
HAL Id: hal-02154302
https://hal.science/hal-02154302v1

Submitted on 18 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Weighted Quartet Consensus problem
Manuel Lafond, Celine Scornavacca

To cite this version:
Manuel Lafond, Celine Scornavacca. On the Weighted Quartet Consensus problem. Theoretical
Computer Science, 2019, 769, pp.1-17. �10.1016/j.tcs.2018.10.005�. �hal-02154302�

https://hal.science/hal-02154302v1
https://hal.archives-ouvertes.fr

On the Weighted Quartet Consensus problem?

Manuel Lafond1,2 and Celine Scornavacca3

1 Department of Computer Science, Université de Sherbrooke, 2500 Boulevard de l’Université, J1K 2R1,
Sherbrooke, Canada

2 Department of Mathematics and Statistics, 545 King Edward, K1N7N5, University of Ottawa, Ottawa,
Canada (mlafond2@uottawa.ca)

3 Institut des Sciences de l’Evolution – Université Montpellier, CNRS, IRD, EPHE, Place Eugène
Bataillon, 34095 Montpellier, France (celine.scornavacca@umontpellier.fr).

Abstract. In phylogenetics, the consensus problem consists in summarizing a set of phylo-
genetic trees that all classify the same set of species into a single tree. Several definitions of
consensus exist in the literature; in this paper we focus on the Weighted Quartet Con-
sensus problem, whose complexity status has remained open since it was posed in 2008.
Here we show that the Weighted Quartet Consensus problem is NP-hard, and provide
several results on the approximability of the problem. Namely, we show that Weighted
Quartet Consensus admits a polynomial-time approximation scheme (PTAS) based on
prior work of Jiang, Kearney and Li. The algorithm is unfortunately impractical, and so we
also present an implementable 1/2-factor approximation algorithm. During the process, we
propose a derandomization procedure of a previously known randomized 1/3-factor approxi-
mation, which guarantees that a tree that contains a third of any given multi-set of quartets
can be found deterministically. We also investigate the fixed-parameter tractability of this
problem.

1 Introduction

Phylogenetics is the branch of biology that studies evolutionary relationships among different
species. These relationships are represented via phylogenetic trees – acyclic connected graphs with
leaves labeled by species – which are reconstructed from molecular and morphological data [13].
One fundamental problem in phylogenetics is to summarize the information contained in a set of
unrooted trees T classifying the same set of species into a single tree T . The set T can consist
of optimal trees for a single data set, of trees issued from a bootstrap analysis of a unique data
set, or even of trees issued from the analysis of different data sets. Several consensus methods
have been proposed in the past, the probably most known are the strict consensus [24, 19] and the
majority-rule consensus [18, 5]. For a survey, see [8].

In this paper we focus on the Weighted Quartet Consensus (WQC) problem [20], also
called the Median Tree with Respect to Quartet Distance problem [4] and Quartet
Consensus problem in [17]. Roughly speaking, this problem consists in finding a consensus tree
maximizing the weights of the 4-leaf trees – quartets – it displays, where the weight of a quartet is
defined as its frequency in the set of input trees (for a more formal definition, see next section).

More general versions of this problem, where the input trees are allowed to have missing species
or where the weight of a quartet is not defined w.r.t. a set of trees, are known to be NP-hard [25]
(and in fact, even Max-SNP-Hard), but the complexity of the WQC problem has remained open
since the question was first posed in 2008 [3]. This problem has been conjectured to be NP-hard
[4, 20], and heuristics have recently been implemented and widely used, for instance ASTRAL [21],
which is a practical implementation of Bryant and Steel’s work from[9] (in fact, we show that the
ASTRAL algorithm is a 2-approximation for the minimization version of WQC). So far, the best
known approximation algorithm for the WQC problem consists in choosing a random tree as a
solution [17]. This tree is expected to contain a third of the quartets from the input trees, and so
it is a randomized factor 1/3 approximation. In [4], the minimization version of the problem is
studied, where the objective is to find a median tree T minimizing the sum of quartet distances
between T and the input trees (the quartet distance is the cardinality of the symmetric difference

? An extended abstract of this work appeared in the Proceedings of the 28th Annual Symposium on
Combinatorial Pattern Matching (CPM), pages pp. 28:1–28:18, volume 78 of LIPIcs,, 2017.

between the sets of quartets in the two trees). A 2-approximation algorithm is given, based on the
fact that the quartet distance is a metric [10, 4].

A related problem that has received more attention is the Complete Maximum Quartet Compat-
ibility problem (CMQC) (see [7, 6, 17, 15, 26, 27, 11, 22, 23]). In the CMQC problem, we are given,
for each set S of four species, exactly one quartet on S, and the objective is to find a tree containing
a maximum number of quartets from the input. This can be seen as a version of WQC in which
each set of four species has one quartet of weight 1, and the others have weight 0. It was shown
in [17] that the CMQC problem admits a polynomial time approximation scheme (PTAS), but it
can only be extended to WQC instances on a constant number of trees. Also, CMQC was shown
in [15, 11] to be fixed-parameter tractable w.r.t. the parameter “number of quartets to reject from
the input”.

Our results. The main result of this paper is to establish the NP-hardness of the WQC problem.
In Section 2, we introduce preliminary notions, and in Section 3 we propose a reduction from the
NP-hard Cyclic Ordering problem to WQC. In Section 4, we discuss how being in a consensus
setting, i.e. having weights based on a set of input trees on the same leaf set rather than arbitrary
weights, does not necessarily make the problem easier, as one could expect: We list some structural
properties that, surprisingly, are not satisfied by optimal solutions of a WQC instance. One example
of this is that even if a quartet belongs to every single input tree, it is possible that none of the
optimal solutions contain this quartet. Nevertheless, in Section 5 we show that WQC is amenable to
approximation algorithms. We first show that the problem admits a PTAS, essentially by adjusting
the weights appropriately and using the work of Jiang, Kearney and Li [17] to find a solution within
a factor (1−ε) from optimal, for any 0 < ε < 1. This algorithm is unfortunately not practical, and so
we devise a simpler factor 1/2 approximation algorithm for WQC running in time O(t2n2+tn4+n6),
where t is the number of trees and n the number of species. During the process, we also show how to
derandomize the algorithm that outputs a tree T that, on expectation, contains 1/3 of the quartets
from the input. To achieve this, we design a specific uniform tree sampling procedure that allows
us to apply the technique of conditional expectations in the construction of the tree. Finally, in
Section 6, we show that the known FPT algorithms for the CMQC problem can be extended to
the consensus setting. This yields an FPT algorithm that is efficient on instances in which there is
not too much ambiguity, i.e. when few competing quartets on the same 4 species appear with the
same frequency. We then conclude with some remarks and open problems related to the quartet
consensus problem.

2 Preliminaries

An unrooted phylogenetic tree T consists of vertices connected by edges, in which every pair of nodes
is connected by exactly one path and no vertex is of degree two. The leaves of a tree T , denoted
by L(T), consists of the set of vertices of degree one. Each leaf is associated to a label; the set of
labels associated to the leaves of a tree T is denoted by L(T). We suppose that there is a bijection
between L(T) and L(T). Due to this bijectivity, we will refer to leaves and labels interchangeably.
We denote |L(T)| as |T |. In the following, we will often omit the word “phylogenetic” and, unless
otherwise stated, all trees are leaf-labeled. A binary unrooted tree has only vertices with degree
three and vertices with degree one. A rooted (binary) phylogenetic tree is defined in the same
way, except that it has exactly one node of degree two called the root, denoted by r(T). Note that
sometimes in the literature, rooted trees are seen as directed and such that all arcs are oriented
away from the root. Unless stated otherwise, all trees in this paper are unrooted.

Given an unrooted phylogenetic tree T and a subset Y ⊆ L(T), we denote by T |Y the tree
obtained from the minimal subgraph of T connecting Y when contracting degree-2 vertices. A
quadset is a set of four labels. For a quadset {a, b, c, d}, there are three non-isomorphic1 unrooted
binary trees, called quartets, which are denoted respectively by ab|cd, ac|bd, and ad|bc, depending
on how the central edge splits the four labels. We say that an unrooted tree T displays the quartet
ab|cd if T |{a, b, c, d} is ab|cd. We denote the set of quartets that an unrooted tree T displays by

Q(T). Note that if T is binary, then |Q(T)| =
(|T |

4

)
. A set of quartets Q on a set X is said to be

1 Isomorphism preserving labels.

2

complete if for each quadset {a, b, c, d} ⊆ X , there is in Q exactly one quartet among ab|cd, ac|bd,
and bc|ad.

We are now ready to state our optimization problem. The Weighted Quartet Consensus
problem asks for a tree that has as many quartets as possible in common with a given set of trees
on the same set of labels X :

Weighted Quartet Consensus (WQC) problem
Input: a set of unrooted trees T = {T1, . . . , Tt} such that L(T1) = . . . = L(Tt) = X .
Output: a binary unrooted tree M with L(M) = X that maximizes

∑
T∈T |Q(M) ∩Q(T)|.

The problem is weighted as each quartet on X is weighted by frequency in T , see below.
A tree M that maximizes the above objective function will be called an optimal consensus tree.

In this paper we will focus on the particular case where the input trees are all binary. In fact,
proving the problem NP-hard for this restricted case implies NP-hardness of the general problem.
Note, however, that relaxing the requirement of the output M to be binary leads to a different
problem, as one needs to define how unresolved quartets in M are weighted.

We denote by Qall the set of all possible quartets on the set of labels X , that is, Qall = {ab|cd :
{a, b}, {c, d} ∈

(X
2

)
, {a, b}∩ {c, d} = ∅}. In the remainder of the article, we will sometimes consider

multi-sets of quartets, that are sets in which the same quartet can appear multiple times. Denote
by fQ(q) the number of times that a quartet q appears in a multi-set Q (we may write f(q) if Q is
unambiguous). We also denote |Q| = ∑q∈Qall

f(q). We say that a tree T contains k quartets of Q
if there are distinct quartets q1, . . . , qp ∈ Q(T) such that

∑p
i=1 f(qi) = k. A set or multi-set Q of

quartets is said compatible if there exists a tree that contains each quartet of Q. Given a quadset
{a, b, c, d}, we say that ab|cd is dominant (w.r.t. f) if f(ab|cd) ≥ f(ac|bd) and f(ab|cd) ≥ f(ad|bc).
We say that ab|cd is strictly dominant if both inequalities are strict.

