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EXPLICIT DEGREE BOUNDS FOR RIGHT FACTORS

OF LINEAR DIFFERENTIAL OPERATORS

A. BOSTAN, T. RIVOAL, AND B. SALVY

Abstract. If a linear differential operator with rational function coefficients is reducible,
its factors may have coefficients with numerators and denominators of very high degree.
We give a completely explicit bound for the degrees of the (monic) right factors in terms
of the degree and the order of the original operator, as well as the largest modulus of the
local exponents at all its singularities, for which bounds are known in terms of the degree,
the order and the height of the original operator.

1. Introduction

Context. We are interested in factorizations of linear differential operators in K(z)[ d
dz
],

where K is either C or Q (embedded into C). In the latter case, there is no loss of
generality in assuming that K is a number field (because the coefficients all live in such a
number field) and in this case we denote its degree by κ := [K : Q].

Without loss of generality, we assume that L ∈ K[z][ d
dz
], i.e., it has the form

L =

m∑

j=0

pj(z)
( d

dz

)j

for some polynomials pj(z) ∈ K[z], which are assumed to be coprime, with pm 6= 0. We call
m ≥ 1 the order of L, and q := degz(L) the degree of L, where the degree of an operator
such as L is understood as maxj(δ(pj)) ≥ 0, with δ(r) defined as max(deg(u), deg(v)) for
a rational function r = u/v ∈ K(z) with coprime u, v ∈ K[z].

Assume given some factorization L = NM with M,N ∈ K(z)[ d
dz
], where

M =
r∑

j=0

aj(z)
( d

dz

)j

,

for aj(z) ∈ K(z) and ar 6= 0. For our purposes, there will be no loss of generality in further
assuming that M is monic, i.e. ar(z) = 1. Let n := degz(M) = maxj(δ(aj)) be its degree.

Obviously r ≤ m, but it is well known that n can be much larger than q, and it is in
fact notoriously difficult to control n in terms of L. To the best of our knowledge, the first
(and so far the only) written bound for n has been given by Grigoriev [11, Theorem 1.2].
One the one hand, Grigoriev’s bound holds for any factor, not only for right factors. But

Date: June 13, 2019.
2010 Mathematics Subject Classification. 13P10, 34M35, 11J91.
Key words and phrases. Differential operators, Factorization, Fuchs’ relation.

1



2

on the other hand, it is only an asymptotic bound; for instance, with respect to the input
degree m, it writes exp

(
2m·o(2m)

)
. The asymptotic nature of this bound is unsatisfactory

for the applications we have in mind.

Main result. Here, we seek entirely explicit bounds holding for all m and for any operator
L ∈ Q[z][ d

dz
]. As we will see, such a bound is a consequence of the following result.

Theorem 1. For any L ∈ C[z][ d
dz
] of order m and degree q, if M is a monic right factor

of L of order r, then its degree n satisfies

n ≤ r2(q + 1)E(L) + r(q + 1)N (L) + rq +
1

2
r2(r − 1)(3q + 1), (1)

where E(L) ≥ 0 is the largest modulus of the local generalized exponents at the singularities

of L, and N (L) ≥ 0 is the largest of all the slopes of L at its singularities and at ∞.

Moreover, if M is known to be Fuchsian, then

n ≤ r2(q + 1)E(L) + rq +
1

2
r2(r − 1)(q − 1). (2)

The notions of slopes and generalized exponents of a differential operator are recalled
in §2.2. When L is Fuchsian, then M is necessarily Fuchsian and N (L) = 0, thus the
bound (1) is very close to (2) in that case, and both even coincide when r = 1. If
N (L) ≥ 1, then on the right-hand side of (1), rq can be replaced by r(q − 1); see the
discussion following inequalities (19) in §2.2. We state the theorem over C because its
proof is analytic and not arithmetic.

