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Constraint Programming and Constraint networks

Constraint network (X, C) Feasibility biased

a sequence X of discrete variables xi, domain Di

a set C of constraints

cS ∈ C involves variables in S ⊆ X and is a boolean function
∏

i∈S Di → {t, f}
a solution is an assignment of X that satisfies all constraints (NP-complete)

Constraint programming

Algorithms to find a solution (Backtrack, constraint propagation)

Predefined constraints (AllDifferent,…)
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From boolean function to cost functions

Cost function network (X,W) Homogeneous feasibility and criteria

a sequence X of discrete variables xi, domain Di

a set W of cost functions

wS ∈ W is a numerical function
∏

i∈S Di (possibly infinite costs)

a solution optimizes the joint cost W(X) =
∑

wS∈W wS(X[S]) (WCSP, NP-complete)

Generalizes CP: a constraint is a cost function that maps to {0,∞}

Solvers: daoopt, toulbar2, MaxHS (MaxSAT)…

Algorithms to find a solution (Branch and bound, cost function propagation)

Predefined cost functions (Weighted All-Different,…)
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Example: MAXCUT with hard edges

Graph G = (V, E)with edge weight function w

A boolean variable xi per vertex i ∈ V

A cost function per edge e = (i, j) ∈ E : wij = w(i, j)× 1[xi 6= xj]

Hard edges: constraints with costs 0 or−∞ (when xi 6= xj)

3-clique

vertices {1, 2, 3}
cut weight 1

edge (1, 2) hard.
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toulbar2 input file

MAXCUT on a 3-clique with hard edge

{
"problem" :{"name": "MaxCut", "mustbe": ">0.0"},
"variables": {"x1": ["l","r"], "x2": ["l","r"], "x3": ["l","r"]},
"functions": {

"cut12": {"scope": ["x1","x2"], "costs": [0,-100,-100,0]},
"cut13": {"scope": ["x1","x3"], "costs": [0,1,1,0]},
"cut23": {"scope": ["x2","x3"], "costs": [0,1,1,0]}

}
}
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Proteins

Most active molecules of life

Sequence of “amino-acids”, each chosen among a set of 20 natural ones

Folding

→ → Function

Transporter, binder, regulator, motor, catalyst…
Hemoglobine, TAL effector, ATPase, dehydrogenases…
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Protein Design

Most active molecules of life

Sequence of “amino-acids”, each chosen among a set of 20 natural ones

Inverse folding

Function → →

Transporter, binder, regulator, motor, catalyst…
Hemoglobine, TAL effector, ATPase, dehydrogenases…
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Why is it worth designing new proteins ?

New eco-friendly chemical/structural nano-agents

Already produced new folds,2 catalysts,5 nano-components8

Useful for biomass transformation (biofuels, food and feed, cosmetics…),

For new drugs in medicine

To provide new components for nanotechnologies

20n sequences! intractable for experimental techniques
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Protein Design as a discrete optimisation problem

Ingredients

Full atommodel of a protein backbone (assumed to be rigid)

Catalog of all 20 amino acids in different conformations (≈ 400 overall)

Full atom energy function (bonds, electrostatics, solvant, statistics…)

Maximum stability≡Minimum energy NP-hard4

As a Cost Function Network

One variable per position in the protein sequence

Domain: catalog of few hundreds amino acids conformations

Functions: decomposed energy (sum of pairwise terms)

Search space has size≈ 400n
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Toulbar2 vs. CPLEX, MaxHS…(real instances)

# of instances solved (X) within a per instance cpu-time limit (Y)
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Analysis of a dedicated Simulated annealing (SA) code [7]

Optimality gap of the Simulated annealing solution as problems get harder

Asymptotic convergence can be arbitrarily slow
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Energy function

Imperfect

Approximations: rigidity, solvent effect…

Ignores: interactions inside the cell, polarisability…

Needs more information, extracted from data

Evolutionary information

Use similar proteins (homologs) from databases

Multiple alignment: align similar regions of the sequences
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A multiple alignment with conserved positions

Simple integration of information

Force amino acid choice (constraint) at conserved positions.
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From bits to atoms (TBS, col. A. Voet, KU Leuven, D. Simoncini, INRA/INSA)

