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Synthetic Methylotrophy: Past, Present,
and Future 9
Stephanie Heux, Trygve Brautaset, Julia A. Vorholt,
Volker F. Wendisch, and Jean Charles Portais

9.1 Natural Methylotrophy

9.1.1 Definition and Phylogenetic Assignment of Methylotrophs

Methylotrophy is the capacity of certain microorganisms (mostly bacteria and
yeasts) to use reduced molecules without C–C bond (also referred to as
one-carbon (C1) compounds) as their sole source of carbon and energy.
Phylogenetically, natural methylotrophs belong to a rather small number of genera.
The majority of methylotrophic bacteria are members of the Alphaproteobacteria,
Betaproteobacteria, and Gammaproteobacteria (e.g., Methylobacterium, Methylo-
bacillus, and Methylococcus); alternatively, they can be found within the Gram-
positive and Verrucomicrobia (e.g., Bacillus and Methylacidiphilum, respectively)
groups (Kolb 2009; Lidstrom 2006). The eukaryotic methylotrophs include the
yeasts Candida, Pichia, and some genera that were recently separated from Pichia
(i.e., Ogataea, Kuraishia, and Komagataella) (Yurimoto et al. 2011).
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9.1.2 C1 Compounds Utilized by Methylotrophs

The C1 compounds used by natural methylotrophs include methane and methanol,
and also methylamines (di-, tri-, and tetramethylamine), formate, formamide,
chloromethane, and dichloromethane. While bacterial methylotrophs typically are
capable of growing on a variety of C1 compounds—with the exception of
methanotrophs, which are mostly dedicated to methane conversion—eukaryotic
methylotrophs are restricted to growth with methanol as C1 source. The utilization
of methane, methanol, and other C1 compounds as sole carbon and energy source
requires two major biochemical processes. First, it involves dissimilation pathways
coupling the oxidation of C1 substrate with energy conservation process to fulfill the
energetics requirement for growth. Second, it requires assimilation pathways to
incorporate the carbon atom into cell material, which is achieved by the fixation of
either free formaldehyde, methylene tetrahydrofolate (methylene-H4F), or CO2 in
known methylotrophic pathways. For both dissimilation and assimilation processes,
a diverse range of alternative enzymes or pathway variants and combinations thereof
exist in nature (for a review, see Chistoserdova 2011). In this chapter, we focus on
methane- and methanol-utilizing aerobic bacteria and fungal (yeast) methylotrophs.
The pathways involved in this metabolism can be categorized as follows: (1) oxida-
tion of methane to methanol, (2) oxidation of methanol to formaldehyde, (3) oxida-
tion of formaldehyde to CO2, and (4) assimilation of C1 compounds (see more
details in Fig. 9.1 and below).

9.1.3 Pathways of C1 Oxidation

Methane oxidation is catalyzed by the enzyme methane monooxygenase (MMO). In
the MMO reaction, one oxygen atom is incorporated into methane to form methanol,
and the other oxygen atom is released as water, requiring the input of two electrons
and two protons. Two forms of MMO exist, a cytoplasmic or soluble form (sMMO)
and a membrane-embedded form (also named particulate form, pMMO) (Hakemian
and Rosenzweig 2007). sMMO occurs in a smaller group of methanotrophs and
consists of three subunits, a hydroxylase (MMOH), a reductase (MMOR), and a
regulator (MMOB). The hydroxylase itself consists of the three subunits α, β, and γ
(Merkx et al. 2001). pMMO is produced by almost all methanotrophs (with few
known exceptions; Dedysh et al. 2015) and is composed of three subunits encoded
by the genes pmoA, pmoB, and pmoC (Balasubramanian et al. 2010). The two MMO
forms exhibit significantly different catalytic characteristics, including substrate
specificity, enzyme stability, specific activity, and susceptibility to inhibitors
(Murrell et al. 2000). For example, sMMO has a much broader substrate range
compared with pMMO, which includes long-chain alkanes or aromatic molecules
(Murrell et al. 2000). In terms of reducing power, the sMMO uses NADH, while the
physiological electron donor of the pMMO is still not known (Kalyuzhnaya et al.
2015). The active sites of sMMO and pMMO also contain different metal ions, i.e.,
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iron and copper, respectively (Murrell et al. 2000). pMMO is expressed under a high
copper concentration (Murrell et al. 2000).