Bounding the degree of M in terms of the degree, the order and the height of L. Note that
N (L) ≤ m+q, so that Theorem 1 reduces the problem of bounding n to the determination
of an explicit upper bound for E(L). Bounds are known in the case where L ∈ K(z)[ d

dz
],

where K is a number field of degree κ. Grigoriev computed such a bound in that case, but
again his result [11, Corollary, p. 21] is only asymptotic in the order m of L, see below.
The first entirely explicit bound for E(L) was obtained in 2004 by Bertrand, Chirskii and
Yebbou [4]. Their approach was based in part on Malgrange’s truncation method, which
was eventually published in [10, pp. 97–107]. In terms of a quantity called the height H(L)
of the operator L [4, p. 246 and p. 252], their bound reads

E(L) ≤ 2(36(q+1)mκ)9(q+1)2m3m

H(L)(5κ(q+1)m)9(q+1)2m3m

. (3)

The inequalities (1) and (3), together with the bounds r ≤ m and N (L) ≤ m + q,
completely solve the problem of finding an explicit upper bound for the degree of any
monic right factor M of L, when L ∈ Q(z)[ d

dz
]. It seems to be the first of this type in the

literature. We have chosen to formulate Theorem 1 in terms of E(L) as a parameter because
the upper bound in (3) seems pessimistic and any improvement of it would implicitly
improve Theorem 1. On the other hand, the other terms on the right-hand side of (1) are
already polynomial in the parameters and are thus probably only marginally improvable.
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Asymptotic comparisons. Below, we let P(X) denote different polynomials in Z[X ], with
degree and leading coefficient independent of κ,m and q. With our notations, Grigoriev
obtains the asymptotic estimate E(L) ≤ H(L)P(κqm)m as m → +∞, which is much better

than (3), which reads E(L) ≤ H(L)P(κqm)q
2m3m

as m → +∞. When L is Fuchsian, Grig-
oriev’s method as well as [4, p. 254] provide better bounds, which turn out to be both of the
form E(L) ≤ H(L)P(κqm); one may wonder if this is asymptotically optimal as m → +∞.
In the general case, it would obviously be interesting to close the gap between the uniform
bound (3) and Grigoriev’s asymptotic bound for E(L). It would also be interesting to do
so in intermediate cases where some properties of L are known in advance. For instance,
for applications related to E-functions (see [1]), L may have only two singularities: z = 0
which is regular, and z = ∞ which is irregular with slopes in {0, 1}.

Quasi-optimality of the bound in Theorem 1. For any integer k ≥ 1, the second-order

operator L = z
(

d
dz

)2
+(2− z) d

dz
+ k admits the right factor M = d

dz
− H′(z)

H(z)
, where H(z) is

the confluent hypergeometric Kummer polynomial H(z) = 1F1(−k; 2; z) =
∑k

ℓ=0

(
k
ℓ

)
(−z)ℓ

(ℓ+1)!
.

Thus, m = 2, q = 1, r = 1 and n = k, and it is easy to check that E(L) = k and N (L) = 1.
Therefore the bound of Theorem 1 writes n ≤ 2k+2 (using the slight improvement in the
case N (L) ≥ 1). The bound is thus optimal up to the multiplicative constant 2.

Degrees of left factors. Taking formal adjoints exchanges left and right factors: if L = NM ,
then L⋆ = M⋆N⋆, see e.g. [16, p. 39–40]. Therefore, one can effectively bound the degrees
of the left factor N as well, by applying Theorem 1 to N⋆ and using the fact that all
the quantities (order, degree, largest slope, maximal exponent modulus), involved in the
inequality (1) for L⋆ and N⋆ are easily related to the corresponding quantities for L and N .

Minimal differential equations. Besides its own interest, one of our motivations to study
this factorization problem comes from combinatorics [7] and number theory [1], where
certain D-finite power series in Q[[z]], called E- and G-functions, are under study. In both
cases, it is useful to be able to perform the following task efficiently: given f(z) ∈ Q[[z]]
and L ∈ Q(z)[ d

dz
] such that Lf(z) = 0, determine M ∈ Q(z)[ d

dz
]\{0} such that Mf(z) = 0

and M is of minimal order with this property. Obviously, M is then a right factor of L
and Theorem 1 applies to it. Assume L ∈ K(z)[ d

dz
] with the same data as above and K

a number field, and let f(z) ∈ K[[z]] be a solution of the differential equation Ly(z) = 0.
The power series f needs not be convergent. For any integers r, n such that 1 ≤ r ≤ m
and n ≥ 0, let us define

R(z) :=

r∑

j=0

Pj(z)f
(j)(z),

where Pj(z) ∈ K[z] are all of degree at most n. Then R(z) =
∑∞

k=0 rkz
k is a formal power

series in K[[z]], and we denote by N its valuation (or order) at z = 0, i.e. N is the smallest
integer k ≥ 0 such that rk 6= 0. A key inequality is the following upper bound on N [4]:
either R(z) is identically zero or

N ≤ r(n+ 1) + 2(q + 1)2m3 + 2(q + 1)m2(E(L) + 1). (4)
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This is proved by putting together results by Shidlovskii [17, Lemma 8, p. 83 and Eq. (83)
p. 99] and Bertrand, Chirskii, Yebbou [4, Thm. 1.2 p. 245]. With our notations, this yields
N ≤ r(n+ 1) + n0(L) where n0(L) is a quantity bounded above by 2(q + 1)m2(R(L) + 1),
with R(L) ≤ E(L) + (q + 1)m, see [4, p. 252].

