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Abstract: In this work, we study a multiscale inverse problem associated with a multi-type model

for age structured cell populations. In the single type case, the model is a McKendrick-VonFoerster

like equation with a mitosis-dependent death rate and potential migration at birth. In the multi-type

case, the migration term results in an unidirectional motion from one type to the next, so that the

boundary condition at age 0 contains an additional extrinsic contribution from the previous type. We

consider the inverse problem of retrieving microscopic information (the division rates and migration

proportions) from the knowledge of macroscopic information (total number of cells per layer), given

the initial condition. We first show the well-posedness of the inverse problem in the single type case

using a Fredholm integral equation derived from the characteristic curves, and we use a constructive

approach to obtain the lattice division rate, considering either a synchronized or non-synchronized

initial condition. We take advantage of the unidirectional motion to decompose the whole model into

nested submodels corresponding to self-renewal equations with an additional extrinstic contribution.

We again derive a Fredholm integral equation for each submodel and deduce the well-posedness of the

multi-type inverse problem. In each situation, we illustrate numerically our theoretical results.

Keywords: age structured cell population; renewal model; McKendrick–VonFoerster equation;

inverse problem; multiscale identification problem; Fredholm integral; characteristic curves; measure

solutions

Cell dynamics are classically investigated in the framework of structured populations, and especially

of the McKendrick–VonFoerster model. The direct problem associated with the initial and extended

formulations of this model has caught most of the attention, both on the theoretical ground (well-

posedness, e.g. [1, 2]) and numerical ground (numerical approximation of the solutions, e.g. [3, 4, 5]).

The inverse problems, intending to recover model functions, such as the death or division rate, from
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observable model outputs, have been much less studied [6, 7, 8, 9, 10], although they have a particular

interest in a cell dynamics context, where a priori information on these rates are often quite poor.

In this work, we study and illustrate the well-posedness of a multiscale inverse problem (IP), defined

from a multi-type version of the linear, age-structured formulation of the McKendrick–VonFoerster

model, in the specific situation where cell death can only occur at the time of mitosis.

This problem has been initially motivated by a developmental biology issue, namely folliculogene-

sis, the process of growth and maturation of ovarian follicles. During the first development stages, the

growth of ovarian follicles is mainly driven by the proliferation of the somatic cells surrounding the

oocyte (egg cell), which progressively builds up several concentric cell layers. In this specific applica-

tion [11], the cell type corresponds to the layer index, and the cell division rate is type-dependent. At

the time of mitosis, cells are likely to move to the next layer (unidirectional motion), and the (layer-

dependent) migration rate can be seen as the equivalent of a mitosis-induced death rate in the lower

layer. As a consequence, the birth rate (boundary condition at birth with age a = 0) combines an

intrinsic contribution from division and an extrinsic contribution from migration.

Beyond folliculogenesis, such a multi-type formulation can be applied to other cell processes with

either spatially oriented development (e.g. cortical neurogenesis) or commitment to a cell lineage or

fate (e.g., hematopoiesis).

The multiscale character of the IP ensues from the fact that the observable data (total cell number

on each layer) are available on the macroscopic scale and used to recover the microscopic functions

entering the system of interconnected McKendrick–VonFoerster PDEs. More specifically, we consider

here the problem of recovering the age-dependent division rates, and constant migration rates ruling

the cell density in age on each layer, from the knowledge of the total cell number (zero-order moment

of the density) on every layers.

In [11], we have tackled the simplified case of constant (yet layer-dependent) division rates. In this

work, we extend the study to the case of compactly supported (lattice) division rates, in order to stick

to a realistic interpretation of the division rate as a distribution of intermitotic times ; age is reset to

zero at birth, there can be a minimal age compatible with division, and cells can become quiescent

beyond a maximal age. We consider initial conditions corresponding either to a synchronized (Dirac

mass) or non-synchronized cell population (Dirac comb or continuous function) on the first layer (all

other layers are empty). If the well-posedness of the PDEs (1.1) for a L1 initial condition has been

widely studied in the last decades (see for instance, [1, 2]), the case of Dirac measure initial conditions

has been investigated only recently. For instance, in [12, 13], the authors have introduced the notion of

measure solutions for the conservative renewal equation.

In the single layer (not multi-type) case, similar multiscale IP problems, dealing with an age-

dependent reproduction rate have been studied [6, 8]. In [6], in the case of a strictly positive,

reproduction-independent death rate resulting in an almost sure death before a maximal age L, the

authors have shown, from the characteristic curves, that the birth rate (boundary condition) verifies a

Volterra integral equation of the second kind, and then used the Fredholm alternative to further recover

the reproduction rate.In [8], starting from the cumulative formulation (renewal equation), and assuming

a non-lattice reproduction rate, the authors have studied both the case of reproduction-dependent and

reproduction-independent death rate to recover the reproduction and death rates. In the reproduction-

dependent (mitosis-dependent) case (see Theorem 4.3), using the Laplace transform, the authors have

shown the IP well-posedness for an initial population synchronized at age 0 (Dirac mass). If, in addi-
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tion, the total cell number can be expressed as a series of exponential functions, the IP well-posedness

is also obtained for a non-synchronized initial population represented by a measure with support on

[0, 1] and no atom at 1.

Also, single-scale IP problems, where observation are available at the microscopic level, have been

investigated in a similar age-structured framework [7, 14, 15] or in the size-structured framework

[16, 17, 18]. In the semigroup framework, the problem of recovering the death rate from the knowledge

of both the age distribution at two different time points and the reproduction rate is studied in [7].

A similar problem is considered in [15] from the observation of a truncated age distribution at any

time. Finally, in a steady state configuration, given a rather mesoscopic observation, the distribution of

intermitotic times, one can recover the mitosis-dependent death rate [14] from the eigenvalue problem,

following the methodological principle introduced in [16, 17, 18].

This paper is organized as follows. In section 1, we present the direct problem (multi-type McKen-

drick–VonFoerster). Inspired from the single layer case [2], we propose a formal solution based on

the characteristic curves, and use them to design a numerical scheme, as performed in [4]. We check

our numerical scheme using the mass conservation property. In Section 2, using a Fredholm integral

equation, we show the well-posedness of the IP in the single layer case, when considering a continuous

non-synchronized initial condition. Because of the mitosis-dependent death rate, the Fredholm alter-

native cannot be applied, and we use a constructive approach to obtain the lattice division rate from the

knowledge of both the total cell number and a continuous (non-synchronized) initial condition. Then,

we take advantage of the unidirectional motion and decompose the Jth layer model into J submodels,

each corresponding to the single layer model with an additional extrinsic term in the boundary condi-

tion. We again derive a Fredholm integral equation for each submodel and deduce the well-posedness

of the multi-type inverse problem. In section 3, we show the well-posedness of the IP in the single layer

case, when considering Dirac masses as initial conditions. After constructing a solution from the char-

acteristic lines, we still obtain a Fredholm integral equation. In each situation, we illustrate numerically

our theoretical results. We conclude the paper by a Conclusion/Discussion section. Complements on

the numerical scheme construction and the proofs can be found in the Appendix.

1. Model and discretized solutions

We recall the age and layer structured cell population model considered in [11]. Let J ∈ N∗. The

cell population is represented by a population density function ρ := (ρ( j)(t, a)) j∈~1,J� ∈ L1(R+)
J, where

ρ( j) is the cell age density in layer j at time t such that ρ verifies, for all j ∈ ~1, J�, for all t ∈ (0,+∞),



∂tρ
( j)(t, a) + ∂aρ

( j)(t, a) = −b j(a)ρ( j)(t, a), a ∈ (0,∞),

ρ( j)(t, a = 0) = 2(1 − p
( j−1)

S
)

∫ +∞

0

b j−1(a)ρ( j−1)(t, a)(t, a) da + 2p
( j)

S

∫ +∞

0

b j(a)ρ( j)(t, a) da,

ρ( j)(0, a) = ψ j(a), a ∈ (0,+∞),

(1.1)

where b j are the division rate functions, and ψ = (ψ j) j∈~1,J� is the initial density such that for all j ∈

~1, J�, ψ j ∈ Cc(R+). For all j ∈ ~1, J�, the parameter p
( j)

S
is the probability that a cell taken randomly

among both daughter cells, remains on its mother layer j. For all j ∈ ~1, J − 1�, we take p
( j)

S
∈ (0, 1).

