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Abstract 8 

This study concerns variability in agrosystem inputs that affect greenhouse gas emissions at 9 

the farm scale, when management practices differ from average practices. Many studies of 10 

agrosystems assume average management practices. However, existence of a wide variety of 11 

farm-management practices may result in extreme variations in estimated environmental 12 

impacts. This large variation raises the need to use statistical tools to model extreme situations 13 

and their consequences on agrosystems. For instance, methane emissions generated by enteric 14 

fermentation in dairy cattle are particularly studied because they are important at a global 15 

scale. We investigated how extreme variations in feeding practices in dairy production affect 16 

predicted methane emissions, using a methane-emission model based on existing equations 17 

that is easy to apply at the farm scale. In this study, extreme variations in the time that cattle 18 

spent grazing were propagated through three different dairy-production systems. For an 19 

intensive dairy farm, predicted methane emissions decreased up to 15% (ca. 5% on average) 20 

and increased up to 11% (ca. 1% on average) under extremely long or short times spent 21 

grazing, respectively, compared to those from average variations in the time spent grazing. 22 

The range of variation in time spent grazing also reflects changes in feed rations. Farm-23 

management practices require deep investigation to both evaluate and decrease risks of 24 

environmental impacts in dairy production. 25 
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1. Introduction 28 

Increasing the sustainability of livestock production systems is the subject of much research to 29 

evaluate and find mechanisms for reducing environmental impacts of these systems (Dollé et 30 

al., 2011). Both farm-management practices and environmental conditions are factors that 31 

influence environmental impacts of farming systems. Among other sources, the global 32 

livestock sector contributes significantly to greenhouse gas (GHG) emissions (methane (CH4), 33 

nitrous oxide and carbon dioxide (CO2)), representing 14.5% of human-induced GHG 34 

emissions (7.1 gigatons CO2-eq per year in 2005) (Gerber et al., 2013). Within cattle-35 

production systems, processing and transport of feed contribute 45% of total GHG emissions, 36 

followed by enteric fermentation (39% of GHG emissions) (Gerber et al., 2013), which is 37 

influenced by characteristics such as age and body weight, and the quality and quantity of 38 

feed consumed (Jouany and Thivend, 2008; Sauvant and Noziere, 2016). Dairy cattle are the 39 

livestock classes with the highest total GHG emissions, accounting for 1.4 gigatons CO2-eq in 40 

2007 (Gerber et al., 2013) (i.e., 67% of livestock sector emissions), as estimated by life cycle 41 

assessment (LCA, the leading framework for multicriteria environmental assessment of 42 

systems) (Gerber et al., 2011). These studies (Gerber et al., 2011; Gerber et al., 2013) 43 

investigated the relationship between milk production per cow and GHG emissions for dairy-44 

production systems at a global scale (including African and Asian dairy cows). 45 

Consequently, studies are increasingly interested in how changes in management practices 46 

and climate conditions influence environmental impacts of agrosystems, for instance, a study 47 

of environmental impacts of beef-production systems with contrasting grassland management 48 

(Morel et al., 2016). In the same way that environmental processes are subject to complex 49 

phenomena that are random and vary in time and space, changes in input variables affect 50 

predictions of agrosystem models. For instance, longer-than-normal droughts or rainfall 51 

periods affect management of both cattle and forages, yielding economic and environmental 52 

consequences. These reasons justify integrating statistical analysis tools with quantitative 53 

models of environmental processes to facilitate statistical analysis of these models. For 54 

instance, several sensitivity analysis (SA) methods applied to a simulation model of rice 55 

production were compared (Confalonieri et al., 2010). Likewise, SA of models of GHG 56 

emissions was performed at the farm level to evaluate the influence of input variables 57 

representing soil, vegetation and agricultural practices on predictions of nitrous oxide 58 

emissions (Drouet et al., 2011). Recently, SA of methane emission models was performed by 59 

changing variables describing feed intake, feed quality and animal liveweight of French 60 
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Mediterranean sheep farming systems, focusing on the use of diversified grazing resources 61 

(Mansard et al., 2018). However, in these and other agricultural studies,  uncertainty in 62 

agricultural processes was analyzed primarily under average conditions (Cucurachi et al., 63 

2016). Usual farm management practices and average climate conditions differ greatly from 64 

extreme practices and conditions, respectively, whose magnitudes can yield disproportionate 65 

responses in agrosystems. Thus, modeling and predicting consequences of extreme 66 

management practices are necessary for agrosystems at both theoretical and practical levels. 67 

Studying extreme situations in agronomic systems raises several issues, such as which 68 

statistical tools to use to model probability distributions of extreme values. Agrosystem 69 

modeling can take advantage of statistical tools that analyze extreme variations as a way to 70 

complement uncertainty analysis. To this end, our study applied Extreme-Value Theory 71 

(EVT), recognized as the most popular approach to model extreme events. EVT is concerned 72 

with the stochastic nature of extremely large or extremely small values of a process 73 

(Embrechts et al., 1996; Charras-Garrido and Lezaud, 2013). EVT has been applied in finance 74 