Now, given n and r + 1 polynomials Pj , not all zero, letting N denote the upper bound
in Eq. (4), if the first N + 1 Taylor coefficients of R(z) are all 0, then R(z) is proven
identically zero, which means that f(z) is a solution of

M :=
r∑

j=0

Pj(z)
( d

dz

)j

∈ K(z)
[ d

dz

]
\ {0},

and thus M is a right factor of L.
This remark was used by Adamczewski and the second author [1] to give an algorithm

that computes a non-zero operatorM such that Mf(z) = 0 andM is of minimal order with
this property. The input is L ∈ K(z)[ d

dz
] and sufficiently many initial Taylor coefficients

of f , so that the following ones can be computed using L. Let n0 be the quantity on the
right-hand side of the inequality (1). The algorithm first sets r = 1 and looks for R with
order r and degree ⌊n0⌋ by requiring that its first N + 1 Taylor coefficients all be 0 (this
amounts to solving a homogeneous linear system with algebraic coefficients given by the
Taylor coefficients of f). If no non-zero solution is found, r is increased and the same
procedure is repeated, and so on up to r = m if necessary. In the end, M 6= 0 minimal for
f will be found.

This algorithm is not very efficient in practice. Moreover, the inequalities (3) and (4),
as well as Grigoriev’s Theorem 1.2 are all used to ensure the termination of the algorithm.
It is important however to use Theorem 1 instead of Grigoriev’s, as it holds for arbitrary
differential operators L and M ∈ Q(z)[ d

dz
] and not only asymptotically. A much more

efficient minimization algorithm is under development [8].

Related works. The proof of Theorem 1 does not use Grigoriev’s method, which is essentially
an analysis of Beke’s classical factorization algorithm [16, p. 118, §4.2.1], see also [18].
Instead, our method is inspired by van Hoeij’s algorithm [19, 20] to factor differential
operators with rational functions, or power series, coefficients. His algorithm works over
any base field K of characteristic 0. He did not give any bound and our main contribution
here is an explicit bound when K is a number field. In turn, van Hoeij’s method is based on
the generalized Fuchs’ relation between local exponents of linear differential equations with
polynomial coefficients. It is difficult to trace back exactly when in the 80’s this relation
was found to be relevant for this type of problem. In the Fuchsian case, it was used by
Chudnovsky [9] to obtain an effective multiplicity estimate. The latter was generalized by
Bertrand and Beukers to the general case with the help of the generalized Fuchs relation [3].
They obtained a multiplicity estimate in which the effectivity of one specific constant was
not completely clear. This effectivity issue was eventually solved by Bertrand, Chirskii and
Yebbou [4].
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2. Proof of Theorem 1

From this point on, we write ∂z for d
dz
. Consider a monic operator

R =

µ∑

j=0

aj(z)∂
j
z ∈ C(z)[∂z ]. (5)

We write aj = Aj/B, with Aj, B ∈ C[z], the Aj ’s are coprime and B is the monic common
denominator of lowest degree of the aj’s; we have Aµ = B and deg(aj) = deg(Aj)−deg(B)
and degz(R) := maxj(δ(aj)) ≤ max(deg(A0), . . . , deg(Aµ−1), deg(B)). By definition, the
set Sing(R) of finite singularities of R is the set of roots of B. (Equivalently, for an operator
with relatively prime polynomial coefficients such as L, this set is the set of roots of the
leading coefficient.) The point ∞ may or may not be a singularity of R. Amongst the
finite singularities of R, we denote by α(R) the set of the apparent ones, i.e. those at
which R admits a local basis of power series solutions. Note that an apparent singularity
ρ is necessarily a regular one. We denote by σ(R) the set of finite singularities of R which
are not in α(R), so that σ(R) and α(R) form a partition of Sing(R). In a factorization
L = NM , we have σ(M) ⊂ σ(L) ⊂ Sing(L) but α(M) may have no common element with
Sing(L). Because of this, the main difficulty in the method presented below is to bound
the number of apparent singularities of a right factor of L.