On the last layer, p
(J)

S
∈ (0, 1]. A natural choice in the multi-layer case is to consider p

(J)

S
= 1 as in [11].

The division rate on each layer has a classical probabilistic interpretation [1, 6, 8, 14]: the probability

Mathematical Biosciences and Engineering Volume 16, Issue 4, 3018–3046.



3021

that a cell born on the j-th layer has not yet divided at age α is

exp

(
−

∫ α

0

b j(s)ds

)
.

It follows that if
∫ +∞

0
b j(s)ds = +∞, the cell divides almost surely, and conversely, if

∫ +∞
0

b j(s)ds <

+∞, a cell may never divide and become quiescent. This will happen in particular if b j is a bounded,

compactly supported function. We investigate the inverse problem associated with the model (1.1):

Definition 1.1.

(IP) Given the initial condition ψ, the probability p
(J)

S
and the functions

m(t) := (m j(t)) j∈~1,J� with m j(t) :=

∫ +∞

0

ρ( j)(t, a)da, (1.2)

defined for all t ∈ [0,T ), with T > 0, determine the functions b j and the probabilities p
( j)

S
, for all

j ∈ ~1, J − 1�, such that the direct problem (1.1) is satisfied on [0,T ).

The model is completed with a set of hypotheses on the division rate and initial conditions, formu-

lated below.

Hypothesis 1.1. For all j ∈ ~1, J�, the division rates b j are non-negative compactly supported func-

tions: b j ∈ Cc

(
(Amin

j , Amax
j

)
)
, where Amin

j , Amax
j
∈ R+ ∪ {0} ∪ {+∞}, such that Amin

j < Amax
j

.

For the single layer case, note that this hypothesis is more general than the one used either in [8]

where the division rate function is supposed to be non-lattice or, in the steady state approach [14] where

Amax
1
= +∞.

Motivated by the biological process studied in [11], we consider that the system starts with all

the layers empty, except the first one. We consider different types of initial conditions: either Dirac

measures corresponding to a fully or partially synchronized population, or a continuous function cor-

responding to a non-synchronized population. In case of a continuous initial condition, we assume that

the following hypotheses are verified.

Hypothesis 1.2. For all j ∈ ~2, J� and for all a ∈ (0,+∞), we have ψ j(a) = 0 and ψ1 ∈ Cc

(
(a

ψ

min
, a

ψ
max)

)
,

with a
ψ

min
, a

ψ
max ∈ R+ such that a

ψ

min
< a

ψ
max.

If the initial condition is a Dirac measure or Dirac Comb, we assume that:

Hypothesis 1.3. For all j ∈ ~2, J� and for all a ∈ (0,+∞), we have ψ j(a) = 0. In addition, we suppose

that there exist two sequences of N + 1 positive numbers, with N ∈ N, a = (ai)i∈~0,N� ∈ R
N
+ ∪ {0} and

Ψ = (Ψi)i∈~0,N� ∈ R
N
+ such that

a
ψ
max := a0 > a1 > ... > aN =: a

ψ

min
. (1.3)

Then, we define the initial condition on the first layer, for all a ≥ 0, by

ψ1(a) :=

N∑

i=0

Ψiδai
(a). (1.4)

Mathematical Biosciences and Engineering Volume 16, Issue 4, 3018–3046.
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Finally, to show the well-posedness of the inverse problem (IP), we will need two additional hy-

potheses on the b j functions.

Hypothesis 1.4. For all j ∈ ~1, J�, the division rates b j are analytic on their support sets.

Hypothesis 1.5. The first division time on Layer 1 is larger than the age of the eldest cells at initial

time: Amin
1
≥ a

ψ
max

Hypothesis 1.1 is quite natural from the biological viewpoint, whereas Hypotheses 1.4 and 1.5 are

purely technical, yet easily fulfilled.

We follow the same approach as in [6, 7] and first solve the direct problem (1.1).

1.1. Formal solutions of the direct problem (1.1)

Even if an explicit solution of the PDEs (1.1) cannot be obtained, one classical way to solve the

direct problem when dealing with continuous initial conditions, is to use the method of characteristics

[2, 1]. We integrate the PDEs (1.1) along the characteristics lines a = a0 + t and t = t0 + t, where a0

and t0 are nonnegative constants. We get for all j ∈ ~1, J� and for all a ∈ (0,+∞),

ρ( j)(t, a) =


ψ j(a − t)e−

∫ a

a−t
b j(s)ds, a ≥ t

ρ( j)(t − a, 0)e−
∫ a

0
b j(s)ds, a ≤ t.

(1.5)

Hence, we obtain an expression for each ρ( j), for j ∈ ~1, J�, that depends on the initial density ψ j, the

division rate b j, and the boundary condition ρ( j).

To close system (1.5), we need to get an explicit expression for the boundary condition. When J = 1,

the boundary condition, classically called the birth rate, is solution of a renewal equation [8]. In our

context, we can retrieve a similar renewal equation verified by the boundary condition:

ρ( j)(t, 0) = h j(t) + 2p
( j)

S

(∫ t

0

ρ( j)(t − a, 0)b j(a)e−
∫ a

0
b j(s)dsda +

∫ +∞

t

ψ j(a − t, 0)b j(a)e−
∫ a

a−t
b j(s)dsda

)
,

with h j(t) := 2(1 − p
( j−1)

S
)
∫ +∞

0
b j−1(a)ρ( j−1)(t, a)da.

This equation is the deterministic counterpart of the renewal equation obtained from a stochastic equiv-

alent model introduced in [11].

Figure 1 illustrates the characteristic lines obtained from expression (1.5) with J = 3. Note that

since all layers except the first are empty at initial time, a delay is needed for cells to enter the second

and third layers.

1.2. Numerical scheme to simulate the direct problem (1.1)

In this subsection, we propose a numerical scheme for the direct problem (1.1). The main numerical

difficulty associated with the hyperbolic PDEs (1.1) is the assessment of the boundary condition, which

has been dealt with by several numerical methods, based either on the method of characteristics [3, 19,

4], escalator boxcar train [5] or finite volume method [11]. Given that our problem possibly involves

a non-continuous initial condition (ψ1), and lattice division rates, the method of characteristics is the

most suitable one. In particular, the characteristics-based scheme ensures mass conservation during the

Mathematical Biosciences and Engineering Volume 16, Issue 4, 3018–3046.
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A
min

1

Age

T
im

e

2p
(1)
S

Layer 1 Layer 2

A
min

2

2(1− p
(1)
S

)

2p
(2)
S

Layer 3

A
min

3

2(1− p
(2)
S

)

Figure 1. Illustration of the PDEs (1.1) and the method of characteristics. Starting from

Layer 1, since cells are aging, the density ρ(1) is transported along the characteristic lines

a = ã + t, for all ã ∈ (a
ψ

min
, a

ψ
max). Then, when a characteristic line enters the (lilac colored)

division domain [Amin
1
, Amax

1
], cells divide and the age is reset to zero. A proportion 2p

(1)

S

of the new born cells remains on the mother layer (Layer 1) whereas the other proportion,

2(1 − p
(1)

S
), is sent to the second layer. The same mechanism is repeated from Layer 2 to

Layer 3 and so on. Note that the motion is unidirectional: cells cannot go to layers of lower

index than their mother.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 3018–3046.
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transport phase by preventing numerical diffusion when a < A
j

min
. In addition, we will see later that

this approach helps designing a numerical scheme for solving the inverse problem (IP).

To obtain a discretized solution of the PDEs (1.1), we write the conservative law for a vector func-

tion ρ̃ = (ρ̃( j)) j∈~1,J�, defined as: for all j ∈ ~1, J�, t ∈ (0,+∞) and a ∈ (0,+∞),

ρ̃( j)(t, a) := ρ( j)(t, a) exp

(
−

∫ a

0

b j(s)ds

)
. (1.6)

From the PDEs (1.1), we obtain directly that, for all t ∈ (0,+∞) and a ∈ (0,+∞),

∂tρ̃
( j)(t, a) + ∂aρ̃

( j)(t, a) = 0. (1.7)

We now have all the elements to design a numerical scheme.