Observe that the Weighted Quartet Consensus problem can be rephrased as follows: given
the trees T1, . . . , Tt on leafset X , find a binary tree M on X that contains a maximum number of
quartets from Q(T1)]Q(T2)] . . .]Q(Tt), where] denotes multiset union. We will implicitly work
with the decision version of WQC, i.e. for a given integer q, is there a consensus tree M containing
at least q quartets from Q(T1)] Q(T2)] . . .] Q(Tt)? This latter formulation will sometimes be
more convenient.

3 NP-hardness of the Weighted Quartet Consensus problem

In this section, we present a reduction from the Cyclic ordering problem. This problem has
been used in phylogenetics before in [16] in the context of inferring rooted binary trees from rooted
triplets (trees on 3 leaves).

But beforehand, we need some additional notation. A caterpillar is an unrooted binary tree
obtained by taking a path P = p1p2 . . . pr, then adding a leaf `i adjacent to pi for each 1 ≤ i ≤ r,
then adding another leaf `′1 adjacent to p1 and a leaf `′r adjacent to pr. The two leaves `′1 and `′r
inserted last are called the ends of the caterpillar. An augmented caterpillar T is a binary tree
obtained by taking a caterpillar, then replacing each leaf by a binary rooted tree (replacing a leaf
` by a tree T ′ means replacing ` by r(T ′)). If T1, T2 are the two trees replacing the ends of the
caterpillar, then T is called a (T1, T2)-augmented caterpillar. For instance, the 6 trees in Figure 1
are all (W,Z)-augmented caterpillars, with the special case that all the “inner” trees have only
one leaf. Note that every binary tree is a (T1, T2)-augmented caterpillar for some T1, T2. Let T
be a caterpillar with leaves (`1, `2, . . . , `k) taken in the order in which we encounter them on the
path between the two ends `1 and `k (more precisely, traverse the `1 − `k path, and each time an
internal node is encountered, append its adjacent leaves to the sequence), and let T1, . . . , Tk be
rooted binary trees. We denote by (T1|T2| . . . |Tk) the (T1, Tk)-augmented caterpillar obtained by
replacing `i by Ti, 1 ≤ i ≤ k. This notation gives rise to a natural ordering of the subtrees, and we
say that Ti < Tj if i < j (i.e. Ti appears before Tj in the given ordering of the caterpillar subtrees).
Note that other orderings of the subtrees can yield the same unrooted tree, e.g. by reversing it, or
by exchanging T1, T2 or Tk−1, Tk. However this will be inconsequential in the proofs that follow. If
each Ti consists of a single leaf `i for 2 ≤ i ≤ k − 1, then we may write (T1|`2| . . . |`k−1|Tk), and
`i < `j in T to indicate that `i appears before `j in the ordering (see e.g. Figure 1).

3

W Z

c d e f

W Z

f e d c a ba b

W Z

a d e f

W Z

f e d a b cb c

W Z

b d e f

W Z

f e d b c ac a

TC(ab)
←−
T C(ab)

TC(bc)
←−
T C(bc)

TC(ca)
←−
T C(ca)

Fig. 1. The 6 trees of T (C) corresponding to the triple C = (a, b, c). In this example, S = {a, b, c, d, e, f}.
The first, second and third row respectively show the “a < b”, “b < c” and “c < a” trees.

We are now ready to describe the Cyclic Ordering problem. Let L = (s1, . . . , sn) be a
linear ordering of a set S of at least 3 elements, and let (a, b, c) be an ordered triple, with a, b, c
being distinct elements of S. We say that L satisfies (a, b, c) if one of the following holds in L:
a < b < c, b < c < a or c < a < b. If C is a set of ordered triples, we say that L satisfies C if
it satisfies every element of C. Intuitively speaking, L satisfies (a, b, c) when, by turning L into a
directed cyclic order by attaching sn to s1, one can go from a to b, then to c and then to a. This
leads to the following problem definition:

Cyclic Ordering problem
Input: A set S of n elements and a set C of m ordered triples (a, b, c) of distinct members of S.
Question: Does there exist a linear ordering L = (s1, . . . , sn) of S that satisfies C?

The Cyclic Ordering problem is NP-hard [14]. In the rest of this section, we let S and C
be the input set and triples, respectively, of a Cyclic Ordering problem instance. We denote
n = |S| and m = |C|. We shall use the following simple yet useful characterization.

Lemma 1. A linear ordering L of S satisfies C if and only if for each (a, b, c) ∈ C, exactly two of
the following relations hold in L: a < b, b < c, c < a.

Proof. (⇒): let L be a linear ordering satisfying C, and let (a, b, c) ∈ C. Thus in L, one of a < b <
c, b < c < a or c < a < b holds. It is straightforward to verify that in each case, exactly two of
a < b, b < c, c < a hold.
(⇐): suppose that L does not satisfy C. Then there is some (a, b, c) ∈ C such that one of a < c <
b, b < a < c or c < b < a does not hold. Again, one can easily verify that each of these cases
satisfies only one of a < b, b < c and c < a. ut

We now start describing the reduction from Cyclic Ordering to WQC. Given S and C, we
construct a set of unrooted binary trees T on a common set of labels X .

First let W and Z be two very large rooted binary trees, each on say (nm)100 leaves (the
topology is arbitrary). The leaf sets L(W) and L(Z) are disjoint. Our trees are defined on the leaf
set X = S ∪ L(W) ∪ L(Z) (where S,L(W),L(Z) are disjoint). Let C ∈ C with C = (a, b, c). We
construct 6 trees from C, that is, 3 pairs of trees. These are illustrated in Figure 1.

– The “a < b” trees: let (s1, . . . , sn−2) be an arbitrary ordering of S \ {a, b}. Then we build the

trees TC(ab) = (W |a|b|s1|s2| . . . |sn−2|Z) and
←−
T C(ab) = (W |sn−2|sn−3| . . . |s1|a|b|Z).

– The “b < c” trees: let (ŝ1, . . . , ŝn−2) be an arbitrary ordering of S \ {b, c}. Then we build the

trees TC(bc) = (W |b|c|ŝ1|ŝ2| . . . |ŝn−2|Z) and
←−
T C(bc) = (W |ŝn−2|ŝn−3| . . . |ŝ1|b|c|Z).

– The “c < a” trees: let (s̄1, . . . , s̄n−2) be an arbitrary ordering of S \ {c, a}. Then we build the

trees TC(ca) = (W |c|a|s̄1|s̄2| . . . |s̄n−2|Z) and
←−
T C(ca) = (W |s̄n−2|s̄n−3| . . . |s̄1|c|a|Z).

4

Denote by T (C) the set of 6 constructed trees for C ∈ C. The input for our Weighted
Quartet Consensus instance constructed from S and C is T =

⋃
C∈C T (C). Note that |T | = 6m.

Before moving on to the proof of the reduction, it will be useful to state a few remarks and introduce
some terminology.

First observe that each tree of T (C) is a (W,Z)-augmented caterpillar. Moreover, note that
the pairs of trees of T (C) contain “opposite” orderings for all but one pair of elements from S.

To state this more precisely, let a, b ∈ S and x, y ∈ S \ {a, b}, and let {TC(ab),
←−
T C(ab)} be an

“a < b” tree-pair. Then we have x < y in TC(ab) if and only if y < x in
←−
T C(ab). Similarly for any

x ∈ S \ {a, b}, a < x, b < x in TC(ab) but x < a, x < b in
←−
T C(ab). Only a < b holds in both trees.

Let T ∈ T , and let B(T) denote the set of quartets of T that have at least two members
of L(W), or at least two members of L(Z). Thus B(T) consists of all the quartets of the form
w1w2|xy and z1z2|xy of T , where w1, w2 ∈ L(W), z1, z2 ∈ L(Z) and x, y ∈ X (note that no quartet
of B(T) has the form w1x|yw2 for x, y /∈ L(W), nor the form z1x|yz2 for x, y /∈ L(Z)). Since all the
trees from T are (W,Z)-augmented caterpillars, for any tree T ′ ∈ T , we have B(T) = B(T ′). Let
Kwz := 6m|B(T)| be the total number of such quartets in T , i.e. Kwz is the size of

⊎
T∈T B(T).

We observe the following:

Remark 1. Any (W,Z)-augmented caterpillar on X contains the Kwz quartets
⊎
T∈T B(T).

Now, denote Kout := 3m|W ||Z|
((
n−2
2

)
+ 2(n− 2)

)
(the meaning of this expression will become

apparent shortly). Let T ∈ T and suppose that T is an “a < b” tree, for some a, b ∈ S. For
w ∈ L(W), z ∈ L(Z) and x, y ∈ S, a quartet wx|yz displayed by T is called an out-quartet of
T if {x, y} 6= {a, b}, and an in-quartet of T if x = a and y = b (note that x = b and y = a
is not possible, by construction of “a < b” trees). Let out(T) and in(T) denote the set of out-
quartets and in-quartets, respectively, of T . Note that each tree T has |W ||Z| in-quartets and
|W ||Z|

((
n−2
2

)
+ 2(n− 2)

)
out-quartets (because there are

(
n−2
2

)
+2(n−2) ways to choose {x, y} 6=

{a, b}). Thus Kout is half the total number of out-quartets
⊎
T∈T out(T). As it turns out, it will

be the in-quartets that will be decisive in showing our hardness proof. The following Lemma is a
first hint towards the structure of an optimal consensus tree for T .

Lemma 2. Any tree M on leafset X contains at most Kout quartets from
⊎
T∈T out(T). Moreover,

if M is a (W,Z)-augmented caterpillar (W |s1| . . . |sn|Z), where {s1, . . . , sn} = S, then M contains
exactly Kout quartets from

⊎
T∈T out(T).

Proof. Let w ∈ L(W) and z ∈ L(Z). Let {TC(ab),
←−
T C(ab)} be an “a < b” tree-pair of T , for

some a, b ∈ S, and let x, y ∈ S such that {x, y} 6= {a, b}. Because x < y in TC(ab) if and only

if y < x in
←−
T C(ab), we get that the out-quartet wx|yz is in TC(ab) if and only if wy|xz is in←−

T C(ab). Since M can only contain one of the two quartets, it follows that M can contain at most

half of the quartets from out(TC(ab))] out(←−T C(ab)). Thus M contains at most half the quartets
from

⊎
T∈T out(T), which is 3m|W ||Z|

((
n−2
2

)
+ 2(n− 2)

)
= Kout. As for the second assertion,

if M = (W |s1| . . . |sn|Z) then M contains one of wx|yz or wy|xz for each x, y ∈ S. Thus if M
does not contain the out-quartet wx|yz from TC(ab), then it contains the out-quartet wy|xz from←−
T C(ab). We deduce that M contains at least half the quartets from out(TC(ab))] out(←−T C(ab)),
and thus half the quartets from

⊎
T∈T out(T). ut

Before going further, we make a useful general observation.

