Constraint Programming and Graphical models Pushing data into your models, The protein design case.

Thomas Schiex, Sophie Barbe, David Simoncini, Jelena Vucinic, Manon

Ruffini, David Allouche

To cite this version:

Thomas Schiex, Sophie Barbe, David Simoncini, Jelena Vucinic, Manon Ruffini, et al.. Constraint Programming and Graphical models - Pushing data into your models, The protein design case.. 23rd International Symposium on Mathematical Programming (ISMP-18), Jul 2018, Bordeaux, France. hal-02154354

HAL Id: hal-02154354
https://hal.science/hal-02154354
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Constraint Programming and Graphical models Pushing data into your models

 The protein design caseT. Schiex, S. Barbe, D. Simoncini, J. Vucinic, M. Ruffini
Presented by D. Allouche

INRA MIAT, Toulouse, France

July 2018

Constraint network (X, C)
Feasibility biased

- a sequence X of discrete variables x_{i}, domain D_{i}

Constraint network (X, C)

- a sequence X of discrete variables X_{i}, domain D_{i}
- a set C of constraints

Constraint network (X, C)

- a sequence X of discrete variables x_{i}, domain D_{i}
- a set C of constraints
- $c_{S} \in C$ involves variables in $S \subseteq X$ and is a boolean function $\prod_{i \in S} D_{i} \rightarrow\{t, f\}$

Constraint network (X, C)

- a sequence X of discrete variables x_{i}, domain D_{i}
- a set C of constraints
- $c_{S} \in C$ involves variables in $S \subseteq X$ and is a boolean function $\prod_{i \in S} D_{i} \rightarrow\{t, f\}$
- a solution is an assignment of X that satisfies all constraints (NP-complete)

Constraint network (X, C)

- a sequence X of discrete variables x_{i}, domain D_{i}
- a set C of constraints
- $c_{S} \in C$ involves variables in $S \subseteq X$ and is a boolean function $\prod_{i \in S} D_{i} \rightarrow\{t, f\}$
- a solution is an assignment of X that satisfies all constraints (NP-complete)

Constraint programming

- Algorithms to find a solution (Backtrack, constraint propagation)
- Predefined constraints (AllDifferent,...)

Cost function network (X, W)
 Homogeneous feasibility and criteria

- a sequence X of discrete variables x_{i}, domain D_{i}

Cost function network (X, W)
 Homogeneous feasibility and criteria

- a sequence X of discrete variables x_{i}, domain D_{i}
- a set W of cost functions

Cost function network (X, W)
 Homogeneous feasibility and criteria

- a sequence X of discrete variables x_{i}, domain D_{i}
- a set W of cost functions
- $W_{S} \in W$ is a numerical function $\prod_{i \in S} D_{i}$

Cost function network (X, W)
 Homogeneous feasibility and criteria

- a sequence X of discrete variables x_{i}, domain D_{i}
- a set W of cost functions
- $W_{S} \in W$ is a numerical function $\prod_{i \in S} D_{i}$
- a solution optimizes the joint cost $W(X)=\sum_{w_{s} \in W} W_{S}(X[S]) \quad$ (WCSP, NP-complete)

Cost function network (X, W)
 Homogeneous feasibility and criteria

- a sequence X of discrete variables x_{i}, domain D_{i}
- a set W of cost functions
- $W_{S} \in W$ is a numerical function $\prod_{i \in S} D_{i}$
- a solution optimizes the joint cost $W(X)=\sum_{w_{s} \in W} W_{S}(X[S]) \quad$ (WCSP, NP-complete)

Generalizes CP: a constraint is a cost function that maps to $\{0, \infty\}$

Cost function network (X, W) Homogeneous feasibility and criteria

- a sequence X of discrete variables x_{i}, domain D_{i}
- a set W of cost functions
- $W_{S} \in W$ is a numerical function $\prod_{i \in S} D_{i}$ [possibly infinite costs)
- a solution optimizes the joint cost $W(X)=\sum_{w_{s} \in W} w_{S}(X[S]) \quad$ (WCSP, NP-complete)

Generalizes CP: a constraint is a cost function that maps to $\{0, \infty\}$

Solvers: daoopt, toulbar2, MaxHS (MaxSAT)...