First, we introduce the notations for the discretized solutions associated with the PDEs (1.1) over the

time interval [0,T ]. We discretize both the age and time intervals with the same size step: ∆ = ∆t = ∆a,

in order to be able to follow the characteristics. Let M be an integer such that M ≥ ⌊
a
ψ
max+T

∆
⌋. We

introduce the age grid points an = n∆, n = 0, ...,M and the time grid points tk = k∆, k = 0, ..., ⌊T
∆
⌋. We

refer to the grid point an by the subscript n and to the time grid point tk by the subscript k. Let U
j

k,n

be a numerical approximation to ρ( j)(tk, an). We have the following numerical algorithm whose local

truncation error is O (∆), (see details in the Appendix):

U
j

k+1,n
= U

j

k,n−1
exp(−

∫ an

an−1

b j(s)ds), (1.8)

U
j

k+1,0
= 2(1 − p

( j−1)

S
)

⌊
A

j−1
max
∆
⌋−1∑

n=⌊
A

j−1
min
∆
⌋

(
1 − e

−
∫ n∆

(n−1)∆
b j−1(s)ds

)
U

j−1

k,n
+ 2p

( j)

S

⌊
A

j
max
∆
⌋−1∑

n=⌊
A

j
min
∆
⌋

(
1 − e

−
∫ n∆

(n−1)∆
b j(s)ds

)
U

j

k,n
. (1.9)

The reader can refer to [4] for a detailed proof of convergence in the single layer case. In the several

layer case, the term corresponding to the intrinsic contribution could be dealt with in a similar way as

in the single layer case, yet one should also control the order of the extrinsic term, which is beyond of

the scope of this paper.

Remark 1.1 (Mass conservation property). When J = 1 and p
(1)

S
= 1

2
, we can observe that the mass

conservation property is verified in the sense that

M∑

n=0

U1
k+1,n =

M∑

n=0

U1
k,n.

2. Analysis of the inverse problem (IP) for continuous initial conditions

In this section, we analyse the inverse problem (IP) enunciated in Definition 1.1 starting with the

simplest case of a single layer and considering a compactly supported function as initial condition. We

then extend our results to the general case of several layers.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 3018–3046.
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2.1. Single layer case

In all this subsection, we fix J = 1 and consequently, to simplify notations, we drop the index layer

so that for instance ρ(1) becomes ρ. We thus consider the following PDE, identical to the PDEs (1.1)

with J = 1: 

∂tρ(t, a) + ∂aρ(t, a) = −b(a)ρ(t, a), a ∈ (0,∞),

ρ(t, a = 0) = 2pS

∫ +∞

0

b(a)ρ(t, a) da,

ρ(0, a) = ψ(a), a ∈ (0,+∞),

(2.1)

Note that when pS = 1, PDE (2.1) is the renewal equation. When pS < 1, PDE (2.1) is similar to a

McKendrick–VonFoerster equation in which the birth rate would be 2ps times the death rate. We recall

that according to the definition of (IP), pS = p
(1)

S
(= p

(J)

S
) is assumed to be known while the division

rate b is unknown.

2.1.1. Well-posedness of the inverse problem (IP)

We first show that the identification problem (IP) is equivalent to an inhomogeneous Fredholm

integral equation.

Theorem 2.1. Under Hypotheses 1.1 and 1.2, and supposing that pS ,
1
2
, we define f (t) :=

− 1
2pS−1

m1(t) +
2pS

2pS−1
m1(0). Then, we have for all t ∈ [0, Amin]

f (t) =

∫ a
ψ
max

a
ψ

min

ψ(a)e−
∫ a+t

a
b(s)dsda. (2.2)

Before starting the proof of Theorem 2.1, we will need the following lemma:

Lemma 2.1. Under the same hypotheses as Theorem 2.1, we have for all t ∈ [0, Amin],

m′1(t) =
2pS − 1

2pS

ρ(t, 0) (2.3)

Proof. Since both ψ and b are compactly supported, the total number of cells m1(t) =
∫ +∞

0
ρ(t, a)da can

be decomposed as the sum of the initial cells that have not yet divided and the cells born since time

t = Amin − a
ψ
max:

m1(t) =

∫ a
ψ
max+t

a
ψ

min
+t

ρ(t, a)da

︸              ︷︷              ︸
initial cells

+

∫ min(Amin−a
ψ

min
+t,0)

0

ρ(t, a)da

︸                           ︷︷                           ︸
cells born since time t=Amin−a

ψ
max

. (2.4)

Using two changes of variables, the translation s = a − a
ψ

min
− t and the homothetic transformation

s = a

Amin−a
ψ

min
+t

, we can prove formula (2.3). Note that in the general case, corresponding here to

Amin = a
ψ

min
= 0 and Amax = a

ψ
max = +∞, such changes of variables are not needed to obtain formula

(2.3). The detailed proof is exposed in the Appendix. �

We can now proceed to the proof of Theorem 2.1.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 3018–3046.
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Proof of Theorem 2.1. To simplify the proof, we do not use expression (2.4) and instead, we write the

total number of cells m1 (eq. (1.2)) as the sum of the number of the remaining cells that have not

divided yet and the cells born since time t > 0, according to the formal solution of ρ (1.5):

m1(t) =

∫ t

0

ρ(t − a, 0)e−
∫ a

0
b(s)dsda

︸                          ︷︷                          ︸
new born cells

+

∫ t+a
ψ
max

t

ψ(a − t)e−
∫ a

a−t
b(s)dsda

︸                              ︷︷                              ︸
remaining mother cells

.

We apply Lemma 2.1, for all t ≥ 0 and we obtain

m1(t) =
2pS

2pS − 1

∫ t

0

m′1(t − a)e−
∫ a

0
b(s)dsda +

∫ t+a
ψ
max

t

ψ(a − t)e−
∫ a

a−t
b(s)dsda.

We suppose that t ≤ Amin. Hence, the only cells that can divide are the cells present at initial time

(mother cells). The newborn daughter cells have not yet had the time to divide (there are no grand-

daughter cells). For all t ∈ [0, Amin],

m1(t) =
2pS

2pS − 1

∫ t

0

m′1(t − a)da +

∫ t+a
ψ
max

t

ψ(a − t)e−
∫ a

a−t
b(s)dsda

=
2pS

2pS − 1
(m1(t) − m1(0)) +

∫ t+a
ψ
max

t

ψ(a − t)e−
∫ a

a−t
b(s)dsda.

Since

∫ t+a
ψ
max

t

ψ(a − t)e−
∫ a

a−t
b(s)dsda =

∫ a
ψ
max

0

ψ(a)e−
∫ a+t

a
b(s)dsda =

∫ a
ψ
max

a
ψ

min

ψ(a)e−
∫ a+t

a
b(s)dsda,

the definition of f leads to the inhomogeneous Freholm integral equation (2.2). �

Remark 2.1. Note that Theorem 2.1 is defined on the time interval [0, Amin]. During this interval, only

the mother cells coming from the initial condition are dividing. Hence, we can extend this result to the

time interval [0, 2Amin − a
ψ
max] if Amin ≥ a

ψ
max.

Remark 2.2 (Self-renewal case). Note that, if pS =
1
2
, the identification problem is not well-posed so

that alternative observation data should be used. Indeed, the total number of cells is constant along

time whereas the solution of the inverse problem is based on changes in this number.

Usually, the inhomogeneous Fredholm integral equation, which is a particular case of the Volterra

integral equation, is studied in the case where the kernel is known. Here, we rather consider the inverse

problem of reconstructing the kernel from function f and initial condition ψ.

Theorem 2.2. Under Hypotheses 1.1, 1.2, 1.4 and 1.5, the problem (IP) is well-posed.