Proposition 1. Let X,Y be two non-empty sets such that Y 6⊆ X. Then |X| · |Y \X| ≥ |Y | − 1.

Proof. First note that for any strictly positive pair of integers x and y, x · y ≥ x + y − 1 (with
equality if and only if x = 1 or y = 1). Now, suppose to begin with that X ∩ Y = ∅. Then clearly
|X||Y \X| = |X||Y | ≥ |Y | − 1. Suppose otherwise that |X ∩ Y | = k > 0. Denote h = |Y \X|, so
that |Y | = k + h. Then |X||Y \X| ≥ k · h ≥ k + h− 1 = |Y | − 1. ut

What follows is the intuitive statement that since all input trees are (W,Z)-augmented cater-
pillars, any optimal consensus tree should also have this property.

Lemma 3. Any optimal consensus tree for T is a (W,Z)-augmented caterpillar.

5

Proof. We first introduce the notion of a rooted subtree of a binary unrooted tree T . By removing
an edge e = {u, v} of T , we obtain two disjoint rooted subtrees T1 and T2, respectively rooted at
u and v. Call T ′ a rooted subtree of T if T ′ is a rooted tree that can be obtained by removing an
edge of T . For X ⊂ L(T), a rooted subtree for X is a rooted subtree T ′ of T such that X ⊆ L(T ′).
We denote by T [X] the rooted subtree for X that contains a minimum number of leaves (if there
are multiple choices, choose T [X] arbitrarily among the possible choices). Note that T [X] always
exists since we can remove an edge incident to a leaf y /∈ X. However, T [X] may contain leaves
other than X.

We now prove that any optimal solution to T as constructed in our reduction must be a (W,Z)-
augmented caterpillar. Suppose that M is an optimal solution for T , and that M is not a (W,Z)-
augmented caterpillar. Denote MW = M [L(W)] and MZ = M [L(Z)]. If M is a (W ′, Z ′)-augmented
caterpillar (W ′|T1| . . . |Tk|Z ′) for some trees W ′, Z ′ with L(W ′) = L(W) and L(Z ′) = L(Z), it is
not hard to see that M ′ = (W |T1| . . . |Tk|Z) is a better solution than M , a contradiction. Thus,
M is not such a caterpillar, and this implies that either L(MW) 6= L(W) or L(MZ) 6= L(Z) (or
both). That is, the rooted subtrees containing L(W) and/or L(Z) have “outsider” leaves. Suppose
first that L(MW) 6= L(W) holds. Then there exists a node x with children xl and xr in MW such
that all leaves Xl below xl are in L(W) with L(W) 6= Xl (otherwise MW = M [L(W)] would be
chosen incorrectly), and no leaf Xr below xr belongs to L(W) (this can be seen by observing that
the node x of MW having leaves both in W and not in W that is the farthest from the root has
this property). Figure 2 illustrates this.

x

Xl Xr

xl xr

(Xr ∩ L(W) = ∅)(Xl ⊂ L(W))

. . .

MW subtree

. . .
. . .

Fig. 2. The situation when L(MW) 6= L(W). Xr is grayed to indicate that it has no element from L(W).

We claim that L(Z) 6⊆ Xr. Suppose otherwise that L(Z) ⊆ Xr. Then |Xr| ≥ |Z| and so
|MW | ≥ |W | + |Z|. However in M , by removing the xxr edge we obtain two rooted trees, one of
which is a rooted subtree for L(W). Moreover, this subtree has at most |W | + |S| < |W | + |Z|
leaves, which contradicts the minimality of MW = M [L(W)]. We deduce that L(Z) is not a subset
of Xr.

Now, observe that M contains the quartet w1y|w2z for each w1 ∈ Xl, y ∈ Xr, w2 ∈ L(W) \
Xl, z ∈ L(Z) \Xr. There are at least

|Xl| · |Xr| · |L(W) \Xl| · |L(Z) \Xr| ≥ (|W | − 1)(|Z| − 1)

such quartets. The inequality is obtained by applying Proposition 1 to |Xl| · |L(W) \Xl| and
|Xr| · |L(Z) \Xr|, which is applicable since we have argued that L(W) is not a subset of Xl and
L(Z) is not a subset of Xr. Moreover, each input tree of T contains the quartet w1w2|yz instead,
and hence in total in T there are at least 6m(|W | − 1)(|Z| − 1) quartets of the form w1w2|yz
that M does not contain. In the same manner, if the case L(MZ) 6= L(Z) holds, then there are
at least 6m(|W | − 1)(|Z| − 1) quartets of the form z1z2|yw that M does not contain, where here
z1, z2 ∈ L(Z), y /∈ L(Z), w ∈ L(W).

Now, let ρ(M) be the number of quartets that M contains from
⊎
T∈T Q(T) that have the form

wx|yz, where w ∈ L(W), z ∈ L(Z), x, y ∈ S. Formally,

ρ(M) =
∑

wx|yz∈Q(M)
x,y∈S
w∈L(W)
z∈L(Z)

f(wx|yz)

6

recalling that f(wx|yz) denotes the number of trees of T that contain the wx|yz quartet. For a
given u ∈ L(W) ∪ L(Z), let ρ(M,u) denote the number of quartets counted in ρ(M) that contain
u. Formally, if w ∈ L(W), we have

ρ(M,w) =
∑

wx|yz∈Q(M)
x,y∈S
z∈L(Z)

f(wx|yz)

The definition of ρ(M, z) is the same for z ∈ L(Z), except that z gets fixed instead of w in the
summation. Notice that

ρ(M) =
∑

w∈L(W)

ρ(M,w) =
∑

z∈L(Z)

ρ(M, z)

Let w∗ = arg maxw∈L(W){ρ(M,w)}, i.e. the element w∗ of L(W) that is in the maximum
number of quartets of the form w∗x|yz. We obtain an alternative solution M ′ from M in the
following manner: remove all leaves of L(W)\{w∗} from M , delete the degree 2 nodes, and replace
w∗ by the W tree. Note that if w∗x|yz is a quartet of M , then wx|yz is a quartet of M ′ for
all w ∈ L(W), and so ρ(M ′, w) ≥ ρ(M,w) for all such w by the choice of w∗. Consequently,
ρ(M ′) ≥ ρ(M). We repeat the same operation on M ′ for the Z tree and obtain our final tree
M∗. That is, we find z∗ = arg maxz∈L(Z){ρ(M ′, z)}, and replace z∗ by the Z tree. As above,
we obtain ρ(M∗) ≥ ρ(M ′). Since M∗ has W and Z as rooted subtrees, it follows that M∗ is a
(W,Z)-augmented caterpillar.

To finish the argument, we show that M∗ contains more quartets from the input trees than M .
First observe that the quartets on which M and M∗ differ must contain a member of L(W)∪L(Z),
since only these leaves switched position. We separately consider the following three types of
possible quartets: (1) the quartets that contain at least two elements of L(W) or at least two
elements of L(Z) (or both); (2) the quartets that contain exactly one member of L(W) and exactly
one member of L(Z); and (3) those quartets that contain exactly one member of L(W) ∪ L(Z).

For (1), the tree M∗ contains every quartet of
⊎
T∈T Q(T) that have at least two members of

L(W), or two members of L(Z). This includes the aforementioned (at least) 6m(|W | − 1)(|Z| − 1)
quartets of the form w1w2|yz or z1z2|yw that M does not contain. As for (2), the quartets that
contain exactly one member of L(W) and exactly one member of L(Z), M∗ contains at least as
many such quartets as M since in

⊎
T∈T Q(T), these quartets are all of the form wx|yz, and we

have ρ(M∗) ≥ ρ(M). Finally for (3), each tree of T has at most (|W |+ |Z|)n3 quartets that have
exactly one member of L(W) ∪ L(Z). Thus at most 6m(|W | + |Z|)n3 quartets of this type are
contained by M and not contained by M∗.

So from M to M∗, we have gained at least 6m(|W |− 1)(|Z|− 1) quartets due to (2) and lost at
most 6m(|W | + |Z|)n3 due to (3). Since the latter quantity is smaller than 6m(|W | − 1)(|Z| − 1)
for our choice of |W | and |Z|, M∗ contains more quartets from the input than M . ut

We finally arrive at our main result.

Theorem 1. The Weighted Quartet Consensus problem is NP-hard.

Proof. It is straightforward to see that the construction of T from S and C can be carried out in
polynomial time. We show that there exists a linear ordering of S satisfying C if and only if there
exists a weighted quartet consensus tree M for T that contains at least Kwz + Kout + 4m|W ||Z|
quartets from

⊎
T∈T Q(T). For the rest of the proof, we let w ∈ L(W) and z ∈ L(Z) be arbitrary

leaves of W and Z, respectively.
(⇒): let L = (s1, s2, . . . , sn) be a linear ordering of S satisfying C. Then we claim that the

weighted quartet consensus tree M = (W |s1|s2| . . . |sn|Z) contains the desired number of quartets.
Since M is a (W,Z)-augmented caterpillar, M contains Kwz quartets of T that have two or more
elements from L(W), or two or more elements from L(Z), see Remark 1. Moreover by Lemma 2,
M contains Kout quartets from

⊎
T∈T out(T). As for the in-quartets, let (a, b, c) ∈ C and let

T ((a, b, c)) be the set of 6 trees corresponding to (a, b, c). By Lemma 1, L satisfies two of the
relations a < b, b < c, c < a. This implies that M has exactly two of the following quartets:
wa|bz, wb|cz, wc|az. Since, for every w ∈ L(W) and z ∈ L(Z), each of these three quartets appears

7

as an in-quartet in exactly two trees of T ((a, b, c)) (e.g. wa|bz is an in-quartet of T(a,b,c)(ab) and
←−
T (a,b,c)(ab)), it follows that M contains 4|W ||Z| quartets of

⊎
T∈T ((a,b,c)) in(T). As this holds for

every (a, b, c) ∈ C, M contains 4m|W ||Z| quartets of
⊎
T∈T in(T). Summing up, we get that M

has at least Kwz +Kout + 4m|W ||Z| quartets from T .

(⇐): suppose that no linear ordering of S satisfies C. Let M be an optimal consensus tree for
T . By Lemma 3, we may assume that M is a (W,Z)-augmented caterpillar. We bound the number
of quartets of T that can be contained in M .

