
HAL Id: hal-02154354
https://hal.science/hal-02154354v1

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Constraint Programming and Graphical models -
Pushing data into your models, The protein design case.

Thomas Schiex, Sophie Barbe, David Simoncini, Jelena Vucinic, Manon
Ruffini, David Allouche

To cite this version:
Thomas Schiex, Sophie Barbe, David Simoncini, Jelena Vucinic, Manon Ruffini, et al.. Constraint
Programming and Graphical models - Pushing data into your models, The protein design case.. 23rd
International Symposium on Mathematical Programming (ISMP-18), Jul 2018, Bordeaux, France.
�hal-02154354�

https://hal.science/hal-02154354v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1/19

Constraint Programming and Graphical models

Pushing data into your models
The protein design case

T. Schiex, S. Barbe, D. Simoncini, J. Vucinic, M. Ruffini
Presented by D. Allouche

INRA MIAT, Toulouse, France

July 2018

2/19

Constraint Programming and Constraint networks

Constraint network (X, C) Feasibility biased

a sequence X of discrete variables xi, domain Di

a set C of constraints

cS ∈ C involves variables in S ⊆ X and is a boolean function
∏

i∈S Di → {t, f}
a solution is an assignment of X that satisfies all constraints (NP-complete)

Constraint programming

Algorithms to find a solution (Backtrack, constraint propagation)

Predefined constraints (AllDifferent,…)

2/19

Constraint Programming and Constraint networks

Constraint network (X, C) Feasibility biased

a sequence X of discrete variables xi, domain Di

a set C of constraints

cS ∈ C involves variables in S ⊆ X and is a boolean function
∏

i∈S Di → {t, f}
a solution is an assignment of X that satisfies all constraints (NP-complete)

Constraint programming

Algorithms to find a solution (Backtrack, constraint propagation)

Predefined constraints (AllDifferent,…)

2/19

Constraint Programming and Constraint networks

Constraint network (X, C) Feasibility biased

a sequence X of discrete variables xi, domain Di

a set C of constraints

cS ∈ C involves variables in S ⊆ X and is a boolean function
∏

i∈S Di → {t, f}

a solution is an assignment of X that satisfies all constraints (NP-complete)

Constraint programming

Algorithms to find a solution (Backtrack, constraint propagation)

Predefined constraints (AllDifferent,…)

2/19

Constraint Programming and Constraint networks

Constraint network (X, C) Feasibility biased

a sequence X of discrete variables xi, domain Di

a set C of constraints

cS ∈ C involves variables in S ⊆ X and is a boolean function
∏

i∈S Di → {t, f}
a solution is an assignment of X that satisfies all constraints (NP-complete)

Constraint programming

Algorithms to find a solution (Backtrack, constraint propagation)

Predefined constraints (AllDifferent,…)

2/19

Constraint Programming and Constraint networks

Constraint network (X, C) Feasibility biased

a sequence X of discrete variables xi, domain Di

a set C of constraints

cS ∈ C involves variables in S ⊆ X and is a boolean function
∏

i∈S Di → {t, f}
a solution is an assignment of X that satisfies all constraints (NP-complete)

Constraint programming

Algorithms to find a solution (Backtrack, constraint propagation)

Predefined constraints (AllDifferent,…)

3/19

From boolean function to cost functions

Cost function network (X,W) Homogeneous feasibility and criteria

a sequence X of discrete variables xi, domain Di

a set W of cost functions

wS ∈ W is a numerical function
∏

i∈S Di (possibly infinite costs)

a solution optimizes the joint cost W(X) =
∑

wS∈W wS(X[S]) (WCSP, NP-complete)

Generalizes CP: a constraint is a cost function that maps to {0,∞}

Solvers: daoopt, toulbar2, MaxHS (MaxSAT)…

Algorithms to find a solution (Branch and bound, cost function propagation)

Predefined cost functions (Weighted All-Different,…)

3/19

From boolean function to cost functions

Cost function network (X,W) Homogeneous feasibility and criteria

a sequence X of discrete variables xi, domain Di

a set W of cost functions

wS ∈ W is a numerical function
∏

i∈S Di (possibly infinite costs)

a solution optimizes the joint cost W(X) =
∑

wS∈W wS(X[S]) (WCSP, NP-complete)

