversion would be related to microbial density, 
as a coprostanol/cholesterol ratio >15 was associated with high 
level of coprostanoligenic bacteria (108 cells/g) in postmenopausal 

women.20 However, no human intervention has yet thoroughly 
explored the dynamic postprandial response of blood lipid cardio-
vascular risk factors to milk PL intervention or even their dose-
response as part of benefits/risk assessment to foresee their wider 
use as a natural ingredient or dietary supplement. Furthermore, 
women are at higher risk of developing cardiovascular disease 
(CVD) as age advances and the loss of oestrogen during meno-
pause leads to an alteration of the blood lipid profile with an 
increase of total and low-density lipoprotein (LDL)-cholesterol 
(LDL-C) levels.21 22 Metabolic syndrome of which dyslipidaemia is 
a core component is also more prevalent among postmenopausal 
women than among premenopausal women.23 Menopause is thus 
a major risk factor for CVD that is the leading cause of morbidity 
and mortality in postmenopausal women.24 

In this context, we set up two first-in-human randomised 
controlled trials: the first was a 4-week dietary intervention based 
on daily consumption of PL-enriched cheeses in postmenopausal 
women at risk for CVD and the second was a proof-of-principle 
investigation of acute consumption of PL-enriched cheeses in 
ileostomy patients. To fit with everyday life diet and ensure prac-
tical consistency of such clinical results, we used a common type 
of dairy product, namely cream cheese, enriched with a milk 
PL-rich fraction derived from buttermilk. The original strategy 
here was to formulate cheeses with identical total lipid content 
with partial substitution of TAG by milk PL to avoid increased 
energy intake. A unique dose-response design up to 5 g/day was 
made possible by incorporating a buttermilk concentrate from 
a PL concentration process specifically designed for the present 
clinical investigations.25 The objective of the intervention trial 
was to determine: 1) whether dietary milk PL consumption 
(0, 3 or 5  g-PL/day) was able to impact differentially fasting 
and postprandial lipid metabolism, including intestine-derived 
chylomicrons and 2) the extent to which these potential milk 
PL effects were concomitant with changes in gut microbiota 
and gut-derived metabolites (coprostanol, short-chain fatty 
acids (SCFA)). The aim of the complementary study in ileostomy 
patients was to investigate intestinal mechanisms underpinning 
the impact of milk PL on cholesterol absorption and metabolism 
using 2H-cholesterol and 13C-TAG tracers.

Methods
Two clinical studies were performed involving multiple meta-
bolic explorations and analyses; see more details in online 
supplementary materials and methods.

Clinical studies
The dietary intervention trial (VALOBAB-C study) was a multi-
centre double-blind randomised trial with a parallel group 
design in overweight postmenopausal women. The acute 
milk PL consumption study (VALOBAB-D study) was a multi-
centre double-blind randomised trial with a crossover design 
in ileostomy subjects. All participants provided prior informed 
written consent. Trials were approved by the ethics committee 
and legal authorities (see online supplementary materials and 
methods), registered on www.​clinicaltrials.​gov (NCT02099032, 
NCT02146339) and conducted at the Human Nutrition 
Research Centres of Rhône-Alpes (CRNH-RA; Lyon) and of 
Auvergne (CRNH-A; Clermont-Ferrand, France) according to 
French law.

Study designs
VALOBAB-C trial
After a 1-week run-in period (100 g control cheese/day), the 
volunteers were randomly assigned to three different groups 
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Figure 1  Impact of 4-week intervention with up to 5 g milk PL in cream cheese on postprandial concentrations of lipid CV risk markers (VALOBAB-C 
trial). Panel explanation (A) and kinetics of serum total C (B), serum TAG (C), plasma ApoB/ApoA1 ratio (D) and plasma ApoB48 (E) before (V1, dotted 
line) and after (V2, full line) the daily consumption of 100 g of cheese with or without PL during 4 weeks. Data are represented as mean±SEM. The 
pgroup and pposthoc are shown for the 8-hour postprandial period (linear mixed model followed by post hoc analyses on ΔV2−V1); ptimexgroup was not 
significant. Group size: control n=18, 3 g-PL n=18, 5 g-PL n=20. See also online supplementary figure S1 for study design. Apo, apolipoprotein; C, 
cholesterol; CVD, cardiovascular disease; CV, cardiovascular; PL, polar lipids; TAG, triacylglycerols.

for a 4-week intervention period (figure  1A, online supple-
mentary figure S1A) with either cream cheese devoid of PL 
(control group) or enriched with PL (3  g-PL group or 5  g-PL 
group) (100 g/day; composition: online supplementary table 
S1). This increased dietary intake of PL (0.5-fold to 2-fold; 
SM: 2-fold to 6-fold) versus reported average daily intake in 
Western countries.3 Cream cheeses were packaged under partial 

vacuum of −0.4 bar in order to enhance product stability. The 
PL content of the cream cheeses was measured beyond the 
5-month shelf life: PL content=3.05±0.11 g/100 g in 3  g-PL 
cheeses and PL content=5.02±0.22 g/100 g in 5 g-PL cheeses. 
The potential appearance of PL degradation products (ie, lyso-
phospholipids due to potential phospholipase activity) in PL-en-
riched cheeses was also evaluated after shelf life, and values of 
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lyso-phosphatidylcholine (a major lipolytic product) were found 
to be below the analytical detection limit (<1.3 mg/100 g cheese), 
confirming no major lipolysis in the cream cheese products.

We stratified the group allocation on centre and randomised. 
Two visits of metabolic explorations (fasting and postprandial) 
were performed at the beginning (V1) and at the end (V2) of 
each dietary intervention (meal composition: online supplemen-
tary table S2). The primary outcome was the effect over 4 weeks 
of the daily consumption of milk PL (one control group and two 
increasing doses) on fasting serum concentration of total choles-
terol (C), defined as the difference between V1 and V2. The 
4-week period of intervention has been chosen in line with the 
previous trials reporting the health effects of milk PL or butter-
milk14 15 26 and to study adequately the potential changes in gut 
microbiota composition, which is mostly investigated in dietary 
interventions >3 weeks.27 28

Hypotheses, sample size and power calculations (based on 
fasting cholesterol) are presented in online supplementary mate-
rials and methods. Regarding 8-hour longitudinal serum concen-
tration of total C, we estimated actual power for a total sample 
size of 58 individuals to be >0.999 based on the actual mean 
concentrations and common SD of 0.42 mM. All data were 
analysed.

