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Abstract: 9 

Untargeted food safety assessment by the use of LC-HRMS instrumentation combined to chemometric 10 

tools is a rather new field. As a consequence there is a lack of methodological assessment of the different 11 

steps of the data treatment workflow. Thus, we propose a comparison of different methods applied to 12 

two major steps of data matrix pretreatment, namely missing value imputation and ion selection. To that 13 

end, a missing value classification method has been proposed for the first time for MS data. Several 14 

metrics have also been proposed to assess pretreatment step performance as well as to investigate global 15 

untargeted approach efficiency for all method combinations considered. Different contaminants were 16 

considered as “tracers” to address their detection rates. Pretreatment methods were applied here on two 17 

data sets, aiming at illustrating either a simple contamination case to detect or a more complicated 18 

application. The data sets used in this study were from the EML-EBI Metabolights data exchange 19 

platform (MTBLS752 and MTBLS754), offering other research groups the opportunity to develop and 20 

compare their own data treatment strategies with the combinations discussed in this work. 21 
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1. INTRODUCTION 25 

Due to the complexification of food production chain and market, and the growing demand of consumers 26 

for safer food products, the development of new untargeted analytical strategies for food chemical safety 27 

assessment emerged over the last years [1–5]. To that end, high resolution hyphenated instruments such 28 

as UHPLC-HRMS combined with chemometric methods were identified as highly promising tools, 29 

since they had already been applied to detect and characterize unknown or unexpected compounds in 30 

metabolomics studies [6,7]. However, their adaptation to food chemical safety assessment raises many 31 

challenges due to the complexity of food samples and the trace levels of contaminants [8–10].  32 

Untargeted analyzes do generate highly complex signal mixtures, often composed of several thousand 33 

ions after peak extraction and alignment [10]. In chemical food safety applications, the user is often 34 

interested in only few dozens of those signals, related to chemical contaminants or residues. Those 35 

signals of interest are most of the time of much lower intensity compared with other signals present 36 

(especially those related to food constituents), meaning that strong data filtration approaches [2,5,10] 37 

coupled to powerful data exploration strategies [3,11] and multivariate methods [1,5,8] must be set up 38 

to detect potential contaminants. Inappropriate filtration methods may lead to either false negative 39 

results (compounds of interest are removed from the data matrix) or unusable data matrix (too much 40 

interfering compounds remain in the data matrix). In that view, strategies based on univariate statistics 41 

coupled to the use of a fixed fold change (FC) threshold have been proposed [2]. Another approach of 42 

data filtration of metabolomics-like LC-MS data sets has been proposed recently [12], based on the 43 

calculation of a minimum relevant FC (FCmin) from which a signal difference can be considered as 44 

significant for each peak. Thus, the comparison between this new approach and the strategy based on 45 

the t-test / fixed FC combination should bring interesting outcomes in untargeted chemical food safety 46 

assessment studies.  47 

Moreover, despite the performances of analytical methods and peak extraction algorithms, missing 48 

values are frequently found in final data matrices [13]; they are of great concern in untargeted 49 

approaches since they may represent around 20% of all values in MS-based data sets [14]. Missing 50 
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values are generally classified into three categories [15]: (i) Missing Completely at Random (MCAR) 51 

that occur randomly and independently to other variables, (ii) Missing at Random (MAR) that occur 52 

randomly but for which the probability of missing is influenced by other variables, (iii) Missing Not at 53 

Random (MNAR) for peaks below the detection capability of the instrument or below minimum criteria 54 

of the peak extraction algorithm. In MS-based data sets, MCAR and MAR cannot be distinguished since 55 

they are due to errors in the measurement or peak extraction process [13,15]; therefore, they will be 56 

considered as a unique MAR category in this study.  57 

Bad handling of missing values is known to lead to poor outcome of the data process [13,14,16]. 58 

Comparison of missing value imputation methods has been recently reported for LC-MS metabolomics 59 

data sets [13,14,16]: imputing a single value (for example zero or the median of measurements) to all 60 

missing values gave poor outcomes; another approach is to use data analysis tools and multivariate 61 

methods to predict missing values. Last but not least, missing values can be imputed by a forced peak 62 

integration of the raw data: this strategy is implemented within the XCMS R package (“xcms.fillPeaks” 63 

module) [17]. Compared with previously described methods, the values provided by this latter approach 64 

should be closer to reality; however, with HRMS technologies, missing peaks may generate a total 65 

absence a signal (i.e. a flat baseline) and further a high amount of zero values in the raw data set, with 66 

subsequent numerous MNAR values. While efficiency of single value and multivariate imputation 67 

methods have already been discussed for metabolomics studies [13,14,16], xcms.fillPeaks has never 68 

been compared to the other approaches. Also, several works suggest that MNAR and MAR should be 69 

implemented by different methods for LC-MS data sets [13,15], which is not the case for reported studies 70 

[14,16].  71 

Two approaches can be reported for missing values study. The first, used by Wei et al [13], consists in 72 

using a complete data set in which missing values are artificially generated, their distribution being 73 

controlled. This offers the advantage of easily making a fine assessment of missing value imputation 74 

methods, but the distribution of missing values in the data set may be different than for “native” ones. 75 