We split the proof of the theorem into two parts. We start with the Fuchsian case
because it is simpler but at the same time it contains essentially all the ideas needed to
prove the general case.

2.1. Fuchsian case. Let us assume that we have a factorization L = NM with operators
N,M in C(z)[∂z ] for which the operator M is Fuchsian and monic. Note that L need not
necessarily be Fuchsian itself. We compute an explicit upper bound on n := degz(M) in
terms of E(L). Our strategy is inspired by van Hoeij’s approach [20], itself based on ideas
by Chudnovsky [9] and Bertrand-Beukers [3], see also [13].

The Fuchsianity of M implies that it can be written

M = ∂r
z +

A1(z)

A(z)
∂r−1
z + · · ·+

Ar(z)

A(z)r
, r ≤ m := ord(L),

where A(z) is squarefree and deg
(
Ai(z)

)
≤ deg

(
A(z)i

)
− i; see [15, Chap. V, §20, p. 77].

All we now have to do is to bound from above the degree of A. This is done in two steps.
The polynomial A(z) can be factored in C[z] as A(z) = Asing(z)Aapp(z), where the roots of
Asing are the elements of σ(M), while those of Aapp are the elements of α(M).

Since Asing is squarefree, its degree is equal to #σ(M) ≤ #Sing(L). Thus deg(Asing) ≤
degz(L) = q.

The degree of Aapp(z) is equal to #α(M) and it can be bounded above using the Fuchs
relation [16, p. 138], which we now recall. We set

Sρ(M) =
r∑

j=1

ej(ρ)−
r(r − 1)

2
(6)
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where the ej(ρ)’s are the local exponents of M at the point ρ, so that clearly Sρ(M) = 0
when ρ ∈ C ∪ {∞} is an ordinary point of M . The Fuchs relation shows that these local
quantities obey a global relation:

∑

ρ∈C∪{∞}

Sρ(M) =
∑

ρ∈Sing(M)∪{∞}

Sρ(M) = −r(r − 1). (7)

Now, the main observation is that if ρ ∈ α(M), then Sp(M) ∈ N \ {0} by [15, Chap. V,
§18, p. 69] 1, so that

#α(M) ≤
∑

ρ∈α(M)

Sρ(M)

and by (7) this implies that

#α(M) ≤ −r(r − 1)−
∑

ρ∈σ(M)∪{∞}

Sp(M).

Since M is a right divisor of L, we have σ(M) ⊂ σ(L) ⊂ Sing(L) and for any such
singularity ρ ∈ σ(M), the exponents of M at ρ are also exponents of L at ρ, so that
|Sρ(M)| ≤ rE(L) + r(r − 1)/2 by (6). Therefore,

#α(M) + r(r − 1) ≤
∑

ρ∈σ(L)∪{∞}

|Sρ(M)| ≤ (q + 1)

(
rE(L) +

r(r − 1)

2

)

and

#α(M) ≤ (q + 1)rE(L) +
1

2
r(r − 1)(q − 1).

Hence,

deg(A) ≤ (q + 1)rE(L) +
1

2
r(r − 1)(q − 1) + q

and finally

n = degz(M) ≤ (q + 1)r2E(L) + qr +
1

2
r2(r − 1)(q − 1).

This concludes the proof of Inequality (2) in Theorem 1.

2.2. General case. Again, we follow a strategy similar to that of van Hoeij [20], replacing
the Fuchs identity by a generalization due to Bertrand and Beukers [3].

1Stricto sensu, [15] proves this under an a priori stronger definition of an apparent singularity p, which
requires the holomorphy of the basis of solutions at p. Note, however, that the proof is algebraic and does
not use this assumption, see also [16, p. 187–188].
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Newton polygons. Part of the information on the degrees of factors come from patching
up local information at each singularity that can be read off the Newton polygons of the
operators. We first recall their main definitions and properties (see [16, p. 90, §3.3]).