VALOBAB-D trial
Volunteers performed three distinct days of metabolic testing 
separated by a washout period (online supplementary figure 
S2A). During each visit, a different breakfast was served 
including one of the three test cheeses (100 g/meal) according to 
randomised sequences, and stable isotope tracers (13C-triolein, 
2H-cholesterol; online supplementary table S2). The primary 
hypothesis was that milk PL in the meal would increase ileal 
efflux of SM (primary outcome). The secondary hypothesis was 
that this would be associated with both increased ileal efflux and 
decreased absorption of cholesterol (see predefined exploratory 
hypotheses and sample size calculation in online supplementary 
materials and methods). Sample size was estimated after reported 
ileostomy SM concentrations of six subjects,29 assuming unfa-
vourable situation of a parallel group design and the highest 
variability and expecting crossover design to decrease outcomes’ 
variability thereby enhancing power analysis.

Study participants
In the VALOBAB-C trial, 58 eligible volunteers were included: 
19 in the control group, 19 in the 3 g-PL group and 20 in the 
5 g-PL group. They followed the entire trial and their data were 
analysed (online supplementary figure S1B). In the VALOBAB-D 
trial, candidates’ prescreening by digestive surgeons and gastro-
enterologists of local university hospitals allowed to contact 40 
individuals. Only four volunteers could ultimately be recruited 
(recruitment difficulties of this population; non-extendable 
inclusion period considering PL-ingredient shelf life). Volunteers 
performed the entire protocol, were followed-up and had their 
data analysed (online supplementary figure S2B). Online supple-
mentary materials and methods indicate more details (screening, 
inclusion/non-inclusion criteria).

Nutritional composition of cream cheese
Three full-fat cream cheeses (0, 3 and 5 g-PL) were formulated 
with identical macronutrient proportions, substituting TAG by 
milk PL in enriched products (see online supplementary table 
S1) without modifying the amount of total lipids, proteins and 
carbohydrates. The milk SM content was 0.8 wt% in 3  g-PL 

cheese and 1.3 wt% in 5 g-PL cheese. The cholesterol content 
was higher in milk PL-enriched cheeses because SM is naturally 
associated with cholesterol within lipid rafts in the MFGM.30 
Conversely, the TAG content was higher in the control cheese 
compared with 3 g-PL and 5 g-PL cheeses due to TAG substitu-
tion in enriched cheeses. Because dietary PL (including butter-
milk PL)5 contain naturally more monounsaturated fatty acids 
and polyunsaturated fatty acids (PUFA) and less saturated fatty 
acids (SFA), the partial TAG substitution by milk PL in cream 
cheese induced a relative increase of the PUFA amount in milk 
PL-enriched products associated with a relative decrease of SFA 
amount (online supplementary table S1).

Metabolic explorations and laboratory analyses
Details are provided in the online supplementary materials 
and methods about the metabolic explorations performed at 
each visit (online supplementary figures S1C and S2C) by the 
VALOBAB-C (before/after intervention) and the VALOBAB-D 
volunteers; the VALOBAB-C analysis of (i) circulating clinical 
parameters (total C, LDL-C, high-density lipoprotein (HDL)-
cholesterol (HDL-C), TAG and glucose concentrations in serum, 
apolipoprotein (Apo)B and ApoA1 in plasma, serum insulin, 
plasma ApoB48 and PCSK9; area under the curve (AUC) calcu-
lation), (ii) intestine-derived chylomicron-rich fractions (CMRF) 
(lipids, hydrodynamic diameter), (iii) stools (faecal lipids, popu-
lation levels of the main phylogenetic groups and bacterial species 
of gut microbiota, SCFA in faecal water) and the VALOBAB-D 
analysis of (i) ileal efflux of SM and cholesterol, (ii) amount and 
isotopic enrichment of oleic acid in plasma, of CO2 in expired 
air and of free cholesterol in plasma and CMRF, (iii) exogenous 
lipid oxidation calculation.

Statistical analyses
In the VALOBAB-C trial, we described continuous variables as 
mean±SEM (for distribution deviating from normality, median 
and IQR). The difference between visits (V2−V1) was used as 
response variable. Our study design planned to measure each 
parameter longitudinally at each visit (1–10 time points). Apart 
from single time point parameters that were analysed through 
general linear model and subsequent post  hoc tests following 
Tukey's  test, we performed mixed linear modelling to account 
for within-subject repeated measures, seeking for main effects, 
that  is, at least ‘group’ effect, time effect and interaction. 
Post  hoc analyses were performed following Tukey-Kramer 
test to both detail main effects and control for familywise type I 
error. In case of residual distribution departing from normality, 
analyses were performed on ranks. In addition, we performed all 
these analyses considering global ‘milk PL’ effect as binary factor, 
that is, lumping together 3 g-PL and 5 g-PL doses in one group 
versus control. Analyses were performed on SAS V.9.4 (SAS 
Institute, Cary, North Carolina, USA) with a type I error set at 
0.05. Online supplementary table S3 summarises the number of 
sampled units for each analysis.