The second approach, used by Di Guida et al [16], relies on the use of benchmark data sets, on which 76 

several data treatment processes featuring various missing value imputation methods are applied. In this 77 
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case, the performance assessment is more difficult and rely on global performance index of the approach 78 

(e.g. detection rate) or intermediate metrics. However, this latter approach enables the implementation 79 

of the methods in “real-life” cases and should give a more realistic, even though less fine, overview of 80 

the method performances. So, our work is based on real data sets that contain native missing values. 81 

As spotted by Di Guida et. al. [16] for metabolomics studies, an assessment of the whole workflow and 82 

of the influence of each step on its outcome is complementary to the study of the tools themselves to 83 

propose guidelines, since the quality of each step is highly linked to the one of the previous. Nowadays, 84 

even though the global workflow for untargeted food safety assessment using a metabolomics-like 85 

approach seems to be more or less established [8,10], there is a lack of vision on the influence of the 86 

different tools used for each step on the performance of the whole process. So, this paper aims at giving 87 

an overview of the influence of two important steps in the data treatment, imputation of missing values 88 

and filtration of data matrix. For the first time to the best of our knowledge, a missing value classification 89 

method was proposed for MS data. This classification method was used to set up missing value 90 

imputation approaches by combining existing imputation methods (namely “mean-LOD” and “SVD-91 

QRILC”), which were compared to the fillPeaks tool of the XCMS package (which is a classical 92 

reference missing value imputation method for LC-MS data). For data filtration, a method commonly 93 

used in untargeted food safety studies based on t-test and fold change calculation with fixed filtration 94 

thresholds was compared with a rather new one coming from the field of metabolomics, based on the 95 

calculation of a minimum relevant fold change for each ion [12]. Resulting data treatment processes 96 

were applied on different UHPLC-HRMS data sets related to untargeted food chemical safety 97 

assessment and their respective performances presented and discussed. 98 

2. MATERIAL AND METHODS 99 

The influence of three missing value imputation and two filtration methods (leading to six different 100 

combinations) has been assessed as a part of an existing data treatment workflow developed for 101 

untargeted food contaminants detection [5].  102 
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2.1 DATA SETS  103 

Unlike metabolomics studies, there is currently no data set on untargeted food contaminants detection 104 

available online excepted two data sets recently deposited by our team on the EMBL-EBI MetaboLights 105 

database (DOI: 10.1093/nar/gks1004. PubMed PMID: 23109552 [19]) with the identifiers MTBLS752 106 

(data set #1 https://www.ebi.ac.uk/metabolights/MTBLS752) and MTBLS754 (data set #2 107 

https://www.ebi.ac.uk/metabolights/MTBLS754) [5]. Each data set is composed of two sub-sets, one 108 

for each ionization mode. These two house data sets were selected for the present study since the lack 109 

of others available online makes impossible the discussion on other data sets. 110 

Both data sets are based on tea samples. Green tea leaves (camellia sinensis) samples from two brands 111 

were bought from local stores: green tea n°1 is an organic Bancha tea from Japan and green tea n°2 is a 112 

conventional farming tea from China. Tea samples were spiked at several levels (from 10 to 100 µg/kg) 113 

(3 preparation replicates per level) with two mixes of contaminants (plus a mix of isotopically labelled 114 

molecules to check the quality of the analysis) (see Table 1). They were further analyzed using a generic 115 

sample treatment (direct solvent extraction and concentration) followed by broad range UHPLC-HRMS 116 

method [18] (Waters H-Class UPLC system coupled with a Waters Xevo G2-S ToF mass spectrometer 117 

equipped with and electrospray ion source in positive and negative ion centroid mode, m/z range from 118 

60 to 800) described in supplementary materials. Each sample preparation replicate was injected three 119 

or four times (depending on the data set), data files originating from samples of same brands and same 120 

spiking levels being called “group” (n=9 or 12; 3 sample replicates analyzed 3 - 4 times each). Injection 121 

orders were randomized, and each data set also includes blank (solvent) injections as well as quality 122 

control samples (QC, pooled extracts) injected regularly (every 10 or 15 injections depending of the data 123 

set).  124 

Each data set presents a different challenge. The contamination is expected to be easy to detect in data 125 

set #1, due to the presence of numerous molecules in the spiking mix. For this data set, the main question 126 

will be on the detection rate obtained with each method combination. In data set #2, to distinguish 127 
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between the variability due to the spiking and the one caused by the sample is likely to be the main 128 

challenge. 129 

An additional data set has also been used to discuss the behavior of fillPeaks algorithm on data exhibiting 130 

flat baselines for some ions. It is also related to tea samples spiked with several food contaminants at 131 

low levels, but in that case analyzes were conducted on a LC-Orbitrap platform. Only data files acquired 132 

in positive ionization mode were used. Experimental details on this data set, as well as raw data files 133 

can be found on Metabolights data repository with the identifier MTBLS771 134 

(https://www.ebi.ac.uk/metabolights/MTBLS771).  135 

2.2 DATA TREATMENT WORKFLOW 136 

The data treatment workflow is described in Figure 1. It can be divided into four main steps: A - building 137 

the data matrix, B – preparation and pretreatment of the built matrix (i.e. handling of missing values and 138 

ions filtration), C - Scaling and normalization, D - multivariate analysis and suspect ions annotation. 139 