Methanol is oxidized to formaldehyde by methanol dehydrogenases. Gram-
negative methylotrophs possess a periplasmic cytochrome c-dependent methanol
dehydrogenase, the catalytic subunit of which is encoded by mxaF or xoxF, respec-
tively. The enzymes contain a pyrroloquinoline quinone (PQQ) cofactor (Ghosh
et al. 1994) and Ca2+ (MXAF) or rare earth elements (XOXF) (Hibi et al. 2011; Pol
et al. 2014). Thermophilic Gram-positive methylotrophs of the genus Bacillus use a
cytoplasmic NAD-dependent methanol dehydrogenase (MDH) (Arfman et al. 1989)
or a nicotinoprotein methanol dehydrogenase (MDO) with a bound NAD(P) cofactor
that uses an unknown electron acceptor for reduction (Bystrykh et al. 1993). In
methylotrophic yeasts, methanol is oxidized by the enzyme alcohol oxidase (AOD)
in a reaction that uses oxygen as an electron acceptor and produces not only one but
two reactive species, i.e., formaldehyde and hydrogen peroxide (detoxified by
catalase) (Yurimoto et al. 2011).

A number of paralogous pathways exist for the efficient oxidation of the cell-toxic
intermediate formaldehyde to CO2 (dissimilation), sometimes even within one
organism (Vorholt 2002). They comprise linear cofactor-dependent pathways,
such as the tetrahydromethanopterin (H4MPT) or tetrahydrofolate (H4F)-dependent
pathway, which are widespread among methylotrophic Proteobacteria (Vorholt
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Fig. 9.1 A simplified diagram showing the major metabolic modules involved in methylotrophy.
See section “Natural Methylotrophy” for more details
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2002). Other linear oxidation pathways are dependent on thiol compounds, such as
glutathione (GSH, Paracoccus denitrificans), mycothiol (MySH, Gram-positive
methylotrophs), and bacillithiol (BSH, B. methanolicus) (Vorholt 2002; Muller
et al., 2015a). All these pathways use formate as an intermediate which is then
oxidized to CO2 via formate dehydrogenases (FDHs). A large number of FDHs exist
that differ by the cofactor they use (i.e., NAD, NADP, cytochrome, menaquinone,
H2) (Chistoserdova 2011). A cyclic dissimilatory ribulose monophosphate pathway
exists in other Gram-negative Proteobacteria (e.g., M. flagellatus) and in thermo-
philic bacilli for oxidation of formaldehyde to CO2 (Anthony 1991; Chistoserdova
2011; Muller et al., 2015a). It overlaps with the ribulose monophosphate pathway for
C1 assimilation (see section below) with the additional participation of
6-phosphogluconate dehydrogenase.

9.1.4 Pathways of C1 Assimilation

The assimilation of C1 precursors in methylotrophs occurs either from formaldehyde
or from CO2. There are four different pathways by which aerobic methylotrophs
assimilate carbon into cell material and each has at least two potential variants. One
route, the serine cycle, involves carboxylic acids and amino acids as intermediates,
whereas the other three routes involve (phosphorylated) carbohydrate intermediates
(the ribulose bisphosphate (RuBP) pathway, the ribulose monophosphate (RuMP)
pathway, and the dihydroxyacetone (DHA) pathway).

The serine cycle for C1 assimilation occurs in Alphaproteobacteria (e.g.,
M. extorquens). In these bacteria, C1 units are assimilated in the form of formalde-
hyde via methylene-H4F catalyzed by serine transhydroxymethylase yielding serine
from glycine. In addition, CO2 is fixed in the serine cycle via a carboxylase (Quayle
1972). The assimilation of C1 units via the serine cycle requires regeneration of
glyoxylate and subsequently glycine from acetyl-CoA. This is achieved either by the
glyoxylate cycle in isocitrate lyase containing methylotrophs (ICL+ variant)
(Chistoserdova 2011) or by the ethylmalonyl-CoA pathway (EMCP) in serine
cycle methylotrophs that lack ICL (i.e., ICL� variant) (Erb et al. 2007; Peyraud
et al. 2009).

The RuBP pathway, also known as the Calvin-Benson-Bassham (CBB) cycle,
occurs in a few known methylotrophs (e.g., Paracoccus denitrificans)
(Chistoserdova 2011). In these organisms, the C1 substrate is first oxidized to
CO2, which can be further assimilated in the CBB cycle, as in classical autotrophic
organisms. The fixation part of this pathway involves the carboxylation of ribulose-
1,5-bisphosphate (RuBP) to 3-phosphoglycerate (3PG) in a reaction catalyzed by
ribulose bisphosphate carboxylase. The C3 compounds are then used either as
precursors of cell biomass or by a mechanism of carbon skeleton recombination to
refill the RuBP pool. In total three molecules of CO2 are processed into a single
molecule of 3PG (Bassham et al. 1950).