Generalizes CP: a constraint is a cost function that maps to {0,∞}

Solvers: daoopt, toulbar2, MaxHS (MaxSAT)…

Algorithms to find a solution (Branch and bound, cost function propagation)

Predefined cost functions (Weighted All-Different,…)

3/19

From boolean function to cost functions

Cost function network (X,W) Homogeneous feasibility and criteria

a sequence X of discrete variables xi, domain Di

a set W of cost functions

wS ∈ W is a numerical function
∏

i∈S Di (possibly infinite costs)

a solution optimizes the joint cost W(X) =
∑

wS∈W wS(X[S]) (WCSP, NP-complete)

Generalizes CP: a constraint is a cost function that maps to {0,∞}

Solvers: daoopt, toulbar2, MaxHS (MaxSAT)…

Algorithms to find a solution (Branch and bound, cost function propagation)

Predefined cost functions (Weighted All-Different,…)

3/19

From boolean function to cost functions

Cost function network (X,W) Homogeneous feasibility and criteria

a sequence X of discrete variables xi, domain Di

a set W of cost functions

wS ∈ W is a numerical function
∏

i∈S Di (possibly infinite costs)

a solution optimizes the joint cost W(X) =
∑

wS∈W wS(X[S]) (WCSP, NP-complete)

Generalizes CP: a constraint is a cost function that maps to {0,∞}

Solvers: daoopt, toulbar2, MaxHS (MaxSAT)…

Algorithms to find a solution (Branch and bound, cost function propagation)

Predefined cost functions (Weighted All-Different,…)

3/19

From boolean function to cost functions

Cost function network (X,W) Homogeneous feasibility and criteria

a sequence X of discrete variables xi, domain Di

a set W of cost functions

wS ∈ W is a numerical function
∏

i∈S Di (possibly infinite costs)

a solution optimizes the joint cost W(X) =
∑

wS∈W wS(X[S]) (WCSP, NP-complete)

Generalizes CP: a constraint is a cost function that maps to {0,∞}

Solvers: daoopt, toulbar2, MaxHS (MaxSAT)…

Algorithms to find a solution (Branch and bound, cost function propagation)

Predefined cost functions (Weighted All-Different,…)

3/19

From boolean function to cost functions

Cost function network (X,W) Homogeneous feasibility and criteria

a sequence X of discrete variables xi, domain Di

a set W of cost functions

wS ∈ W is a numerical function
∏

i∈S Di (possibly infinite costs)

a solution optimizes the joint cost W(X) =
∑

wS∈W wS(X[S]) (WCSP, NP-complete)

Generalizes CP: a constraint is a cost function that maps to {0,∞}

Solvers: daoopt, toulbar2, MaxHS (MaxSAT)…

Algorithms to find a solution (Branch and bound, cost function propagation)

Predefined cost functions (Weighted All-Different,…)

4/19

Example: MAXCUT with hard edges

Graph G = (V, E)with edge weight function w

A boolean variable xi per vertex i ∈ V

A cost function per edge e = (i, j) ∈ E : wij = w(i, j)× 1[xi 6= xj]

Hard edges: constraints with costs 0 or−∞ (when xi 6= xj)

3-clique

vertices {1, 2, 3}
cut weight 1

edge (1, 2) hard.

4/19

Example: MAXCUT with hard edges

Graph G = (V, E)with edge weight function w

A boolean variable xi per vertex i ∈ V

A cost function per edge e = (i, j) ∈ E : wij = w(i, j)× 1[xi 6= xj]

Hard edges: constraints with costs 0 or−∞ (when xi 6= xj)

3-clique

vertices {1, 2, 3}
cut weight 1

edge (1, 2) hard.

4/19

Example: MAXCUT with hard edges

Graph G = (V, E)with edge weight function w

A boolean variable xi per vertex i ∈ V

A cost function per edge e = (i, j) ∈ E : wij = w(i, j)× 1[xi 6= xj]

Hard edges: constraints with costs 0 or−∞ (when xi 6= xj)

3-clique

vertices {1, 2, 3}
cut weight 1

edge (1, 2) hard.