- Algorithms to find a solution (Branch and bound, cost function propagation)
- Predefined cost functions (Weighted All-Different,...)

Example: MAXCUT with hard edges

Graph $G=(V, E)$ with edge weight function w

- A boolean variable x_{i} per vertex $i \in V$
- A cost function per edge $e=(i, j) \in E: w_{i j}=w(i, j) \times \mathbb{1}\left[x_{i} \neq x_{j}\right]$
- Hard edges: constraints with costs 0 or $-\infty\left(\right.$ when $\left.x_{i} \neq x_{j}\right)$

Example: MAXCUT with hard edges

Graph $G=(V, E)$ with edge weight function w

- A boolean variable x_{i} per vertex $i \in V$
- A cost function per edge $e=(i, j) \in E: w_{i j}=w(i, j) \times \mathbb{1}\left[x_{i} \neq x_{j}\right]$
- Hard edges: constraints with costs 0 or $-\infty$ (when $\left.x_{i} \neq x_{j}\right]$

3-clique

- vertices $\{1,2,3\}$
- cut weight 1
- edge $(1,2)$ hard.

Example: MAXCUT with hard edges

Graph $G=(V, E)$ with edge weight function w

- A boolean variable x_{i} per vertex $i \in V$
- A cost function per edge $e=(i, j) \in E: w_{i j}=w(i, j) \times \mathbb{1}\left[x_{i} \neq x_{j}\right]$
- Hard edges: constraints with costs 0 or $-\infty$ (when $x_{i} \neq x_{j}$)

3-clique

- vertices $\{1,2,3\}$
- cut weight 1
- edge $(1,2)$ hard.

MAXCUT on a 3-clique with hard edge
\{
"problem" :\{"name": "MaxCut", "mustbe": ">0.0"\},
"variables": \{"x1": ["l","r"], "x2": ["l", "r"], "x3": ["l","r"]\},
"functions": \{
"cut12": \{"scope": ["x1","x2"], "costs": [0, -100, -100,0]\},
"cut13": \{"scope": ["x1","x3"], "costs": [0,1,1,0]\},
"cut23": \{"scope": ["x2","x3"], "costs": [0,1,1,0]\}
\}
\}

Most active molecules of life
Sequence of "amino-acids", each chosen among a set of 20 natural ones

Folding

\longrightarrow Function

Transporter, binder, regulator, motor, catalyst...
Hemoglobine, TAL effector, ATPase, dehydrogenases...

Most active molecules of life
Sequence of "amino-acids", each chosen among a set of 20 natural ones

Transporter, binder, regulator, motor, catalyst...
Hemoglobine, TAL effector, ATPase, dehydrogenases...

New eco-friendly chemical/structural nano-agents

- Already produced new folds, ${ }^{2}$ catalysts, ${ }^{5}$ nano-components ${ }^{8}$

New eco-friendly chemical/structural nano-agents

- Already produced new folds, ${ }^{2}$ catalysts, ${ }^{5}$ nano-components ${ }^{8}$
- Useful for biomass transformation (biofuels, food and feed, cosmetics...),

New eco-friendly chemical/structural nano-agents

- Already produced new folds, ${ }^{2}$ catalysts, ${ }^{5}$ nano-components ${ }^{8}$
- Useful for biomass transformation (biofuels, food and feed, cosmetics...),
- For new drugs in medicine

New eco-friendly chemical/structural nano-agents

- Already produced new folds, ${ }^{2}$ catalysts, ${ }^{5}$ nano-components ${ }^{8}$
- Useful for biomass transformation (biofuels, food and feed, cosmetics...),
- For new drugs in medicine
- To provide new components for nanotechnologies