In principle, the RuMP pathway is similar to the RuBP pathway, except that the
C1 is assimilated at the level of formaldehyde. The RuMP pathway operates in
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Betaproteobacteria and Gammaproteobacteria as well as in Gram-positive bacteria
(e.g., B. methanolicus). Through the RuMP pathway, essentially all the carbon
required for biomass formation is assimilated from formaldehyde in a reaction
catalyzed by 3-hexulose-phosphate synthase (HPS) that condenses formaldehyde
and Ru5P into hexulose-6-phosphate (H6P), which subsequently is isomerized to
fructose-6-phosphate (F6P) by 6-phospho-3-hexuloisomerase (PHI) (Anthony
1991). F6P is then further cleaved either to glyceraldehyde-phosphate and
dihydroxyacetone-phosphate by fructose-bisphosphate aldolase (FBA variant) or
to glyceraldehyde-3-phosphate and pyruvate by keto-hydroxyglutarate-aldolase
(KDPG aldolase variant). Regeneration of the initial acceptor Ru5P is achieved via
a sequence of reactions for which several variants exist, e.g., involving either
transaldolase (the transaldolase variant) or sedoheptulose bisphosphatase (the
SBPase variant). The C3 compounds generated in these pathways are further
glycolytically converted into pyruvate. Finally, this fixation process allows the
formation of one molecule of pyruvate from three molecules of formaldehyde
(Anthony 1991).

The DHA pathway, which is also called the xylulose-monophosphate (XuMP)
pathway, occurs in methylotrophic yeasts growing on methanol. The DHA pathway
is similar to the RuBP and RuMP pathways in principle. The C1 unit (formaldehyde
in this case) is condensed with a phosphorylated pentose, xylulose 5-phosphate
(Xu5P), catalyzed by dihydroxyacetone synthase. The products of the reaction
from one C5 sugar are a triose phosphate (glyceraldehyde-3-phosphate (GAP) and
dihydroxyacetone) (Anthony 1991). For every molecule of GAP that is incorporated
into biomass, three molecules of formaldehyde are fixed, generating three molecules
of DHA and consuming three molecules of Xu5P. Recycling Xu5P is completed
through molecular rearrangements similar to the reactions of the pentose phosphate
pathway (PPP) (Anthony 1991; Russmayer et al. 2015).

9.2 Synthetic Methylotrophy

9.2.1 Concept

The concept of synthetic methylotrophy is the application of a synthetic biology
approach to integrate methylotrophy into nonnative methylotrophic production
hosts. Integrating methylotrophy into an established production host can thus pro-
vide access to methane or methanol as raw material by benefiting from already
established production pathways. In this approach, methylotrophic microorganisms
are used as benchmark and serve as donor for the systematic engineering of
methylotrophy into biotechnology-relevant non-methylotrophic hosts, e.g.,
Escherichia coli or Corynebacterium glutamicum.
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9.2.2 Interest

The interest in bioprocess technology using synthetic methylotrophy is growing both
in academia and private industry for the following main reasons:

1. Methane and methanol are attractive raw material for biotechnology There is a
high societal need for a sustainable production of key chemistry, food, and
healthcare compounds. Biological structures such as microbial cell factories are
logical production systems, and they use sugars and other food-derived raw
materials as substrates. This leads to an unwanted competition with the supply of
food, and consequently nutrition prices are rising worldwide. The feasibility of a
“methane and methanol economy” was already proposed (Kalyuzhnaya et al. 2015;
Olah 2013). Methane and methanol are considered as the next-generation carbon
feedstock because both are nonfood raw material and occur abundantly throughout
nature. Worldwide, the amount of natural gas is estimated to 204 trillion m3 (Haynes
and Gonzalez 2014). This natural gas consists primarily of methane (CH4), and the
most important application of natural gas is the conversion to synthesis gas (i.e.,
syngas), a mixture of CO and H2 obtained by incomplete combustion. Methane is the
second most important greenhouse gas; therefore, exploiting it as raw resource in
biotechnology would fight global warming right at the source. Like natural gas or
biogas, methane is an economic source of carbon for (bio)chemical synthesis
(Kalyuzhnaya et al. 2015). This gas is also an important precursor for the synthesis
of methanol. Both methane and methanol can be made from any renewable and
sustainable resource that can be, respectively, anaerobically digested into biogas
(mixture of methane and CO2) or that can be converted first into syngas (Methanol
Institute 1989; Mes et al. 2003). This is the case for biomass, agricultural and timber
waste, solid municipal waste, landfill gas, industrial waste, and a number of other
feedstocks. Such “bio-methanol” can also be produced from CO2 allowing (bio)
chemical recycling of this compound.

2. Biological conversion of methane and methanol provides access
to the manufacture of value-added and even novel products so far difficult
to produce or even inaccessible to the chemical conversion of methane/
methanol Methane and methanol are currently chemically transformed to
compounds used for the manufacturing of materials (e.g., LED and LCD devices),
energy (e.g., gas used primarily for cooking and heating applications), fuels, and
fertilizers. Microbial conversion of methane and methanol allows the economic
bioproduction of a large industrial product portfolio including fine, platform, and
commodity chemicals for health and nutrition (Becker and Wittmann 2015).

