Spatio-temporal evolution of life history traits: the case of long term monitored introduced brown trout (*Salmo trutta* L.) in the Kerguelen Islands UMR 1224-ECOBIOP-UPPA/INRA

ECOBIOP

SFE 23 Octobre 2018 Lucie AULUS-GIACOSA

Directeurs de thèse : Philippe GAUDIN - Matthias VIGNON

PERSPECTIVE

Worldwide distribution of Brown trout

Adapted from Závorka et al., 2018

Introduction of Brown trout in Kerguelen Islands in the 50's

Adapted from Závorka et al., 2018

Why?

Fish free landscape Climate change Initial state is known

PERSPECTIVE

DESPITE ... VARIABLITY

PERSPECTIVE

DESPITE ... VARIABLITY

PERSPECTIVE

	All fish species	Salmo trutta L.
Fish	> 52000	> 37 000
Sample of scale	> 30 000	> 24 000

With long term monitoring

DESPITE ... VARIABLITY

PERSPECTIVE

	All fish species	Salmo trutta L.
Fish	> 52000	> 37 000
Sample of scale	> 30 000	> 24 000

With long term monitoring

Life history traits related to FITNESS = SURVIVAL × REPRODUCTION

Life history traits related to FITNESS = SURVIVAL × REPRODUCTION

Modeling spatio-temporal evolution of age and size at migration. Life history traits have to be rebuilt !

Average relation used to backcalculate fish length at age

25

Despite ... propagation of variability at each step !

DESPITE ... VARIABLITY

PERSPECTIVE

And biases on age and radi read/measured on scale !!!!

Even backcalculation models are numerous and give variable values of length at age

Models adjusted with linear model: $RT \sim a+bL_f$ & $L_f \sim c+dRT$				
Fraser Lee (FL)	$L_t \sim \mathbf{c} + \frac{R_t}{RT} (L_f - \mathbf{c})$	(eq.1)		
Whitney & Carlander (WC)	$L_t \sim \frac{c + dR_t}{c + RT} L_f$	(eq. 2)		
Hile (H)	$L_t \sim -\left(\frac{a}{b}\right) + \frac{R_t}{RT} \left(L_f + \frac{a}{b}\right)$	(eq.3)		
Model fitted with nonlinear adjustment in R (nls)				
Fry *	$L_f \sim w + u R_T^{\nu}$; $L_t \sim w + (L_f - w) \left(\frac{R_t}{RT}\right)^{\nu}$	(eq. 4)		
Generalized additive models:				
GAM	$L_f \sim \mathrm{s}(R_T, \mathrm{k=8, bs="cr"})$	(eq. 5)		

DESPITE ... VARIABLITY

Escati *et al.*, 2010 ; Shelton and Mangel 2012 ; Vincenzi *et al.*, 2014 ; Vincenzi *et al.*, 2016 ; Javier E. Contreras-Reyes *et al.*, 2018

REBUILD LIFE HISTORY TRAITS

- Dashed lines : no random effect
- Dash dotted and plain line : with random effects

Prediction is highly dependant on data Interest in bayesian analysis

Adapted from Vincenzi et al., 2016

Development of a bayes model in a single framework accounting for the propagation of errors at each step

How to accurately describe evolution of life history traits related to migration while taking into account

- Methodological variability
 - Individual variability

and

• Environmental factors ?

PERSPECTIVE

Study of Life history traits related to MIGRATION

> AGE AT MIGRATION SIZE AT MIGRATION

> > SPATIO TEMPORAL EVOLUTION ALONG A COLONIZATION FRONT ???

IMPACT ON THE INVASION DYNAMIC ???

SFE² 23 Octobre 2018 Lucie AULUS-GIACOSA

lucie.aulus@inra.fr

Thanks for your attention !