New eco-friendly chemical/structural nano-agents

- Already produced new folds, ${ }^{2}$ catalysts, ${ }^{5}$ nano-components ${ }^{8}$
- Useful for biomass transformation (biofuels, food and feed, cosmetics...),
- For new drugs in medicine
- To provide new components for nanotechnologies

Ingredients

- Full atom model of a protein backbone

Ingredients

- Full atom model of a protein backbone
- Catalog of all 20 amino acids in different conformations
[assumed to be rigid〕
(≈ 400 overall)

Ingredients

- Full atom model of a protein backbone
(assumed to be rigid)
- Catalog of all 20 amino acids in different conformations [≈ 400 overall]
- Full atom energy function (bonds, electrostatics, solvant, statistics...)

Ingredients

- Full atom model of a protein backbone
- Catalog of all 20 amino acids in different conformations
(assumed to be rigid) [≈ 400 overall]
- Full atom energy function
- Maximum stability \equiv Minimum energy
(bonds, electrostatics, solvant, statistics...)
NP-hard ${ }^{4}$

Ingredients

- Full atom model of a protein backbone
- Catalog of all 20 amino acids in different conformations
(assumed to be rigid〕 [≈ 400 overall]
- Full atom energy function
- Maximum stability \equiv Minimum energy (bonds, electrostatics, solvant, statistics...)

NP-hard ${ }^{4}$

As a Cost Function Network

- One variable per position in the protein sequence
- Domain: catalog of few hundreds amino acids conformations
- Functions: decomposed energy (sum of pairwise terms)
- Search space has size $\approx 400^{n}$

\# of instances solved (X) within a per instance cpu-time limit (Y)

Analysis of a dedicated Simulated annealing (SA) code [7]

Optimality gap of the Simulated annealing solution as problems get harder Asymptotic convergence can be arbitrarily slow

Imperfect

- Approximations: rigidity, solvent effect...
- Ignores: interactions inside the cell, polarisability...
- Needs more information, extracted from data

Imperfect

- Approximations: rigidity, solvent effect...
- Ignores: interactions inside the cell, polarisability...
- Needs more information, extracted from data

Evolutionary information

- Use similar proteins (homologs) from databases
- Multiple alignment: align similar regions of the sequences

A multiple alignment with conserved positions

on	Protein sequences	$\sqrt{\text { Non conserved amino acid }} \text { position }$
Q5IS43.3 SADMTIKLWDF-QGFECIRTMHGHDHNVSSVAIMPNGDHIVSASRDKT		
Q7T394.3	SADMTIKLWDF-QGFECIRTMHGHD	AIMPNGDHIVSASRDKT
Q7T394	SADMTIKLWDF-QGFECIRTMHG	IMPNGDHIVSASRDKT
Q7T394.3	SADMTIKLWDF-QGFECIRTMHGH	AIMPNGDHIVSASRDKT
E Q86VZ2	SDDKTLKLWDVRSG-KCLKTLKGH	NFNPPSNLIISGSFDET
Q86VZ2	SDDKTLKLWDVRSG-KCLKTLKGH	FNPPSNLIISGSFDET
Q86VZ2	SDDKTLKLWDVRSG-KCLKTLKGH	NFNPPSNLIISGSFDET
C3XVT5	SADMTIKLWDF-QTFENIKTMHG	FMPNGDFLISASRDKT
C3XVT5	SADMTIKLWDF-QTFENIKTMHGH	HFMPNGDFLISASRDKT
C3XVT5	SADMTIKLWDF-QTFENIKTMHG	FMPNGDFLISASRDKT
\geq Q803D2.3	SADMTIKLWDF-QGFECIRTMHGH	AIMPNGDHIVSASRDKT
Q803D2. 3	SADMTIKLWDF-QGFECIRTMHGH	AIMPNGDHIVSASRDKT
Q803D2. 3	SADMTIKLWDF-QGFECIRTMHGH	AIMPNGDHIVSASRDKT
Q5RE95	SDDKTLKLWDMRSG-KCLKTLKGHS	NFNPPSNLIISGSFDET

Simple integration of information

- Force amino acid choice (constraint) at conserved positions.