3. Potential and limitations of natural methylotrophs The most straightforward
approach for achieving biological conversion of methane/methanol is to employ
natural methylotrophs, and to date a few methane and methanol-based products have
been made at the commercial scales. The most successful examples are the produc-
tion of single-cell protein (SCP) (Ekeroth and Villadsen 1991; Matelbs and
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Tannenbaum 1968) by methylotrophic bacteria and the production of recombinant
proteins such as enzymes, antibodies, cytokines, plasma proteins, and hormones by
methylotrophic yeast (Ahmad et al. 2014). Natural methylotrophs were also used to
produce commercially relevant chemicals and enzymes (Selvakumar et al. 2008;
Strong et al. 2015; Tani 1991; Clomburg et al. 2017; Pfeifenschneider et al. 2017).
PHB production from methane is currently being explored by a number of
companies in the USA, Russia, and India (Kalyuzhnaya et al. 2015). Recently,
methylotrophs have been genetically engineered for the production of value-added
compounds that are not synthesized by native metabolism. One example is the
engineering of B. methanolicus for the production of the diamine cadaverine and
for the production of the γ-aminobutyric acid (GABA), which finds application in
the bioplastics industry (Naerdal et al. 2015; Irla et al. 2016). Despite significant
scientific and technological progress (de la Torre et al. 2015; Gilman et al. 2015), this
approach has been limited mainly by our current understanding of cellular metabo-
lism and physiology that is still incomplete and by poorly developed genetic tools for
most bacterial methylotrophs (Chung et al. 2010; Schrader et al. 2009).

4. Industrial production organisms are ideal hosts for synthetic methylotrophy but
require integration of methylotrophic pathways into their metabolism Establishing
an orthogonal methylotrophy module for embedding into the metabolism of a
particular production host species would provide the opportunity to tap on the full
potential of that host species with regard to value-added compounds produced by
it. Indeed for all of them, a methanol-based production process can be envisioned
(Müller et al., 2015b; Whitaker et al. 2015; Witthoff et al. 2015). E. coli,
C. glutamicum, and Saccharomyces cerevisiae are the host cells that provide the
most flexible, biologically well-understood, genetically tractable starting point for
further engineering. The molecular toolbox for these microorganisms is large; a
range of tools and techniques has been developed to iteratively construct and
evaluate modified derivatives of these strains. In addition, their product portfolios
range from classical products such as amino acids to biofuels and innovative
compounds used as building blocks for the chemical synthesis of chemical polymers
and pharmaceuticals (Becker and Wittmann 2015).

5. Synthetic methylotrophy represents a major scientific challenge combining
systems and synthetic biology Methylotrophy is a complex and carefully regulated
process where efficient C1 oxidation has to be balanced with an equally efficient C1
assimilation to ensure cell growth and at the same time avoid accumulation of the
cell-toxic intermediate formaldehyde. As discussed here, design and engineering of
synthetic methylotrophy is a top-down strategy where components and modules
representing several interlinked metabolic pathways have to be functionally
integrated into host metabolism. This is a complex task, taking biochemical, regu-
latory, energetic, and stoichiometric aspects of cell metabolism into consideration,
and thus combines cutting-edge competences and technologies in systems biology
and synthetic biology.
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9.3 Design of Synthetic Methylotrophs

Methylotrophy has evolved independently several times since a diverse range of
alternative enzymes or pathways and of various combinations of these systems exists
in nature. Taking into account all this natural biodiversity at each metabolic stage
and the potential for creating new enzyme properties, there is a multitude of routes
that can be designed to introduce methane or methanol assimilation into
non-methylotrophic hosts.

A number of biochemical and practical considerations have to be taken into
account for the design of synthetic methylotrophic pathways. For instance, to
establish methane oxidation, introducing sMMO rather than pMMO is easier,
because despite being the most common enzyme, the latter one is poorly
characterized due to the analytical difficulties to investigate membrane-bound
catalysts (Hakemian and Rosenzweig 2007). The physiological source of the elec-
tron donor in the pMMO reaction is also still not yet resolved (Kalyuzhnaya et al.
2015), adding some difficulties to efficiently engineer host metabolism with this
enzyme. Similarly, the simplest way to engineer organisms for methanol oxidation is
to introduce NAD-dependent methanol dehydrogenase since many host reactions
can recycle the NADH generated in the MDH reaction. The introduction of
PQQ-dependent methanol dehydrogenase (i.e., MXAF and XOXF) is more chal-
lenging because PQQ is not as universal as NAD for redox reactions, and hence PQQ
recycling is likely to be limited in the host. Moreover, some target organisms, like
E. coli, cannot natively synthesize PQQ and hence should be further engineered to
functionally express PQQ biosynthesis, which is a complex process (Muller et al.
2015b). On the other hand, AOD is also challenging as it produces hydrogen
peroxide, which is highly toxic for most of the hosts.