Proof. Applying Hypothesis 1.5 to the Fredholm integral equation (2.2), we first deduce that, for all

t ∈ [0, Amin],

f (t) =

∫

R

ψ(a) exp(−

∫ a+t

Amin

b(s)ds)da.
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Then, using the change of variables u = a + t, we obtain that

f (t) =

∫

R

ψ(a − t) exp(−

∫ a

Amin

b(s)ds)da. (2.5)

We can recognize a convolution product. However, since relation (2.5) is verified only for t ∈ [0, Amin],

we cannot use the Laplace transform directly to separate function ψ from the age-dependent function

a→ exp(−
∫ a

Amin b(s)ds). We rather introduce the truncated functions f̃ and b̃ such that:

f̃ (t) = f (t)1[0,Amin)(t) + f (Amin)1[Amin,+∞)(t) and b̃(a) = b(a)1[0,Amin+a
ψ
max](a). (2.6)

In other words, function f̃ coincides with function f on the interval [0, Amin], and function b̃ coincides

with function b on the interval [0, Amin + a
ψ
max]. Hence, we deduce from relations (2.5) and (2.6) that

for all t ≥ 0,

f̃ (t) =

∫

R

ψ(a − t) exp

(
−

∫ a

Amin

b̃(s)ds

)
da. (2.7)

Since f , ψ and g(a) := exp(−
∫ a

Amin b̃(s)ds) are constant beyond a given time/age, their associated

Laplace transforms exist for all p > 0, so that we can apply a Laplace transform to relation (2.7),

and deduce that, for all p > 0,

F [ f̃ ](p) = F [ψ̃](p)F [g](p), (2.8)

where F [ f̃ ] is the Laplace transform associated with function f . From relation (2.8), we deduce

the uniqueness of the Laplace transform of function g. From the injectivity property of the Laplace

transform, we deduce the uniqueness of function g. From the bijectivity property of function g, we

then deduce the uniqueness of function b̃. Finally, from the uniqueness of function b on the interval

[0, Amin + a
ψ
max], we deduce from Hypothesis 1.4 the uniqueness of function b on the whole interval

R+. �

Remark 2.3. The results of Theorem 2.2 can be extended to non-analytic b functions by piecewise

reconstruction of b on its whole support (Amin, Amax). From the proof of Theorem 2.2, we have the

uniqueness of b on the interval [0, Amin+a
ψ
max]. Then, from the knowledge of b on the interval [0, Amin+

a
ψ
max] and remembering that the first newborn cells, born at time 2Amin − a

ψ
max (see Remark 2.1) start to

divide at time t = 3Amin − a
ψ
max, one can derive a Fredholm integral equation for t ∈ [0, 3Amin − a

ψ
max],

following the proof of Theorem 2.1, hence deduce the uniqueness of b on the interval [0, 2Amin + a
ψ
max].

Repeating this operation as many times as needed, we finally obtain the uniqueness of function b on its

whole support.

While Theorem 2.2 ensures the uniqueness of function b, it does not provide us with a tractable

analytic formula to reconstruct it. This issue is addressed in the next paragraph.

2.1.2. Numerical procedure for non-synchronized populations

We finish the study of the inverse problem (IP) for the single layer case by proposing a numerical

procedure to retrieve the division rate b from the total number of cells.

We assume that the initial condition ψ can be discretized using a time sequence tk = k∆ and we aim to
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compute the b(k∆) values.

The procedure is based on the fact that we use the same size step ∆ for both the age and time grids.

Let the initial sequence Ψ = (Ψi)i∈~imin,imax� where imin = ⌊
a
ψ

min

∆
⌋ and imax = ⌊

a
ψ
max

∆
⌋.

Between t = 0 and t = Amin − a
ψ
max, cells are aging, hence PDE (2.1) is a pure transport equation. Then,

at time t = Amin − a
ψ
max, the first division happens for cells that have reached age Amin.

We fix the initial values of vector b := (bk)k∈~0,N� to zero. Each observation of the total number of

cells at time tk will be used to refresh one by one the value of vector b from left to right.

Using the numerical scheme (expressions (1.8) and (1.9)), we define the mass difference at time tk

by:

µk := m(tk) − ∆

imax+k∑

n=0

Uk,n. (2.9)

At time tk, all the bn for n ∈ ~0, imax + k − 1� have been refreshed at time tk−1, while the remaining

values for indexes n ∈ ~imax + k,N� are still zero. At this time tk, the change in the mass difference can

only come from the eldest cells indexed by imax + k. Hence, if µk = 0, the eldest cells have not divided

yet between tk−1 and tk. Otherwise, if µk , 0, a division has occurred. We recall the reader that pS is

the probability that at least one daughter cell remains on Layer 1. If pS < 1
2
, this division results in a

negative mass difference, otherwise, if pS >
1
2
, it results in a positive mass difference.

To compute the bimax+k, we use the mass difference definition (2.9) and the numerical scheme to write

the mass balance conservation law:

m(tk) = ∆

imax+k−1∑

n=0

Uk,n

︸         ︷︷         ︸
remaining cells

+∆Uk−1,imax+k−1e−∆bimax+k + 2pS∆(1 − e−∆bimax+k)Uk−1,imax+k−1︸                                                                    ︷︷                                                                    ︸
dividing eldest cells

. (2.10)

Since at time tk, bimax+k is zero before refreshing, we have from the numerical scheme (1.8) that

Uk−1,imax+k−1 = Uk,imax+k. Let ũ := Uk−1,imax+k−1. From the conservation law (2.10) and the µk definition

(2.9), we deduce

µk = −∆Uk,imax+k + ∆(2pS − 1)(1 − e−∆bimax+k)ũ⇒ bimax+k = −
log(1 − xk)

∆
, (2.11)

with

xk :=
µk

∆(2pS − 1)ũ
.
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Figure 2. Illustration of Algorithm 1. Left panel: initial situation where all b values

are set to zero (red dots). Each vertical colored segment corresponds to a Dirac mass 2δai
,

i = 1, 2, 3, of the initial Dirac comb condition (ψ). The black curve is the target b function.

Middle panel: first occurrence of eldest cell division (initial ages a3). The purple segment

reaches the b function with aging at time tk, hence the mass difference µk (formula (2.9)) is

non-zero. Applying formula (2.11), we reconstruct the true b[i3 + k], where i3 is the index of

the discretized age a3. Right-panel: continuation of the b updating from the same eldest cell

(initial age a3) at time tk+1, tk+2, . . .

These steps can be summarized by the following pseudo-code:

Initialization: give pS , the total number of cells m and the time grid t = (tk)k∈~0,N� ;

Set bk = 0, for all k ∈ ~0,N�;

for k from 0 to N do

Compute Uk,n with the numerical scheme (1.8) and (1.9);

Compute the loss mass µk as defined in equation (2.9);

if |µk| > 0: then

Compute b[imax + k] using formula (2.11);

Refresh the boundary condition and the eldest cells of age imax + k :

• Uk,0 ← Uk,0 + 2pS Uk,i(1 − exp(−∆b[i]))

• Uk,i ← Uk,i exp(−∆b[i])

end

end

Return vector b ;

Algorithm 1: Pseudo-code for the reconstruction of the b function from m and pS .

We illustrate this method in Figure 3 and in additional figures in the Appendix. Note that some

instabilities appear in the case of the piecewise constant function (orange line) which may be due to

its non-smooth character. We also performed a study on the sampling rate ∆ (which appears to be in

our case also the age size step) to get practical insight into the numerical convergence (stability) of the

reconstruction of the estimated function with respect to ∆ (see Figure 7b in the Appendix).
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Figure 3. Illustration of the numerical procedure. Figure 3a: we simulate m1 using

the numerical scheme for different b functions which are non-zero for all a ∈ (2, 3.5): a

bump function (green line) b(a) = 0.05 exp( 0.05
(a−2.75)2−0.5625

); a polynomial function (pink line)

b(a) = −0.004(a−2)(a−3.5) and a uniform function (orange line) b(a) = 2
3
. Figure 3b: using

Algorithm 1, we compute the b functions from the m1 values. The estimated b functions are

the dashed lines while the original functions are the black solid lines. Figure 3c: we represent

the simulated density distribution ρ at different time points (t = 0, 0.5, 2, 3, 6) for the bump b

function (black dashed line) used in Figure 3a. In all panels, ∆ = 5∗10e−3, ψ(a) = 1a∈[0.5,2](a)

(piecewise function) and pS = 1.
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2.2. Multi-layer case

We now consider the inverse problem (IP) with two layers (J = 2). We recall the reader that, in this

case, we aim to determine all the division rates b j, j ∈ ~1, J� and the probability p
( j)

S
, j ∈ ~1, J − 1�

knowing the probability p
(J)

S
on Layer J, the initial condition ψ and the mean cell number of each layer

m j, j ∈ ~1, J�.

Theorem 2.3. Under the same hypotheses as Theorem 2.2, the inverse problem (IP) is well-posed for

J = 2.

To prove Theorem 2.3, we take advantages of the unidirectional motion of the model (1.1) and split

the proof in two parts: the uniqueness of parameter p
(1)

S
and function b1 (contribution of Layer 1), and

the uniqueness of function b2 (contribution of Layer 2).