C8 pseudo-symetric 20VP symmetrized into a nano-component

C8 pseudo-symetric 20VP symmetrized into a nano-component

- Tako: (RJevolution + Rosetta/talaris14

8 fold

2OVP

C8 pseudo-symetric 20VP symmetrized into a nano-component

- Tako: (R)evolution + Rosetta/talaris14 8 fold
\square Ika: toulbar2 + talaris14

Tako

Ika

Compares Tako and Ika structural stability as temperature increases [circular dichroism)

Boltzman distribution connects probability and cost

$$
P(X) \propto e^{-W(X)}
$$

Boltzman distribution connects probability and cost

$$
P(X) \propto e^{-W(X)}
$$

From CFN to probabilities and back

- After $\mathrm{e}^{-\mathrm{x}}$ transform, a CFN defines a probability distribution (MRF)

Boltzman distribution connects probability and cost

$$
P(X) \propto e^{-W(X)}
$$

From CFN to probabilities and back

- After $\mathrm{e}^{-\mathrm{x}}$ transform, a CFN defines a probability distribution (MRF)
- Which can be learned from data using maximum penalized likelihood $[1,3,6]$

Boltzman distribution connects probability and cost

$$
P(X) \propto e^{-W(X)}
$$

From CFN to probabilities and back

- After $\mathrm{e}^{-\mathrm{x}}$ transform, a CFN defines a probability distribution (MRF)
- Which can be learned from data using maximum penalized likelihood $[1,3,6]$
- And transformed back into a CFN with a - $\log (x)$ transform
- We start from a complete pairwise CFN with unknown cost functions
- We start from a complete pairwise CFN with unknown cost functions
- We have a total of $\mathrm{d}^{2} \cdot \frac{\mathrm{n}(\mathrm{n}-1)}{2}$ parameters to learn
- We start from a complete pairwise CFN with unknown cost functions
- We have a total of $d^{2} \cdot \frac{n(n-1)}{2}$ parameters to learn
- Let $\ell\left(\mathrm{D} \mid \mathrm{w}_{\mathrm{ij}}\right)$ be the log-probability of data D given the w_{ij}
- We start from a complete pairwise CFN with unknown cost functions
- We have a total of $d^{2} \cdot \frac{n(n-1)}{2}$ parameters to learn
$\mathrm{w}_{\mathrm{ij}}(\cdot, \cdot)$
- Let $\ell\left(\mathrm{D} \mid \mathrm{w}_{\mathrm{ij}}\right)$ be the log-probability of data D given the w_{ij}

Maximize $\ell\left(D \mid w_{i j}\right)-\lambda \cdot \| w_{i j}| |$
concave

- We start from a complete pairwise CFN with unknown cost functions
- We have a total of $\mathrm{d}^{2} \cdot \frac{\mathrm{n}(\mathrm{n}-1)}{2}$ parameters to learn

$$
\mathrm{w}_{\mathrm{ij}}(\cdot, \cdot)
$$

- Let $\ell\left(\mathrm{D} \mid \mathrm{w}_{\mathrm{ij}}\right)$ be the log-probability of data D given the w_{ij}

$$
\text { Maximize } \ell\left(D \mid w_{i j}\right)-\lambda \cdot \| w_{i j}| |
$$

Efficient L2 norm based implementation available [6]

- Uses conjugate gradient optimization
- fast C or very fast CUDA implementation
- n variables, d values, s samples: $O\left(d^{2} n^{2}+d n s\right)$ space.
- We start from a complete pairwise CFN with unknown cost functions
- We have a total of $\mathrm{d}^{2} \cdot \frac{n(n-1)}{2}$ parameters to learn $\mathrm{w}_{\mathrm{ij}}(\cdot, \cdot)$
- Let $\ell\left(\mathrm{D} \mid \mathrm{w}_{\mathrm{ij}}\right)$ be the log-probability of data D given the w_{ij}

$$
\text { Maximize } \ell\left(D \mid w_{i j}\right)-\lambda \cdot \| w_{i j}| |
$$

Efficient L2 norm based implementation available [6]

- Uses conjugate gradient optimization
- fast C or very fast CUDA implementation
- n variables, d values, s samples: $O\left(d^{2} n^{2}+d n s\right)$ space.