The above considerations can be extended to the other steps of methylotrophy
metabolism and emphasize the various levels of biochemical and metabolic com-
plexity to engineer synthetic methylotrophs. They also stress the necessity to con-
sider engineering strategies in a system-wide perspective. To cope with this
complexity and to identify the best combination of genes to be introduced into a
given non-methylotrophic host, computational tools enabling the in silico design of
metabolic pathways can be applied (Carbonell et al. 2016; Medema et al. 2012;
Vieira et al. 2014). Such computational analyses help to predict and select the best
combinations of enzymes and pathways to introduce in the host, as well as the
optimization of the host metabolism according to associated metabolic constraints,
e.g., cofactor and C1 acceptor regeneration, transport, formaldehyde toxicity, etc.
Using this approach, the introduction of MDH together with two reactions from the
RuMP pathway (HPS and PHI) was identified as the “best combination” to achieve
the highest theoretical growth rate on pure methanol in E. coli (Muller et al. 2015b).
However, other feasible pathway combinations are conceivable as well.

The choice of which assimilatory pathway to introduce in host organisms will
firstly depend on the number of genes to be introduced. For instance, only two
heterologous proteins (i.e., HPS and PHI) are theoretically needed to establish a
complete RuMP cycle in E. coli, while four heterologous proteins (i.e., serine-
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glyoxylate aminotransferase serine, glycerate 2-kinase, malate thiokinase, and
malyl-coenzyme A lyase) are needed to establish a complete serine cycle. Secondly,
it will depend on the desired end product, since high-flux intermediates are different
in the diverse pathways. For instance, the assimilatory RuMP pathway will be
chosen for the production of sugar-phosphate intermediates, while the serine cycle
can be exploited for the production of dicarboxylic acids (Kalyuzhnaya et al. 2015).

Finally, with the advances in synthetic biology, completely novel synthetic
metabolic pathways can be created by combining retrosynthesis-based approaches
to generate de novo metabolic pathways (Hadadi et al. 2016; Jeffryes et al. 2015;
Planson et al. 2012; Schwander et al. 2016) with computational design of enzymes to
encode the novel enzymatic steps (Siegel et al. 2015; Erb et al., 2017).

9.4 Progress in Establishing Synthetic Methylotrophs

9.4.1 Synthetic Methane Utilizer

The first attempts to engineer methane utilization in a nonnative host were performed
in E. coli. In 1992, West et al. reported on the expression of the sMMO genes from
M. capsulatus in E. coli. They demonstrated functional activity of MMOR and
MMOB in the recombinant E. coli, but did not show activity of the complete
sMMO enzyme complex (West et al. 1992). Later attempts to heterologously express
the MMOH gene of sMMO in methanotrophs that only contain pMMO did not
successfully reconstitute MMO activity (Lloyd et al. 1999; Murrell 2002; Wood
2002). Concerning pMMO, there was little or no activity when expressed in different
hosts including E. coli and Rhodococcus erythropolis, most probably due to incor-
rect protein folding (Gou et al. 2006; Balasubramanian et al. 2010) (see Table 9.1).

9.4.2 Synthetic Methanol Utilizer

To date, engineering methanol utilization in biotechnologically relevant microbes
has been described for E. coli, C. glutamicum, Pseudomonas putida, and
S. cerevisiae (Dai et al. 2017; Koopman et al. 2009; Lessmeier et al. 2015; Muller
et al. 2015b; Orita et al. 2007; Whitaker et al. 2017; Witthoff et al. 2015; Wendisch
et al. 2016). These synthetic biology works have in common that they rely on the
previously mentioned combination composed by MDH, HPS, and PHI (see
Table 9.1).

Synthetic methylotrophy was described in E. coli (Muller et al. 2015b). In this
work, expression of the RuMP genes from B. methanolicus along with MDH from
B. methanolicus led to 40% incorporation of 13C-methanol into central metabolites
(Muller et al. 2015b). Another study described a similar approach to engineer E. coli
with comparable success using MDH from Bacillus stearothermophilus (Whitaker
et al. 2017). In both works, the metabolites generated from 13C-methanol were not
100% labeled, indicating that methanol alone cannot supply all carbon atoms for
molecular buildup and in consequence does not allow pure methylotrophic growth.
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Table 9.1 List of hosts with implemented genes for enzymes involved in methane and methanol
utilization

Nonnative host MMO MDH HPS PHI References

E. coli smmo
operon
(mca)

� � � West et al. (1992)

Methanotrophs containing
only pMMO

smmo
(mca and
mtri)

� � � Lloyd et al. (1999),
Murrell (2002),
Wood (2002)

Rhodococcus erythropolis pmmo
gene
cluster
(mca)