(Embrechts et al., 1996), hydrology (Katz et al., 2002) and medicine (Chiu et al., 2016) but, to 75 

our knowledge, not yet in agronomy. 76 

Our study integrated EVT into assessment of GHG emissions of agrosystems, to help 77 

stakeholders make decisions about dairy-cattle management and evaluate  environmental 78 

impacts of their systems. The modeling approach was developed at an average annual scale 79 

based on French databases of dairy-production systems containing only average annual data, 80 

which are able, nonetheless, to describe agrosystem inputs that are affected by extreme 81 

variations. The time that cattle spend exclusively in farm buildings, exclusively on pasture, or 82 

transitioning from one to the other, is a key management variable that was used to propagate 83 

extreme variations in modeled agrosystems. Specifically, we investigated how extremely 84 

small or large amounts of grazing time (months/year) influenced predictions of enteric 85 

methane emissions from dairy cattle in different types of dairy-production systems. 86 

2. Model and methods 87 

2.1. Methane-emission model 88 

Several models are available in the literature for predicting enteric methane emissions that 89 

depend on region- or country-specific data (Appuhamy et al., 2016). Smaller-scale 90 

mechanistic models also exist, such as the simulation model of dairy cattle digestion and 91 

fermentation (Bannink et al., 2011). Most models use measurable diet components as 92 
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predictor variables, since it is recognized that feed intake is the main determinant for 93 

predicting methane emissions from ruminants (Ramin and Huhtanen, 2013). For instance, 94 

methane emissions have been predicted from digestible organic matter intake (DOMI), crude 95 

fat intake and energy intake above maintenance requirements for sheep, beef cattle and dairy 96 

cows (Bell et al., 2016). Although dry matter intake (DMI) of individual animals is not 97 

routinely measured on commercial farms, most models include it and estimate it from 98 

commonly available variables such as the quantity of milk produced. However, estimating 99 

DMI or any other predictor variable inevitably increases the residual error of predictions. 100 

Thus, we used an empirical model that predicts methane emissions (g CH4/kg DM) per cow as 101 

a function of the quantity of DOMI (kg/cow/year) in the feed ration (Sauvant et al., 2011):  102 

CH4���/DMI = 7.14 + 0.22DOMI�%DM� Equation 1 

with DOMI (%DM) the percentage of DOMI in DMI, which equals OM%DMI × dOM, in 103 

which OM represents organic matter and dOM the digestibility coefficient.  104 

The model was developed from 976 treatments in 170 experiments from the “Rumener” 105 

database, which contains published measurements of ruminants in calorimetric chambers 106 

(INRA, 2018a). The “Rumener” database contains information such as liveweight, feeding 107 

level (DMI expressed as a percentage of liveweight) and enteric methane emissions (Table 108 

S7, Supplementary Material). Using calibration data from the database, model predictions of 109 

methane emissions reached a coefficient of determination (R2) = 0.81 and a residual standard 110 

deviation (RSD) = 2.7 g/kg DM (Sauvant et al., 2011). This RSD is similar to the ranges of 111 

RSD recently reported for a wide variety of methane prediction models (2.96-7.44 g/kg DM) 112 

(Niu et al., 2018) and for the 10 most accurate out of 40 methane prediction models for North 113 

America, Europe, Australia and New Zealand (2.93-3.45 g/kg DM) (Appuhamy et al., 2016). 114 

Sample data were selected from a dataset of conventional dairy farms (n=43) in Brittany 115 

(France) collected previously for the LCA-based tool EDEN-E (van der Werf et al., 2009). 116 

Input data for each farm include parameters such as numbers of dairy cows, milk production, 117 

and fat and protein contents of milk (Table 1). 118 
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Table 1. Statistical description of observed data (number of dairy cows, milk produced, fat 119 

and protein contents) for input parameters from a sample of 43 farms in Brittany. 120 

Input parameter Unit Min. Mean Max. Standard deviation 

No. of dairy cows  head 25.0 44.6 78.0 10.3 

Quantity of milk produced kg/cow/year 4500.0 7055.3 9217.0 1152.3 

Milk fat content g/kg 32.7 42.4 48.6 2.7 

Milk protein content  g/kg 31.2 33.0 43.3 2.1 

 121 

Total DMI and DOMI had not been measured on the farms; thus, we estimated them from the 122 

quantity of milk produced on each farm (Figure S1, Supplementary Material), as described in 123 

the next paragraph. Since the quantity of concentrate feed (e.g., soybean meal, rapeseed meal) 124 

purchased and stored by each farm was known, it was used to estimate the DMI, DOMI, and 125 

energy and protein contents of the concentrate feed fed. The quantity of milk produced 126 

(MilkProd, in kg/cow/year) depends on factors such as animal genetics and type of feed. We 127 

focused on the latter, specifically the quantities of grass, maize and concentrate feed required 128 

to meet cow requirements for energy (dairy forage units, UFL/cow/year) and protein 129 