First, by Lemma 3, M contains Kwz quartets of T that have at least two elements of L(W) or
at least two elements of L(Z). As for the quartets with one or zero elements from L(W) ∪ L(Z),
in any tree T ∈ T there are at most (|W | + |Z|)n3 quartets of the form wa|bc or za|bc with
a, b, c ∈ S, and at most n4 quartets of the form ab|cd with a, b, c, d ∈ S. Thus M contains at most
6m((|W |+ |Z|)n3 + n4) < (|W |+ |Z|)mn5 quartets of T that are of the form wa|bc, za|bc or ab|cd
with a, b, c, d ∈ S (the inequality holds because n ≥ 3 and |W | = |Z| = (nm)100). Also, by Lemma 2,
M contains at most Kout quartets from

⊎
T∈T out(T). It remains to count the in-quartets.

Let (a, b, c) ∈ C. The following in-quartets appear, each twice, in T ((a, b, c)): wa|bz, wb|cz,
wc|az. It is easy to check that these three quartets are incompatible, i.e. no tree can contain all
three of them, and hence M can have at most two of them. We deduce that there must be at least

two trees T,
←−
T of T ((a, b, c)) such that M contains no quartet from in(T)] in(

←−
T). Therefore M

contains at most 4|W ||Z| quartets from
⊎
T∈T ((a,b,c)) in(T), and thus at most 4m|W ||Z| quartets

from
⊎
T∈T in(T). We will however show that there must be some (a, b, c) ∈ C such that M contains

only 2|W ||Z| of the quartets from
⊎
T∈T ((a,b,c)) in(T).

Since M is a (W,Z)-augmented caterpillar, we may write M = (W |T1|T2| . . . |Tk|Z). For a ∈ S,
let T (a) be the tree of {T1, . . . , Tk} that contains a as a leaf. Then a quartet wa|bz is in Q(M) if
and only if T (a) < T (b). Let L be a linear ordering of S such that T (a) < T (b)⇒ a < b in L (L is
easily seen to exist). Since no linear ordering of S can satisfy C, by Lemma 1 there must be some
(a, b, c) ∈ C such that only one of a < b, b < c, c < a holds in L. This also means that at most one of
T (a) < T (b), T (b) < T (c), T (c) < T (a) holds. Thus M has at most one of the wa|bz, wb|cz, wc|az
quartets. It follows that M contains at most 2|W ||Z| quartets from

⊎
T∈T ((a,b,c)) in(T). Therefore

M contains at most 4m|W ||Z| − 2|W ||Z| quartets of
⊎
T∈T in(T).

In total, the number of quartets that M contains from the input is bounded by Kwz +Kout +
(|W |+ |Z|)mn5 + (4m− 2)|W ||Z| < Kwz +Kout + 4m|W ||Z|, by our choice of |W | and |Z|. ut

4 The (non)-structure of WQC

In the rest of this paper, we aim at designing algorithms building on the fact that the weight of
each quartet is not arbitrary, and is rather based on a set of input trees on the same leaf set. When
designing optimized algorithms for a problem, understanding the relationship between the input
and the optimal solution(s) can be of great help. In phylogenetics, several problems are harder in the
supertree setting, i.e. when the input trees do not all contain the same species, than in the consensus
setting as in the WQC problem. An example is the problem of finding an unrooted phylogenetic
tree containing as minors a set of unrooted phylogenetic trees – the compatibility problem – which
is NP-hard in the supertree setting [25] and polynomially solvable in the consensus setting [1].
Despite the NP-hardness of WQC, there may exist some properties inherent to the consensus
setting that are useful for devising efficient FPT algorithm, or for establishing lower bounds on the
value of an optimal solution in order to develop approximation algorithms.

In an attempt to establish useful properties of the weights of quartets in the consensus setting,
we initially conjectured that the following relationships between the input trees and the solution(s)
hold. Despite being reasonable in appearance, we prove all these conjectures false.

1. let D be the set of strictly dominant quartets of the input multiset Q, i.e. the quartets ab|cd
such that f(ab|cd) > f(ac|bd) and f(ab|cd) > f(ad|bc). Then there is a constant α > 0 such
that there exists an optimal solution containing at least α|D| quartets of D;

2. if a quartet ab|cd has a higher weight than the sum of the other quartets on the same quadset,
i.e. f(ab|cd) > f(ac|bd) + f(ad|bc), then some optimal solution contains ab|cd;

8

3. more generally, there exists β > 0 such that if a quartet ab|cd is in a fraction β of the input
trees, then ab|cd must be in some optimal solution. In particular, if ab|cd is in every input tree,
then there is some optimal solution that contains ab|cd;

4. if a quartet ab|cd is in no input tree, then no optimal solution contains ab|cd.
5. call ab|cd a strictly least-frequent quartet if f(ab|cd) < f(ac|bd) and f(ab|cd) < f(ad|bc).

Suppose that there exists a tree T ∗ on leaf set X that contains no strictly least-frequent
quartet, and choose such a T ∗ that contains a maximum number of quartets from the input.
Then T ∗ is an optimal solution for WQC.

a

e

b
c

d
⇥2

a

e

c

b

d
⇥2

a

e

d

b

c
⇥3

b

e

a
c

d
⇥1

c

e

a

b

d
⇥9

d

e

a

b

c
⇥5

a

b

e
c

d
⇥8

a

d

e

b

c
⇥4

b

e

d
a

c
⇥2

b

e

c
a

d
⇥4

d

e

b
a

c
⇥4

Fig. 3. An instance of WQC such that the optimal solution (the third tree from the left on the first row)
contains no strictly dominant quartet. The numbers correspond to the number of times that each tree
appears in the input.

Conjecture 1 is disproved by Theorem 2, and Conjecture 3 by Theorem 3, which implies that
Conjectures 2 and 4 are also false; finally Conjecture 5 is disproved by Theorem 4.

Theorem 2. There exists an instance of WQC such that every optimal solution contains none of
the strictly dominant quartets.

Proof. Figure 3 shows an instance of WQC demonstrating Theorem 2. Table 1 lists the frequency
of each quartet in this instance.

Table 1. Frequency of each quartet (left column contains the quadsets)

abcd ab|cd 11 ac|bd 17 ad|bc 16

abce ab|ce 17 ac|cb 11 ae|bc 16

abde ab|de 17 ad|be 11 ae|bd 16

acde ac|de 11 ad|ce 17 ae|cd 16

bcde bc|de 16 bd|ce 11 be|cd 17

Notice that for every possible quadset S, there is a strictly dominant quartet appearing 17
times, whereas the second-most and third-most quartets appear in 16 and 11 trees, respectively.
Consider the third tree on the top row of Figure 3 (the ae|bc quartet with d grafted on the middle
branch). Call this tree T ∗. For every quadset S, T ∗ contains the second-most frequent quartet on
S, and so it contains 80 quartets from the input. Now, one can check that any tree T that contains
a strictly dominant quartet for some quadset S must also contain a least frequent quartet on some
other quadset S′. Hence, as there are 5 quadsets, T contains at most 4 · 17 + 11 = 79 quartets from
the input. To see this, consider a tree that contains the strictly dominant ac|bd quartet. Wherever
we graft the e leaf on this quartet, we either have bd|cd or ac|de, which are the least frequent.

9

Similarly, ab|ce enforces either ab|cd or bd|cd; ab|de enforces either ab|cd or ac|de; ad|ce enforces
either ad|be or bd|ce; be|cd enforces either ad|be or ab|cd. ut

a

a

a

a

a

b

b

b

b
b

c

c

c
c

c

d d d
d

d
e

e

e

e

e

f

f

f

f

f

g

g

g

g

g

h

h

h

h

h

Fig. 4. The first four trees form an instance of WQC in which every tree contains ab|cd. The rightmost tree
is the unique optimal solution to the WQC instance (every possible solution was verified computationally).

Note that the instance used to prove Theorem 2 consists of trees on only 5 leaves. We do not
know if such instances exist for any n > 5 leaves.

Theorem 3. There exists an instance of WQC such that there is a quartet q that appears in every
input tree, but q is not a quartet of any optimal solution.

Figure 4 shows an instance of WQC proving Theorem 3. Each input tree contains the ab|cd
quartet, whereas the optimal solution, which is unique, does not. Indeed using brute-force checking
of every possible tree computionally, we found that the rightmost tree contains 180 quartets from
the input multiset Q, whereas any other tree has at most 176.

Finally, we note that the main interest behind Conjecture 5 is the following: if it holds, in cases
where the set F of strictly least-frequent quartets is complete we could tell in polynomial time –
using results of [9] – whether there is a tree T ∗ that contains no quartet from F . Conjecture 5
could then lead to interesting approximations or FPT algorithms. However, least-frequent quartets
cannot be excluded automatically.

Theorem 4. There exists an instance of WQC such that every optimal solution contains a strictly
least-frequent quartet, even if there exists a tree T ∗ with no such quartet.

Proof. The instance corresponding to Theorem 4 is obtained from the instance shown in Figure 3,
by removing all occurrences of the third tree on the top row (i.e. this tree now appears 0 times
instead of 3 times). Since this tree contained each second-most frequent quartet on every quadset,
each such quartet now appears 13 times in the input (i.e. in Table 1, replace all occurrences of 16
by 13). The tree T ∗ that contains all these second-most frequent quartets has a total weight of
5 · 13 = 65. Notice that there are trees that contain 75 quartets from the input, for instance, the
tree of cardinality 9 in the figure. It follows that any optimal tree must have a strictly dominant
quartet, since T ∗ is not optimal. But as we argued in the proof of Theorem 2, these optimal trees
must also contain a strictly least-frequent quartet. ut

5 Approximatibility of WQC

In this section, we first show that WQC admits a polynomial time approximation scheme (PTAS).
The algorithm is however impractical both from the point of view of time complexity and imple-
mentability. Therefore, we also give a factor 1/2 approximation algorithm that achieves practical
running times and is easy to implement. Note that this is better than the (randomized) factor
1/3 approximation for WQC, the best known so far. We also derandomize this approximaiton
algorithm.

10

We say that an algorithm A for a maximization (resp. minimization) problem P is an α-
approximation of P , where α < 1 (resp. α > 1), if for every instance I of P , A runs in polynomial
time and outputs a solution of value APP (I) such that APP (I) ≥ αOPT (I) (resp. APP (I) ≤
αOPT (I)), where OPT (I) is the optimal value of I. For a maximization problem P , a PTAS is an
algorithm (or a family of algorithms) that, given some 0 < ε < 1, runs in time O(ng(ε)) for some
function g not depending on n, and always outputs a solution of value at least (1− ε)OPT (I).