� � � Gou et al. (2006)

E. coli pmmo
gene
cluster
(mtri)

� � � Balasubramanian
et al. (2010)

Cell-free system � mdh
(bmet)

hps
(mca)

phi
(mfa)

Burgard et al.
(2014)

E. coli deleted for native
formaldehyde oxidation
pathway

� mdh2
(bmet)

hps
(bmet)

phi
(bmet)

Brautaset et al.
(2013)

� mdh
(bste)

hps
(mgas)

phi
(mgas)

Papoutsakis et al.
(2015)

� mdh
(bste)

hps
(bmet)

phi
(bmet)

Whitaker et al.
(2017)

� mdh3
(bmet)

hps
(mgas)

phi
(mgas)

Price et al. (2016)

E. coli � mdh2
(bmet)

hps
(bmet)

phi
(bmet)

Muller et al.
(2015b)

C. glutamicum deleted for
native formaldehyde
oxidation pathway

� mdh2
(bmet)

hps
(bmet)

phi
(bmet)

Brautaset et al.
(2013)

� mdh
(bmet)

hxlA
(bsu)

hxlB
(bsu)

Lessmeier et al.
(2015), Witthoff
et al. (2015)

B. subtilis overexpressing
genes encoding for Ru5P
regeneration enzymes

� mdh3
(bmet)

hxlA
(bsu)

hxlB
(bsu)

Brautaset et al.
(2013)

P. putida � � hps
(bbri)

phi
(bbri)

Koopman et al.
(2009)

S. cerevisiae � mdh
(bmet)

hxlA
(bsu)

hxlB
(bsu)

Dai et al. (2017)

Abbreviations: MMO¼ methane monooxygenase, MDH ¼ NAD-dependent methanol dehydroge-
nase, HPS ¼ 3-hexulose-phosphate synthase, PHI ¼ 6-phospho-3-hexuloisomerase,
mca ¼ Methylococcus capsulatus, mtri ¼ Methylosinus trichosporium, bmet ¼ Bacillus
methanolicus, bste ¼ Bacillus, stearothermophilus, mgas ¼ Mycobacterium gastri,
mfa ¼ Methylobacillus flagellatus, bsu ¼ Bacillus subtilis, bbri ¼ Bacillus brevis
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However, the central metabolites analyzed showed labeling of multiple carbons
(Muller et al. 2015b; Whitaker et al. 2017). This can exclusively be explained by
metabolites passing through the RuMP cycle several times demonstrating the in vivo
functionality of the RuMP cycle. Molecules having incorporated carbon atoms from
methanol also appeared in biosynthetic pathways, e.g., for cell wall biosynthesis
(Muller et al. 2015b) and in several proteinogenic amino acids (Whitaker et al.
2017). Higher biomass levels were obtained when methylotrophic E. coli cells were
grown on yeast extract + methanol compared to growth on yeast extract alone, also
suggesting a contribution of methanol to biomass production. However, only about
0.3 g/L methanol were utilized in the medium containing 1 g/L yeast extract
increasing the OD from about 0.7 to about 0.9, while 1.6 g/L methanol remained
untouched (Whitaker et al. 2017). Finally incorporating the pathway to synthesize
the flavanone naringenin in the former engineered E. coli strain allowed in vivo 13C-
labeling of a specialty chemical from 13C-methanol. However, no net formation of
naringenin from methanol was demonstrated (Whitaker et al. 2017). In another
approach, hps and phi genes from Mycobacterium gastri MB19 or other
methylotrophs were heterologously synthesized as fusion protein in E. coli and
exhibited similar or even superior activity in vitro and in vivo (Orita et al. 2007;
Muller et al., 2015b).

In C. glutamicum, methanol utilization has been achieved by expressing MDH
from B. methanolicus together with hxlA (3-hexulose-phosphate synthase) and hxlB
(6-phospho-3-hexuloisomerase) from B. subtilis (Lessmeier et al. 2015; Witthoff
et al. 2015). In the resulting strains, the incorporation of 13C-label from 13C-
methanol into central metabolites was detected, and molecules were labeled at
more than one atom carbon position. This indicates the in vivo operation of the
synthetic methanol utilization pathway and demonstrates that the RuMP pathway is
indeed “cycling” (Lessmeier et al. 2015; Witthoff et al. 2015). Applying this strategy
to a cadaverine-producing strain resulted in 13C-labeling of cadaverine from 13C-
methanol. Thus, the nonnatural carbon source methanol was converted to the
nonnatural product cadaverine by recombinant C. glutamicum to some extent;
however, net biomass formation from methanol was not observed (Lessmeier et al.
2015).