5/19

toulbar2 input file

MAXCUT on a 3-clique with hard edge

{
"problem" :{"name": "MaxCut", "mustbe": ">0.0"},
"variables": {"x1": ["l","r"], "x2": ["l","r"], "x3": ["l","r"]},
"functions": {

"cut12": {"scope": ["x1","x2"], "costs": [0,-100,-100,0]},
"cut13": {"scope": ["x1","x3"], "costs": [0,1,1,0]},
"cut23": {"scope": ["x2","x3"], "costs": [0,1,1,0]}

}
}

6/19

Proteins

Most active molecules of life

Sequence of “amino-acids”, each chosen among a set of 20 natural ones

Folding

→ → Function

Transporter, binder, regulator, motor, catalyst…
Hemoglobine, TAL effector, ATPase, dehydrogenases…

6/19

Protein Design

Most active molecules of life

Sequence of “amino-acids”, each chosen among a set of 20 natural ones

Inverse folding

Function → →

Transporter, binder, regulator, motor, catalyst…
Hemoglobine, TAL effector, ATPase, dehydrogenases…

7/19

Why is it worth designing new proteins ?

New eco-friendly chemical/structural nano-agents

Already produced new folds,2 catalysts,5 nano-components8

Useful for biomass transformation (biofuels, food and feed, cosmetics…),

For new drugs in medicine

To provide new components for nanotechnologies

20n sequences! intractable for experimental techniques

7/19

Why is it worth designing new proteins ?

New eco-friendly chemical/structural nano-agents

Already produced new folds,2 catalysts,5 nano-components8

Useful for biomass transformation (biofuels, food and feed, cosmetics…),

For new drugs in medicine

To provide new components for nanotechnologies

20n sequences! intractable for experimental techniques

7/19

Why is it worth designing new proteins ?

New eco-friendly chemical/structural nano-agents

Already produced new folds,2 catalysts,5 nano-components8

Useful for biomass transformation (biofuels, food and feed, cosmetics…),

For new drugs in medicine

To provide new components for nanotechnologies

20n sequences! intractable for experimental techniques

7/19

Why is it worth designing new proteins ?

New eco-friendly chemical/structural nano-agents

Already produced new folds,2 catalysts,5 nano-components8

Useful for biomass transformation (biofuels, food and feed, cosmetics…),

For new drugs in medicine

To provide new components for nanotechnologies

20n sequences! intractable for experimental techniques

7/19

Why is it worth designing new proteins ?

New eco-friendly chemical/structural nano-agents

Already produced new folds,2 catalysts,5 nano-components8

Useful for biomass transformation (biofuels, food and feed, cosmetics…),

For new drugs in medicine

To provide new components for nanotechnologies

20n sequences! intractable for experimental techniques

8/19

Protein Design as a discrete optimisation problem

Ingredients

Full atommodel of a protein backbone (assumed to be rigid)

Catalog of all 20 amino acids in different conformations (≈ 400 overall)

Full atom energy function (bonds, electrostatics, solvant, statistics…)

Maximum stability≡Minimum energy NP-hard4

As a Cost Function Network

One variable per position in the protein sequence

Domain: catalog of few hundreds amino acids conformations

Functions: decomposed energy (sum of pairwise terms)

Search space has size≈ 400n

8/19

Protein Design as a discrete optimisation problem

Ingredients

Full atommodel of a protein backbone (assumed to be rigid)

Catalog of all 20 amino acids in different conformations (≈ 400 overall)

Full atom energy function (bonds, electrostatics, solvant, statistics…)

Maximum stability≡Minimum energy NP-hard4

As a Cost Function Network

One variable per position in the protein sequence

Domain: catalog of few hundreds amino acids conformations

Functions: decomposed energy (sum of pairwise terms)

Search space has size≈ 400n

8/19

Protein Design as a discrete optimisation problem

Ingredients

Full atommodel of a protein backbone (assumed to be rigid)

Catalog of all 20 amino acids in different conformations (≈ 400 overall)