Data files were firstly converted to mzXML format using Proteowizard [20], and then uploaded on the 140 

Galaxy/Workflow4Metabolomics (W4M) platform [21] where the data matrix was built using the 141 

CentWave algorithm of the XCMS package [17,22] (a full list of XCMS parameters can be found in 142 

Supplementary material Table S.2). The data matrix is composed of the peak areas for the different 143 

replicates for every ion (i.e. variable) characterized by its retention time (RT) and m/z. At this point 144 

(between step A and B in Figure 1), metrics on missing values (detailed in 2.3) were calculated. Missing 145 

values (MV) were then imputed either on W4M, RStudio (Version 1.1.383, R version 3.4.1) or in Matlab 146 

(Matlab 7.5.0, 2007b, The MathWorks) depending on the imputation method used.  147 

All steps further were done in Matlab. After the filtration, the data matrix undergoes a normalization 148 

and scaling step (step C in Figure 1: log, Pareto and Probabilistic Quotient Regression –PQN– were 149 

applied). Finally a multivariate method (Independent Component Analysis, ICA [5,23]) was 150 

implemented to highlight a potential separation of groups. Thanks to ICA, group separations could be 151 

linked to corresponding ions which were then automatically annotated using a data mining method to 152 

detect isotopic patterns [3,5] followed by a broad range in-house built database search. At the end, the 153 
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annotation of discriminating ions was manually curated and the found contaminants compared with the 154 

ones spiked (called “tracers”), enabling a detection rate of our “tracers” to be estimated. 155 

2.3 MISSING VALUE CLASSIFICATION AND METRICS 156 

In most MS-based metabolomics studies [14, 16], missing values are all imputed using the same method, 157 

either simple (e.g. all missing values are imputed with zero or the median of all measurements), or more 158 

complex (e.g. missing values are predicted using multivariate statistical methods). Even though the 159 

multiplicity of nature of missing values is well known by statisticians for a long time, its implication in 160 

MS data sets has been only raised in 2016 in the field of proteomics [15], and even more recently in the 161 

field of metabolomics [13]. However, until now, there is no methodology to classify missing values in 162 

MS data sets. Yet, as spotted by Wei et al. [13], it is important to differentiate missing values depending 163 

on their nature. Thus, we used injection replicates for each sample preparation replicate to determine the 164 

nature of the missing values, according to the following (for each ion and sample):  165 

• Missing at Random (MAR) when, for one sample preparation replicate, there is only one 166 

missing value among the 3 or 4 injection replicates; 167 

• Missing not at random (MNAR) when, for one sample preparation replicate, there is more than 168 

one missing value among the injection replicates (i.e. value near or below the detection 169 

capability of the overall method). 170 

The proposed classification methodology for missing values is represented in Figure 2. Although these 171 

classification criteria can surely be improved and discussed, they have the advantage to be consistent 172 

with the performance of the instrumentation used in terms of stability and repeatability, and also to be 173 

easily applied to large data sets. Thanks to this methodology, it is now easy to pick the best method for 174 

each category (MNAR or MAR). Another advantage is the easy combination with any existing missing 175 

value imputation methods, simple or complex, including new ones. 176 

This classification was done after the peak extraction and alignment step (step A in Figure 1), and several 177 

metrics were then calculated on each data set: global, group-wise and category-wise missing value rates 178 

were calculated. To assess the distribution of missing values in data sets, Pearson correlation coefficients 179 
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between the frequency of missing values and m/z, RT or mean areas were calculated. Missing value 180 

frequencies were also plotted against m/z, RT or mean areas to assess any potential trend which could 181 

not be detected only by correlation coefficients [14,16]. 182 

2.4 MISSING VALUE IMPUTATION STRATEGIES 183 

In this work, three different methods were picked for missing value (MV) imputation: one imputes all 184 

missing values at once by forced integration of the raw chromatogram while two impute separately 185 

MAR and MNAR.  186 

The first method replaces all MV by values estimated upon signal integration in the RT window of the 187 

missing peak in the raw data files. This was automatically performed using in-line implementation of 188 

the fillPeaks method on W4M platform. 189 

The second method (named “mean-LOD”) imputes MV separately with simple strategies. MAR are 190 

imputed by the mean of the non-missing replicates of the concerned ion and a noise component, with a 191 

random relative standard deviation (RSD) between -20% and +20% around the mean value 192 

(approximately corresponding to the observed RSD on reliable peaks on pool samples in the data set), 193 

is added to limit its influence on the following steps of the process. MNAR are imputed by the limit of 194 

detection (LOD) of the instrumental method, calculated here as the mean of the 3% lowest non-missing 195 

values [24], while adding the same noise component as for MAR. 196 

The third method (named “SVD-QRILC”) imputes MAR and MNAR separately with methods based on 197 

statistical tools, respectively singular value decomposition (SVD) for MAR [13] and quantile regression 198 

imputation of left-censored data (QRILC) for MNAR. For SVD method, MV are firstly initialized to 0 199 

and then estimated through an iteratively application of an eigen-values decomposition: here, the R 200 

wrapper based on the function “pcaMethod” has been used [25]. Another method (Random Forest, RF), 201 

possibly better than SVD for MAR [13], has been assessed but either the size of our data sets (more than 202 