We start by the analysis of the first layer and get the following lemma:

Lemma 2.2. Under the same hypotheses as Theorem 2.3, function b1 and parameter p
(1)

S
verifying the

inverse problem (IP) depend only on the total number of cells on Layer 1, m1, and Layer 2, m2, where

m1 and m2 are defined by equation (1.2).

Proof. The first cells coming from the initial condition ψ1 enter Layer 2 at time S 1 := Amin
1
− a

ψ
max and

start to divide at time S 2 := Amin
2
+ S 1. Layer 2 is empty between t = 0 and t = S 1. From t = S 1 to

t = S 2, the cells start to enter Layer 2 and are only aging. Hence, the cell density function on Layer

2, ρ(2), solution of the PDEs (1.1), verifies a transport equation with a source term at the boundary

condition: for all t ∈ [0, S 2],



∂tρ
(2)(t, a) + ∂aρ

(2)(t, a) = 0, a ∈ (0,∞),

ρ(2)(t, 0) = 2p
(1)

S

∫ +∞

0

b1(a)ρ(1)(t, a) da.

We first show that b1 depends only on m1 and m2. We consider the sum of the cells on the two

layers: ρ = ρ(1) + ρ(2) and deduce from the PDEs (1.1) that

∂tρ(t, a) + ∂aρ(t, a) = −b1ρ
(1)(t, a). (2.12)

Since the b1 function is non-zero on the interval (Amin
1
, Amax

1
), and the density function ρ(2)(t, ·) is non-

zero on the interval [0, t − S 1] for all t ∈ (S 1, S 2), we deduce that (Amin
1
, Amax

2
) ∩ [0, t − S 1] = ∅ when

t < S 1 + Amin
1

. Hence, we can write using expression (2.12) that, for all t ∈ (S 1,min(S 1 + Amin
1
, S 2)),

∂tρ(t, a) + ∂aρ(t, a) = −b1ρ(t, a) and deduce that ρ is solution of the PDE:



∂tρ(t, a) + ∂aρ(t, a) = −b1(a)ρ(t, a), t ∈ (0,min(S 1 + Amin
1
, S 2)), a ∈ (0,∞),

ρ(t, 0) = 2

∫ +∞

0

b1(a)ρ(t, a) da,

ρ(0, a) = ψ(a), a ∈ (0,+∞),

Since this PDE is the same as PDE (2.1), we apply Theorem 2.2 and deduce the uniqueness of b1.

We turn now to the uniqueness of parameter p
(1)

S
. Taking the derivative of both m1 and m2, for all

t ∈ [0, S 2], we obtain that:
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m′1(t) = (2p
(1)

S
− 1)

∫ +∞

0

b1(a)ρ1(t, a) da , m′2(t) = 2(1 − p
(1)

S
)

∫ +∞

0

b1(a)ρ1(t, a) da

As there exists at least one t ∈ [0, S 2] such that

∫ +∞

0

b1(a)ρ(1)(t, a) da , 0, we deduce, first,

m′1(t)2(1 − p
(1)

S
) = m′2(t)(2p

(1)

S
− 1),

and then the uniqueness of p
(1)

S
. This ends the proof. �

Inverse problem of an age structured population system with source term in the boundary con-

dition To show the uniqueness of function b2, we first study the following inverse problem.

Let η ∈ L1(R+), solution of the PDE


∂tη(t, a) + ∂aη(t, a) = −b(a)η(t, a), t ∈ (0,∞), a ∈ (0,∞),

η(t, 0) = g(t) + 2

∫ +∞

0

b(a)η(t, a) da,

η(0, a) = ψ(a),

(2.13)

with g a differentiable function on R+ supposed to be known and ψ ∈ Cc((a
ψ

min
, a

ψ
max)). We also suppose

that b ∈ Cc((A
min, Amax)) (Hypothesis 1.1).

We investigate the inverse problem associated with the model (2.13):

ĨP Given the initial condition ψ, the function m̃(t) :=
∫ +∞

0
η(t, a)da and the function g, both defined

for all t ∈ [0,T ), with T > 0, determine function b such that the direct problem (2.13) is satisfied

on [0,T ).

In the same way as in sub-section 2.1, we can show that the inverse problem ĨP can be reformulated

as a Fredholm integral equation

Lemma 2.3. Under Hypothesis 1.1 and supposing that ψ ∈ Cc((a
ψ

min
, a

ψ
max)), we define f2(t) := −m̃(t)+

2m̃(0) +
∫ t

0
g(a)da. Then, we have for all t ∈ [0, Amin]

f2(t) =

∫ a
ψ
max

a
ψ

min

ψ(a)e−
∫ a+t

a
b(s)dsda. (2.14)

Proof. In the same way as for the proof of Theorem 2.3, we can write that

m̃(t) =

∫ t

0

η(t − a, 0)e−
∫ a

0
b(s)dsda

︸                          ︷︷                          ︸
new born cells

+

∫ t+a
ψ
max

t

ψ(a − t)e−
∫ a

a−t
b(s)dsda

︸                              ︷︷                              ︸
remaining mother cells

. (2.15)

To obtain a relation between the boundary condition η(t, 0) on the one hand and, m̃(t) and g(t) on the

other hand, for all t ≥ 0, we follow the same approach as in Lemma 2.3 and get

m̃(t) =

∫ a
ψ
max+t

a
ψ

min
+t

ρ(t, a)da

︸              ︷︷              ︸
initial cells

+

∫ t

0

ρ(t, a)da

︸         ︷︷         ︸
cells born

. (2.16)
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Note that here the cells born are both coming from the source term g and the division rate b. Using the

changes of variables s = a − a
ψ

min
+ t and s = a

t
, we obtain that :

m̃′(t) = −

∫ +∞

0

b(a)ρ(t, a)da + ρ(t, 0) = −
ρ(t, 0) − g(t)

2
+ ρ(t, 0)⇒ ρ(t, 0) = 2m̃′(t) − g(t).

If g is lattice, before using the changes of variables, the interval (0, t) needs to be split in as many

sub-intervals as necessary, so that the function is non-lattice.

Combining the expression of m̃′ with expression (2.15) and using that b ∈ Cc((A
min, Amax)), we deduce

that, for all t ∈ [0, Amin],

m̃(t) = 2
[
m̃(t)

]t

0 −

∫ t

0

g(a)da +

∫ t+a
ψ
max

t

ψ(a − t)e−
∫ a

a−t
b(s)dsda. (2.17)

We finally deduce expression (2.14) from expression (2.17). �

Hence, since ψ is a compactly supported function, we deduce the well-posedness of the inverse

problem ĨP from the application of Theorem 2.2 with the suitable hypotheses.

We can now proceed to the proof of Theorem 2.3.

Proof of Theorem 2.3. The uniqueness of function b1 and parameter p
(1)

S
is a consequence of Lemma

2.2. We now prove the uniqueness of function b2. Between t = S 2 and t = S 3 := Amin
2
+ S 2, in the same

way as in the single layer case, only cells born from Layer 1 mother cells can divide.

Let g(t) := 2(1− p
(1)

S
)

∫ +∞

0

b1(a)ρ1(t, a) =
2p

(1)

S
− 1

2p
(1)

S

m′1(t), according to Lemma 2.1. Since p
(1)

S
is known

by definition of our inverse problem (IP), we deduce that g is entirely known. Then, for all t ∈ (S 2, S 3),

ρ(2) verifies 

∂tρ
(2)(t, a) + ∂aρ

(2)(t, a) = −b2ρ
(2)(t, a), a ∈ (0,∞),

ρ(2)(t, 0) = g(t) + 2

∫ +∞

0

b2(a)ρ(2)(t, a) da,

ρ(2)(S 2, a) = 2(1 − p
(1)

S
)

∫ +∞

0

b1(s)ρ1(S 2 − a, s)ds,

Since this model is equivalent to PDE (2.13) (by performing a time translation t − S 2), we can apply

Lemma 2.3 and deduce that, for all t ∈ (S 2, S 3),

f2(t) =

∫ a
ψ
max

a
ψ

min

ρ(2)(S 2, a)e−
∫ a+t

a
b2(s)dsda,

where f2(t) = −m2(t)+ 2m2(0)+
∫ t

0
g(a)da = −m2(t)+ 2m2(0)+

2p
(1)
S
−1

2p
(1)
S

(m1(t)−m1(0). Here, the support

of the initial condition ρ(2)(S 2, a) is (0, Amin
2

), so that Hypothesis 1.5 is verified. Applying Theorem 2.2,

we deduce that b2 is unique. This ends the proof. �

Using the unidirectional motion again, we can extend Theorem 2.3 to the case of more than two

layers, N ≥ 2.