In the VALOBAB-D trial, data are presented as means±SEM and 
were analysed with GraphPad Prism 7 software. For normally 
distributed data, repeated measures one-way analysis of variance 
(ANOVA) (according to meal) or two-way ANOVA (according to 
meal and time) were performed followed by Tukey’s post hoc test. 
For non-normal data, a Friedman test was performed followed 
by Dunn’s post hoc test. For each parameter, a Mann-Whitney 
U test was performed to compare control meal with PL meals 
lumped together. Nominal two-sided p values are reported.
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Table 1  Anthropometric and fasting metabolic characteristics of the VALOBAB-C study population at screening

Control 3 g-PL 5 g-PL

Healthy range/value(n=19) (n=19) (n=20)

Age (years) 58±2 60±2 58±1 –

Body weight (kg) 78.5±2.5 75.3±1.9 75.6±1.1 – 

BMI (kg/m²) 30.5±0.8 29.3±0.6 29.3±0.5 20–25*

Waist circumference (cm) 96.5±2.4 97.0±1.5 97.9±1.4 ≤80†

Hip circumference (cm) 110.4±1.7 106.9±1.8 106.5±1.7 – 

Waist/hip circumference ratio 0.87±0.02 0.91±0.01 0.92±0.01 ≤0.85*

Systolic BP (mm Hg) 132.1±2.9 129.2±3.1 133.7±2.6 <130†

Diastolic BP (mm Hg) 79.8±1.6 82.0±1.4 80.5±1.8 <85†

Total C (mmol/L) 6.0±0.2 5.7±0.2 5.8±0.2 <5.2‡

LDL-C (mmol/L) 3.9±0.2 3.7±0.2 3.8±0.2 ≤3.3‡

HDL-C (mmol/L) 1.3±0.0 1.4±0.0 1.3±0.0 >1.3†

TAG (mmol/L) 1.6±0.1 1.4±0.2 1.4±0.1 <1.7†

Glucose (mmol/L) 4.9±0.1 4.9±0.1 4.7±0.1 <5.6†

CRP (mg/L) 5.3±1.0 5.3±1.1 3.7±0.6 <1–3§

AST (IU/L) 21.9±1.0 25.2±2.1 24.2±1.7 <34¶

ALT (IU/L) 27.5±2.4 29.2±3.1 30.6±3.1 <55¶

Data are presented as mean±SEM. Subjects were randomised therefore no statistical analysis was performed on subject characteristics at screening.
*According to WHO.66

†Based on the International Diabetes Federation metabolic syndrome worldwide definition.67

‡According to the National Cholesterol Education Program Adult Treatment Panel III.68

§Recommendations of the American Heart Association and Centers for Disease Control and Prevention established levels of cardiovascular risk by assigning CRP values as 
follows: low risk: <1.0 mg/L; average risk: 1.0–3.0 mg/L; high risk: >3.0 mg/L.31

¶According to reference ranges provided by the hospital laboratory in charge of the measurement of transaminases.
ALT, alanine amino transferase; AST, alanine aspartate transferase; BP, blood pressure; BMI, body mass index; C, cholesterol; CRP, C reactive protein; HDL, high-density lipoprotein; 
LDL, low-density lipoprotein; PL, polar lipids, TAG, triacylglycerol. 

Results
Subjects’ characteristics
In the VALOBAB-C study, volunteers were overweight post-
menopausal women of comparable mean age, without fasting 
hypertriglyceridemia nor diabetes but at risk for CVD with 
abdominal obesity, borderline high value of fasting LDL-C and 
borderline low value of fasting HDL-C (table 1). Volunteers had 
also a low-grade inflammation with a mean C reactive protein 
level >3 mg/L, which is considered high risk.31 Participants of 
the VALOBAB-D study were non-obese and normolipaemic 
ileostomy patients (online supplementary table S4). This specific 
population was chosen to collect the residual unabsorbed lipids 
at the end of the small intestine (ileum), before they reach the 
colon.

Compliance and dietary intake in the VALOBAB-C study
The mean compliance to dietary intervention was high (>98%) 
and similar between groups (p>0.3). Dietary records excluding 
the study-cream cheese showed that volunteers of the three 
groups did not differentially modify their energy and macronu-
trient intakes, nor fibres, alcohol, cholesterol and fatty acid (FA) 
intakes between V1 and V2 (online supplementary table S5).

Milk PL decrease fasting blood lipids and associated 
cardiometabolic risk markers
We compared the effects of the 4-week intervention between 
groups on the change (Δ) of values between visits V2 and V1 
(ie, ΔV2−V1). Several fasting markers of cardiometabolic risk 
were significantly modified by the intervention (table 2). Fasting 
total C decreased significantly in the 5 g-PL group (pgroup<0.05, 
pposthoc<0.05 vs control; −0.40 mM, −6.8%; table  2). We also 
observed concomitant decrease in LDL-C in the 5 g-PL group 
(pposthoc<0.05 vs control; −0.34 mM, −8.7%) and increase in 

HDL-C in 5  g-PL vs 3  g-PL group (pposthoc<0.05;  +0.06 mM, 
ie,  +5.0%). In the 5  g-PL group, these changes resulted in a 
decreased ratio total C/HDL-C (pposthoc<0.01 vs control and 
vs 3 g-PL), a better predictor of CVD than LDL-C.32 Total C/
HDL-C ratio in the 5 g-PL group decreased to 4.53, which is 
close to the target value of 4.4 indicated by the American Heart 
Association for women to lower CV risk from high to moderate. 
The 5 g-PL group showed significant decrease in fasting serum 
TAG versus control and versus 3  g-PL groups (pposthoc<0.05), 
plasma ApoB (contained in chylomicrons, VLDL and LDL) 
versus control (pposthoc<0.05) and plasma ApoB48 versus control 
and versus 3  g-PL (pposthoc<0.01) (table 2). In addition, ApoB/
ApoA1 (pposthoc<0.05 vs control; −0.07,  –6.8%) and ApoB48/
ApoB ratios (pposthoc<0.05 vs control and vs 3 g-PL) were signifi-
cantly reduced in the 5 g-PL group.

Regardless of dose, groups with PL decreased significantly 
fasting plasma PCSK9 compared with control (binary analysis, 
pPL=0.047; while pgroup=0.12). In each group with PL, change 
in total C was positively correlated with ΔApoB (r=0.83 and 
r=0.80, respectively; p<0.05). Moreover, in the 5 g-PL group 
only, positive correlations were observed: (i) Δtotal C with ΔTAG 
(r=0.61, p<0.05) and ΔApoB48 (r=0.50, p<0.05); (ii) ΔTAG 
with ΔLDL-C (r=0.58, p<0.05) and ΔApoB (r=0.45, p<0.05).