20,000 ions for around 40 samples) or the MV distribution was such that computation time was too high 203 

(no convergence was observed after 24 h of computing against a convergence achieved in a few dozen 204 

of seconds for SVD) for its application here. Hence, we were not able to compare the results of this 205 
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algorithm based on a learning method to the other proposed methods due to insufficient computing 206 

power despite the use of a computational server. So, the possible contribution of learning based 207 

algorithms for MV imputation on such complex data sets should deserve further studies with a more 208 

powerful computational server. On the other hand, the QRILC method was invented for left-censored 209 

data imputation: MV are imputed by a random value generated by a truncated normal distribution. This 210 

method has been reported to better handle MNAR in metabolomics data sets than others [13]; the R 211 

wrapper based on “imputeLCMD” function has been retrieved from previous reported work [26]. 212 

2.5 FILTRATION STRATEGIES 213 

The first filtration method assessed (named “t-test / fixed FC”) relies on univariate statistic tests followed 214 

by the calculation of FC, for each ion. The Student test (t-test) is used since it is easy-to-use, it can 215 

handle rather small sample sets and moreover it has been already successfully implemented for 216 

untargeted food safety analysis [2,5]. Two successive t-tests are made, one between each group and the 217 

blank injections, the second between each group. The FC value for each ion is further calculated as the 218 

ratio between the median peak area (blanks and QC excluded) of the highest group over the median of 219 

the lowest. For each step (t-tests, FC), a fixed threshold is used for filtration (p-value < 0.05 for t-test, 220 

FC > 2 for fold change) whatever the ions considered. 221 

The second approach (named “FCmin”) is based on the calculation, for each ion, of the uncertainty on 222 

the FC [12] (UFC), thanks to an error propagation estimation. UFC enables then the determination of a 223 

relevant minimum fold change (FCmin) from which a significant effect can be distinguished from the 224 

overall method variability thanks to the equation: ����� =
�

��	
�

. A peak is then selected if the 225 

corresponding FC is superior to the FCmin. Detailed calculation of FCmin can be found in the paper 226 

published by Ortmayr et al [12]. 227 

2.6 STUDY DESIGN AND METHODS PERFORMANCE 228 

The different combinations of MV imputation/filtration methods (i.e. 6 different combinations, see 229 

Table 2) were tested on the previously described data sets, and the performance of each combination 230 
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assessed. Considering the study design and the fact that missing values were natively present in the 231 

tested data sets, limited quality metrics were available. Therefore, three indicators (2 quantitative, 1 232 

qualitative) have been proposed to discuss the performance of the different combinations: 233 

1. At the end of step B (Figure 1): total number of remaining ions after each combination, as well 234 

as number of ions of interest (i.e. “tracers”) recovered. Venn diagrams have been used to spot 235 

the similarities and differences of selected ions between combinations; 236 

2. At the end of step D (Figure 1): after multivariate analysis and annotation of suspect ions, group 237 

separation can be visually assessed and the detection percentage of the spiked contaminants 238 

(“tracers”) can be calculated in both polarity modes. A global detection rate combining both 239 

ionization modes is determined as well. 240 

3. Ease of implementation in the workflow (e.g. can the tool be implemented in-line with XCMS 241 

or the Matlab script or is a change of calculation platform needed? Is the method easy to 242 

handle?).  243 

3. RESULTS AND DISCUSSION 244 

3.1 STUDY OF MISSING VALUES IN DATA SETS 245 

First of all, descriptive metrics on missing values were calculated on each data set for positive and 246 

negative mode, and their distribution in each data set visualized. These metrics include the global 247 

percentage of MV, group-wise missing value percentages, the respective rates of MAR and MNAR, 248 

Pearson correlation coefficients between MV rate for each ion and their m/z, RT or mean peak area. 249 

They are presented in Table 3. For the positive mode, a higher MV percentage is observed in data set 250 

#2 as compared to data set #1 (53.6 vs. 40.7%, respectively), but this phenomenon is not observed for 251 

the negative ionization mode.  252 

To assess the presence of a trend within the distribution of missing values, a MV percentage is firstly 253 

calculated for each ion. Then, median of MV percentages is calculated for each percentile of relevant 254 

observed quantities (m/z, RT and median peak area of the ion), and the corresponding plots are drawn. 255 
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Illustrations for data set #1 in positive mode and data set #2 in negative mode are displayed in 256 

Supplementary material Figure S.1. 257 

Strong similarities can be observed among our data sets. First of all, no correlation nor graphical trend 258 

could be established between the rate of MV and the measured m/z and RT, which might suggest that 259 

MV are distributed randomly regarding m/z and RT in our data sets (Pearson correlation coefficients 260 

between -0.14 and 0.13). Besides, even though the Pearson’s correlation coefficients between MV rates 261 

and mean ion intensities are not significant (respectively 0.01 and -0.07), clear trends can be observed 262 

in the plot, with MV rates decreasing with the median peak area. Interestingly, when classifying missing 263 

values with our approach, MNAR were predominant (83.0-93.5% of total missing values) in all data 264 

sets, which is relevant with this trend, since, in MS data, MNAR often account for ions close to the limit 265 

of detection of the instrument [15]. A group-by-group study shows that they are distributed very evenly 266 

within the different sample groups, while the rate is lower in the QC samples (except for data set #2 in 267 

negative mode), and much higher in blank injections (this being expected). A slightly higher between-268 

groups variability can be noticed for data set #2 in negative ionization mode, which cannot be explained. 269 