Full atom energy function (bonds, electrostatics, solvant, statistics…)

Maximum stability≡Minimum energy NP-hard4

As a Cost Function Network

One variable per position in the protein sequence

Domain: catalog of few hundreds amino acids conformations

Functions: decomposed energy (sum of pairwise terms)

Search space has size≈ 400n

8/19

Protein Design as a discrete optimisation problem

Ingredients

Full atommodel of a protein backbone (assumed to be rigid)

Catalog of all 20 amino acids in different conformations (≈ 400 overall)

Full atom energy function (bonds, electrostatics, solvant, statistics…)

Maximum stability≡Minimum energy NP-hard4

As a Cost Function Network

One variable per position in the protein sequence

Domain: catalog of few hundreds amino acids conformations

Functions: decomposed energy (sum of pairwise terms)

Search space has size≈ 400n

8/19

Protein Design as a discrete optimisation problem

Ingredients

Full atommodel of a protein backbone (assumed to be rigid)

Catalog of all 20 amino acids in different conformations (≈ 400 overall)

Full atom energy function (bonds, electrostatics, solvant, statistics…)

Maximum stability≡Minimum energy NP-hard4

As a Cost Function Network

One variable per position in the protein sequence

Domain: catalog of few hundreds amino acids conformations

Functions: decomposed energy (sum of pairwise terms)

Search space has size≈ 400n

9/19

Toulbar2 vs. CPLEX, MaxHS…(real instances)

of instances solved (X) within a per instance cpu-time limit (Y)

10/19

Analysis of a dedicated Simulated annealing (SA) code [7]

Optimality gap of the Simulated annealing solution as problems get harder

Asymptotic convergence can be arbitrarily slow

11/19

Energy function

Imperfect

Approximations: rigidity, solvent effect…

Ignores: interactions inside the cell, polarisability…

Needs more information, extracted from data

Evolutionary information

Use similar proteins (homologs) from databases

Multiple alignment: align similar regions of the sequences

11/19

Energy function

Imperfect

Approximations: rigidity, solvent effect…

Ignores: interactions inside the cell, polarisability…

Needs more information, extracted from data

Evolutionary information

Use similar proteins (homologs) from databases

Multiple alignment: align similar regions of the sequences

12/19

A multiple alignment with conserved positions

Simple integration of information

Force amino acid choice (constraint) at conserved positions.

13/19

From bits to atoms (TBS, col. A. Voet, KU Leuven, D. Simoncini, INRA/INSA)

C8 pseudo-symetric 2OVP symmetrized into a nano-component

Tako: (R)evolution + Rosetta/talaris14 8 fold

Ika: toulbar2 + talaris14 4 fold

13/19

From bits to atoms (TBS, col. A. Voet, KU Leuven, D. Simoncini, INRA/INSA)

C8 pseudo-symetric 2OVP symmetrized into a nano-component

Tako: (R)evolution + Rosetta/talaris14 8 fold

Ika: toulbar2 + talaris14 4 fold

13/19

From bits to atoms (TBS, col. A. Voet, KU Leuven, D. Simoncini, INRA/INSA)

C8 pseudo-symetric 2OVP symmetrized into a nano-component

Tako: (R)evolution + Rosetta/talaris14 8 fold

Ika: toulbar2 + talaris14 4 fold

14/19

Ika more stable than Tako

Compares Tako and Ika structural stability as temperature increases
(circular dichroism)

15/19

Learning CFNs from data

Boltzman distribution connects probability and cost

P(X) ∝ e−W(X)

From CFN to probabilities and back

After e−x transform, a CFN defines a probability distribution (MRF)

Which can be learned from data using maximum penalized likelihood [1, 3, 6]

And transformed back into a CFN with a− log(x) transform

15/19

Learning CFNs from data

Boltzman distribution connects probability and cost

P(X) ∝ e−W(X)

From CFN to probabilities and back

After e−x transform, a CFN defines a probability distribution (MRF)

Which can be learned from data using maximum penalized likelihood [1, 3, 6]

And transformed back into a CFN with a− log(x) transform

15/19

Learning CFNs from data

Boltzman distribution connects probability and cost

P(X) ∝ e−W(X)