Milk PL lower postprandial lipid cardiovascular risk markers
Dietary intervention (figure  1A) effect was highly significant 
between groups on the postprandial kinetics of total C, TAG 
and ApoB/ApoA1 (figure 1B-D; pgroup≤0.001; remaining signif-
icant after adjustment). The 4-week intervention with milk PL 
decreased postprandial cholesterol-related parameters: the 
higher the dose of milk PL, the greater the reduction in total 
C and ApoB/ApoA1 ratio (5 g-PL>3 g-PL>0 g-PL, figure 1B,D). 
Only the 5 g-PL group presented a decrease of postprandial TAG 
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Table 2  Differences in the effects of 4-week intervention with milk PL in cream cheese on fasting circulating metabolic risk markers in the 
VALOBAB-C trial

Control (n=19) 3 g-PL (n=19) 5 g-PL (n=20)

pgroupV1 ΔV2−V1 V1 ΔV2−V1 V1 ΔV2−V1

Body weight (kg) 77.86±2.36 0.03±0.19 74.67±1.76 0.01±0.22 75.22±1.16 −0.33±0.25 0.43

Fat body mass (%) 43.85±1.03 0.03±0.37 43.43±0.78 0.30±0.55 42.48±0.79 −0.3±0.21 0.56

Lean body mass (%) 56.15±1.03 −0.03±0.37 56.57±0.78 −0.30±0.55 57.52±0.79 0.3±0.21 0.56

BMI (kg/m²) 30.22±0.76 0.01±0.07 29.05±0.58 −0.02±0.09 29.18±0.56 −0.12±0.1 0.53

Systolic BP (mm Hg) 124.32±2.74 −4.79±2.28 124.68±4.17 −1.63±2.00 124.47±3.94 −4.21±2.88 0.62

Diastolic BP (mm Hg) 71.68±2.28 0.84±1.69 76.21±2.07 −1.84±1.87 75.84±1.94 −2.89±1.24 0.25

Total C (mmol/L) 5.59±0.17 −0.04±0.1a 5.58±0.20 −0.21±0.10a,b 5.68±0.24 −0.4±0.09b 0.04

LDL-C (mmol/L) 3.70±0.15 −0.04±0.08a 3.54±0.17 −0.17±0.08a,b 3.63±0.19 −0.34±0.08b 0.04

HDL-C (mmol/L) 1.16±0.05 −0.02±0.03a,b 1.23±0.05 −0.04±0.03a 1.17±0.06 0.06±0.02b 0.03

Total C/HDL-C ratio 5.01±0.27 0.11±0.16a 4.67±0.26 −0.01±0.12a 5.16±0.36 −0.63±0.13b 0.0005†

TAG (mmol/L) 1.24±0.08 0.11±0.06a 1.24±0.11 −0.01±0.09a 1.47±0.13 −0.30±0.10b 0.003†

PCSK9 (ng/mL) 271.30±27.10 12.30±13.50 276.00±25.00 −28.30±17.30 259.20±18.40 −16.60±10.50 0.12

ApoA1 (g/L)‡ 1.16±0.02 −0.01±0.02 1.17±0.02 0.00±0.02 1.19±0.03 −0.01±0.02 0.86

ApoB (g/L)† 1.03±0.05 0.01±0.02a 1.01±0.05 −0.04±0.02a,b 1.02±0.06 −0.09±0.03b 0.03

ApoB48 (10−3 g/L)‡ 6.98±0.77 0.41±0.36a 5.70±0.53 −0.13±0.39a 7.01±0.62 −2.04±0.50b 0.0004† 

ApoB/ApoA1‡ 0.89±0.04 0.01±0.02a 0.86±0.04 −0.04±0.02a,b 0.87±0.05 −0.07±0.02b 0.02

ApoB48/ApoB‡ 6.75±0.48 0.38±0.45a 5.79±0.53 0.14±0.47a 7.48±0.70 −1.64±0.45b 0.005† 

Glucose (mmol/L) 5.23±0.10 −0.03±0.07 5.11±0.11 0.02±0.06 5.15±0.1 −0.11±0.06 0.37

Insulin (mIU/L) 7.29±0.99 0.43±0.72 7.11±0.72 −0.06±0.61 8.07±1.36 −0.41±0.90 0.74

HOMA-IR 1.74±0.26 0.17±0.18 1.67±0.19 −0.03±0.14 1.82±0.28 −0.10±0.18 0.52

P values presented in bold highlight significant intervention effect.
Data are presented as mean±SEM. pgroup represents p value associated with group effect as calculated by generalised linear model.
a bDifferent superscript letters indicate statistically different intervention effects between groups as calculated by post hoc analyses controlling for familywise type I error 
(i.e., means sharing a common letter are not significantly different).
†P value remains significant (<0.05) after adjustment for clinical centre, quartiles of volunteer age and waist circumference; the other significant p values only describe a 
tendency after adjustment (p<0.1).
‡Control n=17, 3 g-PL n=17 and 5 g-PL n=18 due to missing values.
Apo, apolipoprotein; BMI, body mass index; BP, blood pressure; C, cholesterol; CRP, C reactive protein; HDL, high-density lipoprotein; HOMA-IR, homeostasic model assessment of 
insulin resistance; LDL, low-density lipoprotein; PCSK9: proprotein convertase subtilisin/kexin type 9; PL, polar lipids; TAG, triacylglycerol; V1, visit 1; V2, visit 2.

(−10.4%; pposthoc<0.01 vs control and vs 3  g-PL; figure  1C). 
Consistently, the metabolic effects of milk PL were significant 
on the postprandial cumulative response (AUC) and peaks of 
concentration (cmax) of several risk markers. Consumption of 
5  g-PL reduced postprandial AUCs of total C by 5.7%, TAG 
of 10.4% and ApoB/ApoA1 ratio of 7.3% (all p<0.05, V2 vs 
V1). Compared with control, 5 g-PL induced significant reduc-
tions in the change of postprandial AUCs of total C (−156±40 
vs 22±46 ​mM.​min), TAG (−170±77 vs 72±42 ​mM.​min) 
and ApoB/ApoA1 ratio (−33±9 vs 6±9 ​mM.​min) (all pgroup 
and pposthoc<0.05 for 0–480 min). The cmax of total C and TAG 
were also decreased after 5  g-PL vs control: −0.34±0.1 mM 
vs 0.04±0.1 mM for total C (p<0.05),  –0.45±0.2 mM vs 
0.27±0.1 mM for TAG (p<0.05).