Overall, the properties of both data sets, acquired using either negative or positive ionization modes, are 270 

very similar regarding missing values, even though less MV are observed in negative mode.  271 

3.2 IONS SELECTION AFTER FILTRATION 272 

For all combinations of missing value imputation and filtration methods two figures were monitored:  273 

1. The total number of ions selected after filtration (meaning ions that pass pretreatment steps and 274 

will be used for multivariate data analysis);  275 

2. The number of ions of interest selected. 276 

Ions of interest for spiked contaminants (defined as [M+H]+ and [M+Na]+ forms for positive mode, [M-277 

H]- for negative mode, and their corresponding M+1 and M+2 isotopic peaks) were a posteriori searched 278 

in the data matrices to assess any information loss during data treatments. Based on our spiking 279 

conditions (either 32 or 3 contaminants), a targeted screening of the initial data matrices reported a total 280 

of 57 ions of interest for our “tracers” in the data matrix built for data set #1, and 8 in the one built for 281 
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data set #2 for positive mode (respectively 36 and 4 in negative mode). Over the 57 ions of interest in 282 

positive mode, 54 have at least one missing value needing MV imputation to enable statistical selection 283 

(for negative mode: 36 over 36).  284 

The effects of each filtration and MV imputation method on ions selection are visualized using Venn 285 

diagrams to spot common selected ions between method combinations (see Figure 3). For data set #1 in 286 

both polarity, with the t-test/fixed FC filtration, a common core of ions has been selected (871 for 287 

positive mode and 579 for negative mode) among which the majority of ions of interest (47/57 for 288 

positive mode, 36/36 for negative mode). This result highlights the ability of all MV imputation methods 289 

to allow the selection of relevant ions when combined with the t-test/fixed FC filtration method on these 290 

rather simple data sets (since 54/57 needed MV imputation for ESI+ and 36/36 for ESI-). The total 291 

number of ions selected in these data sets using FCmin filtration method is generally lower than with t-292 

test/fixed FC (~100 vs. ~1,000, except for the negative mode with fillPeaks imputation). With FCmin 293 

filtration, fewer ions of interest are selected (14/57 for positive ionization mode and 29/36 for the 294 

negative mode); its influence on the final detection rate of the whole process will be discussed in 3.3. 295 

The implementation of both filtration strategies on data set #2 (positive and negative ionization modes) 296 

leads to the selection of more ions than on data set #1. This is due to the higher between-samples 297 

variability, with about ten times more ions selected each time. As for data set #1, the common core of 298 

ions selected with the combinations containing the t-test/fixed FC filtration method (7,557 ions for ESI+ 299 

and 8,964 for ESI-) contains the majority of ions of interest (6/8 for positive mode and 4/4 for negative 300 

mode). The application of FCmin filtration on these data sets leads to the selection of less ions than for t-301 

test/fixed FC as generally observed for data set #1. The common core of ions of interest is more reduced 302 

in positive mode (2/8) with combinations containing FCmin filtration. On this data set #2, combination 303 

containing SVD-QRILC method failed to recover the 4 ions of interest due to a too stringent filtration 304 

(about 1,500 ions selected against about 4,000 respectively). In negative mode, 3 ions of interest (out of 305 

4) are selected with all combinations, and one extra-ion is picked by the fillPeaks method.  306 
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To conclude, considering the t-test/fixed FC filtration method, a common core of selected ions gathered 307 

the most part of ions of interest, meaning that all MV imputation methods are efficient to enable their 308 

selection during filtration. Comparison between MV imputation methods lies also in the number of total 309 

ions selected as this is indicative of the strength of the filtration. For FCmin filtration method, the 310 

conclusions are different since the common core of selected ions regroups less than 50% of ions of 311 

interest. In that case, fillPeaks and mean-LOD methods were more efficient for the selection of ions of 312 

interest, but in the meantime they led to high numbers of total ions selected.   313 

3.3 GLOBAL PERFORMANCE OF THE APPROACH 314 

The whole workflow (including the final multivariate and annotation steps) was considered to figure out 315 

which pretreatment method(s) offer(s) the best performances for untargeted food contaminants 316 

detection. Results for positive and negative ionization modes are presented in Table 4. A global detection 317 

rate of the method (obtained by the combination of results from both ionization modes) is displayed as 318 

well. 319 

Firstly, for data set #1, whatever the pretreatment method combinations, all sample groups could be 320 

discriminated with our untargeted approach (see in Figure S.2 of supplementary materials for positive 321 

ionization mode score plots and Figure S.3 for negative ionization mode). It means that the multivariate 322 

method used can successfully separate the “unnecessary” ions in the data matrix from the common core 323 

of ions of interest observed both for t-test/fixed FC and FCmin (see in Table 4). Percentages of detection 324 