(protein digestible in the intestine, PDI/cow/year). A dairy forage unit, defined as the net 130 

energy absorbed from 1 kg of barley (86% DM) during lactation, equals 1760 kcal according 131 

to a recent recalculation (INRA, 2018b). At the time of our study, however, it equaled 1700 132 

kcal (Agabriel et al., 2007). Feed rations for dairy cows depend greatly on the physiological 133 

requirements that must be met. Energy and protein requirements needed to produce a given 134 

quantity of milk can be estimated (Faverdin et al., 2007). 135 

Based on a cow’s total UFL (g) and PDI (g) requirements, the DMI (kg) of the forages (grass 136 

grazed from pastures, preserved grass (hay) and maize silage) required to supplement the 137 

concentrate feed can be calculated from their UFL (/kg of dry matter) and PDI (g/kg of dry 138 

matter) contents (Table S1, Supplementary Material). Both protein (PDIN) and degradable 139 

nitrogen contribute to PDI. Protein requirements for maintenance and production 140 

requirements per day were based on PDIN: 141 

PDI#�#$%/&$' = 3.25 × LW+.,- +  1.56 × MilkProd/&$' × PC Equation 2 

with LW the liveweight (assuming a mean of 650 kg) and PC the protein content of milk 142 

(g/kg).  143 
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Milk production for all cows was measured for a full 365-day period. In addition, energy 144 

requirements per day for maintenance and production requirements were calculated as: 145 

UFL#�#$%/&$' = �0.04 × LW+.,-� × I$�# +  
MilkProd/&$' × 30.44 + 40.0055 × �FC − 40�6 + 40.0033 × �PC − 31�67 

Equation 3 

with I$�# an activity index (assuming a mean value of 1.1) that influences feed intake capacity 146 

and FC the fat content of milk (g/kg). 147 

From protein and energy requirements, DMI of each forage 89 was calculated as a function of 148 

the percentage of forage 89 in rations (by mass), and the protein and energy provided by the 149 

quantity of concentrate feed fed per year. Next, we decided to choose the quantity of DMI that 150 

met both protein and energy requirements to calculate the quantity of DOMI in the feed 151 

ration. Next, the DMI of each forage or feed was used to calculate the quantity of DOMI 152 

required in the feed ration for dairy cows to produce the desired quantity of milk. DOMI was 153 

calculated as the concentration of organic matter in a forage or feed (OM, in g/kg DM) 154 

multiplied by its coefficient of digestibility (dOM, in %) for a given feed X9  155 

 156 

DOMI;< =  DMI;< × OM;< × dOM;<  Equation 4 
 157 

Forage rations for cattle also depended on the time spent exclusively in farm buildings, 158 

exclusively on pasture (i.e., “only grazing”), or transitioning from one to the other during the 159 

year. The percentage of each type of forage =>,>@A,B,C in the annual ration was calculated from 160 

EDEN-E data as the sum of products of  161 

(i) the number of fractional months D9,9@A,B,C that cattle spent exclusively in farm 162 

buildings, exclusively on pastures, or transitioning from one to the other during one 163 

year  164 

and  165 

(ii) the percentages =9,> of grazed grass, preserved grass and maize silage fed in each 166 

location during this time: 167 

=> = E D9
C

9@A
× =9> 

 

Equation 5 
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with ∑ =>C>@A = 1, ∑ D9C9@A = 12 months and ∑ =9>C>@A = 1, with G the categories 1 = in 168 

buildings, 2 = on pasture, 3 = transitioning, and H the categories 1 = silage maize, 2 = grazed 169 

grass, 3 = preserved grass.  170 

The Supplementary Material (Sections 1 and 2) provides more details on the calculation of 171 

DMI and DOMI, including relations between DMI, PDIN, UFL and =>. It also provides 172 

statistical description of the number of months that cattle spent in each location per year and 173 

calculation of percentages of each type of forage in annual feed rations (Tables S2 and S3). In 174 

subsequent calculations, three farms with no concentrate feed recorded were excluded to 175 

avoid bias due to a lack of this information, leaving n=40 farms. Finally, DMI, DOMI and 176 

predicted methane emissions for each type of animal feed for the 40 farms studied were 177 

calculated (Figure 1). 178 

 179 

 180 

Figure 1. Conceptual model of calculation of enteric methane emissions (output) from average 181 

annual data (inputs) obtained from the EDEN-E dataset. All abbreviations are available in the 182 

main text. 183 
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Table 2. Statistical description of dry-matter intake (DMI) and digestible organic matter 184 

intake (DOMI) of feed rations of dairy cows (kg/cow/year) from 40 farms. 185 

Component 

 

Parameter 

 

Min. 

 

Mean 

 

Max. 