Remark 2.4 (Self-renewal case). If we consider the case when the first layer is self-renewing (m1 is

constant), then since m1(t) = m̄1 implies that p
(1)

S
= 1

2
, we can nevertheless recover function b2 (and

p
(1)

S
) using Theorem 2.3.
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3. Analysis of the inverse problem (IP) for Dirac measure initial conditions

We turn now to the case of Dirac mass as initial condition. We suppose that the results proposed in

[13, 12] for the renewal equation (pS =
1
2

and b non-lattice and bounded after a given age a∗) can be

extended to our case (pS ∈ (0, 1] and lattice function b). We also admit that the characteristic formula

(1.5) is verified for the measure solutions µt ∈ M(R+), the set of signed Borel measures on R+: for all

t ≥ 0, for all a ≥ 0,

µt(a) = 1[0,t](a)µt−a(0) exp

(
−

∫ a

0

b(u)du

)
+ 1[t,+∞)(a)ψ(a − t) exp

(
−

∫ a

a−t

b(u)du

)
,

µt(0) = 2pS

∫

R+

b(a)dµt(a), (3.1)

in the sense that, for all h ∈ Cc(R+),

∫

R+

h(a)dµt(a) =

∫ t

0

µt−a(0) exp

(
−

∫ a

0

b(u)du

)
h(a)da+

∫ +∞

t

exp

(
−

∫ a

a−t

b(u)du

)
h(a)dψ(a−t). (3.2)

In the same way as for the continuous initial condition case, we derive the following equation, which

is the formal analog of the Fredholm integral equation in Theorem 2.1.

Theorem 3.1. Under Hypothesis 1.1, and supposing that ψ ∈ M([a
ψ

min
, a

ψ
max]) and pS ,

1
2
, we define

f (t) := − 1
2pS−1

m1(t) +
2pS

2pS−1
m1(0). Then, we have for all t ∈ [0, Amin]

f (t) =

∫ a
ψ
max

a
ψ

min

exp

(
−

∫ a+t

a

b(s)ds

)
dψ(a). (3.3)

Proof. Taking h(a) = b(a) in relation (3.2) , we deduce from formula (3.1) that for all t ≥ 0,

µt(0) = 2pS

[∫ t

0

b(a)µt−a(0) exp

(
−

∫ a

0

b(u)du

)
da +

∫ +∞

t

b(a) exp

(
−

∫ a

a−t

b(u)du

)
dψ(a − t)

]
.

Then, since t ∈ [0, Amin], we deduce from Hypothesis 1.1 that

µt(0) = 2pS

∫ +∞

t

b(a) exp

(
−

∫ a

a−t

b(u)du

)
dψ(a − t) = 2pS

∫ +∞

0

b(s + t) exp

(
−

∫ s+t

s

b(u)du

)
dψ(s),

(3.4)

with the change of variables s = a − t. Then, using relation (3.4) in (3.2), we obtain that for all

h ∈ Cc(R+),

∫

R+

h(a)dµt(a) = 2pS

∫ t

0

[∫ +∞

0

b(s + t − a) exp

(
−

∫ s+t−a

s

b(u)du

)
dψ(s)

]
exp

(
−

∫ a

0

b(u)du

)
h(a)da

+

∫ +∞

t

exp

(
−

∫ a

a−t

b(u)du

)
h(a)dψ(a − t). (3.5)

Taking h(a) = 1[0,a
ψ
max+Amin](a), we deduce from relation (3.5) that:
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m(t) = 2pS

∫ t

0

[∫ +∞

0

b(s + t − a) exp

(
−

∫ s+t−a

s

b(u)du

)
dψ(s)

]
exp

(
−

∫ a

0

b(u)du

)
da

+

∫ +∞

t

exp

(
−

∫ a

a−t

b(u)du

)
dψ(a − t). (3.6)

Since t ∈ [0, Amin], we have
∫ t

0

[∫ +∞

0

b(s + t − a) exp

(
−

∫ s+t−a

s

b(u)du

)
dψ(s)

]
exp

(
−

∫ a

0

b(u)du

)
da

=

∫ t

0

[∫ +∞

0

b(s + t − a) exp

(
−

∫ s+t−a

s

b(u)du

)
dψ(s)

]
da.

Then, applying first Fubini theorem then an integration by part, we deduce:
∫ t

0

[∫ +∞

0

b(s + t − a) exp

(
−

∫ s+t−a

s

b(u)du

)
dψ(s)

]
da =

∫ +∞

0

(
1 − exp

(
−

∫ s+t

s

b(u)du

))
dψ(s).

(3.7)

Using relation (3.7) in (3.6), we deduce that

m(t) = 2pS

∫

R+

dψ(s) − (2pS − 1)

∫

R+

exp

(
−

∫ s+t

s

b(u)du

)
dψ(s)

and conclude. �

Synchronized population We consider a synchronized population ψ(a) = ψ0δa0
(a) (N = 1 in the

definition of ψ (1.4)).

Corollary 3.1 (Synchronized population). Under Hypotheses 1.1 and 1.3, we have, for all t ∈ [0, Amin],

b(a0 + t) = −
f ′(t)

f (t)
. (3.8)

Proof. Applying Theorem 3.1 with ψ(a) = ψ0δa0
(a), we obtain for all t ∈ [0, Amin],

ψ0e
−

∫ a0+t

a0
b(s)ds

= f (t).

Then, taking the logarithm function and taking the derivative with respect to time, we obtain formula

(3.8). �

Corollary (3.1) is illustrated in Figure 4 for different b functions. Between t = 0 and t = 4, the

reconstructed b values in the three presented cases are identical to the expected ones. However, we can

note that after t = 4, the reconstructed b values are no more consistent with the expected ones, which

can be explained by the fact that formula (3.8) is verified only for t ∈ [0, Amin].

If Amin + a0 ≥ Amax and pS is known, we deduce the uniqueness of the b function from Corollary

(3.1). In addition, we have an explicit formula to retrieve b from the observation m1 and the parameter

pS , as illustrated in Figure 5. On the contrary, if Amin + a0 < Amax, the b function can only be

partially reconstructed on [0, Amin + a0). In that case, the uniqueness is a consequence of the additional

Hypothesis 1.4.

Note that if Hypothesis 1.5 is not verified, i.e. a0 > Amin, the b function can only be partially

reconstructed as illustrated in Figure 5.
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(c) Density distribution ρ (bump function division rate)

Figure 4. Illustration of Corollary 3.1. Figure 4a: in the same way as in Figure 3, we simulate

m1 using the numerical scheme for the same b functions as in Figure 3. Figure 4b: applying

formula (3.8), we compute the b functions from the m1 values. The estimated b functions

are the dashed lines while the original functions are the black solid lines. Figure 4c: we

represent the simulated density distribution ρ at different time points (t = 0, 0.5, 2, 3, 6) for

the bump function (black dashed line) used in the Figure 4a. In all panels, ∆ = 5 ∗ 10e − 3,

ψ(a) = δ0.5(0) and pS = 1.

Discrete non-synchronized population We now consider a Dirac comb as initial condition:

ψ(a) =

N∑

i=0

Ψiδai
(a) with N ≥ 2.

Corollary 3.2 (Discrete non-synchronized population). Under Hypotheses 1.1, 1.3, 1.4 and 1.5, the

problem (IP) is well-posed.
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(a) Complementary illustrations of Corollary 3.1 for different initial conditions

0 1 2 3 4 5 6 7 8
Time (in u.a.)

0.0049

0.0050

0.0051

0.0052

0.0053

0 1 2 3 4 5 6 7 8
Age (in u.a.)

0.00

0.01

0.02

0.03

0.04

(b) Complementary illustrations of Corollary 3.1 for different pS values

Figure 5. Complementary illustrations of Corollary 3.1. We proceed in the same way as

Figure 4 using the bump function and for either different initial conditions (Figure 5a): ψ(a) =

δ0.5(a) (blue line); ψ(a) = δ2.5(a) (green line) and ψ(a) = δ4(a) (red line), with pS = 1, or

different pS values (Figure 5b): pS = 0.35 (blue line), pS = 0.75 (green line) or pS = 1 (red

line), with ψ(a) = δ1.5(a). In each subfigure, the left panel represents the mean cell number

m1 with respect to time, while the right panel represents the estimated b functions.