Milk PL do not induce body weight/fat mass gain but increase 
total lipid β-oxidation
Indirect calorimetry analysis in one centre revealed a significant 
effect of intervention on postlunch total lipid β-oxidation (240–
480 min, pgroup=0.042; pposthoc<0.075 for each PL group versus 
control: +1.03±1.18 g in 3  g-PL group and +1.02±0.99 g in 
5 g-PL group vs −2.54±1.06 g in control). Regardless of dose, 
milk PL increased cumulated lipid β-oxidation after lunch 
(240–480 min; pPL=0.011) and over 8 hours (pPL=0.034) versus 
control. Changes in participants’ body weight (pgroup=0.43) and 
fat mass (pgroup=0.56) did not differ among groups (table 2).

Milk PL favourably modulate intestine-derived chylomicrons
Regarding plasma concentrations of intestinal chylomicron lipids 
(figure 2A), both cholesterol (CMRF-C) and TAG (CMRF-TAG) 
of CMRF were decreased in plasma of the 5 g-PL group versus 
control and 3 g-PL groups (figure 2B,C, pgroup<0.01; remaining 
significant after adjustment). Postprandial concentrations 
of plasma ApoB48 were reduced only in the 5  g-PL group 
(figure 1E; pgroup≤0.001; pposthoc<0.01 vs control and vs 3 g-PL). 
CMRF particle size was unaffected by intervention (figure 2D).

Milk PL increase faecal coprostanol without altering major 
phylogenetic groups of gut microbiota
Variations of faecal losses of total lipids and cholesterol were 
not different among groups (figure 3A,B, pgroup=0.91 and 0.52, 
respectively). Variation of faecal concentrations of coprostanol 
tended to differ among groups (figure  3C, pgroup=0.07) and 
increased significantly after interventions with milk PL regard-
less of dose versus control (pPL=0.03). Moreover, the faecal 
coprostanol/cholesterol ratio was significantly increased by 
milk PL (figure 3D; pPL=0.04). More specifically, around 65% 
of volunteers in both milk PL groups had a faecal coprostanol/
cholesterol ratio exceeding 15 after intervention (ratios from 23 
to 28 and 20 to 114 in the 3 g-PL and 5 g-PL subsets, respec-
tively; figure  3E). LDL-C and total cholesterol are negatively 
correlated with faecal coprostanol/cholesterol ratio after dietary 
intervention (all groups; figure 3F,G, r=−0.492, p=0.016 and 
r=−0.466, p=0.023, respectively), while no correlation was 
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Figure 2  Modulation of postprandial chylomicron parameters after 4-week intervention with control, 3 g-PL or 5 g-PL cream cheese (VALOBAB-C 
trial). Panel explanation (A) and plasma kinetics of CMRF TAG (B), CMRF C (C) and CMRF size (D) before (V1, dotted line) and after (V2, full line) 
the daily consumption of 100 g of cheese with or without PL during 4 weeks. Data are represented as mean±SEM. pgroup and pposthoc are shown for 
postprandial period from 120 to 480 min (linear mixed model followed by post hoc analyses on ΔV2−V1). ptimexgroup was not significant. (B, C): after 
adjustment on quartiles of volunteer age and waist circumference: pgroup<0.05. For technical reason, analyses performed in centre 1 only, sample size: 
control n=9, 3 g-PL n=9, 5 g-PL n=10. CMRF, chylomicron-rich fraction; PL, polar lipids; TAG, triacylglycerols.

observed before intervention. Such correlations are emphasised 
in the 5 g-PL group after intervention (figure 3H,I). The daily 
consumption of up to 5 g of milk PL during 4 weeks modulated 
neither the major phylogenetic groups and bacterial species of 
gut microbiota (figure 4) nor the measured faecal SCFA profile 
(figure 5).

Milk PL decrease intestinal cholesterol absorption and 
increase cholesterol-ileal efflux in ileostomy subjects
In ileostomy subjects (figure  6A), the incremental AUC 
(iAUC) over 8 hour of [13C]-oleic acid in plasma lipids 
and the exogenous FA β-oxidation (13CO2 breath test) 
were similar between meals (online supplementary figure 
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Figure 3  Impact of 4-week intervention with milk polar lipids (PL)-enriched cream cheese on faecal lipids in the VALOBAB-C trial. Faecal loss 
variations (ΔV2−V1) of total lipids (A), cholesterol (B), coprostanol (C) and coprostanol/cholesterol ratio (D) after daily consumption of 100 g of 
cheese with or without PL during 4 weeks. Coprostanol/cholesterol ratio before (V1) and after (V2) the 4-week consumption of 100 g of cheese with 
or without PL (E). Spearman's correlation between faecal coprostanol/cholesterol ratio and serum low-density lipoprotein-cholesterol (LDL-C) (F) 
and total cholesterol (C) (G) after (V2) daily consumption of 100 g of cheese with or without PL during 4 weeks (orange: control group, light blue: 
3 g-PL group, dark blue: 5 g-PL group). Spearman's correlation between faecal coprostanol/cholesterol ratio and serum total C (H) and LDL-C (I) at 
V2 in the 5 g-PL group. Data are indicated as median with IQR. The pgroup is shown to compare intervention effect between the three groups (analysis 
on ranks on ΔV2−V1); PPL is shown to compare intervention effect between the control group and both PL groups regardless of dose. For technical 
reasons, analyses performed in centre 1 only, sample size: (A) n=9 (control) to 10 (PL); (B–C) n=4 (control) to 7 (PL); (D–I) n=7 (control) to 9 (PL). 
NB: regardless of group and visit, the observed faecal losses of cholesterol (range 0.2–1 mg/g faeces) and coprostanol (range 0.45–5.2 mg/g faeces) 
were consistent with previous published data (cholesterol: 1.88±0.53 to 5.8±1.56 mg/g dry faeces47; coprostanol: 3–27.4 mg/g lyophilised faeces,48 
considering that dry matter is ~25% of total faeces weight).