Let R =
∑µ

j=0 aj(z)∂
j
z ∈ C(z)[∂z ] denote a monic differential operator in C(z)[∂z ], ie.

with aµ ≡ 1. As in (5), we write aj = Aj/B, with Aj, B ∈ C[z] where B is the (normalized)
common denominator of lowest degree of the aj . The Newton polygon of R at 0 is obtained
by first rewriting R =

∑µ
j=0 aj(z)z

−jPj(θz), where θz := z∂z and the Pj(z) ∈ C[z], Pµ ≡ 1,

and then taking the lower-left boundary of the convex hull of the points (i, j) ∈ R2 such
that the coefficient of ziθj is nonzero. The Newton polygon at another finite point ρ ∈ C

is obtained similarly with θρ,z = (z− ρ)∂z and coefficients in C((z− ρ)), while the Newton

polygon at infinity is the Newton polygon at 0 of the operator R̃ obtained from R by
changing z into 1/z. By definition, the slopes of the Newton polygon at ρ are all ≥ 0 and
they are 0 if and only if R is regular singular at ρ.

In this work, we only use the largest slope of R at ρ ∈ C∪{∞}, that we denote by Nρ(R);
this is also known as the Katz rank of R at ρ, see [2, pp. 229–231] and [6]. The following
two properties will be important in what follows.

(1) For any R ∈ C(z)[∂z ], we have
∑

ρ∈Sing(R)∪{∞}

(
Nρ(R) + 1

)
≤ 2 degz(R) + 2, (8)

by the arguments used in the proof of [3, p. 185, Lemme 2bis].
(2) Let L,M,N,∈ C(z)[∂z ] be such that L = NM . Then, for any ρ ∈ C∪{∞}, we have

Nρ(M) ≤ Nρ(L). (9)

Indeed, a fundamental property is that the Newton polygon of a product of operators is
the Minkowski sum of their Newton polygons [16, p. 92, Lemma 3.45]. Hence, the slopes
of M at any point ρ form a subset of those of L at ρ.

We now assume R ∈ C(z)[∂z ] to be monic and of the form (5). Let vj := valz=0(aj(z))
for j ≤ µ. Note that vµ = 0. Then for any j ∈ {0, . . . , µ− 1}, we have

N0(R) ≥
(vµ − µ)− (vj − j)

µ− j
= −1 −

vj
µ− j

. (10)

It follows that for any j ∈ {0, . . . , µ− 1}

valz=0

(
aj(z)

)
≥ −µ(N0(R) + 1).

By a similar reasoning, for any finite ρ ∈ C and any j ∈ {0, . . . , µ− 1},

valz=ρ

(
aj(z)

)
≥ −µ(Nρ(R) + 1). (11)

If ρ = ∞, since θ1/z = −θz , we have

R̃ =

µ∑

j=0

(
zjaj(1/z)

)
Qj(θz)
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where Qj(X) := Pj(−X). In view of valz=0(z
jaj(1/z)) = j − deg(aj(z)), the analogue of

the inequality (10) is then

N∞(R) ≥
µ− (j − deg(aj))

µ− j
= 1 +

deg(aj)

µ− j
, j = 0, . . . , µ− 1,

leading to the bound

deg(aj) ≤ µ(N∞(R)− 1), j = 0, . . . , µ− 1. (12)

Any finite singularity ρ of R is a root of B and there exists jρ ∈ {0, . . . , µ − 1} such that
ρ is not a root of Ajρ , so that valz=ρ

(
ajρ(z)

)
= −valz=ρ

(
B(z)

)
. Using (11) with j = jρ, we

thus deduce that

valz=ρ

(
B(z)

)
≤ µ(Nρ(R) + 1). (13)

A similar reasoning at infinity gives

deg(Aj) ≤ deg(B) + µ(N∞(R)− 1), j = 0, . . . , µ− 1. (14)

Let now L = NM be a factorization of L with M ∈ C(z)[ d
dz
] monic. We apply the above

bounds to R := M and µ := r. We set

N (L) = max
ρ∈Sing(L)∪{∞}

Nρ(L) and M =

r∑

j=0

Aj(z)

B(z)
∂j
z

where the Aj’s and B are as in (5). In particular, by (9), for any j = 0, . . . , r − 1,

deg(Aj) ≤ deg(B) + rN∞(M)− r

≤ deg(B) + rN (L)− r. (15)

If ρ ∈ Sing(M), then Eq. (13) gives

valz=ρ

(
B(z)

)
≤ r(Nρ(M) + 1). (16)

If furthermore ρ ∈ α(M), then in particular it is a regular singularity, so that Nρ(M) = 0
and this bound reduces to

valz=ρ

(
B(z)