The solvent-tolerant bacterium P. putida was engineered to utilize methanol and
formaldehyde as auxiliary substrates by introducing the hps and phi genes from
Bacillus brevis (Koopman et al. 2009). In chemostat cultures feeding formaldehyde
as co-substrate to glucose, the hps- and phi-expressing strain showed a two times
higher biomass yield compared to the control strain. Furthermore, the hps- and phi-
expressing strain was also able to grow when replacing formaldehyde with metha-
nol, while the control strain did not reach steady state under these conditions. This is
probably due the presence in P. putida of an endogenous methanol-oxidizing
activity which may result from a side activity of a broad-specificity alcohol dehy-
drogenase (Koopman et al. 2009; Yurimoto et al. 2009). However, authors did not
show any evidence that a functional RuMP was operating in vivo.

For the first time, methanol utilization has been described in Saccharomyces
cerevisiae (Dai et al. 2017). In this study, methanol metabolic pathway originating
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from both prokaryotic and eukaryotic methylotrophs was tested. Expression of the
mdh from B. methanolicus MGA3 with the RuMP genes from B. subtilis failed to
allow methanol consumption and cell growth in a minimal medium containing
methanol as the sole carbon source. However, in a S. cerevisiae expressing aod,
together with the XuMP genes from Pichia pastoris, a consumption of methanol of
1.04 g/L and 3.13% increase of cell growth were observed. This was further
improved when yeast extract was added to the medium (Dai et al. 2017). However,
no proof of in vivo functionality of the introduced methanol pathway was shown.

9.4.3 Synthetic Methylotrophy in the Patent Literature

With respect to patents, Helman et al. claimed the development of synthetic
methanotrophic microorganisms for the production of chemical product. Lynch
claimed the development of metabolically engineered strain for the production of
acetyl-CoA from methane, methanol, and/or formaldehyde. Coleman et al. claimed
the use of metabolically engineered host microorganisms, which utilize methane as
the sole carbon source. Burgard et al. claimed the development of nonnaturally
occurring microbial organism having a methanol metabolic pathway for producing
1,4-butanediol related thereto. All of them mentioned among others the expression
of genes encoding for MMO, MDH, HPS, or PHI; however, none of them provided
experimental or quantitative evidence for these claims (Helman et al. 2015; Burgard
et al. 2014; Lynch 2014; Coleman et al. 2014). Brautaset et al. described the
expression of RuMP pathway enzymes (i.e., HPS and PHI) together with MDH in
E. coli, C. glutamicum, and B. subtilis. Except for B. subtilis, significant label
incorporation was detected when these cells were grown on 13C-methanol. For
engineered B. subtilis, label was only detected when five genes encoding for Ru5P
regeneration enzymes (i.e., pfk, encoding phosphofructokinase; rpe, encoding
ribulose-5-phosphate 3-epimerase; tkt, encoding transketolase; glpX, encoding fruc-
tose-1,6-bisphosphatase; and fba, encoding fructose-1,6-bisphosphate aldolase)
were overexpressed in addition to the first set of genes (Brautaset et al. 2013).
Papoutsakis et al. observed incorporation of 13C-label from methanol into central
metabolites in E. coli strain expressing the hps and phi gene fusion from M. gastri
with the MDH from B. stearothermophilus (Papoutsakis et al. 2015). See details in
Table 9.1.

9.5 Perspectives in Engineering Synthetic Methylotrophs

In all the synthetic methanol utilizers described up to now, incorporation of
methanol-carbon in biomass, central metabolites, or secreted products could be
observed. However, no growth on pure methanol was detected indicating that
metabolic bottlenecks remain. Although MDHs are presumably the best candidates
for engineering synthetic MeOH utilizers, the kinetics (low affinity toward metha-
nol) and thermodynamic (positive Gibbs energy) properties of these enzymes favor a
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low methanol oxidation rate and a higher flux in the reverse direction (i.e., formal-
dehyde to methanol conversion). In an approach to maintain a low formaldehyde
concentration to favor methanol to formaldehyde conversion and to lower
formaldehyde-associated toxicity, MDH, HPS, and PHI were assembled into an
artificial enzyme complex. By doing so, synthesis of F6P from methanol and
RuMP was increased by 50-fold, and production of F6P was further improved
twofold in vitro, when a “NADH sink” (i.e., a NADH-dependent lactate dehydroge-
nase) was added to the system (Price et al. 2016). The beneficial effect of enzyme
(MDH, HPS, and PHI) assembly was also observed in vivo by improving whole-cell
methanol consumption rate ninefold (Price et al. 2016). Other promising possibilities
to improve methanol oxidation rate include expression of existing or less
characterized or engineered or computationally designed enzymes with better kinet-
ics properties.