From CFN to probabilities and back

After e−x transform, a CFN defines a probability distribution (MRF)

Which can be learned from data using maximum penalized likelihood [1, 3, 6]

And transformed back into a CFN with a− log(x) transform

15/19

Learning CFNs from data

Boltzman distribution connects probability and cost

P(X) ∝ e−W(X)

From CFN to probabilities and back

After e−x transform, a CFN defines a probability distribution (MRF)

Which can be learned from data using maximum penalized likelihood [1, 3, 6]

And transformed back into a CFN with a− log(x) transform

16/19

Learning in practice

We start from a complete pairwise CFN with unknown cost functions

We have a total of d2 · n(n−1)
2 parameters to learn wij(·, ·)

Let `(D|wij) be the log-probability of data D given the wij

Maximize `(D|wij)− λ · ||wij|| concave

Efficient L2 norm based implementation available [6]

Uses conjugate gradient optimization

fast C or very fast CUDA implementation

n variables, d values, s samples: O(d2n2 + dns) space.

600 variables, domain size 21 80, 000, 000 parameters, estimated in minutes

16/19

Learning in practice

We start from a complete pairwise CFN with unknown cost functions

We have a total of d2 · n(n−1)
2 parameters to learn wij(·, ·)

Let `(D|wij) be the log-probability of data D given the wij

Maximize `(D|wij)− λ · ||wij|| concave

Efficient L2 norm based implementation available [6]

Uses conjugate gradient optimization

fast C or very fast CUDA implementation

n variables, d values, s samples: O(d2n2 + dns) space.

600 variables, domain size 21 80, 000, 000 parameters, estimated in minutes

16/19

Learning in practice

We start from a complete pairwise CFN with unknown cost functions

We have a total of d2 · n(n−1)
2 parameters to learn wij(·, ·)

Let `(D|wij) be the log-probability of data D given the wij

Maximize `(D|wij)− λ · ||wij|| concave

Efficient L2 norm based implementation available [6]

Uses conjugate gradient optimization

fast C or very fast CUDA implementation

n variables, d values, s samples: O(d2n2 + dns) space.

600 variables, domain size 21 80, 000, 000 parameters, estimated in minutes

16/19

Learning in practice

We start from a complete pairwise CFN with unknown cost functions

We have a total of d2 · n(n−1)
2 parameters to learn wij(·, ·)

Let `(D|wij) be the log-probability of data D given the wij

Maximize `(D|wij)− λ · ||wij|| concave

Efficient L2 norm based implementation available [6]

Uses conjugate gradient optimization

fast C or very fast CUDA implementation

n variables, d values, s samples: O(d2n2 + dns) space.

600 variables, domain size 21 80, 000, 000 parameters, estimated in minutes

16/19

Learning in practice

We start from a complete pairwise CFN with unknown cost functions

We have a total of d2 · n(n−1)
2 parameters to learn wij(·, ·)

Let `(D|wij) be the log-probability of data D given the wij

Maximize `(D|wij)− λ · ||wij|| concave

Efficient L2 norm based implementation available [6]

Uses conjugate gradient optimization

fast C or very fast CUDA implementation

n variables, d values, s samples: O(d2n2 + dns) space.

600 variables, domain size 21 80, 000, 000 parameters, estimated in minutes

16/19

Learning in practice

We start from a complete pairwise CFN with unknown cost functions

We have a total of d2 · n(n−1)
2 parameters to learn wij(·, ·)

Let `(D|wij) be the log-probability of data D given the wij

Maximize `(D|wij)− λ · ||wij|| concave

Efficient L2 norm based implementation available [6]

Uses conjugate gradient optimization

fast C or very fast CUDA implementation

n variables, d values, s samples: O(d2n2 + dns) space.