for our “tracers” ranged from 38 to 53% in positive mode and from 34 to 41% for negative mode (leading 325 

to global detection rates between 66 and 78% when combining both modes) for this data set that mimics 326 

a quite simple case (one brand, three different levels of contamination plus a control group). The 327 

influence of MV imputation method on the detection rates seems minor since all method combinations 328 

give acceptable performance. Interestingly, no clear link can be established between the number of ions 329 

of interest selected and the detection rate of the method, meaning that, even though FCmin filtration 330 

method selected less ions of interest than t-test/fixed FC (see Figure 3), it seems to select the most 331 

important ones (i.e. monoisotopic ions) with a minor impact on the detection rates observed. 332 
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Interestingly, for both positive and negative ionization modes, mean-LOD method coupled to FCmin 333 

filtration strategy seems to lead to lower relative intra-group variances (see in Figure S.2 and S.3 of 334 

supplementary materials). This may be the consequence of the use of the injection replicate information 335 

to fill missing values with this imputation methods, and also of the stronger data reduction brought by 336 

FCmin compared with t-test/fixed FC method. 337 

On the other hand, all combinations do not seem suitable for the more complex data set #2. In positive 338 

ionization mode, mean-LOD & SVD-QRILC coupled with t-test/fixed FC filtration do not manage to 339 

detect the three contaminants spiked, and SVD-QRILC coupled with FCmin filtration only achieved the 340 

detection of 2 contaminants out of 3. Interestingly, all contaminants were detected using fillPeaks 341 

coupled with t-test/fixed FC or FCmin (combinations n°1 & 2 as displayed in Table 2) and mean-LOD 342 

coupled with FCmin. The performance of the methods are more homogeneous in negative ionization 343 

mode since only SVD/QRILC coupled with FCmin filtration failed to detect the spiked contaminants. At 344 

the end, when considering simultaneously both polarities, fillPeaks appears as the only MV imputation 345 

method that enables the annotation of all contaminants whatever the filtration method used.  346 

Based on those results, as well as the easiness of implementation of each tool, the main characteristics 347 

of imputation and filtration methods were proposed (Table 5 and Table 6). 348 

We observed that only combinations relying on fillPeaks successfully enabled the detection of spiked 349 

contaminants (or a majority of them) in all data sets. In addition, this MV imputation method does not 350 

need to classify missing value as MNAR or MAR, and it is easily implemented in-line after peak 351 

extraction since it is part of the XCMS package (being already implemented on every XCMS-based 352 

platforms). Practically speaking, fillPeaks is very user-friendly, with easy-to-use graphical interfaces 353 

developed by the community (e.g. W4M and XCMS Online). Yet, it relies on a complex algorithm, so 354 

that inconsistent results may be difficult to troubleshoot, especially for unexperienced users even though 355 

graphical outputs are available. Hopefully, this tool benefits from a very dynamic and open scientific 356 

community that brings help and technical support. As stated before, another drawback of this method, 357 

based on forced integration, lies in ions presenting flat baselines (cut-off during the acquisition) where 358 
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MVs are imputed as zeros and should be handled afterward since they may prevent the use of some 359 

critical pretreatment methods (e.g. log normalization and univariate statistics). This is illustrated by our 360 

results on data set MTBLS 771: a total of 48% of the values in the data matrix were missing before the 361 

fillPeaks step, while, after fillPeaks the data matrix contains 8% of zeros (i.e. 17% of initial missing 362 

values). This clearly shows that a significant number of zeros may be present after the fillPeaks 363 

completion, and suggests the advantage of combining fillPeaks with other MV imputation methods such 364 

as mean-LOD for example. The results obtained by the combination of both methods (fillPeaks and 365 

mean-LOD) can be found in the dedicated publication [27]. 366 

Methods needing MV classification suffer from the absence of established methodologies to classify 367 

missing values in MS-based data sets; under our experience, both methods (mean-LOD and SVD-368 

QRILC) did not always enable the detection of contaminants in the most complicated case studied. Since 369 

MAR and MNAR are not imputed with the same algorithm, a MV misclassification may lead to an 370 

inconsistent imputation. The effect of such misclassification is expected to be higher with SVD-QRILC 371 

(based on statistical methods) than with the simple mean-LOD method, in agreement with the lower 372 

performance of SVD-QRILC compared with mean-LOD observed in this work. Our results pointed out 373 

the classification method for MAR and MNAR as a possible limiting step for the efficiency of these 374 

MVs imputation methods and further investigations discussing this first proposed methodology are 375 

needed. Despite this drawback, both methods have the advantage to fully complete the data matrix since 376 

no zeros are obtained at the end. 377 

Regarding the mean-LOD method, the noise component set as a random value between -20% and +20% 378 

around the estimated values (mean or LOD) may sometimes over- or under-estimate the “real” standard 379 

deviation of the data. This over- or under-estimation may disturb the calculation of the FC uncertainty 380 

UFC and influence the filtration method FCmin. However, the detection rate of the combination mean-381 