Standard 

deviation 

Grazed grass DMI 2245.9 3485.4 4293.1 525.1  

DOMI 1563.1 2425.8 2987.9 365.5 

Preserved grass DMI 0 329.4 2080.1  468.7  

DOMI  0 213.5 1347.9 303.7 

Maize silage DMI  0 1969.6 4484.2  1180.9 

DOMI  0 1507.1 3431.2 903.6 

Concentrate feed DMI 41.2  466.7  1041.6  298.1  

DOMI  35.1 371.8 861.2 243.8 

Total DMI 4897.2 6251.2  7646.9  727.5  

DOMI 3273.4 4518.2 5664.1 611.4 

 186 

2.2. Extreme-Value Theory 187 

Considering the independent input parameters zA, zB, … , z|, probability distributions of inputs 188 

affected by extreme variations can be identified using EVT. Applying EVT to agrosystems 189 

consists of extracting peak series,  WA, WB, … , Wu, which are values at which input parameters 190 

are considered extreme, then fitting the extracted peak series using appropriate probability 191 

distribution functions such as generalized extreme-value or generalized Pareto distributions 192 

(GPD) (Coles, 2001). For instance, the peak-over-threshold method consists of selecting a 193 

series of observations greater than a given threshold }. In this context, the distribution of the 194 

excesses, W = z − }, extracted from observations z of the variable 8 is fitted by the GPD 195 

function with parameter θ=(~, �) defined by the empirical distribution function: 196 

Y�,��W� = 1 − �1 + � �W�}�
~ ��

�A/�
 

Equation 6 

for � ≠ 0 and 1 + � ����
� � > 0, with ~ > 0 and � the scale and shape parameters, 197 

respectively. 198 

Assuming independent maxima  WA, WB, … , Wu, obtained from random variable �, the log 199 

likelihood function has the form 200 
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ℒ�}, �;  WA, WB, … , Wu� = E log KY�,�
KW �W9|}, ��

u

9@A
 

Equation 7 

Several methods are available to select the threshold }, such as the use of quantiles (Chiu et 201 

al., 2016). The choice of the threshold requires a compromise between the bias and variance 202 

of estimators. Bias will likely result from a too-low threshold value, while large variance will 203 

likely result from a too-large threshold value. We used the weighted Hill estimator as a 204 

nonparametric approach to automatic select the threshold }. The estimator θ�� of parameter θ 205 

= (~, �) depending on threshold } is obtained by maximizing a weighted quasi-log-likelihood 206 

function such that: 207 

θ�� = 1
n��

E ��,��W9� log KY�,�
KW

u

9@A
��9� 

Equation 8 

where  208 

n�� = ∑ ��,��W9�u9@A  Equation 9 

is the weighted Hill estimator of the number of observations beyond the threshold }. The set 209 

weights is defined as 210 

��,��W9� = � �W9 − W
ℎ � Equation 10 

with ��∙� a kernel function and ℎ > 0 a bandwidth parameter (Grama and Spokoiny, 2008; 211 

Durrieu et al., 2015).  212 

A goodness-of-fit test was performed to test the null hypothesis that the tail was fitted by a 213 

GPD. In addition, a graphical test, the Pareto quantile plot, was performed from a scatter plot 214 

of points (−log �1 − i/�n + 1��; log �W9�), which are assumed to have a linear form with slope 215 

� when the tail was fitted by a GPD. We used the ‘evd’ (Stephenson, 2002) and ‘extremefit’ 216 

(Durrieu et al., 2017) packages of R software (The Comprehensive R Archive Network: 217 

http://cran.r-project.org) to apply EVT. EVT was also applied to fit probability distribution 218 

functions of independent minima  NA, NB, … , Nu of fractional months that cattle spent only 219 

grazing using change variable W9∗ = 12 −  N9. 220 

Based on data collected from agrosystems and experts opinion, our approach consisted of 221 

identifying variables that were directly affected by extreme variations in management 222 

practices. For instance, in systems with grazing, time spent exclusively in farm buildings, 223 

exclusively on pasture, or transitioning from one to the other is a component of farm 224 



10 

  

management. EVT was applied to peak series of the time that cattle spent only grazing from 225 

EDEN-E data. Because each dairy farm had only one observation of the time spent only 226 

grazing, the final dataset to which EVT was applied contained only 40 observations. To 227 

simplify calculations without losing generality, once the time spent only grazing was set, the 228 

remaining time during the year was split evenly between the time spent exclusively in 229 

buildings and the time spent transitioning (DA = DB), since they had relatively similar means in 230 

the EDEN-E dataset (2.4 and 3.0 months/year, respectively; Table S2). However, the 231 

percentages of each type of forage in annual feed rations during these two periods was not 232 

modified. 233 

Extremely long and short values of time (months/year) that cattle spent only grazing were 234 

simulated under GPD and compared to average values simulated under a Gaussian 235 

distribution (Figure 2, for extremely long and average variations). We then simulated 236 

variations in mean annual DOMI and predicted methane emissions at the individual-animal 237 

scale (i.e., kg/cow/year) under extremely long, extremely short and average values of time 238 

that cattle spent only grazing. 239 

 240 

Figure 2. Time (months/year) that cattle spent only grazing simulated under (a) generalized 241 