We will make use of an important feature of quartets throughout this section. Let Q be a
multi-set of quartets over the set X , not necessarily originating from a set of trees. If we sample
a binary tree T on leafset X uniformly at random, each quartet of Q has probability 1/3 of being
contained in T , since there are 3 quartets for each quadset and each is equally likely. This gives
rise to a trivial factor 1/3 randomized approximation algorithm: output a random tree 2. Later
in this section, we will show how to derandomize this algorithm, which will be useful to devise a
deterministic 1/2 approximation for WQC. This property is also useful in designing a PTAS when
Q originates from input trees. The fact that a random tree, on expectation, contains 1/3 of the
quartets from Q yields the following.

Proposition 2. Let T1, . . . , Tt be a set of binary trees on leafset X , and let Q = Q(T1)]. . .]Q(Tt).
Then there exists a tree T on leaf set X such that

∑
q∈Q(T) fQ(q) ≥ 1

3

∑t
i=1 |Q(Ti)| = t

3

(
n
4

)
.

5.1 A PTAS for WQC

Recall that the Complete Maximum Quartet Compatibility (CMQC) problem asks, given a com-
plete set Q of quartets on X , for a tree T that contains a maximum number of quartets from Q.
As mentioned before, CMQC admits a PTAS [17], the idea of the algorithm being to enumerate
every possible binary tree T with h(ε) leaves for some function h, then “plug-in” the elements of
X into the leaves of T whilst maximizing the number of quartets in common with the input. This
latter step is performed using smooth polynomial integer programming (see [2]).

The authors of [17] also indicate how this PTAS can be extended to the WQC problem, but only
when the number of input trees is constant. In fact, this is a consequence of a more general result
on the existence of a PTAS when the pool of possible weights is constant. More specifically, the
authors establish that, to paraphrase, “the CMQC PTAS can be extended to solve this weighted
variation (of CMQC) as long as the weights are drawn from some interval of positive integers of
constant range to preserve the smoothness of the polynomial integer programs”. This means that
if there is a constant λ ∈ N such that a given quartet weighing function f satisfies the following
conditions:

1. f(q) ∈ N for all q ∈ Qall
2. for every quadset S, f(ab|cd) + f(ac|bd) + f(ad|bc) = λ

then the PTAS can find a solution within a factor (1− ε) from optimal in time O(ng(ε,λ)) where
here g is a function depending on ε and λ but not on n. The difficulty in the WQC problem is that
this constant λ is not guaranteed to exist.

Nevertheless, we show that the PTAS can still be adapted to WQC. Suppose that (1 − ε) is
the desired approximation factor. The idea is simply to fix λ appropriately, then divide and round
each weight of the WQC instance to the nearest weight in {0, . . . , λ}. Here λ can depend on ε, but
not on n. We will assume that λ is known, and determine its exact value later.

Recall that t is the number of trees in the input (hence, f(q) ≤ t for every quartet q). For each
quartet q ∈ Qall, define a temporary weight f ′(q) = bf(q)/t · λc. We have

f(q)/t · λ− 1 ≤ f ′(q) ≤ f(q)/t · λ

Hence, for a quadset {a, b, c, d}, because f(ab|cd) + f(ac|bd) + f(ad|bc) = t, we have

λ− 3 ≤ f ′(ab|cd) + f ′(ac|bd) + f ′(ad|bd) ≤ λ
2 Here, the approximation is “randomized” in the sense that the output tree contains an expected number

of quartets from the input that is at least a third.

11

To obtain the weights f̂ that we will actually use, we adjust f ′ slightly to ensure that the
quadset weights sum to λ, since this allows us to use the PTAS. We know that f ′(ab|cd)+f ′(ac|bd)+

f ′(ad|bd) = λ−x, where x ∈ {0, 1, 2, 3} since the f ′ weights are integral. To define f̂ on the quartets

of {a, b, c, d}, choose an arbitrary subset S ⊆ {ab|cd, ac|bd, ad|bc} with |S| = x, set f̂(q) = f ′(q)+1

to each q ∈ S, and set f̂(q) = f ′(q) to the quartets on {a, b, c, d} not in S. This guarantees that

f̂(ab|cd) + f̂(ac|bd) + f̂(ad|bd) = λ.
Moreover, for any quartet q, we now have

f(q)/t · λ− 1 ≤ f̂(q) ≤ f(q)/t · λ+ 1

We now compare an optimal solution for f̂ with an optimal solution for f . Let T ′ be a tree
that maximizes

∑
q∈Q(T ′) f̂(q) among all possible trees. Let us denote Q′ := Q(T ′). Moreover, let

T be a tree that maximizes
∑
q∈Q(T) f(q), and denote Q := Q(T). Write OPT (f̂) :=

∑
q∈Q′ f̂(q)

and OPT (f) :=
∑
q∈Q f(q). Since Q is a possible solution for the weights f̂ , we have

OPT (f̂) ≥
∑
q∈Q

f̂(q) ≥
∑
q∈Q

(f(q)/t · λ− 1) =
λ

t

∑
q∈Q

f(q)−
(
n

4

)
=
λ

t
OPT (f)−

(
n

4

)

Now, suppose that we run the PTAS on the weights f̂ with approximation ratio (1 − ε′),
where ε′ is yet to be determined. We obtain a tree T ′′ with quartet set Q′′ := Q(T ′′) satisfying∑
q∈Q′′ f̂(q) ≥ (1 − ε′)OPT (f̂). We argue that taking Q′′ as a solution for the WQC instance

defined by f (instead of f̂) is close to OPT (f). We have

∑
q∈Q′′

f(q) ≥
∑
q∈Q′′

t

λ
(f̂(q)− 1) =

t

λ

∑
q∈Q′′

f̂(q)−
(
n

4

)
≥ t

λ

(
(1− ε′)OPT (f̂)−

(
n

4

))
≥ t

λ

(
(1− ε′)

[
λ

t
OPT (f)−

(
n

4

)]
−
(
n

4

))
= (1− ε′)OPT (f)− t(2− ε′)

λ

(
n

4

)
By Proposition 2, OPT (f) ≥ t

3

(
n
4

)
, i.e.

(
n
4

)
≤ 3

tOPT (f). Therefore,

(1− ε′)OPT (f)− t(2− ε′)
λ

(
n

4

)
≥ (1− ε′)OPT (f)− t(2− ε′)

λ

3

t
OPT (f)

=

(
1− ε′ − 3(2− ε′)

λ

)
OPT (f)

If
(

1− ε′ − 3(2−ε′)
λ

)
≥ (1− ε), then we will have achieved our desired approximation factor. As

long as ε > ε′, by choosing λ ≥ 6−3ε′
ε−ε′ , this inequality holds. For instance, we can set ε′ = ε/2 and

set λ = 12/ε − 3 to get the (1 − ε) approximation. Therefore, a PTAS for WQC can be obtained
by setting λ appropriately, adjusting the weights and running the PTAS from [17].

5.2 Preserving 1/3 of the input quartets deterministically

We now show how, given a multiset of quartets Q, one can deterministically output a tree T that
contains at least 1/3 of the quartets from Q. Instead of working with multi-sets, in this section we
will assume that we are given a weight function f : Qall → N on each possible quartet (here the
weights do not have to originate from the quartets of a set of input trees). For the remainder of
this section, let X be the set of species and let n = |X |.

12

Theorem 5. There exists a deterministic algorithm that outputs a tree T satisfying
∑
q∈Q(T) f(q) ≥

1
3

∑
q′∈Qall

f(q′). Moreover, this algorithm runs in time O(n6).

We use the method of conditional expectations to prove Theorem 5. The idea is to start from
a fully unresolved tree on leafset X , then refine it into a binary tree in a top-down, step-by-step
fashion, ensuring at each step that we maintain the expectation of containing 1/3 of the input
quartets. To simplify the description of our procedure, we shall work with rooted trees in this
section.

It is worth mentioning that an analogous bottom-up approach called quartet joining has been
published multiple times (e.g. [12, 28]). The algorithm consists in starting from an unresolved tree,
making the two “best” leaves of this tree a cherry, contracting these two leaves with their parent
and repeating (see references for a definition of best). However, it can be shown that this method
does not guarantee preserving 1/3 of the quartets3.

For an integer m, let t(m) denote the number of rooted binary trees whose set of leaves are
labeled by {1, . . . ,m}. It is well-known that t(m) = (2m − 3)!!, and we will assume that in a
preprocessing step, we have computed and stored t(m) for all 1 ≤ m ≤ n. This takes initial time
O(n2) and allows constant-time access to the value of t(m) in our algorithm. Note that alternatively

t(m) = 1
2

∑m−1
j=1

(
n
j

)
t(j)t(m− j) also holds, since a rooted binary tree can be obtained by giving j

leaves to its left child and the other m− j leaves to its right child, and resolving the left and right
trees (and we divide by 2 due to the symmetry).

Call a rooted tree T internally binary if the only nodes of T that have more than two children
have only leaves as children. We say a rooted binary tree T ′ resolves an internally binary tree T if
T can be obtained from T ′ by some sequence of edge contractions. Given an internally binary tree
T , we describe a procedure to select a tree that resolves T uniformly at random.

Repeat the following steps until T is binary:

1. Choose a node v of T that has more than one child. Let v1, . . . , vm be the children of v, which
are all leaves.

2. Choose an integer s ∈ {1, . . . ,m − 1} at random using the following distribution: for j ∈
{1, . . . ,m− 1},

Pr[s = j] =

(
m
j

)
t(j)t(m− j)

2t(m)

3. Remove all the children of v from T and add two leaf children to v labeled by ρs and ρm−s.
4. Reinsert the v1, . . . , vm leaves by first choosing a subset S ⊂ {v1, . . . , vm} with |S| = s at

random, each subset with equal probability 1/
(
m
s

)
, then inserting each element of S as a leaf

child of ρs. Then, insert all the elements of {v1, . . . , vm} \ S as leaf children of ρm−s.

This concludes the procedure. It is easy to see that a binary tree will eventually be obtained,
and that the order in which the v nodes are processed does not matter, as each non-binary node
is processed independently. Note that in the second step,

∑m−1
j=1 Pr[s = j] = 1 (this follows from

t(m) = 1
2

∑m−1
j=1

(
m
j

)
t(j)t(m− j)). We then show that this procedure can be used to sample trees

uniformly.

Lemma 4. Given an internally binary tree T , the above procedure chooses one of the trees that
resolve T uniformly at random.