)
≤ r. (17)

It follows from (16) and (17) that

deg(B) ≤ r(N (L) + 1) ·#Sing(L) + r ·#α(M)

≤ r(N (L) + 1)q + r ·#α(M) (18)

where q := degz(L). From (15) and (18), we see that an explicit upper bound for

degz(M) := max j(δ(aj))

≤ max(deg(A0), . . . , deg(Ar−1), deg(B))

≤ deg(B) + rN (L) (19)

≤ rq + r(q + 1)N (L) + r ·#α(M)
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will again be obtained from an explicit upper bound for #α(M). (If N (L) ≥ 1, then
the right-hand side of (19) can be improved to deg(B) + rN (L) − r, with corresponding
improvements in subsequent equations.)

Generalized Fuchs’ relation. For any R ∈ C(z)[∂z ], the generalization of (7) given in [6,
Appendice, p. 84] is

∑

ρ∈Sing(R)∪{∞}

(
Sρ(R)−

1

2
irrρ

(
End(R)

))
= −r(r − 1), (20)

where as before

Sρ(R) =

r∑

j=1

ej(ρ)−
r(r − 1)

2
(21)

but now the ej(ρ)’s are the generalized local exponents of R at the point ρ ∈ C∪ {∞} (see
[6, Appendice, pp. 82-83] for their definition).

Given a differential operator D in C(z)[∂z ], its Malgrange’s irregularity [12], denoted
irrρ(D), is a non-negative integer which measures the defect of Fuchsianity at ρ. Precisely,
irrρ(D) = 0 if and only if D is singular regular at ρ. Choosing D as the tensor product
of an operator R and of its adjoint R⋆, both in C(z)[∂z ], yields a differential operator
R ⊗ R⋆ ∈ C(z)[∂z ] also denoted by End(R), see [16, p. 51]. By [6, Appendice, p. 84], the
integer irrρ

(
End(R)

)
can be bounded in terms of Nρ(R) as follows: for any ρ ∈ C ∪ {∞},

irrρ
(
End(R)

)
≤ r(r − 1)Nρ(R). (22)

If ρ ∈ C ∪ {∞} is an ordinary point or a regular singularity of R, we have Nρ(R) = 0 and
a fortiori irrρ

(
End(R)

)
= 0 as well; we thus recover the usual Fuchs relation (7) when R

is Fuchsian.
We are now ready to bound #α(M) in any factorization L = NM . We recall that α(M)

and σ(M) form a partition of Sing(M), and that σ(M) ⊂ σ(L), so that σ(M) ⊂ Sing(L).
Therefore,

r(r − 1) +
∑

ρ∈α(M)

Sρ(M) = −
∑

ρ∈σ(M)∪{∞}

Sρ(M) +
1

2

∑

ρ∈σ(M)∪{∞}

irrρ
(
End(M)

)
.

Now, Sρ(M) ≥ 1 for any ρ ∈ α(M) (again by [15, Chap. V, §18, p. 69]) and |Sρ(M)| ≤

rE(L) + r(r−1)
2

for any ρ ∈ σ(M) ∪ {∞} by (21). It follows that

#α(M) + r(r − 1)

≤ #σ(M) ·
(
rE(L) +

r(r − 1)

2

)
+

r(r − 1)

2

∑

ρ∈σ(M)∪{∞}

(
Nρ(M) + 1

)

≤ (q + 1)
(
rE(L) +

r(r − 1)

2

)
+

r(r − 1)

2

∑

ρ∈Sing(L)∪{∞}

(
Nρ(L) + 1

)

≤ (q + 1)
(
rE(L) +

r(r − 1)

2

)
+ r(r − 1)(q + 1).
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In this sequence of inequalities, the first one follows from (22), the second one uses (9),
and the last one relies on (8). (If instead of (8), we had used a direct bound, then the last
term r(r − 1)(q + 1) would be bounded by the quantity r(r − 1)(q + 1)(N (L) + 1)/2.)

Hence,

#α(M) ≤ (q + 1)rE(L) +
1

2
r(r − 1)(3q + 1).

It follows that

n := degz(M) ≤ r(q + 1)N (L) + r2(q + 1)E(L) +
1

2
r2(r − 1)(3q + 1) + rq.

This completes the proof of Theorem 1.
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Séminaire Bourbaki vol. 1978/79, exposés 525-542, 21 (1980), Exposé no. 538, p. 228–243.
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