Proof. To prove the uniqueness of the b function considering that the f function is known for all t, we

proceed by induction and first prove that, for all k ≥ 0,

f (k)(t) = φk(t)Q(t) + R(k)(t) (3.9)

with the series of functions φk defined as

φk+1(t) = φ′k(t) − b(a0 + t)φk(t), φ0(t) = 1, (3.10)

where Q(t) := Ψ0 exp(−
∫ a0+t

Amin b(s)ds) and R(t) :=
∑N

i=1Ψi exp(−
∫ ai+t

Amin b(s)ds).

For k = 0, we apply Theorem 3.1 and obtain that, for all t ∈ [0, Amin],

f (t) =

N∑

i=0

Ψi exp(−

∫ ai+t

ai

b(s)ds) =

N∑

i=0

Ψi exp(−

∫ ai+t

Amin

b(s)ds) = Q(t) + R(t). (3.11)

Then, assuming that (3.9) is true up to rank k, we compute the time derivative of (3.9), so that for all

t ∈ [0, Amin]

f (k+1)(t) = φ′k(t)Q(t) + φk(t)Q
′(t) + R(k+1)(t) = φk+1(t)Q(t) + R(k+1)(t),
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since Q′(t) = −b(a0 + t)Q(t) and φk satisfies (3.10). This ends the induction.

We can now turn to the well-posedness of the inverse problem (IP).

From Hypothesis 1.5, we deduce that Amin > ai for all i ∈ ~1,N�. Let us consider the positive time

τ := Amin − a1. Then, as b ∈ Cc

(
(Amin, Amax)

)
(Hypothesis 1.1), we obtain that, for all k > 0,

R(k)(τ) = 0. (3.12)

Then, from expression (3.11), we get

f (τ) = ψ0 exp(−

∫ a0+τ

Amin

b(s)ds) +

N∑

i=1

Ψi (3.13)

hence Q(τ) = f (τ) −
∑N

i=1Ψi. Combining this with (3.12) and (3.11), we deduce that, for all k ≥ 0,

φk(τ) =
f (k)(τ)

f (τ) −
∑N

i=1Ψi

. (3.14)

We thus deduce that, for all k ≥ 0, φk(τ) depends only on the f function and the initial condition ψ.

From the recurrence relation (3.10), we have that φk depends on the k − 1 first derivatives of b. Hence,

we deal with an invertible triangular system since the diagonal coefficients are equal to one, and we

deduce the uniqueness of b(k)(a0 + τ) for each k ≥ 0. We then deduce the uniqueness of b on its whole

support, from Hypothesis 1.4. �

Using Corollary 3.2, we can extend the results of Theorem 2.3 to the case of Dirac measures initial

conditions.

4. Conclusion

In this paper, we have analyzed an inverse problem associated with a multi-type version of the

McKendrick–VonFoerster model, and consisting of retrieving the division rate functions b j, and the

probability of motion p
( j)

S
, for j ∈ ~1, J − 1�, from the knowledge on the total cell numbers on each

layer. We chose to deal with compactly supported division rates, which account for both a recovery

time after birth (Amin) and a quiescent state beyond a given age (Amax), and we have considered both

synchronized or non-synchronized initial populations on the first layer, and supposed that all other

layers are empty at initial time. If no division has occurred at the initial time (Amin − a
ψ
max ≥ 0), the

entire division rate can be reconstructed. This condition is encountered in the literature, see e.g. [15].

For continuous initial conditions, we have shown the well-posedness of the inverse problem, first in

the single layer case (see Theorem 2.2), and then in the several layer case (see Theorem 2.3), after

introducing a sequence of nested submodels with an additional source term due to migration in the

boundary condition. Then, we show the same result in the single layer case for a discrete initial

condition (Corollary 3.1); we assume that the PDE (2.1) admits a measure solution, and construct this

solution from the characteristic lines. Proving these latter assumptions is beyond the scope of this

article and remains as an interesting open problem.
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In the self-renewal case (p
( j)

S
= 1

2
) for a layer j, the b j function cannot be retrieved from the cur-

rent observation (Remark 2.2), even if the migration proportion parameters can be (Remark 2.4). We

speculate that supplying additional observation such as the age-weighted distribution (
∫ ∞

0
aρ( j)(t, a)da)

could help to recover the identification property. In the cumulative formulation framework and suitable

hypotheses, there is no particular difficulty with this case (see Theorem 4.3, [8]).

Instead of the total cell number, we could consider microscopic observation. In [7], the authors have

shown, using a semi-group approach for the non-renewal version of the McKendrick–VonFoerster

equation, that the death rate can be determined from observation of the age distribution at two time

points including the initial time. Since, according to Lemma 2.1, there is a link between the net birth

function ρ(t, 0) and the total number of cells m1, we expect to be able to obtain similar results.
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Appendix

Numerical scheme

Proof. Let j ∈ ~1, J�. From the transport equation (1.7) and applying an Euler explicit scheme for the

differential operators ∂a and ∂t, we have, for all k > 0,

ρ̃( j)(tk+1, an) − ρ̃( j)(tk, an)

∆
+
ρ̃( j)(tk, an+1) − ρ̃( j)(tk, an)

∆
+ O(∆) = 0.

We deduce first that

ρ̃( j)(tk+1, an) ≈ ρ̃( j)(tk, an−1).

Then, applying the ρ̃( j) definition, we deduce the relation for U
j

k,n
(1.8). We now tackle the boundary

condition. Taking advantage of the unidirectional motion, we proceed by recurrence starting with

layer 1:

ρ(1)(t, 0) = 2p
(1)

S

∫ A1
max

A1
min

b1(a)ρ(1)(t, a) da.

Since b1(a)ρ(1)(t, a) = −∂tρ
(1)(t, a) − ∂aρ

(1)(t, a), we deduce that

ρ(1)(t, 0) = −2p
(1)

S

∫ A1
max

A1
min

∂tρ
(1)(t, a) da + 2p

(1)

S
ρ(1)(t, (A1

min)+) − 2p
(1)

S
ρ(1)(t, (A1

max)−). (4.1)

Applying an Euler implicit scheme to the differential operator ∂t, we obtain

ρ(1)(tk+1, 0) = 2p
(1)

S
ρ(1)(tk+1, (A

1
min)+)−2p

(1)

S
ρ( j)(tk+1, (A

1
max)−)−2p

(1)

S

∫ A1
max

A1
min

(
ρ(1)(tk+1, a) − ρ(1)(tk, a)

∆

)
da+O(∆).

(4.2)
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We discretize the integral using a classical left rectangle rule where the integral
∫ ak+1

ak
g(a)da is approx-

imated by (ak+1 − ak)g(ak), and obtain the following formula:

∫ A1
max

A1
min

ρ(1)(tk+1, a)da = ∆

⌊
A1

max
∆
⌋−1∑

n=⌊
A1

min
∆
⌋

ρ(1)(tk+1, an) + O(∆2). (4.3)

Combining expressions (4.2) and (4.3), we deduce that

ρ(1)(tk+1, 0) = 2p
(1)

S
ρ(1)(tk+1, A

j

min
)− 2p

(1)

S
ρ(1)(tk+1, A

1
max)− 2p

(1)

S

⌊
A1

max
∆
⌋−1∑

n=⌊
A1

min
∆
⌋

(
ρ(1)(tk+1, an) − ρ(1)(tk, an)

)
+O(∆).

We define U1
n,0

as follow

U1
k+1,0 = 2p

(1)

S
U1

k+1,⌊
A1

min
∆
⌋

− 2p
(1)

S
U1

k+1,⌊
A1

max
∆
⌋
− 2p

(1)

S

⌊
A1

max
∆
⌋−1∑

n=⌊
A1

min
∆
⌋

(
U1

k+1,n − U1
k,n

)

= −2p
(1)

S

⌊
A1

max
∆
⌋∑

n=⌊
A1

min
∆
⌋+1

U1
k+1,n + 2p

(1)

S

⌊
A1

max
∆
⌋−1∑

n=⌊
A1

min
∆
⌋

U1
k,n.

Using U1
k+1,n

definition (1.8), we deduce that

U1
k+1,0 = 2p

(1)

S

⌊
A1

max
∆
⌋−1∑

n=⌊
A1

min
∆
⌋

(
1 − e

−
∫ n∆

(n−1)∆
b1(s)ds

)
U1

n,k.