Proof. We prove the statement by induction over the number of leaves n. As a base case, the
statement is easy to verify by hand for small values of n, say n = 2 or n = 3. For larger n, let
T be an internally binary tree and let B = {b1, . . . , bl} be its set of nodes that have more than
two children. For each bi ∈ B, denote by Bi ⊆ X the set of leaf labels that occur as the children
of bi. Observe that one can obtain a tree that resolves T uniformly at random by choosing, for
each bi ∈ B, a tree on leafset Bi chosen uniformly at random, then replacing the bi node by the
root of this tree. If T has more than one internal node, then |Bi| < n for each 1 ≤ i ≤ l. By our

3 For instance, it fails to do so on input f(xx′|zz′) = 100, f(xa|x′b) = f(xc|x′d) = (xe|x′f) = 99, as it
will output a tree in which x, x′ form a cherry, thereby preventing all the other quartets.

13

induction hypothesis, the procedure replaces each bi node by a tree on leafset Bi chosen uniformly
at random, as desired. If T has only one internal node, then T is a star tree and the space of trees
that resolve T consists of all the trees on leafset X . Let T ′ be any rooted binary tree on leafset
X . Let u, v be the children of the root of T ′, let T ′u and T ′v be the subtrees of T ′ rooted at u and
v, respectively, and let nu = |L(T ′u)| and nv = |L(T ′v)|. For the above procedure to yield T ′, the
following events must occur:

E1: the integer selected s is equal to nu or nv;
E2: the set L(T ′u) gets selected to be the children of ρs or ρm−s;
E3: the nodes ρs and ρm−s resolve to T ′u and T ′v.

Noting that nv = n− nu and that
(
n
nu

)
=
(
n
nv

)
, the probability that all three events occur is

Pr[E1] · Pr[E2|E1] · Pr[E3|E1E2] =

[
2

(
n
nu

)
t(nu)t(n− nu)

2t(m)

]
·
[

1(
n
nu

)] · [1

t(nu)

1

t(n− nu)

]
where the three brackets corresponds to the three probabilities to multiply, and where we have

used the induction hypothesis for Pr[E3|E1, E2]. After canceling the terms, this probability is equal
to 1

t(n) , as desired. ut

Observe that our procedure deals with temporary trees having two special nodes ρs and ρm−s
and some leaves of X missing. We will need to complete and resolve such trees uniformly at random.
We thus needs to define this notion before proceeding to our algorithm. We shall call an internally
binary tree T a partial s-tree if L(T) ⊆ X and T has two nodes ρs and ρm−s that have the same
parent. Moreover, ρs has at most c ≤ s children (possibly c = 0 or c = 1), all of which are leaves,
and ρm−s has at most m − s children, also all leaves (and possibly 0 or 1 children). We say that
an internally binary tree T ′ with L(T ′) = X completes T if T ′ can be obtained from T by adding
s− c leaves as children of ρs and all the other remaining leaves of X as children of ρm−s. Finally, a
rooted binary tree Tr resolves T if there exists a tree T ′ that completes T such that Tr resolves T ′.
It is not hard to see that a tree Tr that resolves T can be sampled uniformly by choosing a subset
S of s− c elements of X \L(T) uniformly at random, inserting S as leaf children of ρs, inserting all
other remaining leaves under ρm−s and executing the above procedure on the resulting internally
binary tree. Also note that L(T) = X is possible in the definition of a partial s-tree, in which case
no completion is needed.

If T is an internally binary tree or a partial s-tree, we denote by ab|cd ∈ T the random
event that a tree T ′ that resolves T chosen uniformly at random contains the ab|cd quartet.
Thus Pr[ab|cd ∈ T] is the probability that our procedure for internally binary trees or partial
s-trees results in a tree that contains ab|cd. Given the weight function f : Qall → N, denote by
E[T] =

∑
q∈Qall

Pr[q ∈ T]f(q) the expected number of quartets that T contains.
Algorithm 1 describes the derandomization procedure, which is essentially a deterministic ver-

sion of our random tree sampling procedure. We start with a fully unresolved star tree T that
contains, on expectation, 1/3 of the quartets from the input, and each decision in the algorithm
maintains this expectation. When resolving a non-binary node v with children v1, . . . , vm, instead
of choosing a random size s to split its children into two sets of size s and m − s, we try every
possible size s and keep the size that yields the best expectation. When evaluating a size s, we
create the two nodes ρs and ρm−s and insert v1, . . . vm one at a time under either ρs or ρm−s,
whichever yields the better expectation. We stop when ρs or ρm−s is full. Note that the output
tree T may contain nodes that have only one child - we simply delete these nodes from T .

Notice that the algorithm computes the probability Pr[q ∈ Ts] that a quartet belongs to a
partial s-tree. We will show later how to compute this probability, and for now we show that the
1/3 expectation is always maintained as claimed.

Lemma 5. Let T ∗ be the (possibly non-binary) tree obtained at the end of any iteration of the while
loop of Algorithm 1, i.e. T ∗ is the tree T after executing line 17. Then E[T ∗] ≥ 1

3

∑
q′∈Qall

f(q′).

Proof. For the remainder of the proof, denote F :=
∑
q′∈Qall

f(q′). Let T be the tree at the start of
the iteration of the while loop, before executing line 3. We may inductively assume that E[T] ≥ F/3.
Indeed, this holds for the initial star tree T constructed before entering the first iteration of the

14

Algorithm 1: saveOneThirdQuartets(X , f)

Data: A set X of n taxa and a weight f : Qall → N for every possible quartet.
Result: A tree T such that

∑
q∈Q(T) f(q) ≥ 1

3

∑
q′∈Qall

f(q′)

1 Let T be a rooted star tree with leaf set X (i.e. a tree in which each leaf is a child of the root).
2 while T is not binary do
3 Let v be a node of T with more than 2 children v1, . . . , vm.
4 for s = 1, 2, . . . ,m− 1 do
5 Let Ts be the partial s-tree obtained from T by removing v1, . . . , vm, and adding two

children labeled ρs and ρm−s to v.
6 for i = 1, 2, 3, . . . ,m do
7 Let Ts,1 be the partial s-tree obtained by adding vi as a child of ρs.
8 Let Ts,2 be the partial s-tree obtained by adding vi as a child of ρm−s.
9 Let score x = E[Ts,1] =

∑
q∈Qall

Pr[q ∈ Ts,1]f(q).

10 Let score y = E[Ts,2] =
∑

q∈Qall
Pr[q ∈ Ts,2]f(q).

11 if score x > score y then
12 Insert vi as a child of ρs in Ts.
13 else
14 Insert vi as a child of ρm−s in Ts.
15 if ρs has s children or ρm−s has m− s children then
16 Complete Ts in the only possible way, and break out of the current for loop.

17 Put T as the tree Ti of T1, . . . , Tm−1 that maximizes E[Ti].

loop. Moreover, in the subsequent iterations, this tree T is the tree obtained at the end of the
previous iteration - hence if we prove the statement for an arbitrary iteration, our E[T] ≥ F/3
assumption holds.

Let v be the non-binary node chosen on line 3 with children v1, . . . , vm. By our assumption
on T , by choosing a tree Tr that resolves T uniformly at random, Tr has at least F/3 quartets
from the input. Let Ts be the partial s-tree defined as on line 5, 1 ≤ s ≤ m − 1. We claim that
there must be some value of s such that E[Ts] ≥ F/3. By Lemma 4, a tree that resolves T can
be chosen uniformly at random by picking 1 ≤ s ≤ m − 1 with some probability ps, and then
completing and resolving the underlying partial s-tree. For a given quartet q, we may thus write
Pr[q ∈ T] =

∑m−1
s=1 ps · Pr[q ∈ Ts]. Therefore,

E[T] =
∑
q∈Qall

Pr[q ∈ T]f(q) =
∑
q∈Qall

m−1∑
s=1

ps · Pr[q ∈ Ts]f(q) =

m−1∑
s=1

psE[Ts]

Since E[T] ≥ F/3 and
∑m−1
s=1 ps = 1, it follows that some Ts must have E[Ts] ≥ F/3.

Since the algorithm tries every Ts and retains the best one, it suffices to show that our way of
completing the Ts with E[Ts] ≥ F/3 retains the desired expectation. So assume that E[Ts] ≥ F/3.
The algorithm inserts v1, . . . , vm under either ρs or ρm−s one leaf after another. For 0 ≤ i ≤ m,

denote by T
(i)
s the tree obtained in the algorithm after inserting vi, with T

(0)
s = Ts. We prove

by induction that E[T
(i)
s] ≥ F/3 for each 0 ≤ i ≤ m. As a base case, this holds for T

(0)
s as

we have argued just above. Now consider the iteration in which vi is inserted, 1 ≤ i ≤ m. By

induction, E[T
(i−1)
s] ≥ F/3. Suppose that in T

(i−1)
s , ρs has k1 children and ρm−s has k2 children,

where k1 < s and k2 < m − s (as otherwise one of the ρs and ρm−s nodes would be full and we

would be done completing Ts). In a resolution of T
(i−1)
s , vi is inserted under ρs with probability

pvi =
(
m−k1−k2−1
s−k1−1

)
/
(
m−k1−k2
s−k1

)
and under ρm−s with probability 1 − pvi (the actual probabilities

do not matter here though). Thus

E[T (i−1)
s] = pviE

[
T (i−1)
s |vi is a child of ρs

]
+ (1− pvi)E

[
T (i−1)
s |vi is a child of ρm−s

]
Since E[T

(i−1)
s] ≥ F/3 and pvi + (1 − pvi) = 1, it follows that one of the trees obtained from

T
(i−1)
s by inserting vi under ρs or ρm−s attains an expected number of quartets in common with

15

the input of at least F/3. This shows that after completion, Ts has F/3 quartets from the input
on expectation, which concludes the proof since the while loop will finish with Ts being chosen as
T ∗. ut

Since Algorithm 1 terminates with a binary tree T with E[T] ≥ F/3 and that all quartets of
T are fully determined, there is no randomness involved in E[T] and it follows that Algorithm 1
outputs a binary tree T that contains a third of the input quartets.

Computing the probability of a quartet. It remains to show how, when inserting some child vi
of v under either ρs or ρm−s, to compute Pr[q ∈ Ts,1] and Pr[q ∈ Ts,2] on lines 9 and 10 for a given
quartet q. Assume that in Ts,1 or Ts,2, the leaves v1, . . . , vi−1 have all been reinserted under either
ρs or ρm−s under the same parent, with vi being the leaf currently being evaluated for insertion.