600 variables, domain size 21 80, 000, 000 parameters, estimated in minutes

17/19

Pushing data in your CP model without losing your constraints

Let’s recap…

Model the problem as a CFN (generalizes CP)

Learn other CFNs from available data sets using penalized likelihood optimization

Combine the models by scaling/adding/connecting them together

Solve them with toulbar2 :-)

MIT licence, https://github.com/toulbar2/toulbar2

https://github.com/toulbar2/toulbar2

17/19

Pushing data in your CP model without losing your constraints

Let’s recap…

Model the problem as a CFN (generalizes CP)

Learn other CFNs from available data sets using penalized likelihood optimization

Combine the models by scaling/adding/connecting them together

Solve them with toulbar2 :-)

MIT licence, https://github.com/toulbar2/toulbar2

https://github.com/toulbar2/toulbar2

17/19

Pushing data in your CP model without losing your constraints

Let’s recap…

Model the problem as a CFN (generalizes CP)

Learn other CFNs from available data sets using penalized likelihood optimization

Combine the models by scaling/adding/connecting them together

Solve them with toulbar2 :-)

MIT licence, https://github.com/toulbar2/toulbar2

https://github.com/toulbar2/toulbar2

17/19

Pushing data in your CP model without losing your constraints

Let’s recap…

Model the problem as a CFN (generalizes CP)

Learn other CFNs from available data sets using penalized likelihood optimization

Combine the models by scaling/adding/connecting them together

Solve them with toulbar2 :-)

MIT licence, https://github.com/toulbar2/toulbar2

https://github.com/toulbar2/toulbar2

18/19

Thanks

AI/toulbar2

S. de Givry (INRA)
G. Katsirelos (INRA)
M. Zytnicki (PhD, INRA)
D. Allouche (INRA)
H. Nguyen (PhD, INRA)
M. Cooper (IRIT, Toulouse)
J. Larrosa (UPC, Spain)
F. Heras (UPC, Spain)
M. Sanchez (Spain)
E. Rollon (UPC, Spain)
P. Meseguer (CSIC, Spain)
G. Verfaillie (ONERA, ret.)
JH. Lee (CU. Hong Kong)
C. Bessiere (LIMM, Montpellier)
JP. Métivier (GREYC, Caen)
S. Loudni (GREYC, Caen)
M. Fontaine (GREYC, Caen)

Protein Design

A. Voet (KU Leuven)
D. Simoncini (INSA, Toulouse)
S. Barbe (INSA, Toulouse)
S. Traoré (PhD, CEA)
C. Viricel (PhD)
PyRosetta (U. John Hopkins)
OSPREY (Duke U.)

19/19

References I

[1] Sivaraman Balakrishnan et al. “Learning generative models for protein fold families”. In: Proteins: Structure, Function, and
Bioinformatics 79.4 (2011), pp. 1061–1078.

[2] Brian Kuhlman et al. “Design of a novel globular protein fold with atomic-level accuracy”. In: science 302.5649 (2003),
pp. 1364–1368.

[3] Youngsuk Park et al. “Learning the Network Structure of Heterogeneous Data via Pairwise Exponential Markov Random
Fields”. In: Artificial Intelligence and Statistics. 2017, pp. 1302–1310.

[4] Niles A Pierce and Erik Winfree. “Protein design is NP-hard.”. In: Protein Eng. 15.10 (Oct. 2002), pp. 779–82. ISSN: 0269-2139.
URL: http://www.ncbi.nlm.nih.gov/pubmed/12468711.

[5] Daniela Röthlisberger et al. “Kemp elimination catalysts by computational enzyme design”. In: Nature 453.7192 (2008), p. 190.

[6] Stefan Seemayer, Markus Gruber, and Johannes Söding. “CCMpred—fast and precise prediction of protein residue–residue
contacts from correlated mutations”. In: Bioinformatics 30.21 (2014), pp. 3128–3130.

[7] David Simoncini et al. “Guaranteed Discrete Energy Optimization on Large Protein Design Problems”. In: Journal of Chemical
Theory and Computation 11.12 (2015), pp. 5980–5989. DOI: 10.1021/acs.jctc.5b00594.

[8] Arnout RD Voet et al. “Computational design of a self-assembling symmetrical β-propeller protein”. In: Proceedings of the
National Academy of Sciences 111.42 (2014), pp. 15102–15107.

http://www.ncbi.nlm.nih.gov/pubmed/12468711
https://doi.org/10.1021/acs.jctc.5b00594