Let's recap...

- Model the problem as a CFN (generalizes CP)

Let's recap...

- Model the problem as a CFN (generalizes CP)
- Learn other CFNs from available data sets using penalized likelihood optimization

Let's recap...

- Model the problem as a CFN (generalizes CP)
- Learn other CFNs from available data sets using penalized likelihood optimization
- Combine the models by scaling/adding/connecting them together

Let's recap...

- Model the problem as a CFN (generalizes CP)
- Learn other CFNs from available data sets using penalized likelihood optimization
- Combine the models by scaling/adding/connecting them together
- Solve them with toulbar2

MIT licence, https://github.com/toulbar2/toulbar2

```
Al/toulbar2
S. de Givry (INRA)
G. Katsirelos (INRA)
M. Zytnicki (PhD, INRA)
D. Allouche (INRA)
H. Nguyen (PhD, INRA)
M. Cooper (IRIT, Toulouse)
J. Larrosa (UPC, Spain)
F. Heras (UPC, Spain)
M. Sanchez (Spain)
E. Rollon (UPC, Spain)
P. Meseguer (CSIC, Spain)
G. Verfaillie (ONERA, ret.)
JH. Lee (CU. Hong Kong)
C. Bessiere (LIMM, Montpellier)
JP. Métivier (GREYC, Caen)
S. Loudni (GREYC, Caen)
M. Fontaine (GREYC, Caen)
```


Protein Design

A. Voet (KU Leuven)

D. Simoncini (INSA, Toulouse)
S. Barbe (INSA, Toulouse)
S. Traoré (PhD, CEA)
C. Viricel (PhD)

PyRosetta (U. John Hopkins) OSPREY (Duke U.)
[1] Sivaraman Balakrishnan et al. "Learning generative models for protein fold families". In: Proteins: Structure, Function, and Bioinformatics 79.4 (2011), pp. 1061-1078.
[2] Brian Kuhlman et al. "Design of a novel globular protein fold with atomic-level accuracy". In: science 302.5649 (2003), pp. 1364-1368.
[3] Youngsuk Park et al. "Learning the Network Structure of Heterogeneous Data via Pairwise Exponential Markov Random Fields". In: Artificial Intelligence and Statistics. 2017, pp. 1302-1310.
[4] Niles A Pierce and Erik Winfree. "Protein design is NP-hard." In: Protein Eng. 15.10 (Oct. 2002), pp. 779-82. ISSN: 0269-2139. URL: http://www.ncbi.nlm.nih.gov/pubmed/12468711.
[5] Daniela Röthlisberger et al. "Kemp elimination catalysts by computational enzyme design". In: Nature 453.7192 (2008), p. 190.
[6] Stefan Seemayer, Markus Gruber, and Johannes Söding. "CCMpred-fast and precise prediction of protein residue-residue contacts from correlated mutations". In: Bioinformatics 30.21 (2014), pp. 3128-3130.
[7] David Simoncini et al. "Guaranteed Discrete Energy Optimization on Large Protein Design Problems". In: Journal of Chemical Theory and Computation 11.12 (2015), pp. 5980-5989. DOI: 10.1021/acs . jctc .5b00594.
[8] Arnout RD Voet et al. "Computational design of a self-assembling symmetrical β-propeller protein". In: Proceedings of the National Academy of Sciences 111.42 (2014), pp. 15102-15107.