Pareto distributions for extremely long variations and (b) Gaussian distributions for average 242 

variations 243 
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For the simulations, we selected one representative farm of each of three types of dairy farms 244 

from the EDEN-E dataset (Table 3): 245 

(i) intensive (quantity of milk produced ≥ 8000 kg/cow/year) 246 

(ii) semi-intensive (quantity of milk produced < 8000 kg/cow/year and percentage of 247 

forage area in maize ≥ 30%) 248 

(iii) extensive (quantity of milk produced < 8000 kg/cow/year and percentage of forage 249 

area in maize < 30%) 250 

For each type of dairy-production system, the time spent only grazing was assumed not to 251 

influence the mean quantity of concentrate feed fed, which was assumed to be related more to 252 

a system’s milk-production goal per cow. Indeed, in the EDEN-E dataset, milk production per 253 

cow tended to increase as the quantity of concentrate feed fed per cow increased (R2 = 0.61, 254 

data not shown). 255 

Table 3.Characteristics of the representative farm selected from the EDEN-E dataset to 256 

represent each type of dairy-production system (intensive, semi-intensive and extensive). FA 257 

= forage area 258 

Type  

Milk produced 

(kg/cow/year) 

Maize (% 

of FA) 

Months that cattle spent in each 

location per year 

Annual distribution of forage 

intake (%) by mass 

Farm 

buildings 

only 

Both farm 

buildings 

and 

pastures 

Pastures 

only 

Maize 

silage  

Grazed 

grass 

Preserved 

grass 

intensive 8090 40 3.1 1.3 7.6 18.3 68.8 12.9 

semi-intensive 6210 42 3.6 1.3 7.1 38.1 61.9 0.0 

extensive 5500  5 1.3 2.7 8.0 5.4 77.9 16.7 

 259 

Values of time that cattle spent only grazing were simulated for each farm in 100,000 260 

replicates. In addition to descriptive statistics, we calculated skewness (the third standardized 261 

moment) and kurtosis (the fourth standardized moment), defined as 262 

s�X D�8� = ¡
� = ¢£4¤�¡vyu�¤�6¥¦

�¢£4¤�¡vyu�¤�6§¦�¥/§  VDK �MZN�8� = ¢3�¤�¡�¨7
�¢©�¤�¡�§ª�§ 

Equation 11 
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with ] the mean of 8. These two statistics are useful to describe the shape of probability 263 

distribution functions. 264 

Selecting the threshold } requires a compromise between too-small and too-large values of }. 265 

Setting } too small increases the sample size of extremes and the bias of estimated parameters 266 

to the point that the fitted GPD may not approximate the tail well. Conversely, setting } too 267 

large decreases the sample size of extremes, increasing the variance of estimated parameters. 268 

We tested three threshold values for the extremely long times: } = 7.0, 7.5 and 8.0 269 

months/year, corresponding to sample sizes D� of 23, 16, 11, respectively. We also tested 270 

three threshold values for the extremely short times: } = 7.3, 7.0 and 6.5 months/year, 271 

corresponding to sample sizes D�  of 25, 20, 14, respectively. For both extremes, the adequacy 272 

of the peak series was tested with three other extreme distributions (exponential, gamma and 273 

lognormal) useful for describing asymptotic distributions (Chiu et al., 2016). The Root Mean 274 

Squared Error (RMSE) was calculated to compare all fitted distributions.  275 

3. Results  276 

For extremely long times spent only grazing, the automatic selection procedure yielded the 277 

threshold value } = 8.0 months/year (Table 4, Figure 3). At } = 8.0, the peak series had the 278 

smallest RMSE, and estimated parameters for the fitted GPD function were ~� = 0.786 279 

and �̂ = 0.116 (Table 4). 280 
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Table 4. Results of adequacy of observations above threshold } of time (months/year) that 281 

cattle spent grazing, with generalized Pareto (GPD), exponential (EXP), gamma (GAM) and 282 

lognormal (LNO) distributions 283 

GPD 

Q­ 

Estimated parameters 

for GPD 

Root Mean Square Error 

Threshold ­  ®̄  °� GPD EXP GAM LNO 

7.0 23 1.2 -0.7∙ 10�A 1.54 8.16 7.91 7.90 

7.5  16 1.1 -0.3∙ 10�A 1.44 8.55 8.28 8.27 

8.0 11 0.8 1.2∙ 10�A 1.35 8.91 8.63 8.62 

The selected threshold } is in bold. D�: sample size, ~�: estimated scale parameter of the GPD 

function, �̂: estimated shape parameter of the GPD function  

 284 

 285 

Figure 3. (a) Time (months/year) that cattle spent only grazing (with the dashed line 286 

representing the automatically selected threshold for the extremely long times, } = 8 287 

months/year) for n = 40 farms (sorted in ascending order) and (b) histogram of observations 288 

above the selected threshold } = 8 months/year (sample size D� =11)  289 
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The Pareto quantile plot for threshold } = 8.0 showed that scatter points (−log �1 − i/�n +290 

1��; log �W9�) were approximated by a linear function with slope = 1.2∙ 10�A ≅ �̂, intercept = 291 

2.0, an R2 = 0.80 and a residual standard error = 0.4∙ 10�A. 292 

For the three types of dairy-production systems considered, distributions of the time that cattle 293 

spent only grazing, DOMI and predicted methane emissions under extremely long variations 294 

had an absolute value of skewness of 1.5 and kurtosis of 5.1 (Table 5). More precisely, 295 

distributions of extremely long variations of the simulated variables were skewed to the left 296 