S3A–F). However, the iAUC of plasma [2H]-cholesterol 
was significantly lowered by the 5 g-PL versus control meal 
(pmeal<0.05, figure 6B). Regardless of PL dose, a significantly 

lower iAUC of [2H]-cholesterol was observed after PL meals 
in both plasma (pPL=0.047) and chylomicrons (pPL=0.004) 
(figure 6B,C). Furthermore, each PL meal resulted in higher 
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Figure 4  Major phylogenetic groups and bacterial species of gut microbiota after 4-week intervention with up to 5 g milk polar lipids (PL) in cream 
cheese in the VALOBAB-C trial. Variations (log-fold change V2/V1) of the abundance of the main bacterial groups and species that were measured 
as log 16S rDNA gene copies per g of faeces: (A) total bacteria, (B) Firmicutes, (C) Bacteroides-Prevotella group, (D) Akkermancia muciniphila, 
(E) Bifidobacterium spp, (F) Lactobacillus-Leuconostoc-Pediococcus group, (G) Clostridium coccoides group, (H) Clostridium leptum group, (I) 
Faecalibacterium prausnitzii, (J) Roseburia-Eubacterium rectale group, (K) Veillonella spp, (L) Enterobacteriaceae family, (M) Escherichia coli and (N) 
Bilophila wadworthia. Data are indicated as median with IQR; pgroup is shown. Group size: control n=18, 3 g-PL n=18, 5 g-PL n=20.
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Figure 5  Faecal profile of short-chain fatty acids before (V1) and after (V2) 4-week intervention with up to 5 g/day milk polar lipids (PL) in 
cream cheese in the VALOBAB-C trial. (A) Acetate, propionate and butyrate, (B) isobutyrate, formate, succinate and lactate. Data are represented as 
mean±SEM, pgroup are shown. NB: regarding the total amount of major short-chain fatty acids in (A), acetate+propionate+butyrate: pgroup=0.35. For 
technical reasons, analyses performed in centre 2 only, sample size: control n=8, 3 g-PL n=7, 5 g-PL n=8.

ileal efflux of total cholesterol versus control during the 
first 4 hour (pmeal=0.04, pposthoc<0.05, figure 6D; pPL<0.05). 
Milk PL in the meal increased SM losses in ileal effluent 
versus control (pmeal=0.03, pPL<0.05 vs control, figure 6E). 
SM efflux corresponded to 20%–25% of ingested amount 
over 8 hour, and was composed of typical milk-SM molec-
ular species,7 that is, mostly isoforms with acyl chains over 
C20 (online supplementary figure S3G).

Discussion
Present results first demonstrate that 4-week dietary interven-
tion based on cream cheese naturally enriched with 3 or 5 g/day 

of milk PL, as part of a balanced diet, markedly lower an array of 
lipid markers of CVD risk in postmenopausal women. Particu-
larly, we reveal in humans that 5 g/day milk PL achieves a reduc-
tion of 8.7% of LDL-C (−0.34 mM) with an additional reduction 
of 15.6% of serum TAG. This is a clinically meaningful change 
considering that a LDL-C reduction of 1 mM is associated with a 
19% lower risk of coronary mortality in clinical trial33 and even 
−52% CV risk in case of early intervention.34 Clinical interest 
has recently focused on emerging lipid parameters including 
PCSK9,35 which binds to the LDL-receptor. Here, fasting plasma 
level of PCSK9 significantly decreased after milk PL intervention 
regardless of dose, suggesting that the lowering effect of milk 
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Figure 6  Milk polar lipids (PL) impact on intestinal cholesterol absorption in the VALOBAB-D pilot study in ileostomy volunteers. Panel explanation 
(A), cumulated enrichment over 0–480 min of [2H]-cholesterol in plasma (B) and chylomicron-rich fraction (CMRF) (C), ileal losses of total cholesterol 
(D) and sphingomyelin (SM) (E), during the 0–240 min and 240–480 min postprandial periods (see also online supplementary figure S3G for SM 
composition in ileal efflux). Data are expressed as mean±SEM; n=4 per group. (B) Friedman test (pmeal) followed by Dunn’s post hoc tests for control 
and 5 g-PL groups. (C) Repeated measures one-way analysis of variance (ANOVA) (pmeal) followed by Tukey’s post hoc tests. (D, E) Repeated measures 
two-way ANOVA (pmeal, ptime, pmeal×time) followed by Tukey’s post hoc tests. *Pposthoc<0.05 vs control group. The pPL compares the effect of control meal 
with both PL meals regardless of dose. Sample size: n=4 subjects, crossover design (see online supplementary figure S2). NB: The 8-hour total 
cholesterol efflux (tracer+tracee in both free and esterified forms) after the control meal (642±57 mg) was consistent with previous reports56; here 
after 3 g-PL meal the 8-hour total cholesterol efflux was 1510±417 and 1752±354 mg after 5 g-PL meal. NB: The proportion vs ingested milk SM of 
the 8-hour ileal efflux of milk SM after cheese matrix (20%–25% of ingested dose) was similar with 19% reported after pure milk SM in six ileostomy 
subjects.29

PL on serum LDL-C may be mediated at least in part by PCSK9 
despite the lack of group effect. Previous studies in healthy men 
and women reported no reduction of fasting total C, LDL-C, 
TAG and/or ApoB after 2–12 weeks  interventions with 1 g/day 
of milk SM36 or up to 2.8 g/day supplementation with milk PL/
MFGM,15 16 37 38 despite control (other PL or devoid of PL) 
increased such risk markers. Only one 4-week crossover trial 
with low-fat buttermilk-based drink showed decreased fasting 
serum total C (−3.1%), LDL-C (−3.1%) and TAG (−10.7%), 
although with no effect on HDL-C or ApoB48.26 The present 
strategy based on triglyceride substitution by milk PL in a full-fat 

dairy product was successful to reduce lipid markers of CVD 
risk, probably partly because of products being isolipidic (energy 
intake not increased) and comprising a butterserum-derived 
ingredient allowing up to 5 g of milk PL.