Another major issue in engineering synthetic methylotrophs is the formaldehyde
assimilation, i.e., C1 assimilation. As mentioned above, C1 assimilation in nature
involves metabolic cycles and a C1 acceptor that enables the formation of a C–C
bond. As already discussed (Muller et al. 2015b), the major challenge in the current
synthetic MeOH utilizers seems to be the cyclic mode of operation of the RuMP
pathway for biomass production which needs to operate in conjunction with the
host’s endogenous central metabolism to allow C1 assimilation into biomass and
growth in the presence of methanol as a sole carbon and energy source. This is
further supported by the fact that in the absence of the five genes encoding the cyclic
operation of the RuMP pathway (i.e., pfk, rpe, tkt, glpX, and fba), B. methanolicus is
unable to grow on methanol as sole carbon source (Brautaset et al. 2004). Nonnative
hosts possess all the aforementioned genes; hence, establishment of methanol
assimilation requires sustaining high flux through the endogenous reactions, which
may result in significant constraints on the metabolic network. If the flux is too low,
then instead of being assimilated, formaldehyde is dissimilated as CO2 through the
host’s endogenous metabolic routes to avoid accumulation. In methylotrophic
C. glutamicum, the disruption of the native formaldehyde oxidation pathway
improved formaldehyde assimilation (Lessmeier et al. 2015). In contrast, the pres-
ence of this pathway in methylotrophic E. coli did not affect the formaldehyde
production rate (Muller et al. 2015b). Further improvement of formaldehyde assimi-
lation by either boosting C1 acceptor regeneration or avoiding the requirement of the
C1 acceptor might help to establish methanol assimilation. Boosting the C1 acceptor
regeneration by more balanced production of the utilized enzymes or even by
exchanging them with enzymes from natural methylotrophs such as
B. methanolicus might represent a valuable strategy for overcoming potential
problems caused by an insufficient regeneration of the C1 acceptor (Muller et al.
2015b). This has been recently tested and led to ed to improved methanol utilization
(Bennett et al. 2018). Alternatively, experimental evolution might be a valuable
approach (Muller et al. 2015b) that can be applied alone or in combination with
metabolic engineering. In this context, it is interesting to note that recently a “semi-
autotrophic” E. coli strain was generated in which energy production is decoupled
from C1 fixation. The resulting evolved E. coli strain is able to convert CO2 into
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sugars and other biomass precursors via a nonnative carbon fixation machinery. To
do so, Antonovsky et al. used a strain where the C1 fixation module (CBB cycle) was
separated from energy production with the latter being furnished by feeding pyruvate
(Antonovsky et al. 2016). Expressing a pathway that does not require recycling of
the C1 acceptor might also be a promising strategy and can be achieved by
expressing the two genes encoded for MDH and formolase (FLS) (Nguyen et al.
2016). FLS is an enzyme designed computationally from the benzaldehyde lyase,
which converts three molecules of formaldehyde into one molecule of DHA (Siegel
et al. 2015). In this pathway, optimal operation of FLS is required to avoid formal-
dehyde accumulation since here three molecules of formaldehyde are condensed
instead of one in the RuMP pathway (Bar-Even 2016; Tai and Zhang 2015).
Furthermore, suboptimal operation of the FLS reaction only leads to condensation
of two molecules of formaldehyde-yielding glycolate, which may not be converted
further or may even be toxic. The formolase-based synthetic metabolic pathway has
been experimentally tested on formate; further improvements will be required to
allow growth on formate/formaldehyde.

Finally, with regard to methane utilization, the heterologous MMO expression
remains an obstacle for the reconstruction of a methane assimilation pathway in
nonnative hosts. Thus, the development of MMO enzymes that can work properly in
nonnative hosts is a prerequisite to obtain synthetic methane utilizer. This will
require the molecular engineering of MMO as well as better understanding of the
structure and catalytic mechanism of MMO (Strong et al. 2015; Nguyen et al. 2016).
Another important issue will be the regeneration of the reducing power NAD(P)H,
i.e., required for the oxidation of methane to methanol. This problem can be
ameliorated if oxidation of methanol to formaldehyde is made by a NAD(P)-
dependent methanol dehydrogenase yielding reduced redox cofactors NAD(P).
However, this high energy loss may limit the efficiency of the biological conversion
of methane to chemicals and fuels (Conrado and Gonzalez 2014). More efficient
activation strategies to capture energy from methane to methanol oxidation will thus
be required. This can be achieved by the expression of existing or less characterized
or engineered enzymes and by the optimization of the process (e.g., increase
methane solubility or reduce process heat loss) (Conrado and Gonzalez 2014).

Synthetic methylotrophy is still in its infancy, and many challenges remain to
fully exploit the potential of C1 compounds for valuable and cost-effective biotech-
nology processes. However, due to the significant progress that has been made in the
recent years both in the comprehensive understanding of methylotrophy and in the
development of synthetic biology concepts and tools, there is no doubt that these
challenges will be addressed in the near future, opening up new opportunities for
biotechnology in a broad range of markets.
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