(negative skewness) for time spent grazing and to the right (positive skewness) for DOMI and 297 

predicted methane emissions. Moreover, coefficients of variation of the distributions of the 298 

three variables simulated under extremely long variations were one-half of those simulated 299 

under average variations (Table 5). From the average to extremely long variations simulated, 300 

mean and maximum DOMI and predicted methane emissions decreased. For instance, for the 301 

intensive system, mean values of DOMI and predicted methane emissions decreased by 4.6% 302 

and 4.8%, respectively, while maximum values decreased by 16.8% and 14.9%, respectively. 303 

Minimum values of DOMI and methane emissions were the same for average and extremely 304 

long variations. For DOMI, 75% (the third quartile) of the simulated values were less than 305 

4003 and 4284 kg/cow/year under extremely long and average variations, respectively. For 306 

predicted enteric methane emissions, 75% of the simulated values were less than 5013 and 307 

5381 kg/cow/year under extremely long and average variations, respectively. Similar results 308 

were obtained for the two other types of dairy-production systems. More time spent only 309 

grazing decreased mean methane emissions (g CH4) per cow and per kg of milk, the latter 310 

from 15.8 to 15.1 for the intensive system, 19.4 to 18.5 for the semi-intensive system and 19.0 311 

to 18.5 for the extensive system (Table 5).  312 

For extremely short times spent only grazing, the automatic selection procedure yielded the 313 

relatively high threshold } = 7.3, with sample size D� = 25; estimated parameters for the fitted 314 

GPD function were ~� = 1.255 and �̂ = 0.295 (Table S9, Supplementary Material). For the 315 

intensive system, from the average to extremely short variations simulated, mean values of 316 

DOMI and predicted methane emissions increased by 1.4% and 1.5%, respectively, while 317 

minimum values increased by 10.8% and 11.2%, respectively. Maximum values of both 318 

variables were the same for average and extremely short variations.  319 

For the intensive system, two-sample Student’s t-tests identified significant differences 320 

between mean DOMI (and thus methane emissions) simulated from extreme (extremely long 321 
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and short) and average variations in time that cattle spent grazing (Tables S4 and S5, 322 

Supplementary Material). Simulated values of time that cattle spent only grazing, DOMI and 323 

methane emissions under the extreme and average variations differed, but results simulated 324 

under extremely short variations were the closest to those simulated under average variations 325 

(Figure 4, for the semi-intensive system). 326 

Table 5. Descriptive statistics of the time spent only grazing simulated for all dairy-327 

production systems under extremely long, extremely short and average variations, and its 328 

influence on digestible organic matter intake (DOMI) and predicted methane emissions for 329 

each type of system 330 

Variables 

Variations 

simulated 1st Qu. Mean 3rd Qu. [Min.; Max.] 

Standard 

deviation 

Time spent 

only grazing 

(months/year) 

Extremely long  8.2 8.8 9.1 [8;12] 0.8 

Average  4.9 6.5 8.2 [0;12] 2.3 

Extremely short 5.2 5.8 6.9 [0;7.3] 1.5 

Intensive system 

DOMI 

(kg/cow/year) 

Extremely long  3925 3953 4003 [3683;4022] 66.5 

Average 4003 4146 4284 [3683;4700] 200.1 

Extremely short 4111 4205 4254 [4081;4700] 129.2 

Methane 

emissions 

(kg/cow/year) 

Extremely long  121.3 122.2 123.8 [113.5;124.4] 2.1 

Average 123.8 128.4 132.9 [113.5;146.3] 6.4 

Extremely short 127.3 130.3 131.9 [126.3;146.3] 4.2 

Semi-intensive system 

DOMI 

(kg/cow/year) 

Extremely long  3696 3722 3769 [3465;3787] 62.5 

Average  3769 3904 4036 [3465;4430] 190.1 

Extremely short 3872 3961 4007 [3843;4430] 122.0 

Methane 

emissions 

(kg/cow/year) 

Extremely long  114.2 115.1 116.5 [106.9;117.1] 1.9 

Average 116.5 120.8 125.0 [106.9;137.6] 6.0 

Extremely short 119.8 122.6 124.1 [118.9;137.6] 3.9 

Extensive system 

DOMI 

(kg/cow/year) 

Extremely long  3248 3256 3270 [3179;3276] 19.1 

Average 3271 3311 3351 [3179;3469] 57.1 

Extremely short 3301 3328 3342 [3293;3469] 36.8 

Methane 

emissions 

(kg/cow/year) 

Extremely long  100.9 101.2 101.7 [98.2;101.9] 0.7 

Average 101.7 103.2 104.7 [98.2;109.2] 2.1 

Extremely short 102.9 103.9 104.4 [102.5;109.2] 1.4 

Extremely long: kurtosis =5.1, |skewness|=1.5 (>0 for DOMI and CH4, and <0 for time spent grazing) 

Average: kurtosis =2.6, |skewness|=0.1 (>0 for DOMI and CH4, and <0 for time spent grazing) 