We cannot rule out that differences in cheese TAG content 
may account for triglyceridemia reduction. To the best of our 
knowledge, there is no available data or model in the literature 
allowing to estimate the impact of substituting TAG with PL 
on triglyceridemia. Interestingly, we showed that plasma-TAG, 
chylomicron-TAG and plasma ApoB48 decreased significantly 
after 4-week intervention but only in the 5 g-PL group (not in 
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3 g-PL and control groups). In ileostomy subjects, postprandial 
accumulations of plasma-TAG and chylomicron-TAG were not 
different after consumption of the 0, 3 and 5  g-PL enriched 
cheeses. We showed previously that in mice gavaged with lipid 
emulsions of equal dietary TAG content but differing in PL 
type (milk vs soy PL), emulsions with milk PL resulted in faster 
clearance of postprandial TAG and ApoB48, and lower intes-
tinal APOB gene expression 4 hours after gavage.10 Regarding 
intestinal lipid absorption, other authors however described 
that lymphatic TAG were similar after gavage with an emulsion 
containing 200 mg TAG and an emulsion with 177 mg TAG and 
27 mg of milk PL.39 Therefore, preclinical and clinical studies are 
still needed to elucidate (i) whether a threshold amount of dietary 
TAG substitution by PL exists in order to impact significantly 
triglyceridemia and (ii) whether milk PL can impact directly the 
intestinal chylomicron secretion and/or hepatic clearance, and 
thereby triglyceridemia. Furthermore, milk PL cheeses contained 
higher PUFA amounts than the control cheese that could trigger 
the potential reduction of lipid markers of CV risk, especially 
LDL-C. We thus examined if the different PUFA contents of 
cream cheeses could have significantly impacted the observed 
LDL-C reduction in the VALOBAB-C trial according to the linear 
predictive model established by Mensink and Katan.40 Assuming 
the worst effect of SFA and the most beneficial effect of PUFA on 
LDL-C, the model predicts a LDL-C reduction of −18 µM (ie, 
−0.5%) in the 5 g-PL group, which remains marginal compared 
with the observed reduction in the present study (−8.7%). This 
strengthens our conclusion that the lowering effect of milk PL 
on lipid markers of CVD risk may be due to mechanisms associ-
ated with cholesterol fate in the intestine due to milk SM.

Because people spend the most time in a postprandial state and 
postprandial lipemia is now recognised as an important indepen-
dent marker of CVD risk,41 volunteers were submitted to test 
meal challenges to analyse intestine-derived chylomicrons,42 
chylomicron-bound Apo48,32 ApoB/ApoA1 and ApoB48/ApoB 
ratios during 8 hours. ApoB/ApoA1 ratio reflects the balance 
between pro-atherogenic LDL particles and anti-atherogenic 
HDL particles,43 whereas ApoB48/ApoB ratio depicts the contri-
bution of chylomicrons and chylomicron remnants to total 
atherogenic particles in triglyceride-rich (TRL) lipoprotein 
fractions.44 The studies in healthy humans performing single 
postprandial tests showed hitherto no effect of milk PL on post-
prandial lipids and ApoB/ApoA1 ratio45 or decreased postpran-
dial total C and LDL-C but increased TAG13 versus no PL. The 
present intervention had a beneficial cardiometabolic impact by 
reducing significantly postprandial CV risk markers. We also 
underline the concomitance of sustained changes in postprandial 
lipids by milk PL. Mechanistically, the 5 g-PL dose specifically 
reduced the postprandial intestine-derived TRL lipids, consis-
tently with the decreased postprandial TAG. CMRF particle 
size was unaffected, indicating decreased particle number by 
the 5 g-PL dose. The collected CMRF includes intestine-derived 
chylomicrons and other partially delipidated remnant particles. 
Hence, 5 g/day of milk PL could beneficially limit chylomi-
cron-TAG synthesis/accretion and/or improve hepatic clearance.

Regarding gut-associated mechanisms, we showed in a 
subgroup that milk PL interventions increased faecal copros-
tanol, a non-absorbable molecule.46–48 This suggests a contri-
bution of this increased intestinal cholesterol-to-coprostanol 
conversion in the serum total C-lowering effect of milk PL. 
As they naturally contained more cholesterol than the control 
cheese, milk PL-cheeses may have fuelled some specific bacte-
rial strains known to convert cholesterol into coprostanol.46 Gut 
microbiota is now considered as an ‘essential organ’ in numerous 

metabolic functions,49 including regulation of lipid homeostasis 
and cholesterol metabolism,50 and can be altered by synthetic 
emulsifiers.1 2 Therefore, we quantified in faecal samples the 
two main phyla (Bacteroides-Prevotella groups (gp.) and Firmic-
utes) and the dominant bacterial gp., families or genera that may 
exhibit interesting inflammatory or metabolic functions.51 In 
high-fat-fed mice, milk SM and milk PL increase the abundance 
in gut microbiota of Bifidobacterium spp52 53 (associated with 
benefits regarding metabolic disorders54): this was not observed 
here in humans. However, milk PL could have modulated other 
bacterial genera/species, which deserves further studies using 
high-throughput techniques. More particularly, the recent find-
ings by Cuevas-Tena et al suggest that the efficiency of choles-
terol conversion would be related to microbial density, as a 
coprostanol/cholesterol ratio >15 was associated with high level 
of coprostanoligenic bacteria (108 cells/g).20 In our VALOBAB-C 
study, 8.5% of volunteer subset had a coprostanol/cholesterol 
ratio >15 before intervention vs 50% after intervention, and this 
observation was related to the milk PL effect. In line with these 
observations, we cannot rule out that the present dietary inter-
vention with milk PL could have modulated the level of coprosta-
noligenic bacteria in the gut. Regarding microbiota functionality, 
we showed in a subgroup of volunteers that faecal SCFA were 
not differentially impacted by interventions. Thus, the present 
results suggest that short-term increased intake of milk PL did 
not have a drastic effect on the main bacterial communities 
of the gut microbiota, although it does not imply that specific 
bacterial species not targeted in the present approach could have 
been modulated by the milk PL supplementation. Moreover, 
the present negative correlations between the faecal copros-
tanol/cholesterol ratio and LDL-C and total cholesterol are in 
line with a recent review describing such an inverse relationship 
and suggesting that produced coprostanol can modulate choles-
terolaemia.55 A high efficiency of cholesterol-to-coprostanol 
metabolism was also suggested to reduce the risk of CVDs.55 
The quantification and functional analysis of coprostanoligenic 
bacteria thus deserve further investigation for future research in 
the context of milk PL supplementation.