LOD + FCmin indicated in Table 4 proved that the over- or under-estimation is not a critical issue for the 382 

tested data sets, but more tests are needed to confirm a larger applicability. 383 
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The t-test/fixed FC method relies on the use of fixed, generic threshold for each step (p-value < 0.05 for 384 

t-tests and FC > 2), which can be a limit since all ions do not necessarily have the same characteristics 385 

in terms of distribution and variance. On the opposite, the FCmin method adjusts the threshold to the 386 

measurement quality of each ion, which may enable a better quality of filtration, with the selection of 387 

peaks exhibiting lower relative standard deviations, and therefore potentially less artifacts. However, 388 

the t-test/fixed FC strategy offers more flexible applications than FCmin since one can use any univariate 389 

statistical test to better fit to the data structure, or apply one or two filtration steps (for example by 390 

omitting the fixed FC step) if too much data of interest seem to be lost. Even though FCmin leads to the 391 

selection of fewer ions of interest than t-test/fixed FC, the global detection rates obtained are very similar 392 

(see Table 4). On more complex data set such as data set #2, the greater reduction of ions number 393 

generally observed with the FCmin filtration method can also be an asset since it makes the computation 394 

easier and faster. In the meantime, the risk of discarding a potential contaminant is also higher, especially 395 

with molecules having a signal close to the limit of detection of the instrument. Consequently, it could 396 

be recommended to implement both filtration methods in parallel to increase the detection probability 397 

of potential contaminants. 398 

4. CONCLUSION  399 

Several pretreatment methods (three missing value imputation methods - one based on the forced 400 

integration of raw data, two based on the classification of missing values as MAR or MNAR - coupled 401 

to two filtration methods, leading to six combinations) were tested on two LC-MS data sets dedicated to 402 

untargeted food chemical safety. They were integrated in a general workflow, and the final detection 403 

rate calculated for each data set and method combination. In addition to this global performance 404 

assessment, the ions selected by each combination were more deeply investigated.  405 

As expected initially, the total number of ions selected varies a lot between pretreatment methods. 406 

Interestingly the ions of interest (corresponding to spiked contaminants) were selected by most methods. 407 

Considering the whole workflow, all combinations were able to detect the spiked contaminants on the 408 

data sets corresponding to a simple contamination scenario (positive and negative ionization modes), 409 
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with different success rates (from 66 to 78%). The more heterogeneous data set was more problematic 410 

since several combinations did not enable the detection of the spiked contaminants. In fact, the only 411 

imputation method that enables the detection of our tracers for this contamination scenario, whatever 412 

the filtration approach used, is fillPeaks based on the re-analysis of raw data. This tools has also the 413 

advantage to be easily implemented in-line with the peak extraction step if this one is carried out with 414 

the wide-spread, user friendly package XCMS or its online implementations XCMS-online or 415 

Workflow4Metabolomics. However, on data exhibiting a flat baseline with no signal in case of no peak, 416 

it can generate an important amount of zeros. In that case, they should be handled as missing values to 417 

avoid any problematic issues in the workflow afterwards. We suggest that mean-LOD method should 418 

be used to complement fillPeaks on remaining zeros since it is very easy to implement and still shows 419 

satisfactory results.  420 

Unlike existing missing value imputation approaches, two methods presented here rely on a 421 

classification of missing values according to their nature. This very simple methodology is based on 422 

instrumental replicates, thereby authorizing a quick classification; in addition, it can be easily combined 423 

with any MV imputation method. Yet, it seems to face some limits when dealing with heterogeneous 424 

data sets, so that more work is needed to better address MV classification for MS-based data sets. In this 425 

work, this classification-based approach has been used with either a simple method (mean-LOD) or a 426 

more sophisticated one chosen for its performances on respective missing values types (SVD-QRILC). 427 

The results presented here constitute a good proof of concept of the potential of such classification-428 

based approaches to help missing value imputation. It would surely benefits from its implementation 429 

with other imputation methods such as ones based on machine learning algorithms, for example 430 

Artificial Neural Networks (ANN, [28]) or genetic algorithm [29]. Such work would be a natural 431 

extension of the present publication and would provide highly interesting results for the scientific 432 

community, even outside the field of untargeted food safety assessment. In addition, studying the 433 

proposed missing value imputation strategy on a simulated data set (i.e. on better controlled, even though 434 

less realistic, situation) could lead to interesting contribution to the understanding of the missing value 435 

imputation process.  436 
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In applied fields such as untargeted food chemical safety assessment, the user mainly focus on the final 437 

outcome of the approach, but our understanding of the process should be improved in order to build 438 

better tools and workflows. This work shows a first attempt in that direction but more work and more 439 

data sets dealing with untargeted food safety are needed to get a critical point of view on all the steps of 440 

the workflow and their influence on the detection rates.  441 
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TABLE 1 MAIN CHARACTERISTICS OF STUDIED DATA SETS [5] 552 

Data set  Number of brands Spiking mix* Spiking levels (µg/kg) 

#1 1 32 contaminants 0; 10; 50; 100 
#2 2 3 contaminants 0; 50 (for each brand) 

* Details on spiked contaminants can be found in Supplementary material - Table S.1  553 