Observe that if Pr[q ∈ Ts,1] = Pr[q ∈ Ts,2], then this probability does not contribute to
determining which scenario maximizes expectation, and in this case we do not need to consider
q. Denote q = ab|cd. If none of a, b, c, d is a child of v, then Pr[q ∈ Ts,1] = Pr[q ∈ Ts,2], since the
choice of inserting vi under ρs or ρm−s does not affect the quartet into which a, b, c, d resolve. In
fact, the same holds if exactly one or exactly two of a, b, c, d are children of v. Thus we may assume
that at least three of a, b, c, d are children of v.

There are still multiple cases depending on which of a, b, c and d are children of v, and which
have been reinserted or have not, but this probability can be found algorithmically. We shall focus
on determining Pr[ab|cd ∈ Ts,1], the calculcation for Pr[ab|cd ∈ Ts,2] being identical. To ease
notation, denote T ′ = Ts,1. For x ∈ {a, b, c, d}, write x < ρs (resp. x < ρm−s) to denote the event
that in a random completion of T ′, x is a child of ρs (resp. ρm−s). Note that Pr[x < ρs] ∈ {0, 1}
is possible if the fate of x is already determined, e.g. Pr[x < ρs] = 1 if x ∈ {v1, . . . , vi−1} and is
already a child of ρs in T ′. Let U = {a, b, c, d}∩{vi+1, . . . , vm}, i.e.the leaves in {a, b, c, d} that have
not been reinserted yet in T ′. Observe that Pr[ab|cd ∈ T ′] depends only on where the elements of
U get reinserted in T ′. For instance, suppose that U = {a, b, c, d}, and suppose that a, b, c become
children of ρs and d a child of ρm−s, as in Figure 5. Then ab|cd is a quartet of this tree if and only
if the ρs node gets resolved into a tree that contains the ab|c rooted triplet4, which occurs with
probability 1/3.

ρs ρm−s

. . .

a b c d
.

v

a b
c
d

b

ρs ρm−s

a
b
d

c

ρs ρm−s

b
a
d

c

ρs ρm−s

Fig. 5. The first tree on the left is the situation reached after completing ρs and ρm−s. The three trees to
its right are the possible ways into which a, b, c and d can resolve, each occurring with equal probabililty
(squiggly edges means that there could be other nodes on the path). Only the first resolution yields the
ab|cd quartet.

There are 16 possible ways that the U subset can be formed, and for each U there are at most
24−|U | ways that a, b, c, d could already inserted in T ′ and at most 2|U | ways to reinsert the elements
of U . The point is that there are a constant number of possible cases. There seems to be no general
formula to handle all of these at once, but each case can be calculated by hand. We show how to
handle one representative case, and the other ones are similar. Suppose that U = {b, c} and that
we have already that a < ρs and d < ρm−s already in T ′ because they were inserted. Then

4 We say ab|c is a rooted triplet of a rooted tree T if the a− b path in T does not contain all ancestors of
a on the a− c path in T

16

Pr[ab|cd ∈ T ′] =
1

3
· Pr[a, b, c < ρs and d < ρm−s]+

1 · Pr[a, b < ρs and c, d < ρm−s]+

1

3
Pr[a < ρs and b, c, d < ρm−s]+

0 · Pr[a, c < ρs and b, c < ρm−s]

where for X ⊂ {a, b, c, d} and Y = {a, b, c, d} \X, Pr[X < ρs and Y < ρm−s] depends exclu-
sively on m and the number of children k1 and k2 of ρs and ρm−s. Moreover this probability can be
computed in time O(1). For instance, Pr[a, b, c < ρs and d < ρm−s] =

(
m−k1−k2−2
s−k1−2

)
/
(
m−k1−k2
s−k1

)
=

((k− s)(1 + k− s))/((k+ l−m)(1 + k+ l−m)), which takes constant time to compute. Note that
in this manner, Pr[ab|cd] is always the sum of at most 16 terms, whether 3 or 4 or a, b, c, d are
children of v. We omit further details, and proceed with the proof of Theorem 5.

Proof of Theorem 5. We have shown that Algorithm 1 achieves the desired number of quartets.
It only remains to argue the time complexity of the algorithm. The main while loop creates one
new internal node at each iteration, so there must be O(n) iterations. Each iteration runs two inner
loops that take m2 = O(n2) times, so the overall complexity is n2 times the time taken to compute
Pr[q ∈ Ts,1] and Pr[q ∈ Ts,2] for each of the O(n4) quartets. To compute such a probability, it
suffices to identify in which possible case q = ab|cd falls into (which only requires checking which
of a, b, c, d are children of v, and which have or have not been inserted yet) and calculate this
probability as above. This can be implemented to take constant time. The total time complexity
is therefore O(n6).

5.3 A more practical 1/2 approximation algorithm

As we mentioned before, the PTAS for WQC is by no means practical. Here, we aim to develop
a more implementable algorithm that achieves reasonable approximation guarantees. We borrow
ideas from [10] to show that a 1/2 approximation can be achieved by taking the best solution
from either the 1/3 approximation to WQC, or a factor 2 approximation to WMQI, the mini-
mization version of WQC (see below). For two unrooted binary trees T1, T2 on leaf set X , denote
dQ(T1, T2) = |Q(T1) \Q(T2)|. The WMQI problem is defined as follows:

Weighted Minimum Quartet Inconsistency (WMQI) problem
Input: a set of unrooted trees T = {T1, . . . , Tt} such that L(T1) = . . . = L(Tt) = X .
Output: a binary tree M with L(M) = X that minimizes

∑
T∈T dQ(M,T).

Note that the WMQI problem is equivalent to finding a minimum (in the multiset sense) number
of quartets to discard from Q so that it is compatible, meaning that there exists a tree containing
the resulting set of quartets.

It is not hard to show that dQ is a metric. In particular, dQ satisfies the triangle inequality, i.e.
for any 3 trees T1, T2, T3 on the same leaf set, dQ(T1, T3) ≤ dQ(T1, T2) +dQ(T2, T3). This leads to a
factor 2 approximation algorithm for WMQI obtained by simply returning the best tree from the
input. Intuitively, the input tree that is the closest to the others cannot be too far from the best
solution, which is a median tree in the metric space. See [4] for details.

Theorem 6 ([4]). The following is a factor 2 approximation algorithm for WMQI: output the tree
T ∈ T that minimizes

∑
Ti∈T dQ(T, Ti).

In [4], the authors explain how to compute dQ(T1, T2) in time O(n2). Therefore the factor 2
approximation can be implemented to run in time O(t2n2), by simply computing dQ between every
pair of trees.

Theorem 6 has a direct implication on the approximation guarantees of the ASTRAL algorithm
in [21], an implementation of the work from Bryant and Steel [9]. This algorithm finds, in polynomial
time, an optimal solution M for a restricted version of WMQI where every bipartition 5 of M is

5 A bipartition of a tree T consists in the two leafsets of the two trees obtained by removing an edge of T .

17

also a bipartition in at least one of the input trees. The solution T returned by the algorithm of
Theorem 6 above trivially satisfies this condition. Thus, M is at least as good as T , implying the
following.

Corollary 1. The ASTRAL algorithm is a factor 2 approximation for WMQI.

We do not know whether the factor 2 is tight for the ASTRAL algorithm - we conjecture that
ASTRAL can actually achieve a better approximation ratio. As shown in the rest of this section,
this would have interesting applications for the approximability of WQC. Do note however that the
ASTRAL algorithm cannot be a PTAS. In the example of Figure 4, the unique optimal solution
does not have all its bipartitions in the input trees. This solution contains 180 quartets from the
input, whereas ASTRAL returns a solution with 176 such quartets. It follows that ASTRAL cannot
achieve a better approximation ratio than 176/180. It is worth noting that in practice, heuristic
optimizations in ASTRAL allow it to find the optimal solution on this instance.

Now, although WQC and WMQI are not necessarily identical in terms of approximability, we
show that WMQI can be used to approximate WQC - the proof is similar to that of [10, Theorem
2].

Theorem 7. If WMQI can be approximated within a factor α, then WQC can be approximated
within a factor β = α/(3α− 2).

Proof. Let N := t
(
n
4

)
, i.e. the total number of quartets in Q, let p be the maximum number of

quartets that a tree T can contain from Q, and let d be the minimum number of quartets to
discard from Q in order to attain compatibility (here p and d refer to multiset cardinalities). Here
p stands for “preserve” and d for “discard”. Note that d = N − p. We show that taking the best
tree between the one obtained from the factor α algorithm for WMQI and the one obtained from
the derandomized 1/3 algorithm’ achieves a factor β for WQC. Suppose first that p ≤ N/(3β).
By Theorem 5, we can obtain a tree containing at least N/3 quartets from Q, and since N/3 =
βN/(3β) ≥ βp, it yields a solution to WQC within a factor β from optimal. Thus we may assume
that p > N/(3β) = N(3α− 2)/(3α). Since we have an α approximation for WMQI, we may obtain
a solution discarding at most αd = α(N −p) quartets. This solution preserves at least N − (α(N −
p)) = αp+(1−α)N quartets from Q. We claim that this attains a factor β approximation. Suppose
instead that αp + (1 − α)N < βp. Then p < (α − 1)N/(α − β) which, with a little work, yields
p < N(3α−2)/(3α), contradicting our assumption on p. Thus, the WMQI approximation preserves
at least βp quartets. ut

Combined with Theorem 6 and letting α = 2 in Theorem 7 one can compute dQ(T1, T2) for every
pair of trees, compute all the O(tn4) quartet weights, send these weights to the derandomization,
and compare the two obtained solutions. This yields the following.

Corollary 2. WQC can be approximated within a factor 1/2 in time O(t2n2 + tn4 + n6).

6 Fixed-parameter tractability of WQC

To our knowledge, there are no FPT algorithms that are known for WQC. One difficulty lies in
finding a relevant parameter for the study of the problem. For instance, it is not too difficult to
show that WQC is FPT in q, the number of quartets to remove from the input set Q to attain
compatibiltiy, but this parameter is expected to be high in practice. In this section, we present
some basic alternatives, with the goal of initiating a discussion on the fixed-parameter tractability
of WQC.

We describe how, based on previous results on the minimum quartet incompatibility problem
on complete sets, WQC can be solved in time O(4d+k2+k3n+n4). Here k2 and k3 are the number of
quadsets that have 2 and 3 dominant quartets (i.e. that occur with equal frequency), respectively,
and d is the number of strictly dominant quartets that we are allowed to reject (i.e. that are not in
an optimal solution). The algorithm makes direct use of the Gramm-Niedermeyer algorithm [15],
henceforth called the GN algorithm.