We now consider the case j > 1:

ρ( j)(t, 0) = 2(1 − p
( j−1)

S
)

∫ A
j−1
max

A
j−1

min

b j−1(a)ρ( j−1)(t, a) da + 2p
( j)

S

∫ A
j
max

A
j

min

b j(a)ρ( j)(t, a) da.

We use the same approach to discretize the two integrals in the right-hand side of the equation above

and obtain expression (1.9). �

Complement of proofs

Proof of Lemma 2.1. Taking the derivative of expression (2.4), we obtain

m′1(t) =
d

dt

∫ a
ψ
max+t

a
ψ

min
+t

ρ(t, a)da +
d

dt

∫ min(0,Amin−a
ψ
max+t)

0

ρ(t, a)da. (4.4)

Since the boundaries of the two right hand-side terms of expression (4.4) depend on time, changes of

variables are required to proceed to the derivation.
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We first start by the term corresponding to the remaining cells. Applying the change of variables

s = a − a
ψ

min
− t, we deduce that, for all t ≥ 0,

d

dt

∫ a
ψ
max+t

a
ψ

min
+t

ρ(t, a)da =
d

dt

∫ a
ψ
max−a

ψ

min

0

ρ(t, s + a
ψ

min
+ t)ds

=

∫ a
ψ
max−a

ψ

min

0

[
∂tρ(t, s + a

ψ

min
+ t) + ∂aρ(t, s + a

ψ

min
+ t)

]
ds =

∫ a
ψ
max+t

a
ψ

min
+t

∂tρ(t, a)da +
[
ρ(t, a)

]a
ψ
max+t

a
ψ

min
+t
, (4.5)

applying first the chain rule then the reverse change of variables a = s + a
ψ

min
+ t.

We turn now to the term representing the cells born since time t = Amin−a
ψ
max. For all t > Amin−a

ψ
max,

we apply the change of variables a = s(Amin − a
ψ
max + t) and obtain,

∫ Amin−a
ψ
max+t

0

ρ(t, a)da = (Amin − a
ψ
max)

∫ 1

0

ρ(t, s(Amin − a
ψ
max + t))ds.

Taking the derivative of this expression and using the chain rule, we obtain:

d

dt

∫ Amin−a
ψ
max+t

0

ρ(t, a)da =

∫ 1

0

ρ(t, s(Amin − a
ψ
max + t))ds

+ (Amin − a
ψ
max + t)

∫ 1

0

[
∂tρ(t, s(Amin − a

ψ
max + t)) + s∂aρ(t, s(Amin − a

ψ
max + t))

]
ds. (4.6)

Using an integration by part, we first deduce that

(Amin−a
ψ
max+t)

∫ 1

0

s∂aρ(t, s(Amin−a
ψ
max+t))ds =

[
sρ(t, s(Amin − a

ψ
max + t))

]1

0
−

∫ 1

0

ρ(t, s(Amin−a
ψ
max+t))ds.

(4.7)

Combining expressions (4.6) and (4.7), we deduce that

d

dt

∫ Amin−a
ψ
max+t

0

ρ(t, a)da = (Amin − a
ψ
max + t)

∫ 1

0

∂tρ(t, s(Amin − a
ψ
max + t))ds + ρ(t, Amin − a

ψ
max + t)

=

∫ Amin−a
ψ
max+t

0

∂tρ(t, a)da + ρ(t, Amin − a
ψ
max + t), (4.8)

using the reverse change of variables s = a

a
ψ
max+t

.

Finally, combining expressions (4.5) and (4.8), we deduce, for all t > Amin − a
ψ
max,

m′1(t) =

∫ a
ψ
max+t

a
ψ

min
+t

∂tρ(t, a)da +
[
ρ(t, a)

]a
ψ
max+t

a
ψ

min
+t
+

∫ Amin−a
ψ
max+t

0

∂tρ(t, a)da + ρ(t, Amin − a
ψ
max + t). (4.9)

From PDEs (1.1), we can write that

∫ a
ψ
max+t

a
ψ

min
+t

∂tρ(t, a)da = −

∫ a
ψ
max+t

a
ψ

min
+t

b(a)ρ(t, a)da −
[
ρ(t, a)

]a
ψ
max+t

a
ψ

min
+t

(4.10)
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and

∫ Amin−a
ψ
max+t

0

∂tρ(t, a)da = −

∫ Amin−a
ψ
max+t

0

b(a)ρ(t, a)da −
[
ρ(t, a)

]Amin−a
ψ
max+t

0
. (4.11)

Using expressions (4.10) and (4.11), we deduce from expression (4.9), that for all t > Amin − a
ψ
max,

m′1(t) = −

∫ +∞

0

b(a)ρ(t, a)da + ρ(t, 0) =
2pS − 1

2pS

ρ(t, 0). (4.12)

We complete the proof by considering the case when t ∈ [0, Amin − a
ψ
max]. In that case, no division

has occurred, hence for all t ∈ [0, Amin − a
ψ
max], ρ(t, 0) =

∫ min(0,Amin−a
ψ
max+t)

0
ρ(t, a)da = 0. In the same way

as previously, we obtain that for all t ∈ [0, Amin − a
ψ
max],

m′1(t) = −

∫ a
ψ
max+t

a
ψ

min
+t

b(a)ρ(t, a)da = 0 =
2pS − 1

2pS

ρ(t, 0), (4.13)

since the intersection of the support of b, (Amin, Amax), and the interval [a
ψ

min
+ t, a

ψ
max + t] is empty when

t ∈ [0, Amin − a
ψ
max]. This ends the proof. �
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Complementary illustrations of Algorithm 1
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(a) Complementary illustrations of Corollary 3.1 for different initial conditions
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(b) Complementary illustrations of Corollary 3.1 for different pS values

Figure 6. Complementary illustrations of Algorithm 1. We proceed in the same way

as in Figure 3 using the bump function and for either different initial conditions (Figure

6a): ψ(a) = 1.5 exp(−a)1[0.5,1.75](a)(blue line); ψ(a) = 1[0.25,1.5](a)(green line) and ψ(a) =

a(a − 2)1[0.,2.](a)(red line), with pS = 1, or different pS values (Figure 6b): pS = 0.35 (blue

line), pS = 0.75 (green line) or pS = 1 (red line), with ψ(a) = 1[0.5,2](a).

We observe that the numerical convergence rate is faster, in both the L∞ and L2 relative error norms,

in the case of a polynomial b function, as well as in the L2 norm in the case of a bump function,

compared to the other cases. The convergence pattern differs according to the norm both in the bump

and piecewise constant cases. A plateau is reached for relatively high values of ∆ in the case of a bump

function and L∞ norm.
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Figure 7. Sensitivity of the reconstruction algorithm to the observation sampling rate.

We simulate m1 using the numerical scheme for the same division rates function, initial

condition and pS parameter as in Figure 3 with ∆ = 5 × 10−3. We thus obtain two vectors

of size K: the discretized mK
1
= (mk

1
)k=0,...,K−1 vector and its associated time vector tK =

(tk)k=0,...,K−1. For ∆ chosen in the grid of increasing step sizes ∆ ∈ {0.005, 0.01, 0.05, 0.1, 0.5},

we extract from vectors mK
1

and tK the sub-vectors m
K∆
1

and tK∆ such that t
K∆
1
= k∆. Then, we

apply Algorithm 1 and deduce the estimated b∆ function from m
K∆
1

(Figure 7a). Figure 7b:

we compute the relative L2 and L∞ errors (dashed and solid lines, respectively) by comparing

each estimated b∆ functions to the original b functions computed with the finest step size.

Pink lines: polynomial b function, orange lines: uniform b function, green lines: bump b

function. Each colored star represents the relative error obtained for a given ∆ value.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 3018–3046.



3046

c© 2019 the Author(s), licensee AIMS Press. This

is an open access article distributed under the

terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 16, Issue 4, 3018–3046.


	Model and discretized solutions
	Formal solutions of the direct problem (1.1)
	Numerical scheme to simulate the direct problem (1.1)

	Analysis of the inverse problem (IP) for continuous initial conditions
	Single layer case
	Well-posedness of the inverse problem (IP)
	Numerical procedure for non-synchronized populations

	Multi-layer case

	Analysis of the inverse problem (IP) for Dirac measure initial conditions
	Conclusion