Extremely short: kurtosis =2.1, |skewness|=1.6 (>0 for DOMI, and CH4 and <0 for time spent grazing) 

 331 
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 332 

  333 

Figure 4. Boxplots of simulated time (months/year) spent only grazing, digestible organic 334 

matter intake (DOMI, kg/cow/year) and predicted methane emissions (CH4, kg/cow/year) 335 

under extremely long, extremely short and average simulated variations (100,000 replicates 336 

each) for the semi-intensive dairy-production system. Whiskers represent 1.5 times the 337 

interquartile range. Thick black lines are composed of strings of outliers. 338 

4. Discussion 339 

Variations in dry matter intake and enteric methane emissions 340 

In this study, EVT was applied to average annual data, which are contained in most available 341 

databases of dairy-production systems. We assumed that extreme variations in the time that 342 

cattle spent only grazing reflected different management practices of dairy farms in Brittany. 343 

A constant mean annual quantity of concentrate feed fed was also assumed for all simulations. 344 

Simulating extremely long times that cattle spent only grazing was favorable for developing 345 

grass-based systems, which had lower mean annual DOMI (because their decrease in maize 346 

silage DOMI was larger than their increase in grass DOMI) and thus lower predicted enteric 347 

methane emissions per cow. The longer time that cattle spent only grazing implied an increase 348 

in the quantity of grazed grass and a decrease in quantities of the other types of forages (i.e., 349 

maize silage and preserved grass) in annual feed rations (detailed results in Table S6, 350 

Supplementary Material). Consequently, enteric methane emissions decreased when 351 

increasing the quantity of grazed grass (and decreasing the quantities of other types of 352 

forages).  353 



17 

  

Conversely, simulating extremely short times that cattle spent only grazing was unfavorable 354 

for developing grass-based systems. These short times both decreased the quantity of grazed 355 

grass and increased the quantities of maize silage and preserved grass in annual feed rations. 356 

For comparison, an 8-days experiment showed that daily herbage intake of dairy cows 357 

decreased (from 16.7 to 13.8 kg organic matter/cow/day) as daily herbage allowance 358 

decreased (from 46 to 19 organic matter/cow/day, respectively) (Peyraud et al., 1996). 359 

Furthermore, an increased DMI of silage and its increased passage rate, which reduces 360 

ruminal residence time, reduces enteric methane production (Haque, 2018). Simulated 361 

average feeding levels and predicted methane emissions in our study were found to lie within 362 

the ranges of variation in data of ruminants ingesting forages and concentrate feed (from the 363 

“Rumener” database) used to calibrate the methane-emission model in Equation 1, and within 364 

those of ruminants ingesting only forages (from the “Methafour” database) (Table S7 and S8, 365 

Supplementary Material) (INRA, 2018a). Longer- or shorter-than-average times that cattle 366 

spend only grazing may be influenced by climate conditions such as longer-than-normal 367 

droughts or rainfall periods. For instance, in regions north of the Alps whose landscape is 368 

dominated by grassland, even distribution of rainfall throughout the year and mild 369 

temperatures in winter favor grass growth (Thomet et al., 2011). This raises the issue of 370 

assessing the risk that uncommon environmental events will decrease the quantity of grass 371 

available for grazing.  372 

Nutritional management strategies to mitigate GHG emissions 373 

The range of variation in time spent grazing also reflects changes in feed rations and must be 374 

discussed when considering nutritional management strategies to mitigate enteric methane 375 

production. In our study, more time spent only grazing resulted in replacing maize silage and 376 

preserved grass with grazed grass (Table S6, Supplementary Material), which decreased mean 377 

methane emissions (g CH4) per kg of milk and per cow. The type of pasture must be also 378 

considered when extending grazing time, since cattle grazing alfalfa emitted more methane 379 

than those grazing grass pastures, depending on sward maturity at grazing (Chaves et al., 380 

2006; Archimède et al., 2011). Another nutritional strategy that may reduce enteric methane 381 

emissions consists of feeding maize and cereal silages instead of grass silage, since maize is 382 

already cultivated and fed to increase animal performance (Beauchemin et al., 2008). For 383 

instance, feeding grass silage instead of maize silage in a previous experiment decreased 384 

methane emissions per kg of milk by ca. 15%, from ca. 13 to ca. 11 g CH4/kg of milk (Doreau 385 

et al., 2011). How replacement of maize or cereal silage by grass silage affects methane 386 
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emissions should be further investigated in combination with the effects of more time spent 387 

grazing. Additional studies should focus on strategies to mitigate enteric methane emissions, 388 

such as supplementing diets with feed additives such as plant extracts (Wilfart et al., 2013) or 389 

enzymes. Nutrient composition (e.g., protein, fiber) should be investigated as well, since it is 390 

known to affect intake and therefore methane emissions (Doreau et al., 2011). However, no 391 

feed nutrient compositions were available in our study because they are not usually measured 392 

on commercial farms.  393 

Differences in diet strategies do not affect other GHG emissions (e.g., CO2) in the same way 394 