The GN algorithm solves the following problem: given a complete set of quartets Q, find, if it
exists, a complete and compatible set of quartets Q′ such that at most d′ quartets of Q′ are not
in the input set Q (i.e. |Q′ \ Q| ≤ d′). This is accomplished by repeatedly applying the following
theorem:

18

Theorem 8 ([15]). Let Q be a complete set of quartets. Then Q is compatible if and only if for
each set of five taxa {a, b, c, d, e} ⊆ X , ab|cd ∈ Q implies ab|ce ∈ Q or ae|cd ∈ Q.

The idea behind the GN algorithm is as follows: find a set of five taxa {a, b, c, d, e} that does not
satisfy the condition of Theorem 8, then correct the situation by branching into the four possible
choices:

1. remove ab|cd from Q and add ac|bd to Q;
2. remove ab|cd from Q and add ad|bc to Q;
3. remove {ac|be,ae|bc} ∩Q from Q and add ab|ce to Q;
4. remove {ac|de,ad|ce} ∩Q from Q and add ae|cd to Q.

The quartets added to Q will not be questioned in the following branchings. With some optimiza-
tion, this leads to a O(4d

′
n+ n4) FPT algorithm.

In [15], the authors also note that this algorithm can be extended to sets of quartets Q that con-
tain ambiguous quadsets, i.e. sets {a, b, c, d} for which 2 or 3 of the possible quartets on {a, b, c, d}
are in Q. Suppose there are k′2 and k′3 quadsets that have 2 and 3 quartets in Q, respectively. The
modified algorithm then, in a first phase, branches into the 2k

′
23k

′
3 ways of choosing one quartet per

such quadset, thereby obtaining a complete set of quartets for each possibility. The GN algorithm
is thus applied to the so-obtained complete sets. This yields a O(2k

′
2 · 3k′3 · 4d′n+ n4) algorithm.

It is not hard to see that this gives an FPT algorithm for WQC, where the parameter k′2 (resp.
k′3) is the number of quadsets such that 2 (resp. 3) possible quartets appear in the input trees,
and d′ is the number of quartets ab|cd that appear in every input tree, and that we are allowed to
discharge. Note however that, in the consensus setting, there is no reason to believe that k′2 and
k′3 are low - in we fact we believe that k′2 + k3,

′ typically takes values in Θ(n4). One reason is that
even the slightest amount of noise on a quadset makes it included in the count of either k′2 or k′3
(e.g. if t− 1 trees agree on ab|cd and only one contains ac|bd).

The GN algorithm can, however, be used on a more interesting set of parameters. Define k2
(resp. k3) as the number of quadsets that have exactly 2 (resp. 3) dominant quartets, and let d
be the number of strictly dominant quartets that we are allowed to discharge. It is reasonable to
believe that, if each tree of the input is close to the true tree T ∗, most “true” quartets will appear
as strictly dominant in the input, and there should not be too many ambiguous quadsets. There
is a simple algorithm achieving time O(4d+k2+k3n + n4). Construct a complete set of quartets Q
as follows: for each quadset {a, b, c, d}, choose a dominant quartet on {a, b, c, d} and add it to Q
(if multiple choices are possible, choose arbitrarily). Then, run the GN algorithm on Q with the
following modification: each time a quartet q is removed from Q and replaced by another quartet q′,
decrement either d, k2 or k3, depending on whether q belongs to a quadset with 1, 2 or 3 dominant
quartets. We know that the latter two values will never be decremented more than k2 + k3 times.
It follows that if there exists a complete and compatible set of quartets Q′ such that at most d
strictly dominant quartets are rejected, then the modified algorithm will find it. It should be noted
however that finding such a set Q′ does not guarantee that the corresponding tree is an optimal
solution. Indeed, since quartets are weighted, two solutions Q′ and Q′′ may both reject only d
strictly dominant quartets, yet one has higher weight than the other. However, the correctness of
the algorithm follows from the fact that the GN algorithm finds the set of every solution discarding
at most d dominant quartets - and thus it suffices to pick the solution from this set that has optimal
weight. We summary the above discussion formally as a corollary of [15].

Corollary 3. The WQC problem can be solved in time O(4d+k2+k3n+n4), where d is the number
of strictly dominant quartets not in an optimal solution, and k2, k3 are the number of quadsets that
have 2 and 3 dominant quartets, respectively.

We finally mention that the FPT algorithms published in [11] are improved versions of the GN
algorithm, can also return every solution and thus can be modified in the same manner. These yield
FPT algorithms that can solve WQC in time O(3.0446d+k2+k3n+n4) and O(2.0162d+k2+k3n3+n5).

7 Conclusion

In this paper, we have shown that the WQC problem is NP-hard, answering a question of [20]
and [4]. In the latter, the authors also propose a variant of the problem in which the output tree T

19

is not required to be binary. In this case, one needs to assign a cost p for the unresolved quartets in
the output. Our reduction can be extended to show that hardness holds for high enough p (e.g. we
get WQC when p =∞), but the complexity of the general case remains open. We have also shown
that WQC admits a PTAS and can be approximated within a factor 1/2. As we have shown,
improvements in the WMQI problem can immediately lead to better approximation algorithms
for WQC, and so it remains to investigate the approximability of WMQI. The fixed-parameter
tractability aspects of WQC also deserve further investigation. This would require identifying
some structural properties that are present in the consensus setting and that can be used for
designing practical exact algorithms. But as we have shown, this might not be an easy task, as
many properties which seem reasonable for the consensus setting do not hold.

Acknowledgements

This work was partially supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) and the Mitacs Globalink Campus France program.

References

1. A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman, Inferring a tree from lowest common
ancestors with an application to the optimization of relational expressions, SIAM Journal on Comput-
ing, 10 (1981), pp. 405–421.

2. S. Arora, D. Karger, and M. Karpinski, Polynomial time approximation schemes for dense in-
stances of np-hard problems, Journal of computer and system sciences, 58 (1999), pp. 193–210.

3. M. S. Bansal, J. Dong, and D. Fernández-Baca, Comparing and aggregating partially resolved
trees, in Latin American Symposium on Theoretical Informatics, Springer, 2008, pp. 72–83.

4. M. S. Bansal, J. Dong, and D. Fernández-Baca, Comparing and aggregating partially resolved
trees, Theoretical Computer Science, 412 (2011), pp. 6634–6652.

5. J.-P. Barthélemy and F. R. McMorris, The median procedure for n-trees, Journal of Classification,
3 (1986), pp. 329–334.

6. V. Berry, D. Bryant, T. Jiang, P. Kearney, M. Li, T. Wareham, and H. Zhang, A practical
algorithm for recovering the best supported edges of an evolutionary tree (extended abstract), in Proceed-
ings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial
and Applied Mathematics, 2000, pp. 287–296.

7. V. Berry, T. Jiang, P. Kearney, M. Li, and T. Wareham, Quartet cleaning: Improved algorithms
and simulations, in Proceedings of the 7th Annual European Symposium on Algorithms, J. Nešetřil,
ed., Springer Berlin Heidelberg, 1999, pp. 313–324.

8. D. Bryant, A classification of consensus methods for phylogenetics, DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, 61 (2003), pp. 163–184.

9. D. Bryant and M. Steel, Constructing optimal trees from quartets, Journal of Algorithms, 38 (2001),
pp. 237–259.

10. J. Byrka, S. Guillemot, and J. Jansson, New results on optimizing rooted triplets consistency,
Discrete Applied Mathematics, 158 (2010), pp. 1136–1147.

11. M.-S. Chang, C.-C. Lin, and P. Rossmanith, New fixed-parameter algorithms for the minimum
quartet inconsistency problem, Theory of Computing Systems, 47 (2010), pp. 342–367.

12. A. Dress, K. T. Huber, and J. Koolen, Basic phylogenetic combinatorics, Cambridge University
Press, 2012.

13. J. Felsenstein, Inferring phylogenies, Sinauer Associates Sunderland, 2004.
14. Z. Galil and N. Megiddo, Cyclic ordering is NP-complete, Theoretical Computer Science, 5 (1977),

pp. 179–182.
15. J. Gramm and R. Niedermeier, Minimum quartet inconsistency is fixed parameter tractable, in

Proceedings of the 12th Annual Symposium of Combinatorial Pattern Matching, A. Amir, ed., Springer
Berlin Heidelberg, 2001, pp. 241–256.

16. J. Jansson, On the complexity of inferring rooted evolutionary trees, Electronic Notes in Discrete
Mathematics, 7 (2001), pp. 50–53.

17. T. Jiang, P. Kearney, and M. Li, A polynomial time approximation scheme for inferring evo-
lutionary trees from quartet topologies and its application, SIAM Journal on Computing, 30 (2001),
pp. 1942–1961.

18. T. Margush and F. R. McMorris, Consensusn-trees, Bulletin of Mathematical Biology, 43 (1981),
pp. 239–244.

20

19. F. R. McMorris, D. B. Meronk, and D. Neumann, A view of some consensus methods for trees,
in Numerical Taxonomy, Springer, 1983, pp. 122–126.

20. S. Mirarab, Novel scalable approaches for multiple sequence alignment and phylogenomic reconstruc-
tion, PhD thesis, University of Texas at Austin, 2015.

21. S. Mirarab, R. Reaz, M. S. Bayzid, T. Zimmermann, M. S. Swenson, and T. Warnow, AS-
TRAL: genome-scale coalescent-based species tree estimation, Bioinformatics, 30 (2014), pp. i541–i548.

22. A. Morgado and J. Marques-Silva, A pseudo-boolean solution to the maximum quartet consistency
problem, arXiv preprint arXiv:0805.0202, (2008).

23. A. Morgado and J. Marques-Silva, Combinatorial optimization solutions for the maximum quartet
consistency problem, Fundamenta Informaticae, 102 (2010), pp. 363–389.

24. R. R. Sokal and F. J. Rohlf, Taxonomic congruence in the leptopodomorpha re-examined, System-
atic Zoology, 30 (1981), pp. 309–325.

25. M. Steel, The complexity of reconstructing trees from qualitative characters and subtrees, Journal of
Classification, 9 (1992), pp. 91–116.

26. G. Wu, J.-H. You, and G. Lin, A lookahead branch-and-bound algorithm for the maximum quar-
tet consistency problem, in International Workshop on Algorithms in Bioinformatics, Springer, 2005,
pp. 65–76.

27. G. Wu, J.-H. You, and G. Lin, Quartet-based phylogeny reconstruction with answer set programming,
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4 (2007), pp. 139–152.

28. L. Xin, B. Ma, and K. Zhang, A new quartet approach for reconstructing phylogenetic trees: Quartet
joining method, in International Computing and Combinatorics Conference, Springer, 2007, pp. 40–50.

21