C8 pseudo-symetric 2OVP symmetrized into a nano-component

Tako: (R)evolution + Rosetta/talaris14 8 fold

Ika: toulbar2 + talaris14 4 fold
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Ika more stable than Tako

Compares Tako and Ika structural stability as temperature increases
(circular dichroism)
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Learning CFNs from data

Boltzman distribution connects probability and cost

P(X) ∝ e−W(X)

From CFN to probabilities and back

After e−x transform, a CFN defines a probability distribution (MRF)

Which can be learned from data using maximum penalized likelihood [1, 3, 6]

And transformed back into a CFN with a− log(x) transform
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Learning in practice

We start from a complete pairwise CFN with unknown cost functions

We have a total of d2 · n(n−1)
2 parameters to learn wij(·, ·)

Let `(D|wij) be the log-probability of data D given the wij

Maximize `(D|wij)− λ · ||wij|| concave

Efficient L2 norm based implementation available [6]

Uses conjugate gradient optimization

fast C or very fast CUDA implementation

n variables, d values, s samples: O(d2n2 + dns) space.

600 variables, domain size 21 80, 000, 000 parameters, estimated in minutes



16/19

Learning in practice

We start from a complete pairwise CFN with unknown cost functions

We have a total of d2 · n(n−1)
2 parameters to learn wij(·, ·)

Let `(D|wij) be the log-probability of data D given the wij

Maximize `(D|wij)− λ · ||wij|| concave

Efficient L2 norm based implementation available [6]

Uses conjugate gradient optimization

fast C or very fast CUDA implementation

n variables, d values, s samples: O(d2n2 + dns) space.

600 variables, domain size 21 80, 000, 000 parameters, estimated in minutes



16/19

Learning in practice

We start from a complete pairwise CFN with unknown cost functions

We have a total of d2 · n(n−1)
2 parameters to learn wij(·, ·)

Let `(D|wij) be the log-probability of data D given the wij

Maximize `(D|wij)− λ · ||wij|| concave

Efficient L2 norm based implementation available [6]

Uses conjugate gradient optimization

fast C or very fast CUDA implementation

n variables, d values, s samples: O(d2n2 + dns) space.

600 variables, domain size 21 80, 000, 000 parameters, estimated in minutes



16/19

Learning in practice

We start from a complete pairwise CFN with unknown cost functions

We have a total of d2 · n(n−1)
2 parameters to learn wij(·, ·)

Let `(D|wij) be the log-probability of data D given the wij

Maximize `(D|wij)− λ · ||wij|| concave

Efficient L2 norm based implementation available [6]

Uses conjugate gradient optimization

fast C or very fast CUDA implementation

n variables, d values, s samples: O(d2n2 + dns) space.

600 variables, domain size 21 80, 000, 000 parameters, estimated in minutes



16/19

Learning in practice

We start from a complete pairwise CFN with unknown cost functions

We have a total of d2 · n(n−1)
2 parameters to learn wij(·, ·)

Let `(D|wij) be the log-probability of data D given the wij

Maximize `(D|wij)− λ · ||wij|| concave

Efficient L2 norm based implementation available [6]

Uses conjugate gradient optimization

fast C or very fast CUDA implementation

n variables, d values, s samples: O(d2n2 + dns) space.

600 variables, domain size 21 80, 000, 000 parameters, estimated in minutes



16/19

Learning in practice

We start from a complete pairwise CFN with unknown cost functions

We have a total of d2 · n(n−1)
2 parameters to learn wij(·, ·)

Let `(D|wij) be the log-probability of data D given the wij

Maximize `(D|wij)− λ · ||wij|| concave

Efficient L2 norm based implementation available [6]

Uses conjugate gradient optimization

fast C or very fast CUDA implementation

n variables, d values, s samples: O(d2n2 + dns) space.

600 variables, domain size 21 80, 000, 000 parameters, estimated in minutes



17/19

Pushing data in your CP model without losing your constraints

Let’s recap…

Model the problem as a CFN (generalizes CP)

Learn other CFNs from available data sets using penalized likelihood optimization

Combine the models by scaling/adding/connecting them together

Solve them with toulbar2 :-)

MIT licence, https://github.com/toulbar2/toulbar2

https://github.com/toulbar2/toulbar2
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