as enteric methane emissions. For instance, in a previous experiment, the type of pasture was 395 

found not to affect CO2 production (Chaves et al., 2006). From experimental data of 67 396 

lactating dairy cows, diets based on grass or on maize silage differed little in CO2 emissions 397 

since internal use of nutrients (e.g., carbon) and the amount of carbon converted to CO2 398 

remained relatively constant when cows were fed according to requirements (Kirchgessner et 399 

al., 1991). Likewise, shifts in grass quality in another experiment were found to have no major 400 

effect on CO2 production, following a GHG mitigation strategy in dairy systems that changed 401 

the diet from barley straw and protein concentrate to grazed grass (Lee et al., 2017). Note that 402 

the energy used (e.g., to produce silage) must also be considered in the mitigation strategies 403 

investigated (FAO, 2017). Increasing the time that cattle spend grazing would decrease the 404 

quantity of maize silage consumed, which would likely decrease quantities of maize silage 405 

produced or purchased, fertilizers applied, diesel used and electricity consumed. These 406 

positive and negative changes would influence overall environmental impacts. 407 

Limitations of the study 408 

This study has some limitations. First, the average annual scale of data limited the choice of 409 

models that predict methane emissions and the level of detail at which calculations were 410 

performed. The model used in our study was easy to apply as a function of the quantity of 411 

DOMI, and the EDEN-E data lay within the ranges of variation of the data used to develop 412 

and calibrate the model. However, the model needs to be tested with datasets other than those 413 

used to calibrate it. More detailed models that use factors such as the feeding level and the 414 

percentage of DOMI as concentrate feed to predict methane emissions (Sauvant and Noziere, 415 

2016) would have required more information than that available in our study. Second, it 416 

ignores the sensitivity of dairy farms to inter-annual climate variation, since we did not have 417 

measurements over several years. For instance, for a group of dairy farms with known 418 
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characteristics, one could apply EVT to the observed time that cattle spent only grazing in 419 

each of several years. The peaks extracted from these time series would also enable 420 

calculating the “return period”, defined as the mean time before a random variable exceeds a 421 

given level over a long period. Knowing the return period of extreme values of time that cattle 422 

spent grazing could help farmers manage dairy farms. Although not including EVT, an 423 

interesting study examined the sensitivity of beef-production systems to climate conditions 424 

and the subsequent impacts on technico-economic results (Mosnier et al., 2012). This study 425 

simulated interannual variations in variables such as the purchase of forages, predicting that 426 

beef farms with lower stocking rates tended to have more stable incomes. Third, the small 427 

sample of dairy farms (n = 43), and thus the number of farms on which cattle grazed more 428 

than the upper threshold of } = 8 months (D�=11) or less than the lower threshold of } = 7.3 429 

months (D� = 25), and the small difference between the two thresholds, limits the 430 

representativeness of results. To increase both the representativeness of data and the 431 

generality of results would require increasing the sample size of dairy farms. Fourth, applying 432 

EVT required extrapolating the models used. The data used to calibrate and validate variables 433 

in most models of agricultural systems contain few values in the tails of distributions (i.e., 434 

extremely small or extremely large). Applying EVT raises the issue of building models and 435 

collecting data specifically adapted to predict emissions under extreme variations. 436 

Research prospects 437 

Deeper investigation is required into the characteristics, management practices and 438 

environmental conditions of the group of farms considered to explain extreme variations in 439 

variables. These studies could help distinguish the influence among farms of factors such as 440 

management practices and environmental conditions on extreme variations in grass 441 

availability, which influences the time that cattle spend grazing. This could help consider and 442 

decrease risks due to these factors when assessing environmental impacts of dairy farms. 443 

Another research prospect is to apply EVT directly to environmental factors by adding a 444 

submodel that generates environmental factors as input variables to models of dairy-445 

production systems. For instance, predicted rainfall could be used as input for a grass growth 446 

model; for instance, predictions of the French climate model ARPEGE (Déqué et al., 1994) 447 

were used as input for the crop model STICS (Ruget et al., 2012). This would require 448 

additional data (e.g., soil quality, daily rainfall and temperature) and would raise the issue of 449 

combining data and models from average-annual and daily time scales. Moreover, EVT could 450 
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be included in LCA studies to address risk and uncertainties in LCA modeling, perhaps even 451 

helping to inform public policies, since several studies have highlighted the need to integrate 452 

LCA and risk-analysis methods (Heijungs and Huijbregts, 2004). 453 

5. Conclusion 454 

Applying EVT enabled studying consequences of longer- and shorter-than-average times that 455 

cattle spent only grazing on DOMI and enteric methane emissions. Longer and shorter 456 

grazing times decreased and increased, respectively, both DOMI and predicted methane 457 

emissions of dairy farms. A future research prospect is to develop a framework to integrate 458 

EVT with LCA. Doing so would enable analyzing environmental impacts of agrosystems 459 

under extreme conditions and introducing the concept of risk into the design of new 460 

agrosystems. It also could help determine policy implications of risk analysis for the 461 

stakeholders concerned. 462 
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