Considering the lack of human mechanistic studies on dietary 
PL impact on intestinal cholesterol absorption,3 we performed 
a pilot postprandial trial on ileostomy subjects using tracers, 
a gold-standard approach.56 The similar iAUC of serum-lipids 
and chylomicron-lipids between meals rules out differences in 
hepatic chylomicron clearance. The lower [2H]-cholesterol in 
CMRF shows that milk PL can decrease the postprandial incor-
poration of dietary cholesterol into chylomicrons in humans. 
Moreover, the 8-hour  total ileal cholesterol efflux ((ingested 
cholesterol fraction remaining unabsorbed by the small intes-
tine)+(endogenous cholesterol that was not reabsorbed)) was 
significantly increased after milk PL meals, which can explain the 
lower plasma postprandial concentrations of [2H]-cholesterol 
with milk PL. Previous rodent and in vitro studies reported that 
dietary SM could decrease cholesterol absorption by forming 
unabsorbed complexes with cholesterol.8 9 57 As here 20%–25% 
of ingested milk SM was found intact in ileal efflux, the lower 
cholesterol absorption can be partly explained by its interactions 
with unabsorbed milk SM in the gut. However, total cholesterol 
ileal efflux after PL meals (~1510–1750 mg) was even twice 
greater than expected by summing (control cholesterol efflux)  
+(PL-meal cholesterol content) (~750 mg). ‘Apparent negative 
absorption’ of cholesterol was also reported after intraduodenal 
infusion of lecithin (30 g/day) in humans.58 This suggests that 
(i) the undigested milk SM could also decrease the degree of 
reabsorption of endogenous intestinal-mucosa cholesterol and 
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(ii) milk PL and/or SM could also enhance the transintestinal 
cholesterol excretion (TICE), that  is, an increased reverse 
absorption of endogenous cholesterol in the small intestine.59 
Under basal conditions in mildly hypercholesterolaemic men, 
TICE contributes for 35% of faecal neutral sterol excretion.60 
Therefore in the overweight women of VALOBAB-C trial, an 
increased ileal efflux of cholesterol could have contributed to 
the observed hypocholesterolaemic effects, as supported by 
VALOBAB-D trial. The hypothesis of the potential involvement 
of TICE enhancement deserves further mechanistic investiga-
tions in humans.

Several nuances have to be made: VALOBAB-C results cannot 
be extrapolated to individuals with other metabolic disorders/
diseases (primary dyslipidaemia, normal weight subjects). Some 
specific and/or cumbersome analyses have only been carried out 
on a limited number of subjects. Further studies in men and in 
premenopausal women and using long-term interventions may 
now be of particular interest. Parallel to PL, the specific impact 
of the MFGM proteins, which can generate bioactive peptides in 
the gut, has not been assessed in the present studies and should 
be investigated in future research. Finally, characterisation of 
the gut microbiota in the present work was performed using a 
targeted metagenomic approach (16S rDNA sequencing) and 
future mechanistic studies should include shotgun metagenome 
approaches.

Altogether, these studies provide the first evidence that addi-
tion of up to 5 g of milk PL/day can be safely used as part of 
a balanced diet, with no apparent short-term adverse effect 
on neither lipid metabolism nor major bacterial phyla of gut 
microbiota, and with significant favourable effects on choles-
terol homeostasis and markers of CVD risk despite a higher 
cholesterol content in milk PL-enriched cheeses. Moreover, the 
present dietary strategy is applicable in everyday life as cheese 
is a widely consumed dairy worldwide.4 Today in addition to 
lifestyle modifications as first-line therapy,61 many strategies 
efficiently reduce LDL-C, for example, pharmaceutical treat-
ments (statins, ezetimibe, PCSK9 inhibitors), however costly or 
with undesirable side effects.62 The present dietary intervention 
with milk PL reduced LDL-C as effectively as dietary strategy 
based on phytosterol supplementation (2 g/day inducing −8% to 
−10% LDL-C but with doubts about undesirable side effects).63 
The present results may thus offer a promising alternative for 
health professionals to improving dietary advice and provides 
competitive future prospects regarding nutritional formula-
tions. If the present clinical results are further confirmed, they 
could provide a new open avenue for health claims on labels 
and new types of enriched foods with milk PL regarding their 
cholesterol-lowering effects. Moreover, the present findings 
provide a molecular explanation of possible  mechanisms by 
which MFGM-rich full-fat dairy like cheese are associated with 
metabolic benefits.64 65 They support a specific role of milk SM 
that lowers intestinal cholesterol absorption and delivers unab-
sorbed lipids to the colon. This work thus offers important 
perspectives for a larger use of milk PL-rich fractions as natural 
functional food ingredients to substitute the synthetic ones 
suspected to promote metabolic disorders, representing a poten-
tial novel route to improve cardiometabolic health at the popu-
lation level. Finally, the present findings demonstrate the need 
to further investigate the impact of milk PL on inflammatory 
cardiovascular risk markers and also their potential effect on 
coprostanoligenic bacteria and their potential role in restoring 
gut microbiota eubiosis in disease.
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