  554 
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TABLE 2 COMBINATION OF PRETREATMENT METHODS TESTED 555 

Combination n° 
Missing value 

imputation method 
Filtration method 

1 fillPeaks t-test/fixed FC 

2 fillPeaks FCmin 

3 Mean-LOD t-test/fixed FC 

4 Mean-LOD FCmin 

5 SVD-QRILC t-test/fixed FC 

6 SVD-QRILC FCmin 

 556 

  557 
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TABLE 3 PROPERTY SUMMARY OF DATA SETS (FOR BOTH IONIZATION MODES) 558 

 
Data set #1 Data set #2 

POS NEG POS NEG 

Number of extracted ions (XCMS) 29,755 24,543 23,891 17,269 

Number of data files 48 48 57* 59 

Global MV rate 40.7 30.1 53.6 23.3 

Group-wise MV rates 

Blanks 92.7 95.3 94.6 93.8 
QC 29.7 17.0 43.7 21.5 

Group 1 32.4 19.9 50.1 11.6 
Group 2 31.9 19.3 49.2 12.5 
Group 3 32.8 19.3 51.2 18.9 
Group 4 31.2 18.2 51.3 21.6 

MNAR % in missing values 86.3 83.0 93.5 84.0 

MAR % in missing values 13.7 17.0 6.5 16.0 

Pearson correlation MV / m/z 0.02 -0.01 0.13 0.02 
Pearson correlation MV / RT 0.08 -0.14 0.07 -0.07 

Pearson correlation MV / mean area 0.01 -0.06 -0.18 -0.07 

* Injections outliers were visually detected in data set #2 for positive mode, and thus discarded 559 
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TABLE 4 PERFORMANCES OF THE WHOLE WORKFLOW DEPENDING ON THE MISSING VALUE 561 

IMPUTATION / FILTRATION METHODS COMBINATION AND DATA SETS 562 

Data 

set 
Combination 

Positive mode Negative mode Global 

Number of 
ions after 
filtration 

Detection 
rate (%) 

Number of 
ions after 
filtration 

“Tracers” 
detection 

(%) 

Detection 
rate (%) 

#1 

fillPeaks + t-test/fixed FC 1,710 44 952 38 66 

fillPeaks + FCmin 328 50 2,136 38 72 

mean-LOD + t-test/fixed FC 4,309 50 2,950 41 75 

mean-LOD + FCmin 210 44 552 34 66 

SVD-QRILC + t-test/fixed FC 3,336 53 2,607 38 78 

SVD-QRILC + FCmin 160 38 403 38 66 

#2 

fillPeaks + t-test/fixed FC 9,778 100 9,381 67 100 

fillPeaks + FCmin 4,572 100 9,383 67 100 

mean-LOD + t-test/fixed FC 14,142 0 11,261 67 67 

mean-LOD + FCmin 3,530 100 5,238 67 100 

SVD-QRILC + t-test/fixed FC 13,188 0 11,066 67 67 

SVD-QRILC + FCmin 1,524 67 4,060 0 67 
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TABLE 5 MAIN FEATURES OF MISSING VALUE IMPUTATION METHODS 564 

MV imputation 

method 
Main characteristics 

fillPeaks 

Pros 

No need for MV classification 
Easy in-line implementation within XCMS 
Gives good results with all filtration methods on every data sets 
Benefits from the support of a dynamic scientific community 
Can be easily combined with other statistical MV imputation methods 

Cons 

May generate a lot of zeros on flat baseline with no signal (i.e. issues with log scaling and univariate 
statistics) 
Relies on a complex algorithm that can be difficult to troubleshoot, especially for unexperienced users 
even though graphical outputs are available 

Mean-LOD 

Pros 

Simple tools, understandable by all 
No zeros at the end of the process 

Cons 

Needs MV classification (= more complex to implement and may be subjected to discussion) 
May lead to over-fitting of the data 
Does not enable the detection of all “tracers” when combined with t-test / fixed FC on the most 
heterogeneous data set 

SVD-QRILC 

Pros 

Best detection rate on the simple data set 
No zeros at the end of the process 

Cons 

Needs MV classification 
More complex methods than mean-LOD, may be difficult to troubleshoot for unexperienced users 
Performs badly on the most heterogeneous data set 

 565 

  566 
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TABLE 6 MAIN FEATURES OF FILTRATION METHODS 567 

Filtration 

method 

Main characteristics 

t-test/fixed FC 

Pros 

Easy to implement 
More ions of interest selected 

Cons 

Lower detection rates on heterogeneous data sets with imputation methods other 
than fillPeaks 
Filtration thresholds may be subjected to discussion 

FCmin 

Pros 

Easy to implement 
No parameter to set (filtration threshold determined by the quality of 
measurement for each ion)  
Greater reduction of selected ion numbers 
Goes well with most imputation methods used  

Cons 

Fewer ions of interest selected 
 568 
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 570 

FIGURE 1 WORKFLOW IMPLEMENTED 571 
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 573 

FIGURE 2 DATA MATRIX LAYOUT AND REPRESENTATION OF THE CLASSIFICATION 574 

METHODOLOGY FOR MISSING VALUES  575 
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 578 

FIGURE 3 VENN DIAGRAMS FOR NUMBER OF IONS* SELECTED BY EACH PRETREATMENT 579 

COMBINATION ON BOTH DATA SETS FOR POSITIVE AND NEGATIVE IONIZATION MODES 580 

*number of ions relative to our “tracers” are indicated within parenthesis 581 




